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a b s t r a c t

The goal of this paper is to construct a fundamental theorem for the Ricci curvature
inequality via partially minimal isometric warped product immersions into an m-
dimensional unit sphere Sm, involving the Laplacian of a well defined warping function,
the squared norm of a warping function and the squared norm of the mean curvature.
Moreover, the equality cases are discussed in detail and some applications are also
derived due to involvement of the warping function. As applications, we provide
sufficient condition that the base Np

1 is isometric to the sphere Sp( λ1
p ) with constant

sectional curvature c =
λ1
p . The obtained results in the paper give the partial solution of

Ricci curvature conjecture, also known as Chen-Ricci inequality obtained by Chen (1999).
© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The relationship between Ricci curvature and space forms has been one of the most popular and highly developed
topics in Riemannian geometry. In this area, a central issue of concern is that of determining global warped product
structures from local metric properties. Of particular interest to us is the so-called Ricci curvature bounds problem
and related theorems in geometry. If a Riemannian manifold Mn is immersed as a submanifold in higher dimension
Riemannian manifold M̃m, then various extrinsic curvature invariants are discovered for a submanifold Mn in M̃m. For
example, the scalar-valued extrinsic curvature function ℓ : Mn

−→ R and the squared mean curvature have been studied
effectively in a lot of papers (see [1,17,20,24,28,29,40]). One of the most important problems in submanifold theory is
to establish the connection between the intrinsic invariant quantities and extrinsic invariant quantities of submanifolds
(see [2–8,14,15,17–20,23,30] and references therein). One important step in the study of the Riemannian manifolds was
the appearance of the Nash embedding theorem in [34], which states that every Riemannian manifold admits an isometric
immersion into a Euclidean space of sufficient high codimension. This concept becomes very useful for submanifold theory
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that, every Riemannian manifold could always be regarded as Riemannian submanifold of Euclidean spaces. Inspired
by these ideas, S. Nolker [35] classifies the isometric immersion of warped product decompositions of the standard
spaces. Motivated by these results, B. Y. Chen started a new path of research in order to study immersibility and non-
immersibility of warped product submanifolds in Riemannian manifolds, especially in Riemannian space forms whose
sectional curvatures are constant in different situations (see [13,16–18]). Recently, a number of solutions of such problems
were provided by various mathematicians (see [18,24,25,28], and their reference). In 1999, Chen [15] established a new
relation between intrinsic invariant (Ricci curvature invariant) and extrinsic invariant (squared mean curvature invariant)
as follows:

Theorem 1.1. Let ℓ : Mn
−→ M̃m(c) be an isometric immersion of a Riemannian n-manifold Mn into Riemannian space form

M̃m(c).

(i) For each unit tangent vector X ∈ TxMn, we have

∥H∥
2(x) ≥

4
n2

{
Ric(X) − (n − 1)c

}
,

where ∥H∥
2(x) is the squared mean curvature and Ric(X) the Ricci curvature of Mn at X.

(ii) If H(x) = 0, then the unit tangent vector X at x satisfies the equality case of (i) if and only if X lies in the relative null
space Nx at x.

(iii) The equality case holds identically for all unit tangent vector at x if and only if either x is a totally geodesic point or
n = 2 and x is a totally umbilical point.

It is quite difficult to obtain Chen–Ricci inequality for the Ricci curvature and its relation to the warping functions
of warped products and is always hard to derive such relation for the product of two Riemannian manifolds. That is,
Theorem 1.1 remains an open problem and was not proven for any warped products of two Riemannian manifolds in
spheres. Therefore, the class of minimal isometric immersions became a key tool for the study of such type of results.
That is, an isometric immersion ℓ : Mn

−→ M̃m of a Riemannian submanifold Mn into a Riemannian manifold M̃m is
called minimal if its mean curvature vector field H is identically zero everywhere on Mn. The study of minimal surfaces
is one of the oldest subjects in differential geometry, having its origins in the works of Euler and Lagrange. In the last
century, a series of works have been developed for the study of the properties of minimal immersions, whose ambient
space has constant sectional curvature (see [12,25,32,40]). In particular, minimal immersions in the sphere Sm play an
important role in this theory. In this respect, we have, for example, the famous paper of J. Simons [38] and also for some
other examples please see [30,31,40]. Motivated by the previous studies, a fundamental question arises in the context of
the product of two Riemannian manifolds:

Open problem:- Is it possible to derive Ricci curvature inequality theorem for warped product submanifolds to the case of
minimal isometric immersion and ambient space form, to be a sphere with constant curvature one? What are the relationships
(equations) between Ricci curvature, the main extrinsic invariants and the main intrinsic invariants of a warped product
submanifold?

Therefore, we define a partial minimal isometric immersion from a special type product Riemannian manifolds (warped
product manifolds) into another Riemannian manifold. An isometric immersion ℓ : Mn

= Np
1 ×f N

q
2 −→ M̃m is said to be

partially minimal isometric immersion from a warped product manifold Nq
1×f N

q
2 into a Riemannian manifold M̃m if at least

one of the mean curvature vector fields H1 and H2 with respect to Np
1 and Nq

2 , vanishes. In this work, we will present
optimal general solutions to these fundamental problems by imposing minimality on warped product submanifolds. A
lot of interesting applications of these optimal general solutions will be presented in the present paper where the main
extrinsic invariant is the squared mean curvature and the intrinsic invariant contains Ricci curvature and also the squared
norm of the well-defined warping function and Laplacian of the warping function.

The theory of warped product manifolds naturally considered in Riemannian geometry and their applications are very
important to be studied. For example, the Riemannian manifold Sm

\Sm−2, that is, the standard sphere with a codimension
two totally geodesic subsphere removed, is isometric to the warped product Sn−1

+ ×f S1 of an open hemisphere and a circle,
for warping function f ∈ C∞(Sn−1

+ ). This was the important constituent in a potential result of Bruce Solomon [39] about
a harmonic map from a compact Riemannian manifold into a sphere Sm. Significantly, for the study of Einstein manifolds,
warped products are very important. An Einstein manifold is a Riemannian manifold (M, g) whose Ricci tensor satisfies
Ric = λg for some function λ ∈ C∞(M) and such classes of manifolds come into sight in the framework of regular surfaces.
Actually, a surface of revolution is a warped product and any regular surfaces is an Einstein manifold.

From this point of view, the following optimal result provides a solution to an open problem, for the family of warped
product manifolds endowed with their warped product structure which is isometrically partially minimal immersed in a
unit sphere Sm. We give now the following main result:

Theorem 1.2. Let ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm be a Di-minimal isometric immersion from a n-dimensional warped product

submanifold Mn into a m-dimensional unit sphere Sm, then for each unit vector field ξ ∈ TxNi, with i = 1 or i = 2, we have
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the following Ricci curvature inequality

RicM (ξ ) ≤
n2

4
∥H∥

2
+ q

(
∥∇(ln f )∥2

+ p + 1 +
p − 1
q

− ∆(ln f )

)
. (1.1)

1. If H(x) = 0, then at each x ∈ Mn there is a unit vector u which satisfies the equality case of (1.1) if and only if Mn is
mixed totally geodesic and u lies in the relative null space Nx at x.

2. If Mn is Np
1 -minimal, then

(a) The equality case of (1.1) holds identically for all unit tangent vectors to Np
1 at each x ∈ Mn if and only if Mn is

totally geodesic and Np
1 -totally geodesic warped product submanifold into a unit sphere Sm.

(b) The equality case of (1.1) holds identically for all unit tangent vectors to Nq
2 at each x ∈ Mn if and only if Mn is

totally geodesic manifold and either a Nq
2-totally geodesic warped product submanifold, or Mn is Nq

2-totally umbilical
warped product submanifold in Sm at x with dimNq

2 = 2.

3. The equality case of (1.1) holds identically for all unit tangent vectors to Mn at each x ∈ Mn if and only if either Mn is a
totally geodesic warped product submanifold, or Mn is a mixed totally geodesic, totally umbilical and Np

1 -totally geodesic
warped product submanifold with dimNq

2 = 2.

It is interesting to notice that the second variation operator of a minimal submanifold from a Riemannian manifold,
carries information about the stability properties of the submanifold. When the ambient Riemannian manifold is a sphere,
Simons [38] characterized the totally geodesic submanifolds as the minimal submanifolds of sphere Sm either with the
lowest index or lowest nullity. Our results should be considered as an extension of such variational problems from
submanifolds to warped product submanifolds which include a positive differentiable function too. It is known that the
Ricci curvature plays an important role in general relativity, where it is the key term in the Einstein field equations [9].
Ricci curvature also appears in the Ricci flow equation, where a time-dependent Riemannian metric is deformed in the
direction of minus its Ricci curvature. This system of partial differential equations is a non-linear analog of the heat
equation and was first introduced by Richard S. Hamilton in [27] the early 1980s. Since heat tends to spread through a solid
until the body reaches an equilibrium state of constant temperature, Ricci flow may be hoped to produce an equilibrium
geometry for a manifold for which the Ricci curvature is constant. There are global results concerning manifolds on
Ricci curvature bounds. Myers’ theorem in [33] states that if the Ricci curvature is bounded from below on a complete
Riemannian manifold by (n−1)k > 0 then the manifold is necessarily compact and has diameter ≤

π
√
k
. These results show

that Ricci curvature bounds have strong topological consequences which find possible applications in physics. Therefore,
our result becomes a special case for upper bounds of Ricci curvature which include the Laplacian and the squared norm
of the warping functions, and open a new research path.

2. Preliminaries and notations

Let Sm denotes the sphere with constant sectional curvature c = 1 > 0 and dimension (m). We use the fact that Sm

admits a canonical isometric embedding in Rm+1 as

Sm
= {X ∈ Rm+1

: ∥X∥
2

= 1}.

Thus, the Riemannian curvature tensor R̃ of sphere Sm satisfies the following

R̃(U, V , Z,W ) = g(U,W )g(V , Z) − g(V ,W )g(U, Z), (2.1)

for any U, V , Z,W ∈ X(Sm). This means that a unit sphere Sm is a manifold of constant sectional curvature one. Let M be
an n-dimensional Riemannian submanifold of an m-dimensional Riemannian M̃m with induced metric g and ∇ , ∇

⊥ are
the induced connections on the tangent bundle X(M) and normal bundle X(M⊥) of Mn, respectively. Then the Gauss and
Weingarten formulas are defined as ∇̃UV = ∇UV +σ (U, V ), ∇̃Uξ = −AξU+∇

⊥

U ξ , respectively for each U, V ∈ X(M) and
ξ ∈ X(M⊥), where σ and Aξ are the second fundamental form and shape operator (corresponding to the normal vector
field N) respectively for the immersion of Mn into M̃ , and they are related as g(σ (U, V ),N) = g(ANU, V ). Similarly, the
equations of Gauss and Codazzi are, respectively, given by

(i) R(X, Y , Z,W ) =̃R(X, Y , Z,W ) + g
(
σ (X,W ), σ (Y , Z)

)
− g

(
σ (X, Z), σ (Y ,W )

)
(ii)

(̃
R(X, Y )Z

)⊥
=(∇̃Xσ )(Y , Z) − (∇̃Yσ )(X, Z). (2.2)

for all X, Y , Z,W ∈ X(M̃), where R and R̃ are the curvature tensor of M̃m and Mn, respectively. The mean curvature H of the
Riemannian submanifold Mn is given by H =

1
n trace(σ ). A submanifold Mn of the Riemannian manifold M̃m is said to be

totally umbilical and totally geodesic if for any U, V ∈ X(TM), we have: σ (U, V ) = g(U, V )H and σ (U, V ) = 0, respectively,
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where H is the mean curvature vector of Mn. Moreover, the related null space or kernel of the second fundamental form
of Mn at x is defined by

Nx =
{
X ∈ TxM : σ (X, Y ) = 0, for all Y ∈ M

}
. (2.3)

In this context, we shall define another important Riemannian intrinsic invariant called the scalar curvature of M̃m,
and denoted at τ̃ (M̃m), which, at some x in M̃m, is given by

τ̃ (M̃m) =

∑
1≤α<β≤m

K̃αβ , (2.4)

where K̃αβ = K̃
(
eα ∧ eβ

)
. It is clear that, the first equality (2.4) is congruent to the following equation which will be

frequently used in subsequent proof

2̃τ (M̃m) =

∑
1≤α<β≤m

K̃αβ , 1 ≤ α, β ≤ n. (2.5)

Similarly, the scalar curvature τ̃ (Lx) of an L-plane is given by

τ̃ (Lx) =

∑
1≤α<β≤m

K̃αβ , (2.6)

Let {e1, . . . , en} be an orthonormal basis of the tangent space TxM and if er = (en+1, . . . , em) belong to an orthonormal
basis of the normal space T⊥M , then we have

σ r
αβ = g(σ (eα, eβ ), er ) and ∥σ∥

2
=

n∑
α,β=1

g
(
σ (eα, eβ ), σ (eα, eβ )

)
(2.7)

Let Kαβ and K̃αβ be the sectional curvatures of the plane section spanned and eα at x in the submanifold Mn and in the
Riemannian space form M̃m(c), respectively. Thus Kαβ and K̃αβ are the intrinsic and extrinsic sectional curvatures of the
span {eα, eβ} at x. From the Gauss equation (2.2)(i), we have

Kαβ = K̃αβ +

m∑
r=n+1

(
σ r

αασ r
ββ − (σ r

αβ )
2
)
. (2.8)

Further, we will assume that a local field of orthonormal frame {e1, . . . en} on Mn, global tensor is defined as

S̃(X, Y ) =

m∑
i=1

{̃
g (̃R(eα, Y )Y , eα)

}
, X, Y ∈ TxMm. (2.9)

This tensor is called Ricci tensor. If we fix a distinct integer from {e1, . . . en} on Mn, which is governed by ξ , then the
Ricci curvature is defined as:

Ric(ξ ) =

n∑
α=1
α ̸=ξ

K (eα ∧ eu) (2.10)

Now we define an important Riemannian intrinsic invariant called the scalar curvature of Mm and it is denoted by
τ̃ (TxMm), as follows:

τ̃ (Mn) =

∑
1≤α<β≤n

K (eα ∧ eβ ) =
1
2

m∑
ξ=1

Ric(eξ ). (2.11)

It is clear that the above inequality is congruent to the following equation which will be frequently used throughout
the paper from now on:

2̃τ (Mn) =

∑
1≤α<β≤n

K (eα ∧ eβ ) =
1
2

m∑
ξ=1

Ric(eξ ). (2.12)

The following consequences are obtained from (2.2) and (2.8) as follows:

τ (Np
1 ) =

m∑
r=n+1

∑
1≤i<j≤p

(
σ r
iiσ

r
jj − (σ r

ij )
2
)

+ τ̃ (Np
1 ). (2.13)

Similarly, we have

τ (Nq
2 ) =

m∑
r=n+1

∑
1≤a<b≤q

(
σ r
aaσ

r
bb − (σ r

ab)
2
)

+ τ̃ (Nq
2 ). (2.14)
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Next, we will assume that Np
1 and Nq

2 are two Riemannian manifolds endowed with the Riemannian metrics g1 and g2,
respectively. Let f be a smooth function defined on Np

1 . Then the warped product manifold Mn
= Np

1 ×f N
q
2 is the manifold

Np
1 × Nq

2 given by the Riemannian metric g = g1 + f 2g2 [10]. Assuming that the Mn
= Np

1 ×f Nq
2 is a warped product

manifold, then for any X ∈ Γ (TN1) and Z ∈ Γ (TN2), we find that

∇ZX = ∇XZ = (X ln f )Z . (2.15)

From [Eq. (3.3) [17]], we have
p∑

α=1

q∑
β=1

K (eα ∧ eβ ) =
q∆f
f

. (2.16)

Let {e1, . . . , en} be an local orthonormal frame of the vector field Mn. Then, the gradient of the function ϕ and its squared
norm are defined as:

∇ϕ =

n∑
i=1

ei(ϕ)ei. (2.17)

and

∥∇ϕ∥
2

=

n∑
i=1

(
(ϕ)ei

)2
. (2.18)

Remark 2.1. A warped product manifold Mn
= Np

1 ×f N
q
2 is said to be trivial or simply a Riemannian product manifold

if the warping function f is constant.

We have an important lemma for further use in our proof.

Lemma 2.1 ([18]). Let f ∈ F(Np
1 ), then the gradient of the lift f ◦ π of f to Mn

= Np
1 ×f N

q
2 is the lift to Mn of the gradient of

f on Np
1 , where π : Np

1 ×f N
q
2 → Np

1 is the projection map. This means that ∇(f ◦ π ) = ∇f .

3. Proof of theorems

3.1. Proof of Theorem 1.2

First of all, we assume that the warped product submanifold Mn
= Np

1 ×f Nq
2 is a Np

1 -minimal warped product
submanifold, and we will use a similar technique for the other case. From Gauss equation (2.2)(i), we have

n2
∥H∥

2
= 2τ (Mn) + ∥σ∥

2
− 2̃τ (Mn). (3.1)

Assuming {e1 . . . ep, ep+1 . . . en} to be a local orthonormal frame fields of Mn such that {e1 . . . ep} are tangent to Np
1 and

{ep+1 . . . en} are tangent Nq
2 . So, the unit tangent vector ξ = eA ∈ {e1 . . . en}, can be expanded (3.1) as follows:

n2
∥H∥

2
=2τ (Mn) +

1
2

m∑
r=n+1

{(
σ r
11 + · · · + σ r

nn − σ r
AA

)2
+
(
σ r
AA

)2}
−

m∑
r=n+1

∑
1≤α ̸=β≤n

σ r
αασ r

ββ − 2̃τ (Mn).

It is equivalent to

n2
∥H∥

2
=2τ (Mn) +

m∑
r=n+1

{(
σ r
11 + · · · + σ r

nn

)2
+
(
2σ r

AA − (σ r
11 + · · · + σ r

nn)
)2}

+ 2
m∑

r=n+1

∑
1≤α<β≤n

(σ r
αβ )

2
− 2

m∑
r=n+1

∑
1≤α<β≤n

σ r
ασ r

β − 2̃τ (Mn).

Because we have considered that Mn is a Np
1 -minimal warped product submanifold, we derive

n2
∥H∥

2
=

m∑
r=n+1

{(
σ r
p+1p+1 + · · · + σ r

nn

)2
+
(
2σ r

AA − (σ r
p+1p+1 + · · · + σ r

nn)
)2}

+ 2τ (Mn) +

m∑
r=n+1

∑
1≤α<β≤n

(σ r
αβ )

2
−

m∑
r=n+1

∑
1≤α<β≤n

σ r
αασ r

ββ

− 2̃τ (Mn) +

m∑
r=n+1

∑
a=1
a̸=A

(σ r
aA)

2
+

m∑
r=n+1

∑
1≤α<β≤n

α,β ̸=A

(σ r
αβ )

2
−

m∑
r=n+1

∑
1≤α<β≤n

α,β ̸=A

σ r
αασ r

ββ . (3.2)
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Eq. (2.8), can be written as:

m∑
r=n+1

∑
1≤α<β≤n

α,β ̸=A

(σ r
αβ )

2
−

m∑
r=n+1

∑
1≤α<β≤n

α,β ̸=A

σ r
αασ r

ββ =

∑
1≤α<β≤n

α,β ̸=A

K̃αβ −

∑
1≤α<β≤n

α,β ̸=A

Kαβ . (3.3)

For the Np
1 -minimality, we have

m∑
r=n+1

{(
σ r
p+1p+1 + · · · + σ r

nn

)2}
= n2

∥H∥
2. (3.4)

Substituting the value of Eqs. (3.3) and (3.4) in Eq. (3.2), we derive

1
2
n2

∥H∥
2

=2τ (Mn) +
1
2

m∑
r=n+1

(
2σ r

AA − (σ r
n1+1n1+1 + · · · + σ r

nn)
)2

+

m∑
r=n+1

∑
1≤α<β≤n

(σ r
αβ )

2

−

m∑
r=n+1

∑
1≤α<β≤n

α,β ̸=A

σ r
αασ r

ββ − 2̃τ (Mn) +

m∑
r=n+1

∑
a=1,
a̸=A

(σ r
aA)

2
+

∑
1≤α<β≤n

α,β ̸=A

K̃αβ −

∑
1≤α<β≤n

α,β ̸=A

Kαβ . (3.5)

On the other hand, from (2.4), we define

τ (Mn) =

∑
1≤α<β≤n

K (eα ∧ eβ )

=

p∑
i=1

n∑
j=p+1

K (ei ∧ ej) +

∑
1≤i<k≤p

K (ei ∧ ek) +

∑
p+1≤l<o≤n

K (el ∧ eo). (3.6)

Using (2.4) and (2.16), we derive them, as follows:

τ (Mn) =
q∆f
f

+ τ (Np
1 ) + τ (Nq

2 ). (3.7)

From (3.5), (3.6), (3.7) and using (2.7), we derive

1
2
n2

∥H∥
2

=
n2∆f
f

− 2̃τ (Mn) +

∑
1≤α<β≤n

α,β ̸=A

K̃αβ + τ̃ (TxN
p
1 ) + τ̃ (TxN

q
2 ) +

m∑
r=n+1

{ ∑
1≤α<β≤n

(σ r
αβ )

2
−

∑
1≤α<β≤n

α,β ̸=A

σ r
αασ r

ββ

}

+

m∑
r=n+1

∑
a=1,
a̸=A

(σ r
aA)

2
+

m∑
r=n+1

∑
1≤i̸=j≤p

(
σ r
iiσ

r
jj − (σ r

ij )
2
)

+

m∑
r=n+1

∑
p+1≤s̸=t≤n

(
σ r
ssσ

r
tt − (σ r

st )
2
)

+
1
2

m∑
r=n+1

(
2σ r

AA − (σ r
p+1p+1 + · · · + σ r

nn)

)2

. (3.8)

Considering the unit tangent vector eu, we have two choices: eu is either tangent to the base manifold Np
1 or to the fiber

Nq
2 . So, first we will prove for the primary case:

Case-I If eA is tangent to Np
1 , then we fix a unit tangent vector from {e1 . . . ep} to be eA and consider ξ = eA = e1. Next,

from (2.10) and (3.8), we get:

RicM (ξ ) ≤
1
2
n2

∥H∥
2
−

q∆f
f

+ 2̃τ (Mn) −

∑
2≤α<β≤n

K̃αβ − τ̃ (Np
1 ) − τ̃ (Nq

2 ) −
1
2

m∑
r=n+1

(
2σ r

11 − (σ r
p+1p+1 + · · · + σ r

nn)

)2

−

m∑
r=n+1

∑
1≤α<β≤n

(σ r
αβ )

2
+

m∑
r=n+1

{ ∑
1≤i<j≤p

(σ r
ij )

2
+

∑
p+1≤s<t≤n

(σ r
st )

2
}

−

m∑
r=n+1

{ ∑
1≤i<j≤p

σ r
iiσ

r
jj +

2m∑
r=n+1

∑
p+1≤s̸=t≤n

σ r
ssσ

r
tt

}
+

m∑
r=n+1

∑
2≤α<β≤n

σ r
αασ r

ββ . (3.9)
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Using the definition of the Riemannian submanifolds, from (2.1) and (2.5), one obtains

RicM (ξ ) ≤
1
2
n2

∥H∥
2
−

q∆f
f

+ pq + n − 1 −

m∑
r=n+1

∑
1≤α<β≤n

(σ r
αβ )

2
−

1
2

m∑
r=n+1

(
2σ r

11 − (σ r
p+1p+1 + · · · + σ r

nn)

)2

+

m∑
r=n+1

{ ∑
1≤i<j≤n1

(σ r
ij )

2
+

∑
p+1≤s<t≤n

(σ r
st )

2
}

−

m∑
r=n+1

{ ∑
1≤i<j≤p

σ r
iiσ

r
jj +

m∑
r=n+1

∑
p+1≤s̸=t≤n

σ r
ssσ

r
tt

}

+

m∑
r=n+1

∑
2≤α<β≤n

σ r
αασ r

ββ . (3.10)

On the other hand, after we do some computations in the last two terms of (3.10), one obtains:
m∑

r=n+1

{ ∑
1≤i<j≤p

(σ r
ij )

2
+

∑
p+1≤s<t≤n

(σ r
st )

2
}
−

m∑
r=n+1

∑
1≤α<β≤n

(σ r
αβ )

2
=

m∑
r=n+1

p∑
α=1

n∑
β=p+1

(σ r
αβ )

2. (3.11)

Similarly, we have

m∑
r=n+1

{ ∑
1≤i<j≤p

σ r
iiσ

r
jj+

m∑
r=n+1

∑
p+1≤s̸=t≤n

σ r
ssσ

r
tt −

∑
2≤α<β≤n

σ r
ασ r

β

}
=

m∑
r=n+1

( p∑
j=2

σ r
11σ

r
jj −

p∑
α=2

n∑
β=p+1

σ r
αασ r

ββ

)
(3.12)

Replacing (3.12) in (3.10), we derive

RicM (ξ ) ≤
1
2
n2

∥H∥
2
−

q∆f
f

+ pq + p + q − 1 −
1
2

m∑
r=n+1

(
2σ r

11 − (σ r
p+1p+1 + · · · + σ r

nn)

)2

−

m∑
r=n+1

( p∑
α=1

n∑
β=p+1

(σαβ )2 +

p∑
b=2

σ r
11σ

2
bb −

p∑
α=2

n∑
β=p+1

σ r
αασ r

ββ

)
. (3.13)

As for Np
1 -minimal warped product submanifold Mn, we compute the following simplification

m∑
r=n+1

p∑
α=2

n∑
β=p+1

σ r
αασ r

ββ =

m∑
r=n+1

n∑
β=p+1

{
g
(
σ (e2, e2), er

)
+ · · · + g

(
σ (ep, ep), er

)}
σ r

ββ

=

m∑
r=n+1

n∑
β=p+1

{
g
(
σ (e1, e1), er

)
+ · · · + g

(
σ (ep, ep), er

)
− g

(
σ (e1, e1), er

)}
σ r

ββ

= −

m∑
r=n+1

n∑
β=p+1

σ r
11σ

r
ββ . (3.14)

Similarly, we have
m∑

r=n+1

p∑
b=2

σ r
11σ

r
bb = −

m∑
r=n+1

(σ11)2. (3.15)

On the other hand, we deduce that

1
2

m∑
r=n+1

(
2σ r

11 − (σ r
p+1p+1+ · · · + σ r

nn)

)2

+

m∑
r=n+1

n∑
β=p+1

σ r
11σ

r
ββ = 2

m∑
r=n+1

(σ11)2 +
1
2
n2

∥H∥
2. (3.16)

Using (3.14) and (3.15) in Eq. (3.13), after the evaluation of (3.16), we finally get

RicM (ξ ) ≤
1
2
n2

∥H∥
2
−

q∆f
f

+ pq + n − 1 −
1
4

m∑
r=n+1

(
σ r
p+1p+1 + · · · + σ r

nn

)
−

m∑
r=n+1

{
(σ11)2 −

n∑
β=p+1

σ r
11σ

r
ββ +

1
4

(
σ r

σ+1σ+1 + · · · + σ r
nn

)}
. (3.17)
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The last term of inequality (3.17) is equal to n2
4 ∥H∥

2 and using also the Np
1 -minimality, we get:

RicM (ξ ) +
q∆f
f

≤
1
4
n2

∥H∥
2
+ pq + p + q − 1 −

1
2

m∑
r=n+1

(
2σ r

11 −

n∑
β=p+1

σββ

)2

, (3.18)

which implies the inequality (1.1). For the other case, we have

Case:-2 If eA is tangent to Nq
2 , then we fix the unit tangent vector field from ep+1, . . . en such that ξ = en. From (2.10) to

(3.9) using a similar approach as in the first case, one obtains:

1
2
n2

∥H∥
2

≥ RicM (ξ ) +
q∆f
f

− 2̃τ (Mn) +

∑
1≤α<β≤n−1

K̃αβ + τ̃ (Np
1 ) + τ̃ (Nq

2 )

+
1
2

m∑
r=n+1

(
2σ r

nn − (σ r
p+1p+1 + · · · + σ r

nn)

)2

+

m∑
r=n+1

n−1∑
β=1

σ r
nnσ

r
ββ

+

m∑
r=n+1

p∑
α=1

n∑
β=p+1

(σ r
αβ )

2
−

m∑
r=n+1

p∑
α=1

n−1∑
β=p+1

σ r
αασ r

ββ . (3.19)

After some computations, one obtains:
m∑

r=n+1

{
1
2

((
σ r
p+1p+1 + · · · + σ r

nn

)
− 2σ r

nn

)2

+

n−1∑
β=n+1

σ r
nnσββ

}

=

m∑
r=n+1

{
1
2

(
σ r
p+1p+1 + · · · + σ r

nn

)2

+ (σ r
nn)

2
−

n−1∑
β=n+1

σ r
nnσββ

}
. (3.20)

Since, Mn is Np
1 -minimal, then

m∑
r=n+1

p∑
α=1

n∑
β=p+1

(σ r
αβ )

2
= 0. (3.21)

Using a similar technique, as in (3.11), also replacing (3.20)–(3.21) in (3.19), we obtain the following inequality

1
4
n2

∥H∥
2

≥ RicM (ξ ) +
q∆f
f

− pq − n + 1 +
1
2

m∑
r=n+1

(
2σ r

nn −

n∑
β=p+1

σββ

)2

,

which again implies the inequality (1.1). To derive the inequality (1.1), when warped product submanifold Mn is Nq
2-

minimal, we will use a similar method, as we applied in the first case. Hence we conclude that the inequality (1.1) holds
for both N j

i -minimal isometric immersion for i = 1 or 2 and j = p, q.
Now we will verify the equality cases in the inequality (1.1). Let us consider the relative null space Nx of the warped

product submanifold Mn in a unit sphere Sm which is defined in Eq. (2.3). For A ∈ {e1 . . . en}, a unit tangent vector eA to
Mn at x satisfies the equality sign of the inequality (1.1), if and only if the following condition holds:

(i)
p∑

α=1

n∑
β=p+1

σ r
αβ = 0, (ii)

n∑
b=1
b̸=A

σ r
bA = 0, (iii), 2σ r

AA =

n∑
β=p+1

σββ , (3.22)

such that r ∈ {en+1 . . . ,m}. The first condition (i) implies that the Mn is a mixed totally geodesic warped product
submanifold. Using the minimality and combining with (ii) and (iii) of (3.22), it can be easily seen that the unit tangent
vector ξ = eA lies in the relative null space Nx at x. The converse part is straightforward and hence, we complete the
proof of (1) from inequality (1.1).

Moreover, for Np
1 -minimal isometric warped product submanifold, the equality condition in (1.1) holds if and only if:

(i)
p∑

α=1

n∑
β=p+1

σαβ = 0, (ii)
n∑

b=1

n∑
A=1
b̸=A

σ r
bA = 0, (iii), 2σ r

αα =

n∑
β=n1+1

σββ , (3.23)

where α ∈ {1 . . . , p} and r ∈ {n + 1 . . . ,m}. As Mn is a Np
1 -minimal, then from the third term of (3.23) we get that

σ r
αα = 0, α ∈ {1 . . . , p}. So, combining these conditions with the second term (ii) of (3.23), we find that Mn is a Np

1 -totally
geodesic warped product submanifold in a unit sphere Sn. This proves the statement (a) of (2).
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Assuming that Mn is a Np
1 -minimal, then the equality sign holds in (1.1) for all unit tangent vectors to Nq

2 at x if and
only if the following statements, hold:

(i)
p∑

α=1

n∑
β=p+1

σ r
αβ = 0, (ii)

p∑
b=1

n∑
A=1
b̸=A

σ r
bA = 0, (iii), 2σ r

LL =

n∑
β=p+1

σββ , (3.24)

such that L ∈ {p + 1 . . . , n} and r ∈ {n + 1, . . . ,m}. Two cases arise from the third condition (iii) from (3.24), that is

hr
LL = 0, ∀L ∈ {p + 1 . . . , n} & r ∈ {n + 1, . . . ,m}, or dimNn2

2 = 2. (3.25)

If the first part of (3.25) holds, then in the light of the second condition from (3.24), we get that Mn is an Nq
2-totally

geodesic warped product submanifold in a unit sphere Sm. This is the first statement of the part (b) of (2) of the theorem.
For the other part, we consider that Mn is not Nq

2-totally geodesic warped product submanifold and dimNq
2 = 2. Then,

from (ii) of (3.24), we hypothesize that Mn is N2
2 -totally umbilical warped product submanifold in-unit sphere Sm. Hence

the part (b) of (2) is proved completely. Now, we prove statement (3), using (3.23) and (3.24) together, and then we will
use part (a) and (b) of (2). Thus, let us consider that dimNq

2 ̸= 2. Since, from (a) and (b) of a statement (3) respectively, we
get that Mn is Np

1 -totally geodesic warped product submanifold in a unit sphere Sm, this means that Mn is totally geodesic
warped product submanifold in Sm. Moreover, for the other case, we assume that the previous does not hold. Then from
parts (a) and (b) of statement (2) one obtains that Mn is mixed totally geodesic and Np

1 -totally geodesic warped product
submanifold in Sm with dimNq

2 = 2. As for the last assertion to show that Mn is a totally umbilical warped product
submanifold into Sn, it is sufficient to prove that Mn is Nq

2-totally umbilical and is Np
1 -totally geodesic warped product

submanifold in Sm, remaining results obtained, directly from (b) and (a), respectively. This gives the complete proof part
(3). Using a similar technique as in the above case, we can prove the theorem when Mn is Nq

2-minimal warped product
submanifold in the unit sphere Sm. This completes the proof of the theorem.

4. Geometric mechanics and applications

4.1. Harmonic function on compact warped product manifolds

In this subsection, we will consider that Mn is a compact submanifold with an empty boundary ∂M = ∅. The following
famous result regarding such a manifold was proved in [11] as follows:

Lemma 4.1 (Hopf’s Lemma [11]). Let Mn be compact, connected Riemannian manifold such that the Laplacian of the positive
differentiable function ϕ ∈ C∞(Mn) is non-negative, such that ∆ϕ ≥ 0(∆ϕ ≤ 0). Then ϕ is a constant function.

Applying the above lemma, we prove the following result:

Theorem 4.1. Let ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm, be a Np

1 -minimal isometric immersion from an n-dimensional connected and
compact warped product submanifold Mn into an m-dimensional unit sphere Sm. Then Mn is a simply Riemannian product
manifold if and only if the following inequality is satisfied:

RicM (ξ ) =
n2

4
∥H∥

2
+ p(q + 1) + q + 1. (4.1)

Proof. From (1.1) and (2.16), we have

n2

4
∥H∥

2
≥ RicM (ξ ) + q

∆f
f

− pq − p − q + 1

Assuming that Eq. (4.1) holds, then from the above result, we get:

q
∆f
f

≤ 0,

which implies that ∆f ≤ 0. Using Lemma 4.1 we conclude that the warping function f is constant. From Remark 2.1
one obtains that Mn is a Riemannian product submanifold or a trivial warped product submanifold. The converse part is
straightforward from (4.1). This completes the proof of the theorem.

For any positive differentiable function ϕ ∈ C∞(Mn), the Hessian tensor of the function ϕ is a symmetric 2-covariant
tensor field on Mn defined by

∆ϕ = −traceHϕ
= −traceHlnf . (4.2)

Thus, from the above relation and Theorem 1.2, verifying the relations between Ricci curvature, the squared norm of mean
curvature and Hessian tensor of the warping function, one obtains the following:
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Corollary 4.1. Let ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm, be a Np

1 -minimal isometric immersion from an n-dimensional warped product
submanifold Mn into a m-dimensional unit sphere Sm. Thus, for each unit vector field ξ ∈ TxNi, with i = 1 or i = 2, we have
the following inequality:

RicM (ξ ) ≤
n2

4
∥H∥

2
− q

traceHf

f
+ p(q + 1) + q + 1.

4.2. An application to eigenvalue estimate

A lower bound on the Ricci curvature implies various bound on the geometric quantities. Let Mn be a complete non-
compact Riemannian manifold and fix an arbitrary point x in Mn. Let Mn be a Riemannian manifold and λ1(Mn) denote
the first eigenvalue of the Dirichlet boundary value problem

∆ϕ =λϕ in Mn

ϕ =0 on ∂Mn, (4.3)

where ∆ is the Laplacian on Mn and defined as ∆ϕ = −div(∇ϕ). From the monotonicity principle we find that r < t
which means that λ1(Mn

r ) > λ1(Mn
t ). Therefore, the limr−→∞ λ1(Dt ) exists and the following definition can be given:

λ1(M) = lim
r−→∞

λ1(Dr ) (4.4)

The above limit is independent of choice of the center x. By using the first non-zero eigenvalue of the Laplacian operator,
Cheng [14,22] proved the eigenvalue comparison theorem which states that if M is complete and isometric to the standard
unit sphere then Ric(M) ≥ 1 and d(M) = π . Using the proof of Cheng [21] and also the studies of Palmer [[37], Lemma 1.
p53], let us assume that ϕ is a non-constant warping function. Then the maximum (minimum) principle on the eigenvalue
λ1 yields (see, for instance, [9,14])

λ1

∫
Mn

ϕ2dV ≤

∫
Mn

∥∇ϕ∥
2dV , (4.5)

with equality holding if and only if the condition ∆ϕ = λ1ϕ, holds. We give now the following:

Theorem 4.2. Let ℓ : Mn
= Np

1 ×f Nq
2 −→ Sm, be a Np

1 -minimal isometric immersion from an n-dimensional compact
warped product submanifold Mn into an m-dimensional unit sphere Sm. Let the warping function ln f is an eigenfunction of the
Laplacian of Mn associated to the first eigenvalue λ1(Mn) of the Dirichlet boundary problem (4.3), then the following inequality
holds ∫

Mn
RicM (ξ )dV ≤

n2

4

∫
Mn

∥H∥
2dV + qλ1

∫
Mn

(ln f )2dV + q
(
p + 1 +

p − 1
q

)
Vol(Mn). (4.6)

The equality cases are same in Theorem 1.2.

Proof. As Mn is compact, this means that Mn is bounded. This implies that Mn have lower and upper bounds. Let
λ1 = λ1(M) and ϕ be a solution of (4.3) to the corresponding λ1. It seems that ϕ does not change the sign in Mn. Therefore,
we can rewrite (1.1) in the following form

RicM (ξ ) − q∥∇(ln f )∥2
≤

n2

4
∥H∥

2
+ q

(
p + 1 +

p − 1
q

− ∆(ln f )
)
, (4.7)

where ∇ is the gradient on Mn. Integrating the above equation along the Riemannian volume form dV , we derive∫
Mn

RicM (ξ )dV − q
∫
Mn

∥∇(ln f )∥2dV ≤
n2

4

∫
Mn

∥H∥
2dV + q

(
p + 1 +

p − 1
q

)
Vol(Mn). (4.8)

If λ1 is an eigenvalue of the eigenfunction ln f such that ∆ ln f = λ1 ln f with ϕ = ln f in (4.5), then equality in (4.5) holds,∫
Mn

∥∇ ln f ∥2dV = λ1

∫
Mn

(ln f )2dV . (4.9)

Using (4.9), we get∫
Mn

RicM (ξ )dV − qλ1

∫
Mn

(ln f )2dV ≤
n2

4

∫
Mn

∥H∥
2dV + q

(
p + 1 +

p − 1
q

)
Vol(Mn). (4.10)

This completes the proof of the theorem.
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4.3. Relation and classification in Poisson equation

There are many conditions when physical quantities are described by a Poisson’s equation such as the gravitational
potential in the presence of mass, the electrostatic potential in light of distribution charge and study-state temperature
in the presence of sinks as well. Similarly, the Laplacian equation describes stationary process in physics such as: the
displacement of a membrane, the gravitational potential in the absence of mass, the steady heat flow equation in the
absence of source of heat, the velocity potential for some fluids. Let D ⊂ Mn be a bounded, closed set. Then a variation
of ϕ ∈ D is a one parameter family of functions ϕ(s, t) where s ∈ (−ϵ, ϵ) and t ∈ Mn such that

ϕ(0, t) =ϕ(t) (4.11)

ϕ(s, x) =ϕ(s), x ∈ Mn
− {D}. (4.12)

It is denoted by the following

δϕ(x) =
∂ϕ(s, x)

∂s |s=0
, i = ¯1, n. (4.13)

Therefore the integral

I =

∫
D
Ldvg , (4.14)

is said to be stationary under the above variation if
dI
ds |s=0

= 0, (4.15)

where we denote the volume element dvg =

√
|g|dx1, . . . , dxm and |g| = |det(gij)|. The integral (4.14) is stationary under

any variation of ϕ if and only if the following Euler–Lagrange equations are satisfied
m∑

k=1

(
∂L

∂(ϕi
:k)

)
=

∂L
∂(ϕi)

, i = ¯1, n. (4.16)

Let f , ρ ∈ F(M) on a Riemannian manifold (M, g) and let us consider the Lagrangian as:

L =
∥f ∥2

2
− ρf . (4.17)

If we use the Euler–Lagrange equation, derived from Eq. (4.14) with the right hand side ∂L
∂ f = −ρ, then Eq. (4.17) becomes

the Poisson’s equation:

∆f = ρ. (4.18)

The following lemma is a useful result to obtain the solution of Poisson’s equation.

Lemma 4.2 ([11]). Let k ∈ R, then an equation on the sphere Sm such that ∆f = k has a solution if and only if k = 0. In this
case solutions are constant.

Using the above result, due to Poisson’s equation (4.18), we give now, the following:

Theorem 4.3. Let ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm, be a Np

1 -minimal isometric immersion from an n-dimensional compact warped
product submanifold Mn into an m-dimensional unit sphere Sm. If the warping function f is the solution of Poisson equation,
then Mn is a Riemannian product and the following inequality holds.

RicM (ξ ) ≤
n2

4
∥H∥

2
+ q

(
p + 1 +

p − 1
q

)
. (4.19)

Proof. For any k ∈ R, the equation on the sphere Sm for warped product submanifold Mn is:

∆(lnf ) = k (4.20)

From the hypothesis of Theorem 4.3, we know that f is the solution of Poisson’s equation (4.18) and using Lemma 4.2
lead us to the conclusion that f is a solution of (4.20) if and only if k = 0. Then, one obtains:

∆(lnf ) = 0. (4.21)

On the other hand, Lemma 4.2 also shows that the solutions are constant. This means that f is a constant function, that
is, Mn is a trivial warped product or simply Riemannian product manifold and hence, we have

∥∇ ln f ∥2
= 0. (4.22)

Therefore, using (4.21) and (4.22) in (1.1), we get the required result.
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As a consequence of the Poisson’s function and using Poisson’s equation (4.18), we have

Corollary 4.2. If ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm, is a Np

1 -minimal isometric immersion from an n-dimensional compact warped
product submanifold Mn into an m-dimensional unit sphere Sm such that the warping function f satisfies the Poisson equation,
then we have

RicM (ξ ) + q
(

ρ

f

)
≤

n2

4
∥H∥

2
+ q

(
p + 1 +

p − 1
q

)
. (4.23)

where ρ is the Poisson’s function defined in the Poisson’s equation (4.18).

Proof. Using (4.18) in (1.1), we get the result and this completes the proof of the corollary.

4.4. Dirichlet energy and Lagrangian formalisms on warped product and their classifications

Let ϕ be positive differentiable function defined on a compact Riemannian manifold Mn such that ϕ ∈ F(Mn). Then
Dirichlet energy of a function ϕ is defined in

[
pp. 44 [11]

]
as:

E(ϕ) =
1
2

∫
Mn

∥∇ϕ∥
2dV , (4.24)

where dV is the volume element of Mn. Similarly, the Lagrangian for a function ϕ on Riemannian manifold Mn is given
in [11], as follows:

Lϕ =
1
2
∥∇ϕ∥

2. (4.25)

The Euler–Lagrange equation for the Lagrangian (4.25) is:

∆ϕ = 0. (4.26)

If we consider Mn to be a compact oriented Riemannian manifold without boundary such that ∂Mn
= ∅, then we have a

strong result which link the relation between Dirichlet energy, Ricci curvature and the squared mean curvature as follows:

Theorem 4.4. Let ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm, be a Np

1 -minimal isometric immersion from a compact oriented warped product
submanifold Mn into the unit sphere Sm. Then we have the following inequality

E(ln f ) ≥
1
2q

{∫
Mn

RicM (ξ )dV −
n2

4

∫
Mn

∥H∥
2dV −

(
pq + p + q − 1

)
Vol(Mn)

}
, (4.27)

where dV is the volume element and E(ln f ) denotes the Dirichlet energy of the warping function lnf with respect to dV .

Proof. Let ϕ be a positive function defined on a compact oriented Riemannian manifold without boundary. Yano–Kon
proved in [41] the following result

∫
Mn ∆ϕ = 0. Applying this result to the warping function ln f , we get∫

Mn
∆(lnf ) = 0. (4.28)

Integrating inequality (1.1) along the volume element dV on a compact oriented warped product submanifold Mn, one
obtains:∫

Mn
RicM (ξ )dV ≤

n2

4

∫
Mn

∥H∥
2dV +

∫
Mn

∥∇ ln f ∥2dV +

(
pq + p + q − 1

) ∫
Mn

dV −

∫
Mn

∆(lnf )dV .

Using (4.28), the above inequality, became:∫
Mn

RicM (ξ )dV ≤
n2

4

∫
Mn

∥H∥
2dV +

∫
Mn

∥∇ ln f ∥2dV +

(
pq + p + q − 1

) ∫
Mn

dV . (4.29)

Therefore, in the Dirichlet energy formula (4.24) by setting ϕ = ln f and using also (4.29), we get the required result. This
completes the proof of the theorem.

Another important result which can be obtained directly from Euler–Lagrange equation (4.26) in terms of the
Lagrangian Lϕ is defined in (4.25) as follows:

Corollary 4.3. Let ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm, be a Np

1 -minimal isometric immersion from a compact oriented warped product
submanifold Mn into the unit sphere Sm such that the warping function ln f satisfies the Euler–Lagrange equation. Then, the
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following inequality, holds:

Llnf ≥
1
2q

{
RicM (ξ ) −

n2

4
∥H∥

2
−

(
pq + p + q − 1

)}
, (4.30)

where Llnf is the Lagrangian defined in Eq. (4.25).

Proof. Using (4.25) and (4.26) in (1.1), we get the inequality (4.30). This completes the proof of the corollary.

4.5. Relation between Ricci curvature and Hamiltonian of the warping function

In the point x ∈ Mn, the Hamiltonian for a local orthonormal frame can be written (see more detail in [11]) as follows:

H(p, x) =
1
2

n∑
i=1

p(ei)2. (4.31)

If we replace p = dϕ in the above equation, (where d is a differentiable operator), then from (2.17), one obtains:

H(dϕ, x) =
1
2

n∑
i=1

dϕ(ei)2 =
1
2

n∑
i=1

ei(ϕ)2 =
1
2
∥∇ϕ∥

2. (4.32)

Using the above formula, we get:

Corollary 4.4. Let ℓ : Mn
= Np

1 ×f Nq
2 −→ Sm, be a Np

1 -minimal isometric immersion from a compact warped product
submanifold Mn into the unit sphere Sm. Then the Ricci-Hamilton inequality can be written as follows:

H(d ln f , x) ≥
1
2q

{
RicM (ξ ) −

n2

4
∥H∥

2
−

(
pq + p + q − 1

)}
, (4.33)

where H(d ln f , x) is the Hamiltonian of the warping function ln f .

Proof. Using (4.32) into (1.1), we get (4.33).

4.6. Some triviality results on warped products

We can give some interesting applications of Hopf’s lemma assuming that Mn is a compact Riemannian manifold with
boundary such that ∂M ̸= ∅. We prove the following theorem:

Theorem 4.5. Let ℓ : Mn
= Np

1 ×f Nq
2 −→ Sm, be a Np

1 -minimal isometric immersion from a compact connected oriented
warped product submanifold Mn into the unit sphere Sm. If the following relation holds:

E(ln f ) =
1
2q

{∫
Mn

RicM (ξ )dV −
n2

4

∫
Mn

∥H∥
2dV −

(
pq + p + q − 1

)
Vol(Mn)

}
, (4.34)

then Mn is a Riemannian product manifold.

Proof. Integrating in (1.1), we get:∫
Mn

RicM (ξ )dV ≤
n2

4

∫
Mn

∥H∥
2dV +

(
pq + p + q − 1

) ∫
Mn

dV + q
∫
Mn

∥∇ ln f ∥2dV −

∫
Mn

∆ ln fdV . (4.35)

Using (4.24) in the above equation and if (4.34) is satisfied, then from (4.35) one obtains:

−

∫
Mn

∆(ln f )dV ≤ 0 H⇒ ∆(ln f ) ≥ 0. (4.36)

Hence, now using Lemma 4.1 we conclude that ln f must be a constant. This means that ln f = a for any constant a which
implies that f = ea. So, we proved that the warped product submanifold Mn is a usual Riemannian product manifold.

4.7. Some topological obstructions

This subsection is devoted to the work of Obata [36] which is characterized specific Riemannian manifolds by ordinary
differential equations. He derived the necessary and sufficient condition for an n-dimensional complete and connected
Riemannian manifold (M, g) to be isometric to the n-sphere Sn if there exists a non-constant smooth function ϕ on Mn

that satisfies the differential equation Hϕ = −cϕg , where Hϕ stands for the Hessian of ϕ. Then we obtain the following
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Theorem 4.6. Let ℓ : Mn
= Np

1 ×f Nq
2 −→ Sm, be a Np

1 -minimal isometric immersion from a compact oriented warped

product submanifold Mn into the unit sphere Sm with non-negative Ricci curvature and satisfying the following equality

Hess(ln f )
2 = −

3λ1

p

{
n2

4q
∥H∥

2
+

(
p + 1 +

p − 1
q

)}
, (4.37)

where λ1 > 0 is a positive eigenvalue associated to eigenfunction ln f . Then, the base manifold Np
1 is isometric to the sphere

Sp( λ1
p ) with constant sectional curvature equal to λ1

p .

Proof. Let us define the following equation as

∥Hess(ln f ) − t ln fI∥2
=∥Hess(ln f )∥2

+ t2(ln f )2∥I∥2
− 2t ln fg(Hess(ln f ), I).

But we know that ∥I∥2
= trace(II∗) = p and g(Hess(ln f ), I∗) = tr(Hess(ln f )I∗) = trHess(ln f ). Then the proceeding

equation takes the form

Hess(ln f ) − t ln fI
2 = ∥Hess(ln f )∥2

+ pt2(ln f )2 − 2t ln f∆ ln f . (4.38)

Assuming λ1 is an eigenvalue of the eigenfunction then ∆ ln f = λ1 ln f . Thus we get

Hess(ln f ) − t ln fI
2 = ∥Hess(ln f )∥2

+
(
pt2 − 2tλ1

)
(ln f )2. (4.39)

On the other hand, we obtain

∆ϕ2
= 2ϕ∆ϕ + ∥∇ϕ∥

2

Then setting ϕ = ln f , we have

∆(ln f )2 = 2 ln f∆ ln f + ∥∇ ln f ∥2.

or

λ1(ln f )2 = 2λ1(ln f )2 + ∥∇ ln f ∥2,

which implies that

(ln f )2 = −
1
λ1

∥∇ ln f ∥2. (4.40)

It follows from (4.39) and (4.40), we find that

Hess(ln f ) − t ln fI
2 = ∥Hess(ln f )∥2

+

(
2t −

pt2

λ1

)
∥∇ ln f ∥2. (4.41)

In particular, t = −
λ1
p on (4.41) by taking integration, we get

∫
Mn

Hess(ln f ) +
λ1

p
ln fI

2dV =

∫
Mn

∥Hess(ln f )∥2dV −
3λ1

p

∫
Mn

∥∇ ln f ∥2dV . (4.42)
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Again, integrating on (1.1) and involving the Green lemma, we have∫
Mn

RicM (ξ )dV ≤
n2

4

∫
Mn

∥H∥
2dV + q

∫
Mn

∥∇(ln f )∥2dV + q
(
p + 1 +

p − 1
q

)
Vol(Mn). (4.43)

From (4.42) and (4.43), we derive

1
q

∫
Mn

RicM (ξ )dV ≤
n2

4q

∫
Mn

∥H∥
2dV −

p
3λ1

∫
Mn

Hess(ln f ) +
λ1

p
ln fI

2dV
+

p
3λ1

∫
Mn

∥Hess(ln f )∥2dV +

(
p + 1 +

p − 1
q

)
Vol(Mn). (4.44)

As we assumed that the Ricci curvature is non-negative then Ric(ξ ) ≥ 0, thus∫
Mn

Hess(ln f ) +
λ1

p
ln fI

2dV ≤
3n2λ1

4pq

∫
Mn

∥H∥
2dV +

∫
Mn

∥Hess(ln f )∥2dV

+
3λ1

p

(
p + 1 +

p − 1
q

)
Vol(Mn). (4.45)

If the following equality holds from (4.37), then∫
Mn

∥Hess(ln f )∥2dV = −
3λ1

p

{
n2

4q

∫
Mn

∥H∥
2dV −

(
p + 1 +

p − 1
q

)
Vol(Mn)

}
. (4.46)

From Eq. (4.45) one obtains:∫
Mn

Hess(ln f ) +
λ1

p
ln fI

2dV ≤ 0. (4.47)

But it is well known that∫
Mn

Hess(ln f ) +
λ1

p
ln fI

2dV ≥ 0. (4.48)

Combining Eqs. (4.47) and (4.48), we getHess(ln f ) +
λ1

p
ln fI

2 = 0 H⇒ Hess(ln f ) = −
λ1

p
ln fI. (4.49)

Since the warping function ln f of nontrivial warped product manifold Mn is non-constant, Eq (4.49), gives Obata’s [36]
differential equation with constant c =

λ1
p > 0 as λ1 > 0, and therefore Np

1 is isometric to the sphere Sp( λ1
p ) with constant

sectional curvature λ1
p . This completes the proof of the theorem.

As an application to Theorem 4.6, we give now the following:

Corollary 4.5. Let ℓ : Mn
= Np

1 ×f N
q
2 −→ Sm be a minimal isometric immersion from a compact oriented warped product

submanifold Mn into the unit sphere Sm with non-negative Ricci curvature and satisfying the equality

∥Hess(ln f )∥2
= −

3λ1

p

(
p + 1 +

p − 1
q

)
, (4.50)

where λ1 is a positive eigenvalue associated to eigenfunction ln f . Then Np
1 is isometric to the sphere Sp( λ1

p ) with constant
sectional curvature equal to λ1

p .

Another consequence of Theorem 4.6 is the following:

Corollary 4.6. ℓ : Mn
= Np

1 ×f Nq
2 −→ Sm be a minimal isometric immersion from a compact oriented warped product

submanifold Mn into the unit sphere Sm with non-negative Ricci curvature and satisfying the equality (4.50) such that λ1 = p.
Then Np

1 is isometric to the sphere Sp.

In [26], Rio, Kupeli and Unal characterized Euclidean sphere using a standard differential equation which is the another
version of Obata’s differential equation. If a complete Riemannian manifold Mn admits a real valued non-constant function
ϕ such ∆ϕ + λ1φ = 0 such that λ1 < 0, then Mn is isometric to a warped product of the Euclidean line and a complete
Riemannian manifold whose warping function φ satisfies the equation that d2φ

dt2
+ λ1φ = 0. Using this concept, we give

now the following result:
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Theorem 4.7. Let ℓ : Mn
= Np

1 ×f Nq
2 −→ Sm be a Np

1 -minimal isometric immersion from a complete warped product
submanifold Mn into the unit sphere Sm with positive Ricci curvature and satisfying the following equality

∥Hess(ln f )∥2
= −

3λ1

p

{
n2

4q
∥H∥

2
+

(
p + 1 +

p − 1
q

)}
, (4.51)

where λ1 < 0 is a negative eigenvalue of the eigenfunction ln f . Then Np
1 is isometric to a warped product of the Euclidean line

and a complete Riemannian manifold whose warping function φ satisfies the differential equation

d2φ
dt2

+ λ1φ = 0. (4.52)

Proof. In the hypothesis of the theorem, we assumed that the Ricci curvature is positive and hence, using the Myers’s
theorem which states that a complete Riemannian manifold with positive Ricci curvature is compact we conclude that
Mn is a compact warped product submanifold and with free boundary. Now from (4.44), we have

1
q

∫
Mn

RicM (ξ )dV ≤
n2

4q

∫
Mn

∥H∥
2dV −

p
3λ1

∫
Mn

Hess(ln f ) +
λ1

p
ln fI

2dV
+

p
3λ1

∫
Mn

∥Hess(ln f )∥2dV +

(
p + 1 +

p − 1
q

)
Vol(Mn)

As we assumed that the Ricci curvature is positive Ric(ξ ) > 0, then we get:∫
Mn

Hess(ln f ) +
λ1

p
ln fI

2dV <
3n2λ1

4q

∫
Mn

∥H∥
2dV +

∫
Mn

∥Hess(ln f )∥2dV

+
3λ1

p

(
p + 1 +

p − 1
q

)
Vol(Mn) (4.53)

If Eq. (4.50) is satisfied, then from (4.53), we getHess(ln f ) +
λ1

p
ln fI

2 < 0,

which implies thatHess(ln f ) +
λ1

p
ln fI

2 = 0. (4.54)

In this case λ1 < 0, we invoke the result from [26], therefore Np
1 is isometric to a warped product of the Euclidean line

and a complete Riemannian manifold, where the warping function on R satisfies the differential equation (4.52). This
completes the proof of theorem.
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