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a b s t r a c t

We give an elementary description of the relationship between the classical and quantum
monodromy of a completely integrable system, from the point of view of geometric
quantization, as a consequence of the construction of action–angle variables. We also
describe the relation to Symington’s notion of ‘‘affine monodromy’’.
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1. Introduction

The celebrated Arnol’d–Liouville Theorem gives the structure of a completely integrable system near a regular level in
terms of action–angle coordinates. Duistermaat addressed the question of the existence of global action–angle coordinates in
his seminal paper [1]. One obstruction to the existence of global action–angle coordinates is themonodromy,whichmeasures
the failure of the torus bundle defined by the Liouville tori to be trivial.

There turns out to be a manifestation of monodromy in quantum systems as well. This was first observed by Cushman
and Duistermaat for the spherical pendulum in [2], and since then ‘‘quantum monodromy’’ has become an active area of
research, among physicists and molecular chemists as well as mathematicians. The relationship between the classical and
quantummonodromy of a systemwas proved rigorously in the context of pseudodifferential quantization by Vu Ngoc in [3].
He explains:

. . .when using appropriate tools, the link between classical and quantummonodromy becomesmore or less trivial. Of
course, there is a price to pay: these tools (Fourier Integral Operators, to name one of themost important) are actually
quite delicate to define.

The purpose of this note is to show that these delicate tools are not necessary to show the relationship between the classical
and quantum monodromy, and that the link can be easily explained in the context of geometric quantization.

This description is not really new; essentially the same argument is used by Sadovskii, Zhilinskii, and collaborators in
the context of EBK quantization, for example in [4]. Similar ideas do underlie some of Vu Ngoc’s arguments, for example
in [3] and [5], but they can be difficult to isolate, and the essential ideas are so simple that I thought it worth laying them
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out clearly in one place. I have also not seen them applied specifically to geometric quantization, and I thought it interesting
that the connection between classical and quantum monodromy becomes so straightforward from this perspective. The
argument is valid for any quantization scheme with a Bohr–Sommerfeld condition given by integer action variables, as in
Section 3.1.

(Sansonetto and Spera also discuss monodromy in the framework of geometric quantization in [6], although their
approach is somewhat different: They relate the classical monodromy to a choice of prequantum connection, and do
not explicitly mention quantum monodromy, although there are references to the effect of the monodromy on quantum
operators. Also, recently, in [7] Cushman and Śniatycki have taken a different approach to extending geometric quantization
to systems with monodromy, as part of their program of ‘‘Bohr–Sommerfeld–Heisenberg quantization’’ as described
in [8].)

Symington in [9] further clarifies the place of monodromy in the structure of the phase spaces, pointing out that ‘‘any
topological monodromy of a regular Lagrangian fibration is reflected in the global geometry of the base’’. ([9], §2.3) She
defines the concept of affine monodromy as distinct from ‘‘topological monodromy’’, and shows that the affine monodromy
matrix is simply the inverse transpose of the topological monodromy matrix. We show that the affine monodromy is in
fact the derivative of our formulation of quantum monodromy, giving an interpretation of the quantum monodromy as a
reflection of the structure of the classical phase space.

The argument can be summarized in two paragraphs. The (classical) monodromy describes how a set of cycles forming
a homology basis for H1 of the fibre changes as we go around a loop in the base. Action coordinates can be computed by
integrating the Liouville 1-form over exactly such a set of cycles, so the monodromy describes how the (locally defined)
action coordinates change as we go around the loop.

In local action–angle coordinates near any regular leaf, the Bohr–Sommerfeld fibres are those all of whose action
coordinates are integers. Even if the action–angle coordinates are only locally defined, the condition of ‘‘action coordinates
are integers’’ makes sense globally. The ‘‘new’’ and ‘‘old’’ action coordinates give two bases of the local lattice of quantum
states, the relation between which is the quantum monodromy. Since the action coordinates are related by the classical
monodromy, the quantummonodromy is the same as the classical, modulo a transpose coming from the difference between
vectors and their coordinate representation, and an inverse coming from solving a system of equations.

2. Integrable systems

Let (X, ω) be a symplectic manifold of dimension 2n. A completely integrable system is a collection of n functions f1, . . . , fn
which pairwise Poisson commute, and which are independent almost everywhere. Let F = (f1, . . . , fn): X → Rn, and let
B = F(X). For c ∈ B, let Fc denote the c-level set of F , which we will generally assume to be compact and connected.

A canonical example of a completely integrable system is the energy–momentummap for the spherical pendulum,where
f1 = E is the energy and f2 = L is the angular momentum. There are of course many other examples (a long list is given in
§1.4 of [10]), and there is an extensive literature on integrable systems.

2.1. Arnol’d–Liouville and action–angle variables

The local structure of an integrable system is described by the Arnol’d–Liouville theorem, which gives a description of
the system in terms of particularly simple coordinates called action–angle coordinates.

Theorem 1 (Arnol’d–Liouville). Let c ∈ B be a regular value of an integrable system F = (f1, . . . , fn): X → B and let
Fc = F−1(c). Then Fc is a Lagrangian submanifold of X.

Furthermore, assume Fc is compact and connected. Then there is a neighbourhood U of Fc in X and a diffeomorphism
(a, α):U → V × T n, where V is an open subset of Rn and T n

= (S1)n is a torus, such that (a, α) are symplectic coordinates, and
F is a function of a only.

The coordinates (a, α) are called action–angle coordinates.

We can describe the conclusions of the theorem as follows (as in [11]):

1. The fibre Fc is diffeomorphic to a torus T n, onwhich there are coordinatesα1, . . . , αn inwhich the flowof theHamiltonian
vector fields of f1, . . . , fn are linear.

2. There is a complementary set of coordinates a1, . . . , an, called action coordinates,which Poisson commutewith all fj, such
that the (a, α) form a symplectic chart.

See [11], Thm 18.12; [1], Thm 1.1; or [12], §§49–50. (Also discussed at length in [13], section II.2.) The above phrasing
follows [1].

Action coordinates can be computed as follows.

Theorem 2 ([1], Thm 1.2). Let c ∈ B be a regular value of F . Choose a neighbourhood V ⊂ B of c consisting of regular values
such that ω is exact on F−1(V ), and let Θ be a primitive for ω. (Such a Θ exists by, for example, the Weinstein Lagrangian
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Neighbourhood Theorem.) By Arnold–Liouville the fibres Fq for points q ∈ V are tori; choose loops γ1(q), . . . , γn(q) depending
smoothly on q whose homology classes form a basis of H1(Fq,Z) for each q. Define aj: V → R by

aj(q) =
1
2π


γj(q)

Θ.

Then the {aj} are action coordinates.1

The {aj} are defined up to addition of a constant (which comes from changing Θ) and multiplication by an element of
GL(n,Z) (from changing the homology basis {γj}). Thus, different choices of action coordinates will be related by an integral
affine transformation.

2.2. Monodromy

By the Arnold–Liouville theorem, action–angle coordinates exist on a neighbourhood of any regular fibre.2 Duistermaat
addresses the question of the global existence of action–angle coordinates in [1]. He gives obstructions to the existence of
global action–angle coordinates, one of which is themonodromy.

Let F : X → B be a completely integrable system, as above, and let Br ⊆ B be the set of regular values of F . The regular
level sets of F are tori by the Arnol’d–Liouville theorem, and so F


U has the structure of a torus bundle over any open U ⊆ Br .

The monodromy captures the possible non-triviality of the bundle.
Intuitively, the idea is the following: Consider a loop ℓ: [0, 1] → Br , beginning and ending at c , that is non-contractible

in the space of regular values. Over ℓ

(0, 1)


, which is contractible, the torus bundle defined by F is trivial; to construct the

bundle over the entire loop, glue the tori above 0 and 1 by some identification. This identification is the monodromy.
To state the definitionmore carefully, we follow Symington (see [9], §2.3). Let ℓ be a loop in Br , and let Xℓ denote the torus

bundle defined by F over ℓ. Let ψℓ denote a diffeomorphism T n
→ T n such that Xℓ ∼= I × T n/ ∼ where (0, x) ∼


1, ψℓ(x)


.

Properly, then, monodromy is a map π1(Br , c) → Aut(T n), the mapping class group of the torus. Considering the induced
action of ψℓ on H1(T n,Z) ∼= Zn identifies ψℓ with a matrix M ∈ GL(n,Z). If the monodromy is non-trivial, then the bundle
is non-trivial and there cannot be action coordinates defined over all of ℓ.

Another way to visualize the monodromy is more explicitly in terms of the action on H1(T n,Z), and it is often explained
in this way (for example in [4]). Suppose γ1, . . . , γn are loops forming a homology basis for H1(Fc,Z). We can ‘‘transport’’
these cycles around the loop ℓ using the trivialization as above. Upon returning to the starting point we obtain a new set of
cycles δ1, . . . , δn, which may differ from the original cycles; the monodromy measures the relationship of the δs to the γ s.
To form the bundle we glue the end tori by identifying δj with γj. In terms of the preceding description, if the bundle Xℓ has
monodromyM with respect to a homology basis γ1, . . . , γn of H1(Fc,Z), then δ = MTγ , in the sense that, symbolically,δ1...

δn

 = MT

γ1...
γn

 . (1)

Some authors use this as the definition, so that their monodromy is the transpose of ours.
Finally, the monodromymay be described in terms of the ‘‘period lattice’’ (which is the original description in [1]). In the

proof of the Arnol’d–Liouville theorem, one considers vector fields having 1-periodic flows on each torus fibre and shows
that these form a lattice in the tangent space to each fibre, called the period lattice. The collection of these gives a lattice
bundle3 in the vertical bundle of X , often also called the period lattice. In action–angle coordinates it is the Z-span of the ∂

∂αj
(although in the proof the construction goes the other way: the action and angle coordinates are defined from the period
lattice). The monodromy is defined as the change in the period lattice after going around a loop in the base.

2.3. Affine monodromy

Several authors note that the monodromy is determined by the base manifold, more specifically by its integral affine
structure. This is most clearly explained by Symington in [9], who defines ‘‘topological monodromy’’ to be the monodromy
of the torus bundle, as described above, and affine monodromy as themonodromy of the integral affine structure on the base,
as follows.4

1 More precisely, the action coordinates are these functions aj composed with F , since the aj live on B, but we will blur this distinction and think of the
aj as functions on (a subset of) X .
2 More carefully, as Audin explains in §II.2.d of [13], if V is a contractible subset of the set of regular values of F , over which the fibres of F are compact,

then there exist action–angle coordinates on F−1(V ).
3 A lattice bundleΛ in a vector bundle E is a smooth sub-bundle whose fibreΛx at each point is a lattice in Ex .
4 Zung in [14] points out that the monodromy is determined by the affine structure on the base, though he blurs the distinction between the topological

and affine monodromy. Vu Ngoc also mentions the affine monodromy in [15].
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An integral affine structure on B is a set of charts for B such that the coordinate changes between charts are integral affine
transformations of Rn (i.e. of the form Ax+ b for A ∈ GLn(Z) and b ∈ Rn). Equivalently, it can be specified by a lattice bundle
Λ ⊂ TB, in which case the affine charts are those which map eachΛc to Zn

⊂ Rn
= TpRn, whose coordinate changes must

therefore be integral affine transformations.
A completely integrable system (indeed, any Lagrangian fibration) determines an integral affine structure on the set of

regular values Br (see [9], Theorem 2.6 and §2.2, as well as [16], Lemma 2.1). Essentially, a set of local action coordinates
gives an affine chart; as noted in Section 2.1, different sets of action variables differ by an integral affine transformation. In
local action–angle coordinates, the bundleΛ is the Z-span of the vectors ∂

∂aj
.

The affine monodromy is themonodromy of the bundleΛ, as follows. If ℓ: [0, 1] → Br is a loop in the set of regular values,
as in the previous section, let TBℓ and Λℓ denote the restrictions of TB and Λ to ℓ. Then the affine monodromy around ℓ is
the element ψℓ of Aut(TcB,Λc) such that (TBℓ,Λℓ) ∼= I × (Rn,Zn)/ ∼ where (0, x) ∼


1, ψℓ(x)


. Choosing a suitable basis

of TcB identifies ψℓ with a matrix A ∈ GL(n,Z).
Symington shows in Prop 2.15 (actually, it is an exercise for the reader) that the affine and topological monodromy are

related by A = (MT )−1, which (following [9]) we will denote M−T . The topological monodromy is the monodromy of the
period lattice P defined above (which is denoted byΛvert in [9]). The symplectic form gives a canonical pairing between the
tangent space to a fibre and the cotangent space of the base, which determines a lattice bundleΛ∗ in T ∗B that has the same
monodromy asΛvert . Then one can define the lattice bundleΛ ⊂ TB as dual toΛ∗, by

Λc = {u ∈ TcB | ⟨ξ, u⟩ ∈ Z ∀ξ ∈ Λ∗

c }. (2)

In action–angle coordinates, P is the Z-span of the ∂
∂αj

, Λ∗ is the Z-span of the daj, and Λ is the Z-span of the ∂
∂aj

, so Λ is
the bundle defining the integral affine structure, whose monodromy is the affine monodromy. If ξ changes byM in (2) then
u has to change by (MT )−1 to preserve the condition, and so the monodromy ofΛ isM−T .

3. Geometric quantization

The basic ingredient for the geometric quantization of a symplectic manifold (X, ω) is a complex Hermitian line bundle
L → X with a connection ∇ whose curvature equals ω, called a prequantum line bundle and connection. One also requires a
‘‘polarization;’’ in our case we will take a real polarization, which consists of a foliation of X into Lagrangian submanifolds.5
The ‘‘quantum space’’ associated with X is constructed from sections of L that are leafwise flat, namely, covariant constant
with respect to ∇ in directions tangent to the leaves of the foliation.6

Such sections always exist locally, but do not generally exist over an entire leaf of the foliation. If a leaf L possesses a
leafwise flat section defined on the entire leaf, it is called a Bohr–Sommerfeld leaf. A leaf L is a Bohr–Sommerfeld leaf iff
the holonomy of the prequantum connection is trivial around every loop in L; equivalently, iff holγj = 1 for all γj in a
homology basis for H1(L,Z). The set of Bohr–Sommerfeld leaves is typically discrete (in the space of leaves). (For example,
if X = R×S1, with trivial bundle and connection form x dθ , foliated by {x}×S1, the Bohr–Sommerfeld leaves are those with
x ∈ Z.) This implies there are no globally defined (continuous) leafwise flat sections, and so the quantization is not simply
the set of global leafwise flat sections.

One approach to defining the quantization in this case is to relax the requirement of continuity and use distributional
sections, for example in the work of Nunes and collaborators (see [21] and references therein). Another approach, suggested
by Kostant [22] and implemented by Śniatycki [23], is to use, rather than the space of leafwise flat sections, higher
cohomology groups, as follows. LetJ denote the sheaf overX of leafwise flat sections. Then the quantization ofX is defined as

Q(X) =

∞
k=0

Hk(X; J).

(See [24, §2.4.1] for more details, including a discussion of different conventions in the Remark at the end of the section.)
The general picture is that the ‘‘quantum space’’ is (isomorphic to) the space of leafwise flat sections over all the

Bohr–Sommerfeld leaves:

Q(X) ∼=


x∈BS

Γ∇(Lx, L).

Since the value of such a section over the entire leaf is determined by its value at one point, the space Γ∇(Lx)
is one-dimensional, and so roughly speaking, ‘‘the [dimension of the] quantization is given by counting the Bohr–
Sommerfeld fibres’’. For the sheaf-cohomological approach, this ismademore precise by the following theorem of Śniatycki:

5 For simplicity we do not give the (rather technical) general definition of a polarization, but direct the reader to any reference on geometric quantization
(see next footnote). The other main type of polarization used is a Kähler polarization,which is given by a compatible complex structure on X . The ‘‘quantum
space’’ is then the space of holomorphic sections of L.
6 There are many references for geometric quantization, for the reader who wishes more than these very sketchy details, although few are at an

introductory level. The books [17] and [18] are classic, if both rather technical; John Baez has a good brief introduction on the Web at [19]. [20] also
has a brief introduction at the beginning of Chapter 6, and refers to numerous other sources.
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Theorem ([23]). Let X be a 2n-dimensional symplectic manifold, with a prequantization line bundle L as above. Let P be a real
polarization such that the projection map π : X → X/P is a fibration with compact fibres. Let J denote the sheaf of leafwise flat
sections of L.

Then Hq(X; J) = 0 for all q ≠ n. Furthermore, let Γ∇(BS, L) be the space of leafwise flat smooth sections of L along the
union of Bohr–Sommerfeld leaves, and C∞

P (X) be the ring of functions on X constant on leaves of π . Then, provided P satisfies an
orientability condition, Hn(X; J) is isomorphic to Γ∇(BS, L) as modules over C∞

P (X).
As a vector space, Hn(X; J) is isomorphic to the direct sum of copies of C, with one copy for each Bohr–Sommerfeld leaf.

In the case of a completely integrable system, the regular fibres of the system are Lagrangian tori, although singular fibres
may have a different form. We view the decomposition of X into fibres of F as a real polarization with singularities. The
sheaf cohomology approach to the quantization of singular polarizations, including integrable systems, has been explored
in [24–28]. It has not been satisfactorily computed for systemswith singularities of ‘‘focus–focus’’ type, which are the known
examples exhibiting monodromy.

One way around this difficulty is to restrict attention to the set of regular fibres, in which case we have an honest real
polarization on an openmanifold, towhich Śniatycki’s theorem applies. In this casewe can simply take the ‘‘quantum states’’
to be the Bohr–Sommerfeld points in Br , wherewe say that x is a Bohr–Sommerfeld point in B if Fx is a Bohr–Sommerfeld fibre,
namely if the holonomy of the prequantum connection restricted to Fx is trivial. The contribution of the singular fibres to
the sheaf cohomology is an open question, and is the subject of ongoing work of the author with Leah Duffett; for now, we
will restrict our attention to the set of regular values.

Remark. It depends on one’s perspective which is more fundamental: the sheaf cohomology or the count of
Bohr–Sommerfeld fibres. One can view the sheaf-cohomology definition of the quantization as fundamental, by analogy
to the index-theoretic definition of quantization using a Kähler polarization; in this case, Śniatycki’s result becomes
a theorem saying that the quantization can be computed by counting Bohr–Sommerfeld fibres. Several authors have
subsequently taken this as motivation to define the (dimension of the) quantization to be the count of Bohr–Sommerfeld
fibres, even in situations where the hypotheses of Śniatycki’s theorem do not hold, such as Jeffrey–Weitsman in [29] and
Guillemin–Sternberg in [30].

On the other hand, taking a perspective coming from physics, one can say that we know that the quantization of a
system should be given by Bohr–Sommerfeld conditions, and so however we define it we should obtain the answer that
the dimension of the quantization should equal the number of Bohr–Sommerfeld fibres. From this perspective, Śniatycki’s
result shows that the sheaf-cohomological approach suggested by Kostant ‘‘works’’ for computing the quantization in these
situations. (This is the perspective from which Śniatycki wrote the original paper [23].) In this case the open problem
mentioned above is less ‘‘determine the contributions of the focus–focus singular points to the quantization’’ than ‘‘find
a definition of the quantization of a focus–focus system that gives the results we want’’.

3.1. Bohr–Sommerfeld and action–angles

There is a connection between Bohr–Sommerfeld points and action–angle variables, as Guillemin and Sternberg discuss
in section 2 of [30]. Following [17, Section A.3], we describe a connection ∇ on the line bundle L in terms of its potential
one-form Θ as follows: Given a local trivializing section s of L over some open set U , define Θ by ∇Y s = −iΘ(Y )s for all
vectors Y . If s is unitary, then Θ will be real-valued; also, dΘ is the curvature of ∇ , which for a prequantum connection is
the symplectic form ω. In this description, the holonomy of ∇ around a loop γ in U is given by

holγ = exp i

γ

Θ. (3)

Now suppose we have trivialized L over a neighbourhood U = F−1(V ) of regular leaves,7 and let Θ be the potential
one-form in this trivialization. Since dΘ = ω, we can use Θ to construct action variables as described in Theorem 2; if
γ1(q), . . . , γn(q) are loops depending smoothly on q forming a homology basis of H1(Fq,Z) for each q, then it follows that
holγj(q) = e2π iaj(q). Since Fq is a Bohr–Sommerfeld leaf iff holγj = 1 for all γj, we see that q is a Bohr–Sommerfeld point iff all
aj(q) are integers.

A different choice of trivializing section s′ = ψs forψ:U → C× will lead to a different potential one-formΘ ′, related to
the original one byΘ ′

= Θ + i 1
ψ
dψ . This will change the integral in Theorem 2 by

1
2π


γ

i
ψ

dψ =
1
2π

i · 2π ik = −k for some k ∈ Z,

7 This is always possible: we can trivialize L over a contractible neighbourhood transverse to the leaves, and then use the local T n-action to ‘‘sweep out’’
the trivialization over the rest of U . Cf. Lemma 8.2.3 in [24].
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Fig. 1. A typical picture with quantum monodromy.
Source: From [32].

so the resulting action coordinate a′

j will differ from aj by an integer. Thus the expression for the holonomy as holγj(q) =

e2π ia
′
j(q) is still valid.

This construction is local. To go from local to global, any choice of action variables constructed using a potential one-
form of the connection as the one-form in Theorem 2 will satisfy holγj(q) = e2π iaj(q), and so will take integer values on the
Bohr–Sommerfeld set. As discussed in 2.1, any two choices of action variables differ by a constant and an element of GLn(Z);
this choice of one-form implies the constant will always be an integer. Thus, the condition of ‘‘all action variables integers’’
is well-defined globally.

Remark. There is a subtlety about normalization not addressed in [30]. There, they define action variables by integrating an
arbitrary primitive ofω, and then assume aj(p) = 0 at a Bohr–Sommerfeld point p. This is equivalent to choosing a particular
primitive of ω.

If we use the one-form coming from the connection, as in the above discussion, the resulting action coordinates are
automatically ‘‘normalized’’ so that they take integer values on the Bohr–Sommerfeld set. Thus the prequantum connection
gives a preferred choice of action coordinates, in which the Bohr–Sommerfeld points actually are those with integer action
coordinates.

Moreover, in many singular cases, we lose the freedom of adding a constant, and the condition that aj ∈ Z for all j is
forced by the structure of the system. (See for example the discussion of ‘‘Bohr–Sommerfeld rigidity’’ in [24], §2.6.)

4. Quantummonodromy

The phenomenon of quantum monodromy was first noted by Cushman and Duistermaat in [2], who pointed out that
it was impossible to consistently define a lattice structure on the spectrum of the quantum spherical pendulum. The
phenomenon was further explored by a number of other authors, particularly Sadovskii, Zhilinskii, Cushman, Nekhoroshev,
and collaborators. It also received attention fromphysicists because of its implications for the structure ofmolecules; see [31]
for a review of the problem from this perspective and numerous references to the physics literature. On the mathematics
side, San Vu Ngoc has a number of results about quantum monodromy, including in [3] where he proves the relationship
between the classical and quantum monodromy, from the point of view of pseudodifferential quantization.

The idea of quantummonodromy is the following: The set of quantum states of a system ‘‘locally looks like’’ a lattice, but
may not actually be a lattice globally: a basis at one point may not be consistently extendable to the entire space B. If we
take a basis for the ‘‘lattice’’ at one point and follow it around a (non-contractible) loop, we may come back to a different
basis, and the difference is expressed by the quantummonodromy. This is often visualized using a ‘‘Zhilinskii diagram’’ like
Fig. 1. (Fig. 1 shows the spectrum for the spherical pendulum, prepared by Dmitrii Sadovskii using data by Igor Kozin, seen
in [32] and [33]. Used with permission.)

We will think of the quantum monodromy as follows. The ‘‘set of quantum states’’ will be a subset of B. For example, in
the case of the spherical pendulum, where X has dimension 4 and F is the energy–momentummap, this is the set of jointly
quantized energy and angular momentum values. In geometric quantization, this is simply the Bohr–Sommerfeld set BS. A
‘‘local lattice chart’’ will be a diffeomorphism from an open set U in B to an open set V in Rn, mapping U ∩ BS to V ∩ Zn.
A choice of local lattice chart is equivalent to a choice of ‘‘local quantum numbers’’ in physics terminology. (See [32] or
[33, p. 285].)
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The idea of ‘‘how the lattice changes as you travel around a loop’’ can be captured as follows. A local lattice chart centred
at c ∈ B gives a basis {u1, . . . , un} for the local lattice of quantum states at c , by just taking the image of the standard basis
of Zn. If ℓ is a loop through c , covering ℓwith overlapping local lattice charts provides a way to ‘‘parallel transport’’ this basis
along the loop. After travelling around the loop and coming back to c , we get another basis {v1, . . . , vn} for the local lattice
at c . We define the quantummonodromy to be the linear transformationmapping the ‘‘old basis’’ to the ‘‘new basis’’, which,
given an integral basis of Zn, we can express as a matrixMq ∈ GLn(Z) such that vj = Mquj for all j.

Remark. Different authors use different conventions about which exact map the quantum monodromy matrix represents,
which are sometimes not entirely clear. In [33, §C.3] they say, ‘‘Themap from the original cell to the final cell [defined by the
vectors {uj} and {vj}] is the monodromy map’’, which seems to agree with our definition. In [4], their quantummonodromy
matrix satisfies

v1
v2


= Mq


u1
u2


where

u1
u2


is the matrix whose rows are the vectors u1 and u2. This means that their quantummonodromy is the transpose

of ours. They also define the classical monodromy as discussed after (1) in Section 2.2, and so their classical and quantum
monodromy are still related by an inverse transpose.

In [5] the quantum monodromy is defined as a Čech cocycle with coefficients in the group of affine transformations.
Unravelling the definitions, it seems that their definition is consistent with ours, in that the linear part of their affine
transformation is our quantum monodromy.

5. Classical and quantummonodromy

Theorem 3. Let F : X → B ⊂ Rn be a completely integrable system, and let Br be the set of regular values of F . Let ℓ be a loop in
Br beginning and ending at a regular Bohr–Sommerfeld point c, and suppose the system has (classical) monodromy over ℓ, given
by a matrix M ∈ GL(n,Z). Then the Bohr–Sommerfeld set in Br exhibits quantum monodromy around ℓ, as in Section 4, with
matrix Mq = M−T .

Proof. Let ℓbe a loop inBr from c to c. Let {aj, αj}be a set of local action–angle coordinates centred at c , definedby integrating
a potential one-form Θ for the connection over a homology basis of cycles γ1, . . . , γn as in Section 3.1, normalized so that
a(c) = 0. If we ‘‘parallel transport’’ the cycles γj around ℓ, we will end up with a new set of cycles δ1, . . . , δn in Fc , related
to γj by δ = MTγ , as in Section 2.2. (Here M = (Mij) is the matrix giving the monodromy around ℓ.)

Define a new set of action coordinates {bj} centred at c by

bj =


δj

Θ.

Since integration is linear, this implies that b = MTa; more explicitly,

bj =


M1jγ1+···+Mnjγn

Θ = M1ja1 + · · · + Mnjan.

(This implies in particular that b(c) = 0 as well.)
The Bohr–Sommerfeld set is defined by the conditions {aj ∈ Z}, or a ∈ Zn. If a(c) = 0, then a primary cell in the local

lattice at c is defined by the points q1, . . . , qn satisfying a(qj) = ej, where ej is the jth standard basis vector of Zn. The image
of the primary cell after transporting around the loop ℓwill be defined by the points pj satisfying b(pj) = ej. Since {a ∈ Zn

}

and {b ∈ Zn
} define the same lattice, {a(pj)} defines a new basis of Zn, which is related to the standard basis by the quantum

monodromy: a(pj) = Mqej. Since b = MTa, b(pj) = MTa(pj) = ej, so a(pj) = (MT )−1ej. ThusMq = M−T .
A priori each monodromy is only defined up to conjugation, since each depends on a choice of basis, but each is defined

starting from a basis of H1(Fc,Z). Using the same basis for each monodromy gives this exact relationship. �

5.1. Affine and quantum monodromy

As remarked in Section 2.3, an integrable system determines an integral affine structure on the set of regular values Br
in the base, essentially given by choices of local action coordinates. The prequantum structure gives a preferred set of affine
charts, one for which the affine transition maps Ax + b have b ∈ Zn always.

The affine monodromy of B is the monodromy of the lattice bundle Λ ⊂ TB defined in Section 2.3. In particular, given
a loop ℓ beginning and ending at c ∈ Br , the (affine) monodromy around ℓ is the element of Aut(TcB,Λc) ∼= Aut(T n) that
expresses the change in the latticeΛc induced by transporting around the loop. This change inΛc is the composition of the
derivatives of the affine coordinate change maps through a series of charts covering ℓ.
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The quantum monodromy, on the other hand, is the change in action coordinates ‘‘downstairs’’ on B obtained by
composing the coordinate changemaps around ℓ. Thus the affine monodromy is the derivative of the quantummonodromy.
Since the quantum monodromy is a linear transformation, the two are equal.
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