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1. Introduction

Throughout F is an algebraically closed field of characteristic zero and all vector spaces and algebras are over F and of
finite dimensions.

Ado’s theorem says that every finite dimensional Lie (super)algebra has a finite-dimensional faithful representation [1].
Let g be a Lie (super)algebra and write

µ(g) = min{dim V | V is a faithful g-module}.

It is in general difficult to determine µ(g). The earliest result is that µ(g) = ⌈2
√
dim g − 1⌉ for an abelian Lie algebra g,

which is due to Schur for F = C and to Jacobson for arbitrary F (see also [2] for a simple proof due to Mirzakhani). In 1998
Burde concluded that µ(hm) = m + 2 for Heisenberg Lie algebra hm of dimension 2m + 1 [3]. In 2008 Burde and Moens
established an explicit formula of µ(g) for semi-simple and reductive Lie algebras [4]. In 2009 Cagliero and Rojas obtained
a formula µ(hm,p) for the current Heisenberg Lie algebra hm,p [5]. One can also find the formula µ(J) for a Jordan algebra J

with the trivial multiplication [6].
However, very little is known about the function µ for Lie superalgebras. In 2012 Liu and Wang determined µ(g) =

⌈2
√
dim g⌉ for any purely odd Lie superalgebra g [6] and it remains open to determine µ(g) for an abelian Lie superalgebra

gwith nontrivial even part. In this paper, we shall determine theminimal (super-)dimensions of the faithful representations
for Heisenberg Lie superalgebras.
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A two-step nilpotent Lie superalgebra with 1-dimensional center is called a Heisenberg Lie superalgebra. Then Heisen-
berg Lie superalgebras split into the following two types according to the parities of their centers [7]. Write hm,n for the
Heisenberg Lie superalgebra with 1-dimensional even center Fz, which has a Z2-homogeneous basis

(u1, . . . , um, v1, . . . , vm; z | w1, . . . , wn)

with multiplication given by

[ui, vi] = −[vi, ui] = z = [wj, wj], i = 1, . . . ,m, j = 1, . . . , n,

the remaining brackets being zero. Hereafter Z2 = {0̄, 1̄} is the group of order 2.
Write hn for the Heisenberg Lie superalgebra with 1-dimensional odd center Fz, which has a Z2-homogeneous basis

(v1, . . . , vn | z; w1, . . . , wn)

with multiplication given by

[vi, wi] = z = −[wi, vi], i = 1, . . . , n,

the remaining brackets being zero.
Both hm,n and hn are nilpotent. Note that hm,0 is a Heisenberg Lie algebra and h0,n is isomorphic to the Heisenberg Lie

superalgebra considered in [1, p. 18], whose even part coincides with 1-dimension center. However, the Heisenberg Lie
superalgebras with odd centers, hn, have no analogs in Lie algebras. We should also mention that Hegazi studied represen-
tations of the Heisenberg Lie superalgebras of even center, hm,n, and tried to find a finite-dimensional faithful representation
of hm,n [8, Section 3].

Throughout this paper, subalgebras and (sub)modules of Lie superalgebras are assumed to be Z2-graded. Hereafter we
write g for hm,n or hn. A main result of this paper is that

µ(g) =


m + ⌈n/2⌉ + 2 g = hm,n
n + 2 g = hn.

To formulate the super-dimensions of the faithful representations, write for i ∈ {0, 1},

µi(g) = min{dim Vī | V is a faithful g-module};
µ∗

i (g) = min{dim V | V is a faithful g-module with dim Vī = µi(g)}.

In this paper we also determine the values µi(g) and µ∗

i (g).

2. Minimal dimensions

Since Engel’s theorem holds for Lie superalgebras, as in Lie algebra case [3, Lemma 1], we have

Lemma 2.1. Let L be a nilpotent Lie superalgebra with a 1-dimensional center Fz. Then a representation λ : L → gl(V ) is faithful
if and only if z acts nontrivially.

Proof. The ‘‘only if’’ part is obvious. Suppose z acts nontrivially. If ker(λ) ≠ 0, then Engel’s theorem ensures that ker(λ)
contains a nonzero element killed by L and hence ker(λ) contains the center Fz, showing that ρ(z) = 0, a contradiction. �

Let

ζ (g) = max{dim a | a is an abelian subalgebra of g not containing the center of g}.

Let
√

−1 denote a fixed root of the equation x2 = −1 in F. We have

Lemma 2.2. Let a be an abelian subalgebra not containing z of g and having dimension ζ (g). Then

• for g = hm,n, the super-dimension (dim a0̄, dim a1̄) must be (m, ⌊n/2⌋);
• for g = hn, the super-dimension (dim a0̄, dim a1̄) has n + 1 possibilities:

(i, n − i), i = 0, . . . , n.

In particular,

ζ (g) =


m + ⌊n/2⌋ g = hm,n
n g = hn.
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Proof. Since a does not contain the center Fz, there is a Z2-graded subspace k containing a such that g = k ⊕ Fz. Let
B : k × k → F be the form determined by [x, y] = B(x, y)z for all x, y ∈ k. It is clear that B is bilinear and non-degenerate.
Since a is abelian, B(x, y) = 0 for all x, y ∈ a. Therefore, a is a B-isotropic subspace of k. It follows that dim a ≤

dim k
2 =

dim g−1
2 .

Suppose g = hm,n. Then dim a ≤ m + ⌊n/2⌋. Let b be the subspace spanned by

u1, u2, . . . , um, w1 +
√

−1w2, w3 +
√

−1w4, . . . , wn−1 +
√

−1wn

if n is even and by

u1, u2, . . . , um, w1 +
√

−1w2, w3 +
√

−1w4, . . . , wn−2 +
√

−1wn−1

if n is odd. One can check that b is an abelian subalgebra of dimension m + ⌊n/2⌋ and b does not contain z. Hence,
ζ (g) = dim a = m + ⌊n/2⌋.

Clearly, a0̄ is a B-isotropic subspace of k0̄ and a1̄ is a B-isotropic subspace of k1̄. Since B|k0̄×k0̄
and B|k1̄×k1̄

are non-degenerate,
we have dim a0̄ ≤ m, dim a1̄ ≤ ⌊n/2⌋. Note that dim a = m + ⌊n/2⌋. It follows that dim a0̄ = m, dim a1̄ = ⌊n/2⌋.

Suppose g = hn. Then dim a ≤ n. Let b′ be the subspace spanned by v1, v2, . . . , vn. Clearly, b′ is an abelian subalgebra of
dimension n of hn and b′ does not contain z. Hence, ζ (g) = dim a = n. From the definition of hn, one may easily find abelian
subalgebras not containing z and having the indicated super-dimension (i, n − i) with i = 0, . . . , n. �

Lemma 2.3. Let V be a faithful g-module. Then there exists a nonzero homogeneous element v0 in V such that zv0 ≠ 0. Moreover,
let ρv0 be the linear mapping defined by

ρv0 : g −→ V , x −→ xv0

and let a = ker(ρv0) and V0 = im(ρv0). Then a is an abelian subalgebra not containing z and if dim a = ζ (g), then v0 ∉ V0.

Proof. Lemma 2.1 ensures that there exists a nonzero homogeneous element v0 in V such that zv0 ≠ 0. It follows that a

does not contain z. Since ρv0 is homogeneous, a is aZ2-graded subspace of g. For x, y ∈ a, it is obvious that [x, y] ∈ a∩Fz = 0
and it follows that a is an abelian subalgebra.

Suppose dim a = ζ (g). Assume in contrary that v0 ∈ V0. Then there exists an x ∈ g0̄ such that xv0 = v0, since v0 is
a nonzero homogeneous element of V . Clearly, (hm,n)0̄ is a solvable Lie algebra. Since [ui, vi] = z, by Lie’s theorem, z acts
nilpotently on V . For hn, z is odd. Therefore, x ∉ Fz. Moreover, it is clear that x ∉ a. Then by the maximality of a, we have
[x, a] ≠ 0. There must be some y ∈ a such that [x, y] = z. Since x ∈ g0̄, we have

zv0 = [x, y]v0 = x(yv0) − y(xv0) = 0,

using that yv0 = 0 and xv0 = v0. This is a contradiction. Hence v0 ∉ V0. �

Proposition 2.4. Let g = hm,n or hn. Then

µ(g) ≥ dim g − ζ (g) + 1.

That is,

• µ(hm,n) ≥ m + ⌈n/2⌉ + 2;
• µ(hn) ≥ n + 2.

Proof. Assume that λ : g → gl(V ) is a faithful representation. Let v0, a, V0 be as in Lemma 2.3. By Lemmas 2.2 and 2.3, we
have

dim V ≥ dim V0 = dim g − dim a ≥ dim g − ζ (g).

If dim V0 ≥ dim g − ζ (g) + 1, we are done. Suppose dim V0 = dim g − ζ (g). Then dim a = ζ (g). By Lemma 2.3, we have
v0 ∉ V0. Therefore,

dim V ≥ dim V0 + 1 = dim g − ζ (g) + 1.

That is, µ(hm,n) ≥ m + ⌈n/2⌉ + 2; µ(hn) ≥ n + 2. �

Theorem 2.5. We have

µ(g) =


m + ⌈n/2⌉ + 2 g = hm,n
n + 2 g = hn.
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Proof. By Proposition 2.4, it is enough to establish a faithful representation of the desired dimension for g. Consider the
even linear mapping

π : hm,n −→ gl(m + 2 | ⌈n/2⌉)

given by

π(ui) = e1,i+1, π(vi) = ei+1,m+2, π(z) = e1,m+2,

π(w2k−1) =
1
2
em+2+k,m+2 + e1,m+2+k,

π(w2k) =

√
−1
2

em+2+k,m+2 −
√

−1e1,m+2+k,

where 1 ≤ i ≤ m, 1 ≤ 2k, 2k − 1 ≤ n. Under π , an element of hm,n,

m
i=1

aiui +

m
i=1

bivi + cz +

n
j=1

djwj (ai, bi, c, dj ∈ F) (2.1)

is presented as

0 a1 a2 · · · am c d1,2 d3,4 · · · dn−1,n
b1
b2
...
bm
0d1,2d3,4
...dn−1,n


(n even) (2.2)

or 

0 a1 a2 · · · am c d1,2 d3,4 · · · dn−2,n−1 dn
b1
b2
...
bm
0d1,2d3,4
...dn−2,n−1

1
2dn



(n odd), (2.3)

where di,i+1 = di−
√

−1di+1,di,i+1 =
1
2 (di+

√
−1di+1). It is routine to verify thatπ is a faithful representation of dimension

m + ⌈n/2⌉ + 2.
Let us consider the even linear mapping

π ′
: hn −→ gl(n + 1 | 1)

given by

π ′(vi) = e1,i+1,

π ′(z) = e1,n+2, π ′(wi) = ei+1,n+2,

where 1 ≤ i ≤ n. Under π ′, an element of hn,

n
i=1

aivi + cz +

n
i=1

biwi (ai, c, bi ∈ F) (2.4)
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is presented as

0 a1 a2 · · · an c
b1
b2
...
bn
0

 .

It is routine to verify that π ′ is a faithful representation of dimension n + 2. �

3. Super-dimensions

In this section we discuss the super-dimensions of the faithful representations for Heisenberg Lie superalgebras. We first
establish a technical lemma, for which we shall use a result due to Burde [3]: the formula µ(L) for Heisenberg Lie algebras.

Lemma 3.1. Let V be a faithful module of hm,n. Let v0 be as in Lemma 2.3. If v0 is even, then dim V0̄ ≥ m + 2; if v0 is odd, then
dim V1̄ ≥ m + 2.

Proof. Note that (hm,n)0̄ is a Heisenberg Lie algebra. Obviously, V0̄ is a module of the Lie algebra (hm,n)0̄. If v0 is even, then
v0 ∈ V0̄. Since zv0 ≠ 0, V0̄ is a faithful module of (hm,n)0̄ by Lemma 2.1. According to the minimal dimensions of faithful
representations for Heisenberg Lie algebras [3], we have dim V0̄ ≥ µ((hm,n)0̄) = m + 2. Similarly, if v0 is odd, then V1̄ is a
faithful module of (hm,n)0̄ and hence dim V1̄ ≥ m + 2. �

Theorem 3.2. Suppose V is a faithful g-module of the minimal dimension µ(g). Then

• For hm,n, the super-dimension (dim V0̄, dim V1̄) has 2 possibilities:

(m + 2, ⌈n/2⌉), (⌈n/2⌉,m + 2).

• For hn, the super-dimension (dim V0̄, dim V1̄) has n + 1 possibilities:

(i + 1, n − i + 1), i = 0, . . . , n.

Proof. Let v0, a, V0 be as in Lemma 2.3. Since a does not contain the center Fz, there exists a subalgebra a′ containing z such
that g = a ⊕ a′. Since dim V = dim g − ζ (g) + 1 and dim a ≤ ζ (g), we have dim g − ζ (g) ≤ dim V0 ≤ dim g − ζ (g) + 1. It
is enough to consider the following two cases.
Case 1: dim V0 = dim g − ζ (g). Then dim a = ζ (g) and Lemma 2.3 yields v0 ∉ V0. Then we have dim a′

= dim g − ζ (g).
Since dim V = dim g − ζ (g) + 1, it easy to see that V has an F-basis

{v0, xv0 | x runs over a homogeneous basis of a′
}. (3.1)

For g = hm,n, by Lemma 2.2 we have dim a0̄ = m and dim a1̄ = ⌊n/2⌋. Hence, dim a′

0̄
= m + 1, dim a′

1̄
= ⌈n/2⌉. By

(3.1), if v0 ∈ V0̄ then dim V0̄ = m + 2 and dim V1̄ = ⌈n/2⌉; if v0 ∈ V1̄, then dim V0̄ = ⌈n/2⌉ and dim V1̄ = m + 2.
For g = hn, by Lemma 2.2, dim a0̄ = i and dim a1̄ = n − i, i = 0, . . . , n. Hence, dim a′

0̄
= i and dim a′

1̄
= n + 1 − i, i =

0, . . . , n. Therefore we have dim V0̄ = i + 1 and dim V1̄ = n + 1 − i, where i = 0, . . . , n.
Case 2: dim V0 = dim g − ζ (g)+ 1. Then dim a = ζ (g)− 1 and dim a′

= dim g − ζ (g)+ 1. Since dim V = dim g − ζ (g)+ 1,
one sees that V has an F-basis

{xv0 | x runs over a homogeneous basis of a′
}. (3.2)

For g = hm,n, clearly, dim a′

0̄
= m + i and dim a′

1̄
= ⌈n/2⌉ + 2 − i for some i ∈ {1, 2}. By (3.2), if v0 ∈ V0̄, then

dim V0̄ = m+ i and dim V1̄ = ⌈n/2⌉+2− i; if v0 ∈ V1̄, then dim V0̄ = ⌈n/2⌉+2− i and dim V1̄ = m+ i for some i ∈ {1, 2}.
By Lemma 3.1, it must be i = 2.

For g = hn, then dim a = n − 1. Clearly, dim a′
= n + 2, dim a′

0̄
= i + 1 and dim a′

1̄
= n + 1 − i, i = 0, . . . , n − 1.

Therefore, we have either dim V0̄ = i + 1 and dim V1̄ = n + 1 − i, or dim V0̄ = n + 1 − i and dim V1̄ = i + 1, for some
i ∈ {0, . . . , n − 1}.

Up to now, we have shown that:

• For hm,n, the super-dimension (dim V0̄, dim V1̄) has at most 2 possibilities:

(m + 2, ⌈n/2⌉), (⌈n/2⌉,m + 2).

• For hn, the super-dimension (dim V0̄, dim V1̄) has at most n + 1 possibilities:

(i + 1, n − i + 1), i = 0, . . . , n.
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Next let us realize the faithful representations of the super-dimensions indicated above. For hm,n, (2.2) and (2.3) give a
minimal faithful representation of hm,n with super-dimension (m + 2, ⌈n/2⌉). Consider the even linear mapping

π : hm,n −→ gl(⌈n/2⌉ | m + 2)

given by

π(ui) = e⌈n/2⌉+1,⌈n/2⌉+i+1, π(vi) = e⌈n/2⌉+i+1,⌈n/2⌉+m+2, π(z) = e⌈n/2⌉+1,⌈n/2⌉+m+2,

π(w2k−1) =
1
2
ek,⌈n/2⌉+m+2 + e⌈n/2⌉+1,k, π(w2k) =

√
−1
2

ek,⌈n/2⌉+m+2 −
√

−1e⌈n/2⌉+1,k,

where 1 ≤ i ≤ m, 1 ≤ 2k, 2k − 1 ≤ n. Under π , an element of form (2.1) is presented as

d1,2d3,4
...dn−1,n

d1,2 d3,4 · · · dn−1,n 0 a1 a2 · · · am c
b1
...
bm
0


(n even) (3.3)

or 

d1,2d3,4
...dn−1,n

1
2dn

d1,2 d3,4 · · · dn−1,n dn 0 a1 · · · am c
b1
b2
...
bm
0



(n odd), (3.4)

where di,j = di−
√

−1dj,di,j =
1
2 (di+

√
−1dj). It is routine to verify thatπ is a faithful representationwith super-dimension

(⌈n/2⌉,m + 2).
For 0 ≤ r ≤ n, let us consider the even linear mapping

π ′
: hn −→ gl(r + 1 | n − r + 1)

given by

π ′(vi) = e1,i+1, π ′(vj) = −ej+1,n+2,

π ′(z) = e1,n+2, π ′(wk) = ek+1,n+2, π ′(wl) = e1,l+1,

where 1 ≤ i, k ≤ r and r + 1 ≤ j, l ≤ n. Under π ′, an element (2.4) of hn is presented as

0 a1 · · · ar br+1 · · · bn c
b1
...
br

−ar+1
...

−an
0


. (3.5)

It is routine to verify that π ′ is a faithful representation with super-dimension (r + 1, n − r + 1) for all r = 0, . . . , n. �
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Recall that for i ∈ {0, 1},

µi(g) = min{dim Vī | V is a faithful g-module},
µ∗

i (g) = min{dim V | V is a faithful g-module with dim Vī = µi(g)}.

Theorem 3.3. We have

µ0(g) = µ1(g) =


min{m + 2, ⌈n/2⌉} g = hm,n
1 g = hn

and

µ∗

0(g) = µ∗

1(g) =


m + ⌈n/2⌉ + 2 g = hm,n
n + 2 g = hn.

Proof. Let (λ, V ) be a faithful representation of g. Evidently,

µ∗

0(g) ≥ µ(g); µ∗

1(g) ≥ µ(g). (3.6)

Keep the notations in Lemma2.3. As in the proof of Theorem3.2, there exists a subalgebra a′ containing z such that g = a⊕a′.
By Lemma 2.2, dim a′

≥ dim g − ζ (g). Hence, by Lemma 2.3(4), if v0 is even, then dim V1̄ ≥ dim a′

1̄
; if v0 is odd, then

dim V0̄ ≥ dim a′

1̄
.

Let g = hm,n. By Lemma 2.2, we have dim a′

1̄
≥ ⌈n/2⌉. So, if v0 is even, then dim V1̄ ≥ ⌈n/2⌉; if v0 is odd, then

dim V0̄ ≥ ⌈n/2⌉. By Lemma 3.1, if v0 is even, then dim V0̄ ≥ m + 2; if v0 is odd, then dim V1̄ ≥ m + 2. Therefore,
dim V0̄ ≥ min{m + 2, ⌈n/2⌉} and dim V1̄ ≥ min{m + 2, ⌈n/2⌉}. Since (2.2) and (2.3) define a faithful representation of
hm,n with super-dimension (m+2, ⌈n/2⌉), and (3.3) and (3.4) define a faithful representation of hm,n with super-dimension
(⌈n/2⌉,m + 2), we have

µ0(hm,n) = µ1(hm,n) = min{m + 2, ⌈n/2⌉}.

It follows from (3.6) that

µ∗

0(hm,n) = µ∗

1(hm,n) = m + ⌈n/2⌉ + 2.

Let g = hn. By Lemma 2.2, we have dim a′

1̄
≥ 1. So, if v0 is even, then dim V1̄ ≥ 1; if v0 is odd, then dim V0̄ ≥ 1. On the

other hand, if v0 is even, then v0 ∈ V0̄ and dim V0̄ ≥ 1; if v0 is odd, then v0 ∈ V1̄ and dim V1̄ ≥ 1. Then by (3.5), we have

µ0(hn) = µ1(hn) = 1.

It follows from (3.6) that

µ∗

0(hn) = µ∗

1(hn) = n + 2. �

Remark 3.4. Let L be a Lie superalgebra andΠ the parity functor of the category ofZ2-graded vector spaces. It is well known
that if V is an L-module, then so is Π(V ) with respect to the original module action. Therefore, in general we have

µ0(L) = µ1(L), µ∗

0(L) = µ∗

1(L).

This fact may be used to shorten the proofs of Theorems 3.2 and 3.3.
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