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Abstract

We discuss the adiabatic decomposition formula of¢tueterminant of a Laplace type operator
on a closed manifold. We also analyze the adiabatic behavior af-tfeterminant of a Dirichlet to
Neumann operator. This analysis makes it possible to compare the adiabatic decomposition formula
with the Mayer—Vietoris type formula for thiedeterminant proved by Burghelea et al. As a byproduct
of this comparison, we obtain the exact value of the local constant which appears in their formula for
the case of Dirichlet boundary condition.
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1. Introduction and statement of the results

In this paper, we continue our study of the adiabatic decomposition gfdeterminant
of the Laplace type operator. [h2,13], the decomposition formula of tlredeterminant of
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Dirac Laplacian was given in terms of the non-local Atiyah—Patodi—-Singer (APS) boundary
condition. Here, we discuss a formula which involves ttaplace type operatoand the
Dirichlet boundary condition

LetA : C®°(M, E) — C*°(M, E) denote a Laplace type operator acting on sections of a
vector bundleE over a closed manifol of dimensiom. The operaton\ is a self-adjoint
operator with discrete spectrufiy }ren. Let us decomposil into two sub-manifoldg4;,
Mo with common boundary

M = My U Mj, MiN My =Y = 0M; = dM>. (1.2)
Thez-functionZa(s) is defined by

INOED Pra

M0

which is a holomorphic function in the half-planis) > 5 and extends to a meromorphic
function on the whole complex plane with= 0 as a regular point. Thegdeterminant of
A is defined by

d
logdetA = — —¢a(s) (1.2)
ds s=0
The derivative of A (s) ats = 0 can be represented in the following way
d . a; 2 /
H6a| = lim (x(s) - ) + 5. (1.3)

Here,y denotes Euler’s constant ang/z = a,2 — dimker(A), wherea,» is constant
term in the following asymptotic expansion neat 0

Tr(e™®) ~ 172> " ",
k=0
The functionk(s) is defined as the integral

K(s) = /O h £7Y(Tr (") — dimker(a)) dr, (1.4)

for %(s) > 5. It has a meromorphic extension to the whole complex plane and it can be
represented as

a/
K(s) = 22 + h(s),
S
in a neighborhood of = 0, whereh(s) is a holomorphic function oé. The value of the
functionh(s) ats = 0 is not a local invariant, and this fact implies the non-locality ofghe
determinant. This is the main reason, that there is no straightforward decomposition formula
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for the ¢-determinant of the operatadx onto contributions coming fromv/1 and M» (see
[10,11,13]for more detailed discussion).

We assume that there is a bicollar neighborhdbg& [—1, 1] x Y of Y in M such that
the Riemannian structure ot and the Hermitian structure daare products of the cor-
responding structures over-1, 1] andY when restricted tdN. We also assume that the
operatorA restricted ta\ has the following form

A=—82+Ay. (1.5)

Here,u denotes the normal variable ang is au-independent Laplace type operatoryon

We replace the bicollaN by Ng = [—R, R] x Y to obtain a new closed manifolf
and extend the vector bundieto My in an obvious way. We use formu{4.5) to extend
A to the Laplace operatak z on M. We decompos@/ into M1 g and M> g by cutting
Mp at{0} x Y. We denote by\; ¢ the operatoAg|,, , Subject to the Dirichlet boundary
condition. The operatoA; g is a self-adjoint operator with discrete spectrum and smooth
eigensections. The-determinant ofA; r is defined as dgi\z and it enjoys all the nice
properties of the&-determinant of the Laplacian on a closed manifold. The concern of this
paper is to investigate ttadiabatic decompositioof det A g, that is, the limit of

det;AR
det Ay r-detAz g

The case of the invertible tangential operatgrwas described if9—11]. The invertibil-
ity assumption o\ y implies that we have only finitely many eigenvalue2gf converging
to 0 asR — oo. This allows us to discard the large time contribution togkdeterminant
of Ag under the adiabatic process and the adiabatic decomposition gfdéerminant
easily follows from a standard application of thehamel principle

The non-invertible case was studied[18]. The decomposition formula introduced in
[13] uses Atiyah—Patodi—Singer boundary conditions. The new feature of the non-invertible
tangential operator is the presence of infinitely many eigenvalues approaching 6>as
oo. The behavior of these eigenvalues can be understood in terms of suitable scattering
operators described [B]. We used this description smalleigenvalues in the proof of our
decomposition formula (sd&3], see also announcemgm®]). Since the presented results
in [12,13]hold only for the Dirac type operator, we need some modifications to deal with
the Laplace case in this paper.

To avoid delicate analytical issues we make one more assumption. Let us recall the
classification of the eigenvalues of a Dirac type oper&gover Mg. The operatoDg has
finitely many eigenvaluegi(R)}, which decay exponentially a® — oo, meaning that
there exists positive constantsandc, such that

as R — oo. (1.6)

A (R)| < c1e 2R,

We called thene-valuesn [13]. There are also infinite families of eigenvalues, which decay
like R—1, of D and the restrictions dPg to M; g with generalized APS spectral boundary
conditions. We called those eigenvaligegaluesn [13]. Finally, we have infinitely many
eigenvalues bounded away from 0. By our definition, the set of zero eigenvalues is a subset
of the set ofe-valuesand it is known that the set @-valueds stable under the adiabatic
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process although the set of zero eigenvalues is not. Up to now, no analysis has been known
to deal withe-valuesin order to avoid analytical difficulties related to exponentially small
eigenvalues, throughout this paper we assume the following condition

There are no eigenvalues afy exponentially decaying to 0 @ — oo. a.7)

Hence, this condition means that all the eigenvaluea pf A; g converging to 0 ares-
valuesdecaying likeR~2. There are many natural Laplace type operators satisfying the
condition(1.7). For example, Ien"yR denote the Hodge Laplacian ovéfz acting on the
space ok-forms twisted by the flat vector bundle defined by a unitary representatidén
w1(MR). Then, as in Section 4 ¢8], one can show that there are no eigenvaluez:*s’[‘;?fQ
exponentially decaying to 0 @& — oo if A ; has no zero eigenvalues.

Let M; », denote the manifold/; with the half infinite cylinder attached ang ., denote
the Laplace operators a¥; o, determined byA;. The operator\; ~, defines a scattering
matrix C;(0) : ker(Ay) — ker(Ay), which is an involution over key). The following
theorem is the first main result of this paper,

Theorem 1.1. Let us assume that z satisfieq1.7). Then we have

. det{AR _ Id — Ci2
lim R =27 [detAy - det| ———= 1.8
Rinoo deQAl,R . deEAz,R egf v-ae ( 2 > ’ (1.8)

wherehy = dimker(Ay), C12 := C1(0) o C2(0)is a unitary operator andlef Ay denotes
the ¢-determinant of the operataky restricted to the orthogonal complementkef (Ay).

Remark 1.2. The condition(1.7)implies that the operatar; is a unitary operator with no
unity eigenvalues (séeemark 2.8. It follows that det(%) is a positive real number.

The operators\; r are Laplacians subject to the Dirichlet conditions so that all their eigen-
values satisfy1.7) by a standard application of the mini—-max principle. The forn{l8)

in Theorem 1.has been used [i] where the adiabatic surgery formula of the determinant
line bundle is investigated. The related decomposition formula for the analytic torsion was
also worked out by Hassell i{8]. He proved the analytic surgery formula of the analytic
torsion using thé-calculus We also refer to the work of Hassell etf@] where the analytic
surgery problem is investigated extensively.

Our proof of Theorem 1.1is modelled on a proof given ifL3], with necessary mod-
ifications since we are dealing with a different type of boundary conditions. The main
modification is a revised relation betwegivaluesand the scattering matrig;(0). This is
the main achievement of the first part of this paper, which consists of the following two
sections.

In the second part, we study the adiabatic limit of ¢hdeterminant of certain operator
‘R g appearing in the formula of Burghelea et[al. (in short, BFK from now on). The BFK
formula can be formulated in our situation as follows

dET;AR
deEALR . deT;Az’R

whereC(Y) is a locally computable constant aRt}, is defined as the sum of the Dirichlet
to Neumann operators over the decomposed manifdigs It is well known thatR is a

= C(Y)detRgr foranyR, (1.9)
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nonnegative pseudo-differential operator of order 1. In particular, under the cor(difign
R is a positive operator for arfy.

Remark 1.3. The BFK constan€(Y) is locally computable from symbols @f;l overy,

so thatC(Y) may depend on the intrinsic data owéas well as the extrinsic data out 6f
like the normal derivatives of the symbol Af;l atY. However, under the assumption of
the product structure neat the constan€(Y) depends on only the intrinsic data ovér
in particular,C(Y) does not change under the adiabatic process.

In Section4, we study the adiabatic limit of deR . Here, we consider the case of the
non-invertible tangential operatayy, as a result, the adiabatic limit of d&r contains
the contribution determined by y as well as the scattering data. The following theorem is
the main result for this.

Theorem 1.4. Let us assumél.7). Then we have the following formula

Id — Clz)

5 (1.10)

dim R detRp = 2rOdef /Ay - det(
— 00

Now, we can usdheorem 1.1the BFK formula(1.9) and Theorem 1.40 obtain the
local invariantC(Y) as a byproduct of our main theorems.

Corollary 1.5. The BFK constant(Y) in the case of Dirichlet boundary condition is equal
to

C(Y) = 2 ¢ayO-hr, (1.11)

This result is also proved ifb] independently using the local computation of symbols
of Rr.
In Sectionb, we discuss the proof of the technical result which was used in Settion
the computation of the adiabatic limit of tlyedeterminant ofR . Our approach is based
on the representation of the inversefog in terms of the heat kernet & %, which enables
us to apply the heat kernel analysis and some results proved in the first part of the paper.

2. Small eigenvalues and scattering matrices

In this section, we study the relation betweenghalueof the operatora\ g, A; g and
the scattering matriceS; (1) determined by the operators », on M; .. This analysis is
necessary in order to determine the large time contribution in the adiabatic decomposition
formula. The corresponding result for Dirac Laplacians was formulated and prof&g].in
Here, we treat the case of a general Laplace type operator and we need to rework some of
the details of the analysis presentedif].

Now, let v be an element of key) and A denote a sufficiently small real number.
The couple ¢, A) determines a generalized eigensecti(fy, A) € C*°(M1,~, E) of the
operatorA1 » such that

A1 E(Y, 1) = A2E(Y, ).
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The functionh — E(, A) has a meromorphic extension to a certain subs€t of particu-
lar, this function is analytic function on the interval{, §) for sufficiently smalls > 0. The
generalized eigensectidi(y, 1) has the following expression on the cylinder §d), x Y

E(W, 2) = e My 4 1)y + E(y, A), (2.1)
where E(y, ») is a smoothL2-section orthogonal to keAy) and E(v, A)l,=g and
3, E(Y, 1)|,—r are exponentially decaying &— oo. The scattering matrix

C1(2) : ker(Ay) — ker(Ay)
is a unitary operator. The analyticity @f(y, 1) implies that{C1(1)};.¢(-s,5) is an analytic
family of linear operators. The operat6i (1) satisfies the following functional equation

C1(A)C1(—A) = Id. (2.2)

In particular,C1(0)? = Id, henceC1(0) is an involution over kergy).

Let @ be a normalized eigensectionaf g for the Dirichlet boundary problem, which
corresponds to the-valuei? = A(R)? with |A| < R~ for some fixedc with 0 < « < 1.
That is,

A1 @R = A2Pr,  DRlgyxy =0 and |@g| =1 (2.3)

The sectionpy can be represented in the following way onf, x Y C M1 g
g = e My 4 My + g,

wherey; € ker(Ay) and®y, is orthogonal to kerf y).
We introduceF = @ — E(Y1, 1)y, ,,» Where is the positive square root of?.
Green’s theorem gives

0= (A:L,RF, F>M1,R - <E Al,RF)Ml‘R

_ / (0 Fluegs Flug) dy + / (Flucre & Flug) dy. (2.9)
oMy g M1 R

and we can obtain the following equalities
2| C1 )Y — Y2l® = —(0u(Pr — EW1. M)lumrs (P& — E(Yr1, 1))lur)
+((@r — E@W1, M)luers 0u(Pr — EWr1, M)lucr)
= —(0u(@r — E@W1. 2))luzrs —E(W1. M)]uep)
+ (= E(1, Dlymr- 0u(@r — E(r1, 1)) ]ur)- (2.5)

The following lemma will be used to show that the right sid¢25)is exponentially small
asR — oo.

Lemma 2.1. For R > 0, there exists a constant C independent of R such that

18, Prlu—rlly < C.
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Proof. We have the representation®f; on the cylinder [QR], x ¥ C M1 g
o0
A 2_42 _ 2_ 52
(. y) = D (ax(R)eV' T 4 p(R) e VI gy,
k=hy+1

where{uf, ¢} is the spectral resolution afy, such thal{qbk}’,ZLl is an orthonormal basis
of ker(Ay). The normalized condition fab implies the inequality

o R
> / jax(R) eV M4 4 by (Ry eV I 2y < 1,
0

k=hy+1

which leads to

o0

1
=y (A
kehy41 \ 24/ pu2 — 22

+ 2% (ak(R)bi(R)R

Uak(R)F(GFWR — 1)+ |be(R)*(1 - efz\/‘ﬁR))

The boundary condition put the following constraint on the coefficieptR), bx(R)
ar(R)eVHM R L p(R)e VIR _ ¢

As aresult, ifR > 0, the following estimate holds
2

i jax(R)2 V1R

kehy4l My p? — A2

o0
21/ u2—)2R
= D R - Aa(R)PeV I

L+ VIR g 7 g

1+eV Hg—H2R

40,% _ A2)3/2

k=hy+1
o0 3 2
= Y f = ()P EVITE, (2.6)
k=hy+1

On the other hand, we can see that

o
~ 2 2_52
104 @rlucrlly =4 > (uf = 2D)ar(R)P VK, (2.7)

k=hy+1
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By (2.6) and (2.7)there is a constar@ independent oR such that

184 @Rlueglly < C. O

Now, Lemma 2.1and the fact thaf(y, 1)|,_ andd, E(y, A)|,_x are exponentially
decaying aR — oo imply

[C1(A) Y1 — Y2l? < c1n~te 2R < g3k, (2.8)
for some positive constants, ¢, andcs. The second inequality follows from the condition
(1.7). Now, the Dirichlet boundary condition at= R of

Og = e My + My + D
provides us with the following equality

—2iAR
Vo = —e My

From this equality and the estimgt&8), we get the following inequality
1P*R 101 + vl < e K. (2.9)

Recall that{C1(A)}re(-s,5) IS an analytic family of the operators. Analytic perturbation
theory guarantees the existence of the real analytic funatigiiy of A € (-3, ), such that
exp(ix;(1)) are the corresponding eigenvaluegia{x) for A € (-4, 6). Hence, from(2.9),
we can obtain

@ R+aj(0) 4 ) < g,
This immediately implies the following proposition.
Proposition 2.2. For R > 0, the positive square root(R) of s-valuer(R)? of A1 g with
AMR) < R7%(0 < «k < 1) satisfies

2RA(R) + oj(A(R)) = (2k 4 L) + O(e™°F), (2.10)
for aninteger kwitld < (2k + 1)r — o j(M(R)) < R, whereexp(ix;(1)) is an eigenvalue
of the unitary operatoC1(1) : ker(Ay) — ker(Ay).

Now, we consider Eq2.10)whenk = 0. The functionx;(1) is a real analytic function

of A, hence we have

2RMR) + ajo + & 1A(R) + @jph(R)* + - - - = 7 + O(eF), (2.11)

for some constants;’s. The operatoC1(0) is an involution, s@jo = 0 orajo = . Itis
not difficult to show that, if we assumejo = 7, theni decays exponentially. However,
the operato\ 1 r does not have the exponentially decaying eigenvalues, therejpre 0.
Now, we proved the following proposition.
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Proposition 2.3. For R > 0, the positive square roct(R) of s-valuer(R)? of A g with
AMR) < R7(0 < k < 1) satisfies

2RA(R) = (2k +1)m + O(R™*) or 2RA(R) = 2kmw + O(R™"), (2.12)
where0 < (2k + 1)r < R**or 0 < 2kn < RY™*.

Now, one can easily prove that the similar result &rioposition 2.Jolds forAz g sim-

ply repeating the previous argument with the scattering mautx) : ker(Ay) — ker(Ay).

We are going to formulateroposition 2.2ind the corresponding result fap g in terms
of certain model operator ovét. LetU : W — W denote a unitary operator acting od-a

dimensional vector spaal/ with eigenvalues'® for j = 1, ..., d. We define the operator
A(U)
1 d2 oo( ¢l oof ¢l
A(U) =————:C (S 7EU)_)C (S 9EU)9
4 du?

whereEy is the flat vector bundle ovéf = R/Z defined by the holonomy. The spectrum
of A(U) is equal to

1 2
{(nk—l—z(xj) |keZ,j=1,...,d}. (2.13)

We also have
d N
det A(U) = 4d]1;[13in2 (%) , (2.14)

if oj #2km (k e Z)for j=1,...,d (see forinstanc]). Puttinga := —C;(0), by defi-
nition, the operaton (C;) has a nontrivial kernel which is determined by (1)-eigenspace of
C;. We denote by:; the dimension of this space.

Proposition 2.4. For any family of e_igenvalués(R)2 of A; g converging to zero aB — oo,
there exists the eigenvallaé of A(C;) with A > 0 so that forR > 0

R2A(R)? = 22 + O(RY2%9), (2.15)

and there isR1 depending on R WitmR%"‘ — R < % such that(2.15) defines one
to one correspondence between the eigenvalues; @fwith 0 < A(R)? < R~% and the
eigenvalues oA (C;) with 0 < A,f < Ri‘z’( andi; > 0.

Proof. The equality(2.15) follows from Proposition 2.3the corresponding result for
Az r and the definition oA(C;). For the second statement, by definitions, it is obvious that
(2.15) defines an injective map from the eigenvaluesa@fz with 0 < A(R)?> < R™* to

the eigenvalues oA (C;) with 0 < 22 < R?~2< andx, > 0. To defineR; with the desired
property, let us decompog¥; r into M; and the cylindrical part of lengtR. Then, the
restrictions ofA; r onto these decomposed parts provide us with the Laplace type operators
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imposing the Dirichlet boundary conditions. By the mini-max principle, Ros> O, the
number of eigenvalue§R—2" of A; r is same as the number of eigenvaltide‘z" of the
operator over the cylindrical part since there are no such small eigenvalues of the operator
over M;. By the explicit computation over the cylinder of lend@hthe eigenvalues of the
operator over the cylinder of lengfR are given byhy-copies ofk?72R~2 with k € N.
Therefore, the number of eigenvalue®—2% of the operator over the cylindrical part is
given byhy[z~1RY]. Using (2.13) we can choos®; such thatR{ ™ — R*~*| < Z and
hy[7~1R'*] is same as the number of the eigenvalues\¢f’;) with 12 < R~ and

Ak > 0. This completes the proof. (]

Now, we split
Tr (e_’RzAi,R) =Tr 1,R(e_tR2Ai'R) +Tr 2,R(e_tR2Ai’R),

where Try z(-) and Trz g(-) denote the parts of the traces restricted to the nonzero eigen-
values> RY/? or <RY/? of R?A, ¢, respectively. Similarly, we split

Tr (e_m(a)) —hi=Tr 1,R(e_tA(Ei)) +Tr 2,R(e_tA(Ei)),

where Try_z(-) and Trz g(-) denote the parts of the traces restricted to the nonzero eigen-
vaIues>Ri/ % or sRi/ 2 of A(C;), respectively. Now, we have the estimate fop k(-) in

the following proposition.

Proposition 2.5. For R > 0, there exist positive constants, ¢, such that
1 —
Tr o p(e™R°Air) — ST 2R(EE)) — pj]| < el R ee,

Proof. We applyProposition 2.4or fixedx = % and obtain that for any eigenval&ér)?
of A; g with |A(R)| < R=¥4, there exists a functioa(R) such that

ROMR? =25 +a(R),  |a(R)| <cR2,

if Ris sufficiently large. We use the elementary inequakty: — 1| < |x|€”! to get

—1R?L(R)? _

e e—zx? | —z[RZA(R)Z—xf] N

2
= |e I)Lf(e

o2 122
< ¢ Y24 g WRY . p=1/2; g7 1/2051

Let us fix a sufficiently largdR. We take the sum over finitely many nonzero eigenvalues
A(R)? of A; g with A(R)? < R=%/2, and obtain

1 —
Tro p(e™4%) = S[Tr 2 p(e™ ) — ]

— 2
<RV Z o l222

1/2
1

A2<R
i<
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The operatom(c_’,-) is a Laplace type operator ov&t, hence the number of eigenvalu?eis

with 22 < R/? can be estimated biy/*. Since|Ry* — RY4| < %, we have

1252 2
R N e Y225t < o g4 gm0

1/2

2
2<R

where)& denotes the first nonzero eigenvaluexit_,-). This completes the proof. [

Now, we shall prove the corresponding result for shealuesof Ag over M. Let ¥g
denote (a normalized) eigensection/®f corresponding te-valuei?, that is, Ag¥g =
12Wg and || g || = 1. Over the cylindrical partfR, R],, x Y in Mg, the eigensectio#y
corresponding te-valuer? of Ay has the following form,

Wg = e My + &My + D, (2.16)

wherey; € ker(Ay) and¥y is orthogonal to kerfy). We first need the following lemma,
where{0} x Y denotes the cutting hypersurfacedify.

Lemma 2.6. We have the following estimates
7 —coR 7 —coR
[¥Rlu=olly < c1€ %, 104 WRlu=olly < c1€ 2%,

whereci, ¢ are positive constants independent of R

Proof. The section¥g has the following form onfR, R], x Y C My
o0
~ 2_ 42 _ 2_ 52
Ur(u.y) = Y (a(R) eV " 4 b(R)e VI,
k=hy+l
The normalization condition on the eigensection implies
00 R 5 5 2
) / jax(R) eV 4 by (Ry € VIR du < 1,
k=hy+17 R

and now we have the following estimates for sufficiently laRye

o0
1
12 Y | ——lla(RPEV T - eV
k=hyt1 \ 24/ p2 — 22

+ be(R) PV R — ¢ 2V IR L a9i(ay (R)bi(R))R
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oo
1
> Y e (a(RPV I R (R VR

kehy+1 4/ pn2 — 22
— 16lak(R)br(R)IR)
o0
1
> Y (w(RPEVIEIR L (R)Z VIR,
k=hyt+1 81/ — 22

This immediately implies

ST @R + k(R < cre ™ < e 2k,

k=hy+l

for some positive constantg, c2. Hence, the first estimate is proved and the proof of the
second estimate follows in the same wayl]

Changing variable = u + R, we regard that the cylindrical part is given by gR], x
Y. In particular, we have the new expression4qr from (2.16)

lI/R — e—i)nvqsi. + ei)\vqs% + {\pR’

Wherecj)% = MRy, ¢% = e "Ry, Now, repeating the argument which leads ugx®),
we obtain
IC1 ()91 — ¢3ll < &%, (2.17)

for a positive constart. Note that here we used the conditidn7) andLemma 2.6 Now,
we want to get the corresponding estimate involving the scattering n@at. For this,
we change the variable hy= u — R and regard the cylindrical part as-2R, 0], x Y
Then, we have the corresponding expressioner

Wg =& M2 + Vg3 + U,
whereg? = e Ry, ¢2 = é*Ryr,. We again repeat the previous argument to obtain

IC2(1)e5 — 21| < ek, (2.18)

for a positive constart. Here,C»(A) is the scattering matrix defined from the generalized
eigensection attached to (¢>2) By definition, we have

ot = esz¢1 ¢2 _ e—sz(b%_ (2.19)
Now, combining(2.17)—(2.19)we get
1€"RC1(2) 0 Ca(1)¢3 — 3l < K. (2.20)

As before,C1(1) o C2(1) is an analytic family fon. € (-6, §) for sufficiently smalls > 0.
Then, there exist the analytic functiong(i) for A € (-4, §) such that expéi;(1)) are
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the eigenvalues of the unitary operatz(1) := C1(x) o C2(A) on ker(Ay). Hence, the
equality(2.20)implies

|ei(4)»R+Dt_/()»)) _ 1| < efL‘R.

Therefore, we obtain the following proposition.

Proposition 2.7. For R > 0, the positive square root(R) of s-valuer(R)? of Ag with
A(R) < R™“ satisfies
ARA(R) + aj(A(R)) = 2kr + O(e °R), (2.21)

for an integer k witD < 2kz — o ;(A(R)) < 4RY*, whereexp(ix;(1)) is the eigenvalue of
the unitary operatoiC12(A) onker(Ay).

Remark 2.8. Note that the spectrum of the unitary operafar := C12(0) acting on
ker(Ay) consists ofm eigenvalues of-1 ( such thatiy —m > 0 is an even number ) and
(g0, g7l j = 1, ... m=my wherew;(0) is not equal tdr for k € Z. This follows
from the argument presented aroy@dL1)and the conditiorfl.7).

Now, we follow the way to prov@roposition 2.4and obtain the following proposition.

Proposition 2.9. For any family of eigenvaluegR)? of A z converging to zero aR — oo,
there exists the eigenvalué of A(C12) with A > 0 so that forR > 0

4R?A(R)? = A2 + O(RY2%), (2.22)

and there isR1 depending on R Witl'nRi_" — R¥™¥| < /4 such that(2.22) defines one
to one correspondence between the eigenvaluesofvith 0 < A(R)2 < R~% and the
eigenvalues oA (C12) with 0 < A2 < 4RZ~* and 2 > 0.

We split
Tr (e~ "F*2r) = Tr LR(e"RzAR) +Tr z,R(e_tRZAR),

where Try z(-) and Trz g(-) denote the parts of the traces restricted to the nonzero eigen-
values> RY2 or <RY/2 of R2A, respectively. Similarly, we split

Tr (e—f(1/4)A(C12)) =Tr, R(e—f(1/4)A(C12)) +Tro R(e—f(1/4)A(C12)),

where Try z(-) and Tr g(-) denote the parts of the traces restricted to the nonzero eigen-

values> Ri/z or §Ri/2 of 1/4A(C12), respectively. As irProposition 2.5we can prove

the following proposition.

Proposition 2.10. For R > 0, there exist positive constants, c2 such that

Tro (e R°4%) — %Tr 2. (€7 WM < o) R e,



254 J. Park, K.P. Wojciechowski / Journal of Geometry and Physics 55 (2005) 241-266
3. Proof of Theorem 1.1

In this section, we present a proofBifieorem 1.1Since the analysis afvalueds done
in Section2, now we can proceed by a standard way g4i)13].
We define relative-function R (s)

1 o
cRi(s) = m/ FITr (e7AR — @ tALR _ g7 A2R) g, (3.1)
5) Jo

and we decomposgefél(s) into two parts

f= 2 [ G = L [T
O =1 [ Qw0 =1 [ 0w

wheres > 0 s a fixed sufficiently small number. The derivativeg fs) and;lR(s) ats =0
give the small and large time contributions to our formula. First, we prove the following
lemma.

Lemma 3.1. There exist positive constantsandc; such that
Tr (e_tAR _ e_tAl‘R _ e_tAZ.R) _ }Tr (e_tAY) <c1 e_CZ(RZ/[).
> <

Proof. By the standard application of Duhamel principle ag1if,13], the estimate of

Tr(e Ak — g7 !A1r _ g7'A2k) follows from the estimate of the parametrices of the heat
kernels 'A% and g2k, These parametrices are constructed from the heat kernels on the
closed manifoldr and heat kernels of the boundary problems on the half infinite cylinders.
The interior contributions cancel each other out up to the error term of the sizé(@f(é)

for a positive constart and only the boundary contribution is left. This boundary term is
equal to

ko1 1A ko1 —u?/t —tA
./ Tr(e Odu——z/wg———us—e“/}TNe 7Y du
47t

_R A Ant 0
ko1 1 [RIVE
= 2/ e Tr (e A du = —/ eV’ Tr(e™®r) dv
0 47t ﬁ 0

1
zénwﬂo+mgwq
This completes the proof. O

Now, we can determine the small time par{(®l).

Proposition 3.2. We have

I |cO - "y + @2~ 9logR)| = 224, (0),
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(S) 0 ! .

Proof. By Lemma 3.1 the function

1 R 1 tA tA tA 1 tA
— §— AR _ @ IA1LR _ o IA2RY _ _ — Ay
fr(s) = ) /o t <Tr (e e e ) 2Tr (e )) dr

is a holomorphic function of on the whole complex plane. Moreover, the following equal-
ities hold

=0.
s=0

. . d
Jim ' fr(0) =0, dim < TRE)

Combining these facts with the following equality

d
ds

R2—£
(;’(YS) A ts_ldt> = hy(y +(2—¢)logR), (3.2)
s=0

completes the proof. [
To deal with the large time part, we need the following lemma.
Lemma 3.3. For R > 0, there exists a positive constantsuch that

o0
_ _4P2A. _p(1/2)—¢
/ 1Ty g€ R AiR) dr < ¢y e R ,
R*E

and the similar estimates hold forTry g(e"R*2k), Trl,R(e"A(a‘))—h,- and
Tr 1 R(e—f(1/4)A(C12))_

Proof. LetAZ (R) denote the smalletdrge eigenvalue ofz; g such thak? (R) > R™3/2.
Then, if R > 0 we have

2 A 242
Tr l,R(e_tR A,,R) — Z e—tR A

A,%>R*3/2
2 2 2 —(tR%2—1)A\2 2
_ Z e (IRP=I0F o=3f ~ @ (R =1 Z o2
32> R-3/2 32> R-3/2

—(tR2—1)22 _A; _(1R2_1)R-3/2 _R1/2
< e o Tr (e 2ir) < R (RP-DR™? (e RV

for positive constants, andcz. We have used here the obvious estimate

Tr(e”24F) < cvol(M; g) < ¢'R,
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for positive constants andc’. Now, we have

oo 2
/ 17Tr o p(e7 R 2ir) ds

—&

0 o0

_ _tRY/2 _ _ p(1/2)—¢

5/ t~lesRe R dtfch/ e ldv<cre K77,
R—¢ R(l/z)*F

This completes the proof of the first estimate and the other cases can be proved in the same
way. U

Now, we can express the large time part in terms of the model operators.
Proposition 3.4.

© h
lim / ITr (e7"2% — @ 1ALk _ g tA2R) g 4 %(y —¢elogR)

R—00 Jp2—¢
_1dp 1 / " Ty (e WD _ g iAC) _ Ny 4 )y
2ds|,_ol°(s) Jo ’

Proof. First, let us observe th&emark 2.8and the relationC;(0)? = Id imply hy =
h1 + ho. Using this and the change of variable> R—?¢, one can obtain following equality
from Propositions 2.5, 2.18ndLemma 3.3

; * -1 —tA —tA —tA 1d
lim T Tr(e” "0k — e PR — g IP2R) df — — —
R dS

R—o00 2—¢ 2

1

s=0 r (S )

y /oo ts—1[-|—r (e—(z/4)A(C12) _ a—IA(C1) —tA(Ez)) + hy] dt) =0.

Note that near = 0,

ITr (e~ /9A(C12) _ -1ACY) _ g 1AC2Y| < ¢ /7,

for a positive constart. By this estimate, one can easily show

1 R
/ tsfl[Tr (ef(t/4)A(C12)
s=0 F(S) 0

_ d
RIEPOO (hY(V —elogR) — &
_ eftA(El) _ eftA(Ez)) + hy] d[) =0.

These complete the proof.

Propositions 3.2 and 3gbmbined together lead to the following equality

: h h
Jim_ ((cf)’(O) ~ 5+ @~ )logR) +(Y(0) + 5 (v ~ ¢log R))

1 / / / /
= E(QY(O) + {1/2)8(c12)(0) = £5c,)(0) — £ G, (0)). (3.3)
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Now, the following proposition gives the exact value of the large time contribution,
Proposition 3.5. We have

Id - Cq12

2
def A _,' = 2%,
%) degacC)

1
det{ZA(Clz) = 2% det<

Proof. The first equality follows directly fron2.14) For the second one, the zeta function
of A(C;) is given by

ad 0 1 —2s
Ea@) ) = hi2n™® Y k7% 4 (hy — hi)2w ™y (k + 2)
k=1 k=0

whereh; is the dimension of{1)-eigenspace of;. Then, the derivative Of o (cy(s) at
s = 0is equal to-hy log 4. This completes the proof of the second onél

Finally, we obtainTheorem 1.1using the equality3.3) andProposition 3.5

4. The adiabatic limit of det; R g

In this section, we study the behavior of g whenR — oc.
Let us describe the construction®fk. It is defined as the composition of the following
maps

1 K _
C®(Y, Ely) — C®(Y, E|ly) & C®(Y, E|y) =5 C®(Mg, E)

1
L ¢, Ely) ® CX(Y, Ely) =5 C¥(Y, Ely).

Here, I,(¢) := (¢, ¢) and Ky is the Poisson operator of the operatof z LI Ay g over a
manifold M := M1 g U M2 g. For (@1, @2) whered; is a section oveM; g, the mapy1
is given byyi(s) := (0uly, @1, duly,@2) andi¢(¢, ¥) = ¢ — . Itis well known that the
operator

Rr =1y y1 Krly 1 C¥(Y, Ely) — C*(Y. Ely)

is an elliptic, nonnegative, pseudo-differential operator of order 1. By definition, the operator
‘R kg can be written as

Rr =Nir+ Nog,
where; g is the Dirichlet to Neumann operator fNRIMi,R-

A careful analysis of the small eigenvalues enables us to compute the scattering con-
tribution to the adiabatic limit of the-determinant ofR ;. Let us recall tha(u,f, D} keN
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denotes the spectral resolution of the operatgrwith hy = dim ker(Ay). The equality
(2.2)implies

Ci(0)Ci(0) = C;(0)C:(0).

hence we may choogg (for 1 < k < hy) so thatyy is a normalized eigensection for both
operatorsC;(0) andC;(0). Now, we have the following proposition.

Proposition 4.1. For any couplg¢,,, ¢,) Withl <m,n < hy

1 a1
—(1—- — if m=n, Ci(0)pn=—¢m,
(N kms $n) = { R (- 2%) ’ !

O™ if m#n or Ci(Odn=dm
whereC;(0)¢, = iag,, thatis i« is the eigenvalue of’(0) and c is a positive constant

Proof. We present a proof for the caseiof 1. The case foi = 2 can be proved in the
same way. Letvp denote a solution of the problem

AM;LR@R:O and ¢R|Y=¢I’H9

hence
8M®R|M=R =Nl,R¢m~ (41)

To simplify notation in the proof, we skip the indicesin ¢,, andRin @g. Let us define
D(p, 1) ;= e MR,
for a small positiver. For such a andvy := ¢, € ker(Ay), there exists the generalized
eigensectiorE(y, 1) over M1 ~, Which has the following form on the cylinder,[80), x
Y C M1
E(, 3) = € ™'y + €M C1(0)Y + E(y, 1),
whereE(y, 1) is aL2-section. We also define
G =G ¥, 1) == EW, M)y, — P, 2).
An auxiliary sectionG(¢, v, A) has the following properties
ALRG($. ¥ 1) = AZE(Y 1),

Glu—g = € Ry + & RC1(0)y — ey 4 O(e<F),
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0uGly=g = —ire™ Ry + 2" RC1(0)y — e RN o + O(€F).

Green’s formula folG reads as
(ALRG, G)yy, , — (G, ALRG) y,
= —(0uGlryxy> Gliryxy) gy xy T (Gliryxy> WG liRyx¥) gy y- (4.2)
Eq. (4.2)can be rewritten as follows
W2(D, E)pry o — (. D agy )
= e 2" RN R, CLONY)y — EXR(CLANY, N1 r9)y +ine 2R (g, CL0)Y)y
+In R (CL10)Y, D)y + (N1rd, ¥y — (U N1 re)y — (N1 RS, By
+(d, NLrG)y — M@, ¥)y — iA(¥, @)y + O(e™F). (4.3)
We differentiate both sides of the equal{@/3)at» = 0 and obtain
—2iR((N1,re, C10)¥)y + (C1(0)¥, N1, r®)y) + (N1,r, C10)¥)y
—(C10)y, N1, )y +i({#, C1(0)¥)y + (C1(0)¥: ¢)y)
—i{¢, ¥)y — (¥, @)y = OE). (4.4)
Proposition 4.Xollows easily from(4.4). Let us consider for instance the case of

¢ = v = ¢, € ker(C1(0) + 1) C ker(Ay).
Then, Eq(4.4)is now
(2iR — i@)((N1,r, By + (¢, N1 o) y) = 4i + O(e~F),

and this gives the following formula

2 - :
(N b 9y + 0. Noktly =5 (1= 32 ) +0(®). O @9

Let us also observe the following fact, which is an immediate corollairoposition
4.1

Corollary 4.2. We have
(Rro, ¢) = O R for ¢ e ker(C1(0) — 1) N ker(C2(0) — 1),
for a positive constant.c

Remark 4.3. Corollary 4.2and an elementary application of the mini-max principle show
that, in general, the operat® may have exponentially decaying eigenvalues. Moreover,
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the number of these eigenvalues is equal to
dim(ker(C1(0) — 1) N ker(C2(0) — 1)).

On the other hand, the conditi¢h.7) andRemark 2.8mply
ker(C1(0) — 1) N ker(C2(0) — 1) = {0}, (4.6)

hence it excludes the existence of exponentially small eigenvaldeg ohder the condition
(1.7). A simple example wheré4.6) holds is the Dirac Laplacian over the double of a
manifold with boundary. It is easy to observe that in this case we Gig{@® = —C2(0) and
there is no exponentially small eigenvaluesa.

Proposition 4.suggests the introduction of the operaktqR) on ker(Ay)

L(R) = % (Id —2Cl(0) n Id —2Cz(0)> .

Proposition 4.4. Assume thaker(C1(0) — Id) N ker(C2(0) — Id) = {0}. Then we have

Id—C
detL(R) = R~ det( 5 12) , 4.7)
whereCiz := C1(0) o C2(0).

Proof. Firstofall,the assumptionimpliesthatthe direct sum of the ranges of the projections
14=10) | 14=C20) spans the space kex(). It also follows from the definition that we have
a formula

detL(R) = R~ det ('d - 2Cl(0) Lld- 2@(0)) ‘

Now, we use the fact that

Id — C2(0)  /1d — C1(0)C2(0)\ "X Id + C1(0) /1d — C1(0)C2(0)
o= () SR (),

(4.8)

hence, essentially our concern is the determinant of the operator actifify onith the
form

P+gt1d - P)g,
putting P = '9=510 and g = 19=C10C20) \ye write

P+gY(d— P)g =g Y(gP + (Id — P)g).
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The second operator on the right side can be represented in the following form

Pid-pg=(_ " 0 (4.9)
& 8=\ 20d = P)gP (1d = P)gtd — P) |’ '

with respect to rang&) & range(ld— P). The corresponding decomposition for the oper-
atorP — g~ X(Id — P)g is

_, [ PgP 0
& 0 —(Id—P)g(ld—P) )

This shows that
Id — C1(0) 1d — C2(0)
det( 5 + > )
— (—1) det('d _ch(o) _d _ZCZ(O)) = (1) det<|d _2C12> detC(0)

Id — C12
_det( > > O

Proof of Theorem 1.4. Let P9 and P denote orthogonal projections onto the subspaces
ker(Ay) and ker@\y)*. For any trace class operatoacting onL2(Y, E|y), we define

o) :=Tr(P°LP%),  Tri(L):=Tr(PtLPY).

We decompose Tr (&%) into Tr0(e "R#) and Trt (e *R#). By Proposition 4. ]it is easy to
see that the part P(e~"x) contributes by dek (R) up to the error of the siz&@(R~"r—1).

By Proposition 4.4this is R~"* det(“"%) up to the error of the size @("r—1).
Now, let us see the contribution from F¢e~"R#). Let us consider

—i:/A_VHL«RR—AY4—%2JX7—AY5dA
27Tp
:en%%f/@—1r¥n@—@%rﬁhﬂ«RR—m4““

—(2V/Ay =) " Dya,

for sufficiently largek. Here,I" is a curve surrounding0} U R~ in C. Let us remark that
Rr — 24/Ay is a smoothing operator. We refer the proof of this facfité]. Now, the
integrand on the right side can be estimated as

ITrH((Rg — 1)~ — 2/Aay — 2)~¢H)) < T RE = @VAn ),

I?»Ik
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for a positive constan€. Here, (2/Ay)~! denotes the inverse of2Ay over ker(Ay)*.
Now, we useProposition 5.1proved in Sectiorb, to show that the concerned integrand
converges to 0 uniformly for evein the compact neighborhood of 0 s~ oo. Hence,
its derivative ats = O converges to 0 aR — oo. This completes the proof dfheorem
1.4, if we use

def(2y/Ay) = 2°Odet/Ay. O (4.10)

Proof of Corollary 1.5. Let us now come back to the BFK formul&a.9),

det;AR
de%AlyR . deEAz,R

= C(Y) det Rx.

We can us@heorems 1.1 and 114 find the exact value of the local constdi(fr). Let us
recall thatC(Y) does not depend on the adiabatic process. Now, we have

27, [detAy - det(ld_zclz)

. det-A
= lim R" kAR
R— 00 detgAl,R . def{Az’R

C(y)zCAy(O)detE1 /Ay - det(ld_zclz> )

From this and the equality/del;fAY = del;f«/A , we conclude

O

— i hy
= C(Y) IJLr)nOO R"detRg

cY) = 2—ay(0)—hy

5. Proof of technical proposition
In this section, we present the proof of the following proposition.

Proposition 5.1. For R > 0, there exist positive constants andc, such that

_ _ _ 1/2
ITrH (R — @vV/Ay) ™Y < cre 2R,

Instead of using Ay, we compare the operat®x with the model operatoR$ on
the cylinder defined as follows. We introduce the cylindgf = [—R, R] x Y with the
LaplacianA¢ = —85 + Ay subject to the Dirichlet boundary conditions {atR} x Y.
Now, we cutNp at u =0 and get the operatdR% in an obvious way. An explicit
computation shows that the operaf®f, converges to ¢ Ay exponentially on the space
ker(Ay)*, more precisely

ITr (R — 2¢/Ay)| < cae™F,
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for some positive constantg andcy. Therefore, it is sufficient to show

R1/2

T (R = (RR) ™I < cre7 (5.1)

In order to prove5.1), we recall the following formula fo’R;1 established ifi2,6],

-1 -1
Rir™ = yAg Y*

wherey is the restriction map t¢0} x ¥ and y* is the adjoint ofy. We combine this
equality with

o0
ARt = / e AR gy, (5.2)
0

in order to reduce our problem to the heat kernel estimates. We decompose the left side of
(5.2)into two parts as follows

00 R%—¢ o)
/ e AR dr = / e AR dr + / e AR dr.
0 0 R%2—¢

We will consider the large and small time contributions separately in the following
lemmas.

Lemma 5.2. For R > 0, there are positive constants andc such that

o0
TrL(/ y e AR dr)
R27a

and the same estimate holds ;.

o pl-c
<c1e R

Proof. We note that

_ _ 2
ye R y* =) " e M d(x)],—0® P (M)],—0 (5.3)
k

where{x,f, @} is a spectral resolution of the operathg. We split the restriction of the
eigensection?; to {0} x Y into qb,? the part in kerfAy) and @, the remaining part. We
employ an argument similar to the proofladdmma 2.60 obtain

2 2
Idell < epe VBT (5.4)

Here, we note that the right side(@f4)has to be changed into the constant Ay > rp,+1,
and the constart is independent df. We need to discuss only the contribution determined
by @, since we are concerning only on-f¢.). We split this contribution i{5.3)into two
parts, that is, the sums over all eigenval®s < 22 andr? < R™1,

In order to discuss the sum over the eigenvalues smallerIdTénwe use(5.4) and
the fact that each eigenvalue af; is bounded from below b¥RT(+Cs/_2Y) (since there is no
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exponentially small eigenvalues). Then, we have

o0
/ 3 e @i | ar
2—¢

R
22<R-1

o0 2
< cpe 2R Z e ™ | dr
R2—s

A2<R-1

—coR —A * —(t—1)R~(2+(e/2)) —C4R
<c1€20Tr(e°F) e dt < cze 4", (5.5)
RZ—S

for positive constants;, c¢2, c3 andcs. We have used here the obvious estimate
Tr (e 28) < c5vol(Mg) < cgR.

The sum over the eigenvalu@s?® < 22 can be estimated as

o0
/ S e | ar
2—¢

R
—132
R S)Lk

2 [ 22
—1.
<c1 /R - E e "k | dt

132
R-1<32

0 0
< ATr(e 2r) e (=D/Rdr < 4R e VR < cge B (5.6)
1 R2—¢ R2-¢

The first claim follows from(5.5) and (5.6)In the same way, we can show that the same
estimate holds for the operatatg. O

Lemma 5.3. For R > 0, there are positive constants andcz such that

RZ—E )
Trt </ y(e AR — g 1AR)y* dt)
0

Proof. Itis sufficient to show that the following term has the claimed bound

< cre 2k, (5.7)

RZ—S
/ / (e 2% x, x) — Bk (x, x))y* | dy o
0 Y

For this, we applyinite propagation speed property for the wave operatocompareA g
over M with A% over Ng where we identify the partdz,, of these in an obvious way.



J. Park, K.P. Wojciechowski / Journal of Geometry and Physics 55 (2005) 241-266 265

Then, we obtain the estimate
IER(E: x, ¥) — Eslt;x, y)|| < ez a(R/D),

where&g(t; x, y) andEx(¢; x, y) are heat kernels ok p and A%, respectively, and, y €
Ng/2. Therefore, the following estimate holds

(e "2 — e AR)y*|| < cae B0, (5.8)
We combing5.8) with the following inequality

2
R —c4(R2/1) —co2 R
c3 e “ dr <cpe 2",
0

This completes the proof. O

Puttinge = % Lemmas 5.2 and 5.8omplete the proof oProposition 5.1
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