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1. Introduction

Throughout F is an algebraically closed field of characteristic zero and all vector spaces and algebras are over F and of
finite dimensions.

Ado’s theorem says that every finite dimensional Lie (super)algebra has a finite-dimensional faithful representation [1].
Let g be a Lie (super)algebra and write

u(g) = min{dimV | V is a faithful g-module}.

It is in general difficult to determine w(g). The earliest result is that «(g) = [2+4/dim g — 1] for an abelian Lie algebra g,
which is due to Schur for F = C and to Jacobson for arbitrary F (see also [2] for a simple proof due to Mirzakhani). In 1998
Burde concluded that «(h,,) = m + 2 for Heisenberg Lie algebra b, of dimension 2m + 1 [3]. In 2008 Burde and Moens
established an explicit formula of 1 (g) for semi-simple and reductive Lie algebras [4]. In 2009 Cagliero and Rojas obtained
a formula p(hm p) for the current Heisenberg Lie algebra by, , [5]. One can also find the formula . (3) for a Jordan algebra J
with the trivial multiplication [6].

However, very little is known about the function wu for Lie superalgebras. In 2012 Liu and Wang determined u(g) =
[24/dim g] for any purely odd Lie superalgebra g [6] and it remains open to determine 1 (g) for an abelian Lie superalgebra
g with nontrivial even part. In this paper, we shall determine the minimal (super-)dimensions of the faithful representations
for Heisenberg Lie superalgebras.
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A two-step nilpotent Lie superalgebra with 1-dimensional center is called a Heisenberg Lie superalgebra. Then Heisen-
berg Lie superalgebras split into the following two types according to the parities of their centers [7]. Write b, , for the
Heisenberg Lie superalgebra with 1-dimensional even center Fz, which has a Z,-homogeneous basis

(u17'~'7umav1»"'avm;z|w17"'$wn)
with multiplication given by
[uia U[] :_[vivui] :z:[wj9w]]7 i= 15"'sm7j: ]7"'5na

the remaining brackets being zero. Hereafter Z, = {0, 1} is the group of order 2.
Write b, for the Heisenberg Lie superalgebra with 1-dimensional odd center Fz, which has a Z,-homogeneous basis

Wi, .. v | Zywe, ..o, wy)
with multiplication given by
[vi, wil=z=—[w;,v], i=1,...,n,

the remaining brackets being zero.

Both by, and b, are nilpotent. Note that by ¢ is a Heisenberg Lie algebra and b , is isomorphic to the Heisenberg Lie
superalgebra considered in [1, p. 18], whose even part coincides with 1-dimension center. However, the Heisenberg Lie
superalgebras with odd centers, h,, have no analogs in Lie algebras. We should also mention that Hegazi studied represen-
tations of the Heisenberg Lie superalgebras of even center, b, ,,, and tried to find a finite-dimensional faithful representation
of b n [8, Section 3].

Throughout this paper, subalgebras and (sub)modules of Lie superalgebras are assumed to be Z,-graded. Hereafter we
write g for hp, , or h,. A main result of this paper is that

_ m+[-n/2-|+2 g:hm,n
M(G)_{n-}—Z g =bn.

To formulate the super-dimensions of the faithful representations, write fori € {0, 1},

wi(g) = min{dim V; | V is a faithful g-module};
w1 (g) = min{dim V | V is a faithful g-module with dim V; = pu,(g)}.

In this paper we also determine the values u;(g) and ] (g).

2. Minimal dimensions
Since Engel’s theorem holds for Lie superalgebras, as in Lie algebra case [3, Lemma 1], we have

Lemma 2.1. Let L be a nilpotent Lie superalgebra with a 1-dimensional center Fz. Then a representation A : L — gl(V) is faithful
if and only if z acts nontrivially.

Proof. The “only if” part is obvious. Suppose z acts nontrivially. If ker(A) # 0, then Engel’s theorem ensures that ker(i)
contains a nonzero element killed by L and hence ker(A) contains the center Fz, showing that p(z) = 0, a contradiction. O

Let
¢ (g) = max{dima | a is an abelian subalgebra of g not containing the center of g}.

Let »/—1 denote a fixed root of the equation x> = —1in F. We have

Lemma 2.2. Let a be an abelian subalgebra not containing z of g and having dimension ¢ (g). Then

e for g = b p, the super-dimension (dim ag, dim aj) must be (m, |n/2]);
e for g = by, the super-dimension (dim ag, dim ag) has n + 1 possibilities:

(i,n—i), i=0,...,n.
In particular,

‘o) = {T T
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Proof. Since a does not contain the center Fz, there is a Z,-graded subspace ¢ containing a such that g = ¢ @ Fz. Let

B : ¢ x t — F be the form determined by [, y] = B(x, y)z forall x,y € t.Itis clear that B is bilinear and non-degenerate.

Since ais abelian, B(x, y) = Oforallx, y € a.Therefore, a is a B-isotropic subspace of ¢. It follows that dim a < % = d""Tg’]
Suppose g = hm.n. Thendima < m + |n/2]. Let b be the subspace spanned by

Uq, U, ..., Up, w1 + v —1ws, w3+ vV —1wg, ..., wp1 + v —1wy

if nis even and by

Uq, U, ..., U, w1 + v —1ws, w3+ vV —1wg, ..., wp 2 + vV —1wy4

if n is odd. One can check that b is an abelian subalgebra of dimension m + |n/2] and b does not contain z. Hence,
¢(g) =dima=m+ |n/2].

Clearly, ag is a B-isotropic subspace of £5 and a5 is a B-isotropic subspace of ¢;. Since B|E() Xt and Bl,- xt; are non-degenerate,
we have dimaz < m, dimaj < |[n/2]. Note that dima = m + [n/2]. It follows that dim a5 = m, dim aj = [n/2].

Suppose g = h,. Then dim a < n. Let b’ be the subspace spanned by v1, v, ..., v,. Clearly, b is an abelian subalgebra of
dimension n of b, and b’ does not contain z. Hence, ¢ (g) = dim a = n. From the definition of ,, one may easily find abelian
subalgebras not containing z and having the indicated super-dimension (i, n — i) withi=0,...,n. O

Lemma 2.3. Let V be a faithful g-module. Then there exists a nonzero homogeneous element vy in V such that zvy # 0. Moreover,
let p,, be the linear mapping defined by

Py 98—V, X —> XUg
and let a = ker(p,,) and Vo = im(p,, ). Then a is an abelian subalgebra not containing z and if dim a = ¢ (g), then vy ¢ V.

Proof. Lemma 2.1 ensures that there exists a nonzero homogeneous element vy in V such that zvy # 0. It follows that a
does not contain z. Since p,, is homogeneous, a is a Z,-graded subspace of g. Forx, y € q,itis obvious that [x, y] € aNFz =0
and it follows that a is an abelian subalgebra.

Suppose dima = ¢(g). Assume in contrary that vy € V;. Then there exists an x € gg such that xvy = vy, since vy is
a nonzero homogeneous element of V. Clearly, (hm ) is a solvable Lie algebra. Since [u;, v;] = z, by Lie’s theorem, z acts
nilpotently on V. For b,, z is odd. Therefore, x ¢ Fz. Moreover, it is clear that X ¢ a. Then by the maximality of a, we have
[x, a] # 0. There must be some y € a such that [x, y] = z. Since x € gz, we have

zZvg = [x, y]vg = x(yvo) — y(xvp) = 0,

using that yvy = 0 and xvg = vyp. This is a contradiction. Hence vo & V. O

Proposition 2.4. Let g = by, or by Then
u(g) = dimg —¢(g) + 1.
That is,

o (hmn) =m—+[n/2]1+2;
o n(hy) =n+2.

Proof. Assume that A : g — gl(V) is a faithful representation. Let vg, a, Vo be as in Lemma 2.3. By Lemmas 2.2 and 2.3, we
have

dimV > dimVy = dimg — dima > dimg — ¢ (g).

IfdimVy > dimg — ¢ (g) 4+ 1, we are done. Suppose dim Vy = dimg — ¢ (g). Then dima = ¢(g). By Lemma 2.3, we have
vo & Vj. Therefore,

dimV > dimVy + 1 = dimg — ¢(g) + 1.

Thatis, u(hmn) = m+ /27 +2; p(hy) =n+2. O

Theorem 2.5. We have

_ m+ [n/27] + 2 9= "bmn
we) = {n+2 g = bn.
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Proof. By Proposition 2.4, it is enough to establish a faithful representation of the desired dimension for g. Consider the
even linear mapping

7T bmp —> gl(m+2 | [n/27)
given by

7T (U;) = eq,iy1, 7 (Vi) = €iy1,mi2 (Z) = e1,m42,

1
7T (Wok—1) = 2 Emt2tkmt2 + €1, m+24k>

-1
7 (wok) = Tem+2+k,m+2 — ~ —=1e1 my2+ks

where 1 <i <m, 1< 2k, 2k — 1 < n.Under 7, an element of b, 5,

m m n
Za,-u,- + Zb,-v,- +cz+ Zdjwj (a,», bj, C, dj (S ]F) (21)
i=1 i=1 =1

is presented as

0 a a --- ap c diy dsg dn_1,n

0 (n even) (2.2)

or

0 a4 aa - ap c dip dsg dpzn-1 dy

- (nodd), (2.3)

dn72.n71
1
2n

whered; 11 = di—+/—1di41, E,-,Hl = % (di++/—1d;+1). Itis routine to verify that 7 is a faithful representation of dimension
m+ [n/2] + 2.

Let us consider the even linear mapping
7 iy — glin+1]1)
given by
7' (i) = et
7'(2) = eint2, T (W) = eir1nt2,
where 1 < i < n.Under 7/, an element of by,

n n
Za,-v,-—{—cz—{-Zb,-w,- (a,-,c, b,’ S F) (24)
i=1 i=1
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is presented as

0 a, a -+ a,| ¢

It is routine to verify that 7’ is a faithful representation of dimensionn + 2. O

3. Super-dimensions

In this section we discuss the super-dimensions of the faithful representations for Heisenberg Lie superalgebras. We first
establish a technical lemma, for which we shall use a result due to Burde [3]: the formula (L) for Heisenberg Lie algebras.

Lemma 3.1. Let V be a faithful module of hm n. Let v be as in Lemma 2.3. If vy is even, then dim Vi > m 4 2; if vy is odd, then
dimV; > m+ 2.

Proof. Note that (hn n)g is a Heisenberg Lie algebra. Obviously, Vj is a module of the Lie algebra (h,n)5. If vo is even, then
vo € Vj. Since zvg # 0, Vj is a faithful module of (b, )5 by Lemma 2.1. According to the minimal dimensions of faithful
representations for Heisenberg Lie algebras [3], we have dim Vi > w((hm.n)g) = m + 2. Similarly, if vg is odd, then Vj is a
faithful module of (h;,n)5 and hencedimV; > m+2. O

Theorem 3.2. Suppose V is a faithful g-module of the minimal dimension w(g). Then
e For b n, the super-dimension (dim Vg, dim V3) has 2 possibilities:
(m+2,[n/21),  ([n/2],m+2).
e For by, the super-dimension (dim Vg, dim Vy) has n + 1 possibilities:

i+1,n—i+1), i=0,...,n

Proof. Let vy, a, Vg be as in Lemma 2.3. Since a does not contain the center Fz, there exists a subalgebra o’ containing z such
thatg = a @ o'. SincedimV = dimg — ¢ (g) + 1and dima < ¢ (g), we have dimg — £ (g) < dimVy < dimg — ¢ (g) + 1.1t
is enough to consider the following two cases.

Case 1: dimVy = dimg — ¢(g). Then dima = ¢(g) and Lemma 2.3 yields vy ¢ V. Then we have dima’ = dimg — ¢ (g).
Since dimV = dimg — {(g) + 1, it easy to see that V has an F-basis

{vo, Xvg | x runs over a homogeneous basis of a'}. (3.1)

For g = b n, by Lemma 2.2 we have dimaz = m and dima; = [n/2]. Hence, dima; = m + 1, dimda; = [n/2]. By
(3.1),if v € V5 thendim Vg = m 4 2 and dim V3 = [n/2]; if v € V3, thendim V5 = [n/2] and dimV; = m + 2.

For g = b, by Lemma 2.2, dimag =ianddima; =n—1i, i=0,...,n. Hence,dimaé = ianddima% =n+1—i,i=
0, ...,n. Therefore we havedimV; =i+ landdimV; =n+1—i wherei=0,...,n.
Case2: dimVy = dimg— ¢(g) + 1. Thendima = ¢(g) — 1 and dima’ = dim g — ¢ (g) + 1. SincedimV = dimg — ¢ (g) + 1,
one sees that V has an F-basis

{xvg | x runs over a homogeneous basis of a'}. (3.2)

For g = Hmn, clearly, dim a:—) = m + i and dim cUi = [n/2]1 + 2 —iforsomei € {1,2}. By (3.2),if vy € V;, then
dimVy; = m+ianddimV; = [n/2]+2 —i; ifvg € V3, thendimVy = [n/2]+2—ianddimV; = m+iforsomei € {1, 2}.
By Lemma 3.1, it must be i = 2.

For g = b,, then dima = n — 1. Clearly, dimd’ = n+2,dima(’-) = i—i—landdima’i =n+1-i,i=0,...,n—1.
Therefore, we have either dimVy = i+ 1anddimV; = n+1—i,ordimVz =n+1—ianddimV; =i+ 1, for some
ie{0,...,n—1}L

Up to now, we have shown that:

e For by, n, the super-dimension (dim Vg, dim V) has at most 2 possibilities:
(m+2,[n/21),  ([n/2],m+2).
e For by, the super-dimension (dim Vg, dim V) has at most n + 1 possibilities:

i+1,n—i+1), i=0,...,n
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Next let us realize the faithful representations of the super-dimensions indicated above. For b, 5, (2.2) and (2.3) give a
minimal faithful representation of b, , with super-dimension (m + 2, [n/27). Consider the even linear mapping

7T bmn —> gl([n/2] | m+2)

given by
7 (U;) = €[n/2141,[n/2]+i+15 7 (V) = €[ny21+it1,[n/2]+m+2> 7(2) = en/2141,[n/2]+m+2>
1 —_
7T (Wok—1) = =€k [n/21+m+2 + €[n/21+1,k> 7T (W) = ek, rn/21+m+2 — v —1€mn/2141,ks

2 2
where 1 <i<m, 1< 2k, 2k — 1 < n.Under 7, an element of form (2.1) is presented as

Enz

ds 4

dnfl,n
dip d3q4 -+ dy1n |0 ay ap -+ ap c
b

(n even) (3.3)

or

diz dsg -~ dpinm d, |0 @ - am ¢ (n odd), (34)

ofF ...

whered;; = d;—+/—1d;, E,;j = % (di++/—1d;).Itis routine to verify that 7 is a faithful representation with super-dimension
(fn/2], m + 2).
For 0 < r < n, let us consider the even linear mapping

7 iy —glr+1|n—r+1)

given by
7' (v) = ey i1, 7' (V) = —€jt1nt2s
7T,(Z) = €1,n42, n’(wk) = €k+1,n42, ﬂ,(wl) = €1,1+1,

where1 <i,k <randr+ 1 <j, 1 <n.Under/, an element (2.4) of ,, is presented as

0 a -+ a |by -+ by ¢

(3.5)

—a,
0

It is routine to verify that 7’ is a faithful representation with super-dimension (r + 1,n —r + 1) forallr =0,...,n. O
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Recall that for i € {0, 1},

wi(g) = min{dim V; | V is a faithful g-module},
ui (g) = min{dimV | V is a faithful g-module with dim V; = u;(g)}.

Theorem 3.3. We have

o(e) = 11(g) = {‘{“i“{m 2 A2 e = b

and

uo(@) = pnilg) = {Tf{nm i ﬁ - 2:3'1

Proof. Let (A, V) be a faithful representation of g. Evidently,

mo(@ > n(@);  1i(e) = (). (3.6)
Keep the notations in Lemma 2.3. As in the proof of Theorem 3.2, there exists a subalgebra a’ containing z such that g = a®d'.
By Lemma 2.2, dima’ > dimg — ¢(g). Hence, by Lemma 2.3(4), if vy is even, then dimV; > dim a’i; if vg is odd, then
dim V5 > dim a’i.

Let g = bpmp. By Lemma 2.2, we have dima. > [n/2]. So, if vp is even, then dimV; > [n/27; if vy is odd, then
dimVy > [n/27. By Lemma 3.1, if vy is even, tflen dimVy > m + 2; if vp is odd, then dimV; > m + 2. Therefore,
dim V3 > min{m + 2, [n/2]} and dimV; > min{m + 2, [n/27}. Since (2.2) and (2.3) define a faithful representation of
hm,n With super-dimension (m+ 2, [n/27), and (3.3) and (3.4) define a faithful representation of b, , with super-dimension
([n/27, m + 2), we have

Ho(bm,n) = Ml(hm,n) = min{m + 2, [n/21}.
It follows from (3.6) that

Mg(hm,n) = MT(bm,n) =m+ |—n/2-| + 2.

Let g = b,. By Lemma 2.2, we have dima- > 1. So, if v, is even, then dim V; > 1; if vg is odd, then dim V5 > 1. On the
other hand, if vy is even, then vy € V5 and dim Vi > 1; if vy is odd, then vy € V5 and dim V; > 1. Then by (3.5), we have

to(bn) = p1(hy) = 1.
It follows from (3.6) that

Mg(bn) = NT(hn) =n+2. O

Remark 3.4. Let L be a Lie superalgebra and I7 the parity functor of the category of Z,-graded vector spaces. It is well known
that if V is an L-module, then so is 77(V) with respect to the original module action. Therefore, in general we have

no) = i),  pg@ = pid).

This fact may be used to shorten the proofs of Theorems 3.2 and 3.3.

Acknowledgments

The authors are grateful to the anonymous referee for his/her valuable comments and helpful suggestions. The first author
was supported by the NSF of China (11171055, 11471090) and the NSF of HLJ Province, China (A201412, JC201004)

References

[1] V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8-96.

[2] M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly 105 (1998) 260-262.

[3] D.Burde, On a refinement of Ado’s theorem, Arch. Math. 70 (1998) 118-127.

[4] D.Burde, W. Moens, Minimal faithful representations of reductive Lie algebras, Arch. Math. 89 (2007) 513-523.

[5] L. Cagliero, N. Rojas, Faithful representations of minimal dimension of current Heisenberg Lie algebras, Internat. J. Math. 20 (2009) 1347-1362.

[6] W.D. Liy, S.J. Wang, Minimal faithful representations of abelian Jordan algebras and Lie superalgebras, Linear Algebra Appl. 437 (2012) 1293-1299.

[7] M.C. Rodriguez-Vallarte, G. Salgado, O.A. Sanchez-Valenzuela, Heisenberg Lie superalgebras and their invariant superorthogonal and supersymplectic
forms, ]. Algebra 332 (2011) 71-86.

[8] A.S.Hegazi, Representations of Heisenberg Lie super algebras, Indian J. Pure. Appl. Math. 21 (1990) 557-566.


http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref1
http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref2
http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref3
http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref4
http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref5
http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref6
http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref7
http://refhub.elsevier.com/S0393-0440(14)00265-4/sbref8

	The minimal dimensions of faithful representations for Heisenberg Lie superalgebras
	Introduction
	Minimal dimensions
	Super-dimensions
	Acknowledgments
	References


