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Abstract

We discuss the adiabatic decomposition formula of theζ-determinant of a Laplace type operator
on a closed manifold. We also analyze the adiabatic behavior of theζ-determinant of a Dirichlet to
Neumann operator. This analysis makes it possible to compare the adiabatic decomposition formula
with the Mayer–Vietoris type formula for theζ-determinant proved by Burghelea et al. As a byproduct
of this comparison, we obtain the exact value of the local constant which appears in their formula for
the case of Dirichlet boundary condition.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and statement of the results

In this paper, we continue our study of the adiabatic decomposition of theζ-determinant
of the Laplace type operator. In[12,13], the decomposition formula of theζ-determinant of
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Dirac Laplacian was given in terms of the non-local Atiyah–Patodi–Singer (APS) boundary
condition. Here, we discuss a formula which involves theLaplace type operatorand the
Dirichlet boundary condition.

Let� : C∞(M,E) → C∞(M,E) denote a Laplace type operator acting on sections of a
vector bundleE over a closed manifoldM of dimensionn. The operator� is a self-adjoint
operator with discrete spectrum{λk}k∈N. Let us decomposeM into two sub-manifoldsM1,
M2 with common boundaryY

M = M1 ∪M2, M1 ∩M2 = Y = ∂M1 = ∂M2. (1.1)

Theζ-functionζ�(s) is defined by

ζ�(s) =
∑
λk 
=0

λ−sk ,

which is a holomorphic function in the half-plane�(s) > n
2 and extends to a meromorphic

function on the whole complex plane withs = 0 as a regular point. Theζ-determinant of
� is defined by

log detζ� = − d

ds
ζ�(s)

∣∣∣∣
s=0
. (1.2)

The derivative ofζ�(s) at s = 0 can be represented in the following way

d

ds
ζ�(s)

∣∣∣∣
s=0

= lim
s→0

(
κ(s)− a

′
n/2

s

)
+ γa′n/2. (1.3)

Here,γ denotes Euler’s constant anda′n/2 := an/2− dim ker(�), wherean/2 is constant
term in the following asymptotic expansion neart = 0

Tr (e−t�) ∼ t−n/2
∑
k=0

akt
k/2.

The functionκ(s) is defined as the integral

κ(s) =
∫ ∞

0
ts−1(Tr (e−t�)− dim ker(�)) dt, (1.4)

for �(s) > n
2. It has a meromorphic extension to the whole complex plane and it can be

represented as

κ(s) = a′n/2
s
+ h(s),

in a neighborhood ofs = 0, whereh(s) is a holomorphic function ofs. The value of the
functionh(s) ats = 0 is not a local invariant, and this fact implies the non-locality of theζ-
determinant. This is the main reason, that there is no straightforward decomposition formula



J. Park, K.P. Wojciechowski / Journal of Geometry and Physics 55 (2005) 241–266 243

for theζ-determinant of the operator� onto contributions coming fromM1 andM2 (see
[10,11,13]for more detailed discussion).

We assume that there is a bicollar neighborhoodN ∼= [−1,1]× Y of Y in M such that
the Riemannian structure onM and the Hermitian structure onE are products of the cor-
responding structures over [−1,1] andY when restricted toN. We also assume that the
operator� restricted toN has the following form

� = −∂2
u +�Y. (1.5)

Here,udenotes the normal variable and�Y is au-independent Laplace type operator onY.
We replace the bicollarN by NR = [−R,R] × Y to obtain a new closed manifoldMR

and extend the vector bundleE toMR in an obvious way. We use formula(1.5) to extend
� to the Laplace operator�R onMR. We decomposeMR intoM1,R andM2,R by cutting
MR at {0} × Y . We denote by�i,R the operator�R|Mi,R subject to the Dirichlet boundary
condition. The operator�i,R is a self-adjoint operator with discrete spectrum and smooth
eigensections. Theζ-determinant of�i,R is defined as detζ�R and it enjoys all the nice
properties of theζ-determinant of the Laplacian on a closed manifold. The concern of this
paper is to investigate theadiabatic decompositionof detζ�R, that is, the limit of

detζ�R
detζ�1,R · detζ�2,R

as R→∞. (1.6)

The case of the invertible tangential operator�Y was described in[9–11]. The invertibil-
ity assumption on�Y implies that we have only finitely many eigenvalues of�R converging
to 0 asR→∞. This allows us to discard the large time contribution to theζ-determinant
of �R under the adiabatic process and the adiabatic decomposition of theζ-determinant
easily follows from a standard application of theDuhamel principle.

The non-invertible case was studied in[13]. The decomposition formula introduced in
[13] uses Atiyah–Patodi–Singer boundary conditions. The new feature of the non-invertible
tangential operator is the presence of infinitely many eigenvalues approaching 0 asR→
∞. The behavior of these eigenvalues can be understood in terms of suitable scattering
operators described in[8]. We used this description ofsmalleigenvalues in the proof of our
decomposition formula (see[13], see also announcement[12]). Since the presented results
in [12,13]hold only for the Dirac type operator, we need some modifications to deal with
the Laplace case in this paper.

To avoid delicate analytical issues we make one more assumption. Let us recall the
classification of the eigenvalues of a Dirac type operatorDR overMR. The operatorDR has
finitely many eigenvalues{λk(R)}, which decay exponentially asR→∞, meaning that
there exists positive constantsc1 andc2 such that

|λk(R)| < c1 e−c2R.

We called theme-valuesin [13]. There are also infinite families of eigenvalues, which decay
like R−1, ofDR and the restrictions ofDR toMi,R with generalized APS spectral boundary
conditions. We called those eigenvaluess-valuesin [13]. Finally, we have infinitely many
eigenvalues bounded away from 0. By our definition, the set of zero eigenvalues is a subset
of the set ofe-valuesand it is known that the set ofe-valuesis stable under the adiabatic
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process although the set of zero eigenvalues is not. Up to now, no analysis has been known
to deal withe-values. In order to avoid analytical difficulties related to exponentially small
eigenvalues, throughout this paper we assume the following condition

There are no eigenvalues of�R exponentially decaying to 0 asR→∞. (1.7)

Hence, this condition means that all the eigenvalues of�R,�i,R converging to 0 ares-
valuesdecaying likeR−2. There are many natural Laplace type operators satisfying the
condition(1.7). For example, let�kρ,R denote the Hodge Laplacian overMR acting on the
space ofk-forms twisted by the flat vector bundle defined by a unitary representationρ of
π1(MR). Then, as in Section 4 of[3], one can show that there are no eigenvalues of�kρ,R
exponentially decaying to 0 asR→∞ if �kρ,0 has no zero eigenvalues.

LetMi,∞ denote the manifoldMi with the half infinite cylinder attached and�i,∞ denote
the Laplace operators onMi,∞ determined by�i. The operator�i,∞ defines a scattering
matrix Ci(0) : ker(�Y ) → ker(�Y ), which is an involution over ker(�Y ). The following
theorem is the first main result of this paper,

Theorem 1.1. Let us assume that�R satisfies(1.7). Then, we have

lim
R→∞R

hY
detζ�R

detζ�1,R · detζ�2,R
= 2−hY

√
det∗ζ�Y · det

(
Id − C12

2

)
, (1.8)

wherehY := dim ker(�Y ),C12 := C1(0) ◦ C2(0) is a unitary operator anddet∗ζ�Y denotes
theζ-determinant of the operator�Y restricted to the orthogonal complement ofker(�Y ).

Remark 1.2. The condition(1.7)implies that the operatorC12 is a unitary operator with no

unity eigenvalues (seeRemark 2.8). It follows that det
(

Id−C12
2

)
is a positive real number.

The operators�i,R are Laplacians subject to the Dirichlet conditions so that all their eigen-
values satisfy(1.7)by a standard application of the mini–max principle. The formula(1.8)
in Theorem 1.1has been used in[1] where the adiabatic surgery formula of the determinant
line bundle is investigated. The related decomposition formula for the analytic torsion was
also worked out by Hassell in[3]. He proved the analytic surgery formula of the analytic
torsion using theb-calculus. We also refer to the work of Hassell et al.[4] where the analytic
surgery problem is investigated extensively.

Our proof ofTheorem 1.1is modelled on a proof given in[13], with necessary mod-
ifications since we are dealing with a different type of boundary conditions. The main
modification is a revised relation betweens-valuesand the scattering matrixCi(0). This is
the main achievement of the first part of this paper, which consists of the following two
sections.

In the second part, we study the adiabatic limit of theζ-determinant of certain operator
RR appearing in the formula of Burghelea et al.[2] (in short, BFK from now on). The BFK
formula can be formulated in our situation as follows

detζ�R
detζ�1,R · detζ�2,R

= C(Y )detζRR for anyR, (1.9)

whereC(Y ) is a locally computable constant andRR is defined as the sum of the Dirichlet
to Neumann operators over the decomposed manifoldsMi,R. It is well known thatRR is a
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nonnegative pseudo-differential operator of order 1. In particular, under the condition(1.7),
RR is a positive operator for anyR.

Remark 1.3. The BFK constantC(Y ) is locally computable from symbols of�−1
R overY,

so thatC(Y ) may depend on the intrinsic data overYas well as the extrinsic data out ofY
like the normal derivatives of the symbol of�−1

R atY. However, under the assumption of
the product structure nearY, the constantC(Y ) depends on only the intrinsic data overY,
in particular,C(Y ) does not change under the adiabatic process.

In Section4, we study the adiabatic limit of detζRR. Here, we consider the case of the
non-invertible tangential operator�Y , as a result, the adiabatic limit of detζRR contains
the contribution determined by�Y as well as the scattering data. The following theorem is
the main result for this.

Theorem 1.4. Let us assume(1.7). Then, we have the following formula

lim
R→∞R

hY · detζRR = 2ζ�Y (0)det∗ζ
√
�Y · det

(
Id − C12

2

)
. (1.10)

Now, we can useTheorem 1.1, the BFK formula(1.9) andTheorem 1.4to obtain the
local invariantC(Y ) as a byproduct of our main theorems.

Corollary 1.5. The BFK constantC(Y ) in the case of Dirichlet boundary condition is equal
to

C(Y ) = 2−ζ�Y (0)−hY . (1.11)

This result is also proved in[5] independently using the local computation of symbols
ofRR.

In Section5, we discuss the proof of the technical result which was used in Section4 in
the computation of the adiabatic limit of theζ-determinant ofRR. Our approach is based
on the representation of the inverse of�R in terms of the heat kernel e−t�R , which enables
us to apply the heat kernel analysis and some results proved in the first part of the paper.

2. Small eigenvalues and scattering matrices

In this section, we study the relation between thes-valuesof the operators�R,�i,R and
the scattering matricesCi(λ) determined by the operators�i,∞ onMi,∞. This analysis is
necessary in order to determine the large time contribution in the adiabatic decomposition
formula. The corresponding result for Dirac Laplacians was formulated and proved in[13].
Here, we treat the case of a general Laplace type operator and we need to rework some of
the details of the analysis presented in[13].

Now, letψ be an element of ker(�Y ) andλ denote a sufficiently small real number.
The couple (ψ, λ) determines a generalized eigensectionE(ψ, λ) ∈ C∞(M1,∞, E) of the
operator�1,∞ such that

�1,∞E(ψ, λ) = λ2E(ψ, λ).
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The functionλ→ E(ψ, λ) has a meromorphic extension to a certain subset ofC, in particu-
lar, this function is analytic function on the interval (−δ, δ) for sufficiently smallδ > 0. The
generalized eigensectionE(ψ, λ) has the following expression on the cylinder [0,∞)u × Y

E(ψ, λ) = e−iλuψ + eiλuC1(λ)ψ + Ê(ψ, λ), (2.1)

where Ê(ψ, λ) is a smoothL2-section orthogonal to ker(�Y ) and Ê(ψ, λ)|u=R and
∂uÊ(ψ, λ)|u=R are exponentially decaying asR→∞. The scattering matrix

C1(λ) : ker(�Y ) → ker(�Y )

is a unitary operator. The analyticity ofE(ψ, λ) implies that{C1(λ)}λ∈(−δ,δ) is an analytic
family of linear operators. The operatorC1(λ) satisfies the following functional equation

C1(λ)C1(−λ) = Id. (2.2)

In particular,C1(0)2 = Id, henceC1(0) is an involution over ker(�Y ).
LetΦR be a normalized eigensection of�1,R for the Dirichlet boundary problem, which

corresponds to thes-valueλ2 = λ(R)2 with |λ| ≤ R−κ for some fixedκ with 0< κ ≤ 1.
That is,

�1,RΦR = λ2ΦR, ΦR|{R}×Y = 0 and ‖ΦR‖ = 1. (2.3)

The sectionΦR can be represented in the following way on [0, R]u × Y ⊂ M1,R

ΦR = e−iλuψ1+ eiλuψ2+ Φ̂R,

whereψi ∈ ker(�Y ) andΦ̂R is orthogonal to ker(�Y ).
We introduceF := ΦR − E(ψ1, λ)|M1,R

, whereλ is the positive square root ofλ2.
Green’s theorem gives

0 = 〈�1,RF, F 〉M1,R
− 〈F,�1,RF 〉M1,R

= −
∫
∂M1,R

〈∂uF |u=R, F |u=R〉dy +
∫
∂M1,R

〈F |u=R, ∂uF |u=R〉dy, (2.4)

and we can obtain the following equalities

2λi‖C1(λ)ψ1− ψ2‖2 = −〈∂u(Φ̂R − Ê(ψ1, λ))|u=R, (Φ̂R − Ê(ψ1, λ))|u=R〉
+ 〈(Φ̂R − Ê(ψ1, λ))|u=R, ∂u(Φ̂R − Ê(ψ1, λ))|u=R〉

= −〈∂u(Φ̂R − Ê(ψ1, λ))|u=R,−Ê(ψ1, λ)|u=R〉
+ 〈−Ê(ψ1, λ)|u=R, ∂u(Φ̂R − Ê(ψ1, λ))|u=R〉. (2.5)

The following lemma will be used to show that the right side of(2.5)is exponentially small
asR→∞.

Lemma 2.1. For R� 0, there exists a constant C independent of R such that

‖∂uΦ̂R|u=R‖Y ≤ C.
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Proof. We have the representation ofΦ̂R on the cylinder [0, R]u × Y ⊂ M1,R

Φ̂R(u, y) =
∞∑

k=hY+1

(ak(R) e
√
µ2
k
−λ2u + bk(R) e−

√
µ2
k
−λ2u)φk,

where{µ2
k, φk} is the spectral resolution of�Y , such that{φk}hYk=1 is an orthonormal basis

of ker(�Y ). The normalized condition forΦR implies the inequality

∞∑
k=hY+1

∫ R

0
|ak(R) e

√
µ2
k
−λ2u + bk(R) e−

√
µ2
k
−λ2u|2 du ≤ 1,

which leads to

1 ≥
∞∑

k=hY+1


 1

2
√
µ2
k − λ2

(|ak(R)|2(e2
√
µ2
k
−λ2R − 1)+ |bk(R)|2(1− e−2

√
µ2
k
−λ2R))

+ 2�(ak(R)bk(R))R


 .

The boundary condition put the following constraint on the coefficientsak(R), bk(R)

ak(R) e
√
µ2
k
−λ2R + bk(R) e−

√
µ2
k
−λ2R = 0.

As a result, ifR� 0, the following estimate holds

1 ≥
∞∑

k=hY+1

|ak(R)|2 e2
√
µ2
k
−λ2R

4
√
µ2
k − λ2

(1+ e2
√
µ2
k
−λ2R − 8

√
µ2
k − λ2R)

≥
∞∑

k=hY+1

(µ2
k − λ2)|ak(R)|2 e2

√
µ2
k
−λ2R


1+ e

√
µ2
k
−λ2R

4(µ2
k − λ2)3/2




≥
∞∑

k=hY+1

(µ2
k − λ2)|ak(R)|2 e2

√
µ2
k
−λ2R

. (2.6)

On the other hand, we can see that

‖∂uΦ̂R|u=R‖2
Y = 4

∞∑
k=hY+1

(µ2
k − λ2)|ak(R)|2 e2

√
µ2
k
−λ2R

. (2.7)
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By (2.6) and (2.7), there is a constantC independent ofRsuch that

‖∂uΦ̂R|u=R‖Y ≤ C. �

Now, Lemma 2.1and the fact that̂E(ψ, λ)|u=R and∂uÊ(ψ, λ)|u=R are exponentially
decaying asR→∞ imply

‖C1(λ)ψ1− ψ2‖2 ≤ c1λ−1 e−c2R ≤ e−c3R, (2.8)

for some positive constantsc1, c2 andc3. The second inequality follows from the condition
(1.7). Now, the Dirichlet boundary condition atu = R of

ΦR = e−iλuψ1+ eiλuψ2+ Φ̂R

provides us with the following equality

ψ2 = −e−2iλRψ1.

From this equality and the estimate(2.8), we get the following inequality

‖e2iλRC1(λ)ψ1+ ψ1‖ ≤ e−cR. (2.9)

Recall that{C1(λ)}λ∈(−δ,δ) is an analytic family of the operators. Analytic perturbation
theory guarantees the existence of the real analytic functionsαj(λ) of λ ∈ (−δ, δ), such that
exp(iαj(λ)) are the corresponding eigenvalues ofC1(λ) for λ ∈ (−δ, δ). Hence, from(2.9),
we can obtain

|ei(2λR+αj(λ)) + 1| ≤ e−cR.

This immediately implies the following proposition.

Proposition 2.2. For R� 0, the positive square rootλ(R) of s-valueλ(R)2 of�1,R with
λ(R) ≤ R−κ(0< κ ≤ 1) satisfies

2Rλ(R)+ αj(λ(R)) = (2k + 1)π +O(e−cR), (2.10)

for an integer kwith0< (2k + 1)π − αj(λ(R)) ≤ R1−κ,whereexp(iαj(λ)) is an eigenvalue
of the unitary operatorC1(λ) : ker(�Y ) → ker(�Y ).

Now, we consider Eq.(2.10)whenk = 0. The functionαj(λ) is a real analytic function
of λ, hence we have

2Rλ(R)+ αj0+ αj1λ(R)+ αj2λ(R)2+ · · · = π +O(e−cR), (2.11)

for some constantsαjk ’s. The operatorC1(0) is an involution, soαj0 = 0 orαj0 = π. It is
not difficult to show that, if we assumeαj0 = π, thenλ decays exponentially. However,
the operator�1,R does not have the exponentially decaying eigenvalues, thereforeαj0 = 0.
Now, we proved the following proposition.
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Proposition 2.3. For R� 0, the positive square rootλ(R) of s-valueλ(R)2 of�1,R with
λ(R) ≤ R−κ(0< κ ≤ 1) satisfies

2Rλ(R) = (2k + 1)π +O(R−κ) or 2Rλ(R) = 2kπ +O(R−κ), (2.12)

where0< (2k + 1)π ≤ R1−κ or 0< 2kπ ≤ R1−κ.

Now, one can easily prove that the similar result as inProposition 2.3holds for�2,R sim-
ply repeating the previous argument with the scattering matrixC2(λ) : ker(�Y ) → ker(�Y ).

We are going to formulateProposition 2.3and the corresponding result for�2,R in terms
of certain model operator overS1. LetU : W → W denote a unitary operator acting on ad-
dimensional vector spaceWwith eigenvalues eiαj for j = 1, . . . , d. We define the operator
�(U)

�(U) := −1

4

d2

du2 : C∞(S1, EU ) → C∞(S1, EU ),

whereEU is the flat vector bundle overS1 = R/Z defined by the holonomyU. The spectrum
of �(U) is equal to{(

πk + 1

2
αj

)2

|k ∈ Z, j = 1, . . . , d

}
. (2.13)

We also have

detζ�(U) = 4d
d∏
j=1

sin2
(αj

2

)
, (2.14)

if αj 
= 2kπ (k ∈ Z) for j = 1, . . . , d (see for instance[7]). PuttingC̄i := −Ci(0), by defi-
nition, the operator�(C̄i) has a nontrivial kernel which is determined by (1)-eigenspace of
C̄i. We denote byhi the dimension of this space.

Proposition2.4. Forany family of eigenvaluesλ(R)2of�i,R converging to zeroasR→∞,
there exists the eigenvalueλ2

k of�(C̄i) with λk > 0 so that forR� 0

R2λ(R)2 = λ2
k +O(R1−2κ), (2.15)

and there isR1 depending on R with|R1−κ
1 − R1−κ| ≤ π

2 such that(2.15) defines one
to one correspondence between the eigenvalues of�i,R with 0< λ(R)2 ≤ R−2κ and the
eigenvalues of�(C̄i) with 0< λ2

k ≤ R2−2κ
1 andλk > 0.

Proof. The equality(2.15) follows from Proposition 2.3, the corresponding result for
�2,R and the definition of�(C̄i). For the second statement, by definitions, it is obvious that
(2.15) defines an injective map from the eigenvalues of�i,R with 0< λ(R)2 ≤ R−2κ to
the eigenvalues of�(C̄i) with 0< λ2

k ≤ R2−2κ andλk > 0. To defineR1 with the desired
property, let us decomposeMi,R into Mi and the cylindrical part of lengthR. Then, the
restrictions of�i,R onto these decomposed parts provide us with the Laplace type operators
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imposing the Dirichlet boundary conditions. By the mini–max principle, forR� 0, the
number of eigenvalues≤R−2κ of �i,R is same as the number of eigenvalues≤R−2κ of the
operator over the cylindrical part since there are no such small eigenvalues of the operator
overMi. By the explicit computation over the cylinder of lengthR, the eigenvalues of the
operator over the cylinder of lengthR are given byhY -copies ofk2π2R−2 with k ∈ N.
Therefore, the number of eigenvalues≤R−2κ of the operator over the cylindrical part is
given byhY [π−1R1−κ]. Using(2.13), we can chooseR1 such that|R1−κ

1 − R1−κ| ≤ π
2 and

hY [π−1R1−κ] is same as the number of the eigenvalues of�(C̄i) with λ2
k ≤ R2−2κ

1 and
λk > 0. This completes the proof. �

Now, we split

Tr (e−tR
2�i,R ) = Tr 1,R(e−tR

2�i,R )+ Tr 2,R(e−tR
2�i,R ),

where Tr1,R(·) and Tr2,R(·) denote the parts of the traces restricted to the nonzero eigen-
values>R1/2 or≤R1/2 of R2�i,R, respectively. Similarly, we split

Tr (e−t�(C̄i))− hi = Tr 1,R(e−t�(C̄i))+ Tr 2,R(e−t�(C̄i)),

where Tr1,R(·) and Tr2,R(·) denote the parts of the traces restricted to the nonzero eigen-

values>R1/2
1 or ≤R1/2

1 of �(C̄i), respectively. Now, we have the estimate for Tr2,R(·) in
the following proposition.

Proposition 2.5. For R� 0, there exist positive constantsc1, c2 such that∣∣∣∣Tr 2,R(e−tR
2�i,R )− 1

2
[Tr 2,R(e−t�(C̄i))− hi]

∣∣∣∣ ≤ c1R−1/4t e−c2t .

Proof. We applyProposition 2.4for fixedκ = 3
4 and obtain that for any eigenvalueλ(R)2

of �i,R with |λ(R)| ≤ R−3/4, there exists a functionα(R) such that

R2λ(R)2 = λ2
j + α(R), |α(R)| ≤ c R−1/2,

if R is sufficiently large. We use the elementary inequality|e−λ − 1| ≤ |λ|e|λ| to get

|e−tR2λ(R)2 − e−tλ
2
j | = |e−tλ2

j (e−t[R
2λ(R)2−λ2

j
] − 1)|

≤ c R−1/2t e−(λ2
j
−α(R))t ≤ c R−1/2t e−1/2λ2

j
t
.

Let us fix a sufficiently largeR. We take the sum over finitely many nonzero eigenvalues
λ(R)2 of �i,R with λ(R)2 ≤ R−3/2, and obtain

∣∣∣∣Tr 2,R(e−tR
2�i,R )− 1

2
[Tr 2,R(e−t�(C̄i))− hi]

∣∣∣∣ ≤ c R−1/2t
∑

λ2
j
≤R1/2

1

e−1/2λ2
j
t
.
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The operator�(C̄i) is a Laplace type operator overS1, hence the number of eigenvaluesλ2
j

with λ2
j ≤ R1/2

1 can be estimated byR1/4
1 . Since|R1/4

1 − R1/4| ≤ π
2 , we have

c R−1/2t
∑

λ2
j
≤R1/2

1

e−1/2λ2
j
t ≤ c′R−1/4t e−1/2λ2

1t ,

whereλ2
1 denotes the first nonzero eigenvalue of�(C̄i). This completes the proof. �

Now, we shall prove the corresponding result for thes-valuesof �R overMR. LetΨR
denote (a normalized) eigensection of�R corresponding tos-valueλ2, that is,�RΨR =
λ2ΨR and‖ΨR‖ = 1. Over the cylindrical part [−R,R]u × Y in MR, the eigensectionΨR
corresponding tos-valueλ2 of �R has the following form,

ΨR = e−iλuψ1+ eiλuψ2+ Ψ̂R, (2.16)

whereψi ∈ ker(�Y ) andΨ̂R is orthogonal to ker(�Y ). We first need the following lemma,
where{0} × Y denotes the cutting hypersurface inMR.

Lemma 2.6. We have the following estimates

‖Ψ̂R|u=0‖Y ≤ c1 e−c2R, ‖∂uΨ̂R|u=0‖Y ≤ c1 e−c2R,

wherec1, c2 are positive constants independent of R.

Proof. The sectionΨ̂R has the following form on [−R,R]u × Y ⊂ MR

Ψ̂R(u, y) =
∞∑

k=hY+1

(ak(R) e
√
µ2
k
−λ2u + bk(R) e−

√
µ2
k
−λ2u)φk.

The normalization condition on the eigensection implies

∞∑
k=hY+1

∫ R

−R
|ak(R) e

√
µ2
k
−λ2u + bk(R) e−

√
µ2
k
−λ2u|

2

du ≤ 1,

and now we have the following estimates for sufficiently largeR

1 ≥
∞∑

k=hY+1


 1

2
√
µ2
k − λ2

[|ak(R)|2(e2
√
µ2
k
−λ2R − e−2

√
µ2
k
−λ2R)

+ |bk(R)|2(e2
√
µ2
k
−λ2R − e−2

√
µ2
k
−λ2R)] + 4�(ak(R)bk(R))R



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≥
∞∑

k=hY+1

1

4
√
µ2
k − λ2

(|ak(R)|2 e2
√
µ2
k
−λ2R + |bk(R)|2 e2

√
µ2
k
−λ2R

−16|ak(R)bk(R)|R)

≥
∞∑

k=hY+1

1

8
√
µ2
k − λ2

(|ak(R)|2 e2
√
µ2
k
−λ2R + |bk(R)|2 e2

√
µ2
k
−λ2R).

This immediately implies

∞∑
k=hY+1

|ak(R)|2+ |bk(R)|2 ≤ c1 e
−
√
µ2
hY+1−λ2R ≤ c1 e−c2R,

for some positive constantsc1, c2. Hence, the first estimate is proved and the proof of the
second estimate follows in the same way.�

Changing variablev = u+ R, we regard that the cylindrical part is given by [0,2R]v ×
Y . In particular, we have the new expression forΨR from (2.16)

ΨR = e−iλvφ1
1 + eiλvφ1

2 + Ψ̂R,

whereφ1
1 = eiλRψ1, φ1

2 = e−iλRψ2. Now, repeating the argument which leads us to(2.8),
we obtain

‖C1(λ)φ1
1 − φ1

2‖ ≤ e−cR, (2.17)

for a positive constantc. Note that here we used the condition(1.7)andLemma 2.6. Now,
we want to get the corresponding estimate involving the scattering matrixC2(λ). For this,
we change the variable byv = u− R and regard the cylindrical part as [−2R,0]v × Y .
Then, we have the corresponding expression forΨR

ΨR = e−iλvφ2
1 + eiλvφ2

2 + Ψ̂R,

whereφ2
1 = e−iλRψ1, φ2

2 = eiλRψ2. We again repeat the previous argument to obtain

‖C2(λ)φ2
2 − φ2

1‖ ≤ e−cR, (2.18)

for a positive constantc. Here,C2(λ) is the scattering matrix defined from the generalized
eigensection attached to (λ, φ2

2). By definition, we have

φ1
1 = e2iλRφ2

1 φ1
2 = e−2iλRφ2

2. (2.19)

Now, combining(2.17)–(2.19), we get

‖e4iλRC1(λ) ◦ C2(λ)φ1
2 − φ1

2‖ ≤ e−cR. (2.20)

As before,C1(λ) ◦ C2(λ) is an analytic family forλ ∈ (−δ, δ) for sufficiently smallδ > 0.
Then, there exist the analytic functionsαj(λ) for λ ∈ (−δ, δ) such that exp(iαj(λ)) are
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the eigenvalues of the unitary operatorC12(λ) := C1(λ) ◦ C2(λ) on ker(�Y ). Hence, the
equality(2.20)implies

|ei(4λR+αj(λ)) − 1| ≤ e−cR.

Therefore, we obtain the following proposition.

Proposition 2.7. For R� 0, the positive square rootλ(R) of s-valueλ(R)2 of �R with
λ(R) ≤ R−κ satisfies

4Rλ(R)+ αj(λ(R)) = 2kπ +O(e−cR), (2.21)

for an integer k with0< 2kπ − αj(λ(R)) ≤ 4R1−κ,whereexp(iαj(λ)) is the eigenvalue of
the unitary operatorC12(λ) onker(�Y ).

Remark 2.8. Note that the spectrum of the unitary operatorC12 := C12(0) acting on
ker(�Y ) consists ofmeigenvalues of−1 ( such thathY −m ≥ 0 is an even number ) and
{eiαj(0),e−iαj(0)|j = 1, · · · , hY−m2 }, whereαj(0) is not equal tokπ for k ∈ Z. This follows
from the argument presented around(2.11)and the condition(1.7).

Now, we follow the way to proveProposition 2.4and obtain the following proposition.

Proposition 2.9.For any family of eigenvaluesλ(R)2 of�R converging to zero asR→∞,
there exists the eigenvalueλ2

k of�(C12) with λk > 0 so that forR� 0

4R2λ(R)2 = λ2
k +O(R1−2κ), (2.22)

and there isR1 depending on R with|R1−κ
1 − R1−κ| ≤ π/4 such that(2.22)defines one

to one correspondence between the eigenvalues of�R with 0< λ(R)2 ≤ R−2κ and the
eigenvalues of�(C12) with 0< λ2

k ≤ 4R2−2κ
1 andλk > 0.

We split

Tr (e−tR
2�R ) = Tr 1,R(e−tR

2�R )+ Tr 2,R(e−tR
2�R ),

where Tr1,R(·) and Tr2,R(·) denote the parts of the traces restricted to the nonzero eigen-
values>R1/2 or≤R1/2 of R2�R, respectively. Similarly, we split

Tr (e−t(1/4)�(C12)) = Tr 1,R(e−t(1/4)�(C12))+ Tr 2,R(e−t(1/4)�(C12)),

where Tr1,R(·) and Tr2,R(·) denote the parts of the traces restricted to the nonzero eigen-

values>R1/2
1 or ≤R1/2

1 of 1/4�(C12), respectively. As inProposition 2.5, we can prove
the following proposition.

Proposition 2.10. For R� 0, there exist positive constantsc1, c2 such that∣∣∣∣Tr 2,R(e−tR
2�R )− 1

2
Tr 2,R(e−t(1/4)�(C12))

∣∣∣∣ ≤ c1R−1/4t e−c2t .
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3. Proof of Theorem 1.1

In this section, we present a proof ofTheorem 1.1. Since the analysis ofs-valuesis done
in Section2, now we can proceed by a standard way as in[12,13].

We define relativeζ-functionζRrel(s)

ζRrel(s) := 1

Γ (s)

∫ ∞

0
ts−1Tr (e−t�R − e−t�1,R − e−t�2,R ) dt, (3.1)

and we decomposeζRrel(s) into two parts

ζRs (s) = 1

Γ (s)

∫ R2−ε

0
(·) dt, ζRl (s) = 1

Γ (s)

∫ ∞

R2−ε
(·) dt,

whereε > 0 is a fixed sufficiently small number. The derivatives ofζRs (s) andζRl (s) ats = 0
give the small and large time contributions to our formula. First, we prove the following
lemma.

Lemma 3.1. There exist positive constantsc1 andc2 such that∣∣∣∣Tr (e−t�R − e−t�1,R − e−t�2,R )− 1

2
Tr (e−t�Y )

∣∣∣∣ ≤ c1 e−c2(R2/t).

Proof. By the standard application of Duhamel principle as in[10,13], the estimate of
Tr (e−t�R − e−t�1,R − e−t�2,R ) follows from the estimate of the parametrices of the heat
kernels e−t�R and e−t�i,R . These parametrices are constructed from the heat kernels on the
closed manifoldMR and heat kernels of the boundary problems on the half infinite cylinders.
The interior contributions cancel each other out up to the error term of the size O(e−c(R2/t))
for a positive constantc and only the boundary contribution is left. This boundary term is
equal to∫ R

−R
1√
4πt

Tr (e−t�Y ) du− 2
∫ R

0

1√
4πt
{1− e−u

2/t}Tr (e−t�Y ) du

= 2
∫ R

0

1√
4πt

e−u
2/t Tr (e−t�Y ) du = 1√

π

∫ R/
√
t

0
e−v

2
Tr (e−t�Y ) dv

= 1

2
Tr (e−t�Y )+O(e−R

2/t).

This completes the proof. �
Now, we can determine the small time part in(3.1).

Proposition 3.2. We have

lim
R→∞

[
(ζRs )′(0)− hY

2
(γ + (2− ε) logR)

]
= 1

2
ζ′�Y (0),
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where

ζ�Y (s) = 1

Γ (s)

∫ ∞

0
ts−1(Tr (e−t�Y )− hY ) dt.

Proof. By Lemma 3.1, the function

fR(s) = 1

Γ (s)

∫ R2−ε

0
ts−1

(
Tr (e−t�R − e−t�1,R − e−t�2,R )− 1

2
Tr (e−t�Y )

)
dt

is a holomorphic function ofson the whole complex plane. Moreover, the following equal-
ities hold

lim
R→∞ fR(0)= 0, lim

R→∞
d

ds
fR(s)

∣∣∣∣
s=0

= 0.

Combining these facts with the following equality

d

ds

∣∣∣∣
s=0

(
hY

Γ (s)

∫ R2−ε

0
ts−1 dt

)
= hY (γ + (2− ε) logR), (3.2)

completes the proof. �

To deal with the large time part, we need the following lemma.

Lemma 3.3. For R� 0, there exists a positive constantc1 such that∫ ∞

R−ε
t−1Tr 1,R(e−tR

2�i,R ) dt ≤ c1 e−R
(1/2)−ε

,

and the similar estimates hold forTr 1,R(e−tR2�R ), Tr 1,R(e−t�(C̄i))− hi and
Tr 1,R(e−t(1/4)�(C12)).

Proof. Let λ2
k0

(R) denote the smallestlargeeigenvalue of�i,R such thatλ2
k0

(R) > R−3/2.
Then, ifR� 0 we have

Tr 1,R(e−tR
2�i,R ) =

∑
λ2
k
>R−3/2

e−tR
2λ2
k

=
∑

λ2
k
>R−3/2

e−(tR2−1)λ2
k e−λ

2
k ≤ e

−(tR2−1)λ2
k0

∑
λ2
k
>R−3/2

e−λ
2
k

≤ e
−(tR2−1)λ2

k0 Tr (e−�i,R ) ≤ c2Re−(tR2−1)R−3/2 ≤ c3Re−R
1/2t ,

for positive constantsc2 andc3. We have used here the obvious estimate

Tr (e−�i,R ) ≤ c vol(Mi,R) ≤ c′R,
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for positive constantsc andc′. Now, we have∫ ∞

R−ε
t−1Tr 1,R(e−tR

2�i,R ) dt

≤
∫ ∞

R−ε
t−1c3Re−tR

1/2
dt ≤ c3R

∫ ∞

R(1/2)−ε
e−v dv ≤ c1 e−R

(1/2)−ε
.

This completes the proof of the first estimate and the other cases can be proved in the same
way. �

Now, we can express the large time part in terms of the model operators.

Proposition 3.4.

lim
R→∞

∫ ∞

R2−ε
t−1Tr (e−t�R − e−t�1,R − e−t�2,R ) dt + hY

2
(γ − ε logR)

= 1

2

d

ds

∣∣∣∣
s=0

1

Γ (s)

∫ ∞

0
ts−1(Tr (e−(t/4)�(C12) − e−t�(C̄1) − e−t�(C̄2))+ hY ) dt.

Proof. First, let us observe thatRemark 2.8and the relationCi(0)2 = Id imply hY =
h1+ h2. Using this and the change of variablet→ R−2t, one can obtain following equality
from Propositions 2.5, 2.10andLemma 3.3

lim
R→∞

(∫ ∞

R2−ε
t−1 Tr (e−t�R − e−t�1,R − e−t�2,R ) dt − 1

2

d

ds

∣∣∣∣
s=0

1

Γ (s)

×
∫ ∞

R−ε
ts−1[Tr (e−(t/4)�(C12) − e−t�(C̄1) − e−t�(C̄2))+ hY ] dt

)
= 0.

Note that neart = 0,

|Tr (e−(t/4)�(C12) − e−t�(C̄1) − e−t�(C̄2))| ≤ c√t,

for a positive constantc. By this estimate, one can easily show

lim
R→∞

(
hY (γ − ε logR)− d

ds

∣∣∣∣
s=0

1

Γ (s)

∫ R−ε

0
ts−1[Tr (e−(t/4)�(C12)

− e−t�(C̄1) − e−t�(C̄2))+ hY ] dt

)
= 0.

These complete the proof. �
Propositions 3.2 and 3.4combined together lead to the following equality

lim
R→∞

(
(ζRs )′(0)− hY

2
(γ + (2− ε) logR)+ (ζRl )′(0)+ hY

2
(γ − ε logR)

)

= 1

2
(ζ′�Y (0)+ ζ′(1/4)�(C12)(0)− ζ′

�(C̄1)(0)− ζ′
�(C̄2)(0)). (3.3)



J. Park, K.P. Wojciechowski / Journal of Geometry and Physics 55 (2005) 241–266 257

Now, the following proposition gives the exact value of the large time contribution,

Proposition 3.5. We have

detζ
1

4
�(C12) = 22hY det

(
Id− C12

2

)2

, det∗ζ�(C̄i) = 22hY .

Proof. The first equality follows directly from(2.14). For the second one, the zeta function
of �(C̄i) is given by

ζ�(C̄i)(s) = hi 2π−2s
∞∑
k=1

k−2s + (hY − hi)2π−2s
∞∑
k=0

(
k + 1

2

)−2s

wherehi is the dimension of (+1)-eigenspace of̄Ci. Then, the derivative ofζ�(C̄i)(s) at
s = 0 is equal to−hY log 4. This completes the proof of the second one.�

Finally, we obtainTheorem 1.1using the equality(3.3)andProposition 3.5.

4. The adiabatic limit of detζRR

In this section, we study the behavior of detζRR whenR→∞.
Let us describe the construction ofRR. It is defined as the composition of the following

maps

C∞(Y,E|Y )
Ig−→C∞(Y,E|Y )⊕ C∞(Y,E|Y )

KR−→C∞(M̄R,E)

γ1−→C∞(Y,E|Y )⊕ C∞(Y,E|Y )
If−→C∞(Y,E|Y ).

Here,Ig(φ) := (φ, φ) andKR is the Poisson operator of the operator�1,R ��2,R over a
manifoldM̄R := M1,R �M2,R. For (Φ1, Φ2) whereΦi is a section overMi,R, the mapγ1
is given byγ1(s) := (∂u|Y1

Φ1, ∂u|Y2
Φ2) andIf (φ,ψ) := φ − ψ. It is well known that the

operator

RR := If γ1KR Ig : C∞(Y,E|Y ) → C∞(Y,E|Y )

is an elliptic, nonnegative, pseudo-differential operator of order 1. By definition, the operator
RR can be written as

RR = N1,R +N2,R,

whereNi,R is the Dirichlet to Neumann operator for�R|Mi,R .
A careful analysis of the small eigenvalues enables us to compute the scattering con-

tribution to the adiabatic limit of theζ-determinant ofRR. Let us recall that{µ2
k, φk}k∈N
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denotes the spectral resolution of the operator�Y with hY = dim ker(�Y ). The equality
(2.2) implies

Ci(0)C′i(0)= C′i(0)Ci(0),

hence we may chooseφk (for 1≤ k ≤ hY ) so thatφk is a normalized eigensection for both
operatorsCi(0) andC′i(0). Now, we have the following proposition.

Proposition 4.1. For any couple(φm, φn) with 1≤ m, n ≤ hY

〈Ni,Rφm, φn〉 =




1

R

(
1− α

2R

)−1
if m = n, Ci(0)φm = −φm,

O(e−cR) if m 
= n or Ci(0)φm = φm,

whereC′i(0)φn = iαφn, that is, iα is the eigenvalue ofC′i(0) and c is a positive constant.

Proof. We present a proof for the case ofi = 1. The case fori = 2 can be proved in the
same way. LetΦR denote a solution of the problem

�M1,RΦR = 0 and ΦR|Y = φm,

hence

∂uΦR|u=R = N1,Rφm. (4.1)

To simplify notation in the proof, we skip the indicesm in φm andR in ΦR. Let us define

Φ(φ, λ) := e−iλRΦ,

for a small positiveλ. For such aλ andψ := φn ∈ ker(�Y ), there exists the generalized
eigensectionE(ψ, λ) overM1,∞, which has the following form on the cylinder [0,∞)u ×
Y ⊂ M1,∞

E(ψ, λ) = e−iλuψ + eiλuC1(λ)ψ + Ê(ψ, λ),

whereÊ(ψ, λ) is aL2-section. We also define

G = G(φ,ψ, λ) := E(ψ, λ)|M1,R
−Φ(φ, λ).

An auxiliary section,G(φ,ψ, λ) has the following properties

�1,RG(φ,ψ, λ) = λ2E(ψ, λ),

G|u=R = e−iλRψ + eiλRC1(λ)ψ − e−iλRφ +O(e−cR),
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∂uG|u=R = −iλe−iλRψ + iλeiλRC1(λ)ψ − e−iλRN1,Rφ +O(e−cR).

Green’s formula forG reads as

〈�1,RG,G〉M1,R
− 〈G,�1,RG〉M1,R

= −〈∂uG|{R}×Y ,G|{R}×Y 〉{R}×Y + 〈G|{R}×Y , ∂uG|{R}×Y 〉{R}×Y . (4.2)

Eq.(4.2)can be rewritten as follows

λ2(〈Φ,E〉M1,R
− 〈E,Φ〉M1,R

)

= e−2iλR〈N1,Rφ, C1(λ)ψ〉Y − e2iλR〈C1(λ)ψ,N1,Rφ〉Y + iλe−2iλR〈φ,C1(λ)ψ〉Y
+ iλe2iλR〈C1(λ)ψ, φ〉Y + 〈N1,Rφ,ψ〉Y − 〈ψ,N1,Rφ〉Y − 〈N1,Rφ, φ〉Y
+〈φ,N1,Rφ〉Y − iλ〈φ,ψ〉Y − iλ〈ψ, φ〉Y +O(e−cR). (4.3)

We differentiate both sides of the equality(4.3)atλ = 0 and obtain

−2iR(〈N1,Rφ, C1(0)ψ〉Y + 〈C1(0)ψ,N1,Rφ〉Y )+ 〈N1,Rφ, C
′
1(0)ψ〉Y

−〈C′1(0)ψ,N1,Rφ〉Y + i(〈φ,C1(0)ψ〉Y + 〈C1(0)ψ, φ〉Y )

−i〈φ,ψ〉Y − i〈ψ, φ〉Y = O(e−cR). (4.4)

Proposition 4.1follows easily from(4.4). Let us consider for instance the case of

φ = ψ = φn ∈ ker(C1(0)+ 1)⊂ ker(�Y ).

Then, Eq.(4.4) is now

(2iR− iα)(〈N1,Rφ, φ〉Y + 〈φ,N1,Rφ〉Y ) = 4i+O(e−cR),

and this gives the following formula

〈N1,Rφ, φ〉Y + 〈φ,N1,Rφ〉Y =
2

R

(
1− α

2R

)−1

+O(e−cR). � (4.5)

Let us also observe the following fact, which is an immediate corollary ofProposition
4.1.

Corollary 4.2. We have

〈RRφ, φ〉 = O(e−cR) for φ ∈ ker(C1(0)− 1)∩ ker(C2(0)− 1),

for a positive constant c.

Remark 4.3. Corollary 4.2and an elementary application of the mini–max principle show
that, in general, the operatorRR may have exponentially decaying eigenvalues. Moreover,
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the number of these eigenvalues is equal to

dim(ker(C1(0)− 1)∩ ker(C2(0)− 1)).

On the other hand, the condition(1.7)andRemark 2.8imply

ker(C1(0)− 1)∩ ker(C2(0)− 1)= {0}, (4.6)

hence it excludes the existence of exponentially small eigenvalues ofRR under the condition
(1.7). A simple example where(4.6) holds is the Dirac Laplacian over the double of a
manifold with boundary. It is easy to observe that in this case we haveC1(0)= −C2(0) and
there is no exponentially small eigenvalues ofRR.

Proposition 4.1suggests the introduction of the operatorL(R) on ker(�Y )

L(R) = 1

R

(
Id − C1(0)

2
+ Id − C2(0)

2

)
.

Proposition 4.4. Assume thatker(C1(0)− Id) ∩ ker(C2(0)− Id) = {0}. Then, we have

detL(R) = R−hY det

(
Id − C12

2

)
, (4.7)

whereC12 := C1(0) ◦ C2(0).

Proof. First of all, the assumption implies that the direct sum of the ranges of the projections
Id−C1(0)

2 , Id−C2(0)
2 spans the space ker(�Y ). It also follows from the definition that we have

a formula

detL(R) = R−hY det

(
Id − C1(0)

2
+ Id − C2(0)

2

)
.

Now, we use the fact that

Id − C2(0)

2
=
(

Id − C1(0)C2(0)

2

)−1 Id + C1(0)

2

(
Id − C1(0)C2(0)

2

)
, (4.8)

hence, essentially our concern is the determinant of the operator acting onC
hY with the

form

P + g−1(Id − P)g,

puttingP = Id−C1(0)
2 andg = Id−C1(0)C2(0)

2 . We write

P + g−1(Id − P)g = g−1(gP + (Id − P)g).
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The second operator on the right side can be represented in the following form

gP + (Id − P)g =
(

PgP 0

2(Id− P)gP (Id − P)g(Id − P)

)
, (4.9)

with respect to range(P)⊕ range(Id− P). The corresponding decomposition for the oper-
atorP − g−1(Id − P)g is

g−1

(
PgP 0

0 −(Id − P)g(Id − P)

)
.

This shows that

det

(
Id − C1(0)

2
+ Id − C2(0)

2

)

= (−1)h2 det

(
Id − C1(0)

2
− Id − C2(0)

2

)
= (−1)h2 det

(
Id − C12

2

)
detC2(0)

= det

(
Id − C12

2

)
. �

Proof of Theorem 1.4. Let P0 andP⊥ denote orthogonal projections onto the subspaces
ker(�Y ) and ker(�Y )⊥. For any trace class operatorL acting onL2(Y,E|Y ), we define

Tr 0(L) := Tr (P0LP0), Tr⊥(L) := Tr (P⊥LP⊥).

We decompose Tr (e−tRR ) into Tr0(e−tRR ) and Tr⊥(e−tRR ). By Proposition 4.1, it is easy to
see that the part Tr0(e−tRR ) contributes by detL(R) up to the error of the sizeO(R−hY−1).

By Proposition 4.4, this isR−hY det
(

Id−C12
2

)
up to the error of the size O(R−hY−1).

Now, let us see the contribution from Tr⊥(e−tRR ). Let us consider

i

2π

∫
Γ

λ−s Tr⊥((RR − λ)−1− (2
√
�Y − λ)−1) dλ

= (−1)kk!
i

2π

∫
Γ

(s− 1)−1 · · · (s− k)−kλ−s+kTr⊥((RR − λ)−(k+1)

− (2
√
�Y − λ)−(k+1)) dλ,

for sufficiently largek. Here,Γ is a curve surrounding{0} ∪ R
− in C. Let us remark that

RR − 2
√
�Y is a smoothing operator. We refer the proof of this fact to[14]. Now, the

integrand on the right side can be estimated as

|Tr⊥((RR − λ)−(k+1)− (2
√
�Y − λ)−(k+1))| ≤ C

|λ|k + 1
|Tr⊥(R−1

R − (2
√
�Y )−1)|,
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for a positive constantC. Here, (2
√
�Y )−1 denotes the inverse of 2

√
�Y over ker(�Y )⊥.

Now, we useProposition 5.1proved in Section5, to show that the concerned integrand
converges to 0 uniformly for everys in the compact neighborhood of 0 asR→∞. Hence,
its derivative ats = 0 converges to 0 asR→∞. This completes the proof ofTheorem
1.4, if we use

det∗ζ (2
√
�Y ) = 2ζ�(0)det∗ζ

√
�Y. � (4.10)

Proof of Corollary 1.5. Let us now come back to the BFK formula(1.9),

detζ�R
detζ�1,R · detζ�2,R

= C(Y ) detζRR.

We can useTheorems 1.1 and 1.4to find the exact value of the local constantC(Y ). Let us
recall thatC(Y ) does not depend on the adiabatic process. Now, we have

2−hY
√

det∗ζ�Y · det

(
Id − C12

2

)

= lim
R→∞R

hY
detζ�R

detζ�1,R · detζ�2,R
= C(Y ) lim

R→∞R
hYdetζRR

= C(Y )2ζ�Y (0)det∗ζ
√
�Y · det

(
Id − C12

2

)
.

From this and the equality
√

det∗ζ�Y = det∗ζ
√
�Y , we conclude

C(Y ) = 2−ζ�Y (0)−hY .�

5. Proof of technical proposition

In this section, we present the proof of the following proposition.

Proposition 5.1. For R� 0, there exist positive constantsc1 andc2 such that

|Tr⊥(R−1
R − (2

√
�Y )−1)| ≤ c1 e−c2R

1/2
.

Instead of using 2
√
�Y , we compare the operatorRR with the model operatorRcR on

the cylinder defined as follows. We introduce the cylinderNR = [−R,R] × Y with the
Laplacian�cR = −∂2

u +�Y subject to the Dirichlet boundary conditions at{±R} × Y .
Now, we cutNR at u = 0 and get the operatorRcR in an obvious way. An explicit
computation shows that the operatorRcR converges to 2

√
�Y exponentially on the space

ker(�Y )⊥, more precisely

|Tr⊥(RcR − 2
√
�Y )| ≤ c3 e−c4R,
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for some positive constantsc3 andc4. Therefore, it is sufficient to show

|Tr⊥(R−1
R − (RcR)−1)| ≤ c1 e−c2R

1/2
. (5.1)

In order to prove(5.1), we recall the following formula forR−1
R established in[2,6],

R−1
R = γ�−1

R γ
∗,

whereγ is the restriction map to{0} × Y and γ∗ is the adjoint ofγ. We combine this
equality with

�−1
R =

∫ ∞

0
e−t�R dt, (5.2)

in order to reduce our problem to the heat kernel estimates. We decompose the left side of
(5.2) into two parts as follows

∫ ∞

0
e−t�R dt =

∫ R2−ε

0
e−t�R dt +

∫ ∞

R2−ε
e−t�R dt.

We will consider the large and small time contributions separately in the following
lemmas.

Lemma 5.2. For R� 0, there are positive constantsc1 andc2 such that∣∣∣∣Tr⊥
(∫ ∞

R2−ε
γ e−t�Rγ∗ dt

)∣∣∣∣ ≤ c1 e−c2R
1−ε

and the same estimate holds for�cR.

Proof. We note that

γ e−t�R γ∗ =
∑
k

e−tλ
2
kΦk(x)|u=0⊗Φ∗k(y)|u=0 (5.3)

where{λ2
k, Φk} is a spectral resolution of the operator�R. We split the restriction of the

eigensectionΦk to {0} × Y into Φ0
k the part in ker(�Y ) and Φ̂k the remaining part. We

employ an argument similar to the proof ofLemma 2.6to obtain

‖Φ̂k‖ ≤ c1 e
−
√
µ2
hY+1−λ2

k
R

. (5.4)

Here, we note that the right side of(5.4)has to be changed into the constantc1 if λk > µhY+1,
and the constantc1 is independent ofk. We need to discuss only the contribution determined
by Φ̂k since we are concerning only on Tr⊥(·). We split this contribution in(5.3) into two
parts, that is, the sums over all eigenvaluesR−1 ≤ λ2

k andλ2
k < R

−1.
In order to discuss the sum over the eigenvalues smaller thanR−1, we use(5.4) and

the fact that each eigenvalue of�R is bounded from below by c
(R2+(ε/2))

(since there is no
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exponentially small eigenvalues). Then, we have

∫ ∞

R2−ε


 ∑
λ2
k
<R−1

e−tλ
2
k‖Φ̂k‖2


dt

≤ c1 e−c2R
∫ ∞

R2−ε


 ∑
λ2
k
<R−1

e−tλ
2
k


dt

≤ c1 e−c2R Tr (e−�R )
∫ ∞

R2−ε
e−(t−1)R−(2+(ε/2))

dt ≤ c3 e−c4R, (5.5)

for positive constantsc1, c2, c3 andc4. We have used here the obvious estimate

Tr (e−�R ) ≤ c5 vol(MR) ≤ c6R.

The sum over the eigenvaluesR−1 ≤ λ2
k can be estimated as

∫ ∞

R2−ε


 ∑
R−1≤λ2

k

e−tλ
2
k‖Φ̂k‖2


dt

≤ c2
1

∫ ∞

R2−ε


 ∑
R−1≤λ2

k

e−tλ
2
k


dt

≤ c2
1 Tr (e−�R )

∫ ∞

R2−ε
e−(t−1)/R dt ≤ c7R

∫ ∞

R2−ε
e−(t−1)/R dt ≤ c8 e−R

1−ε
. (5.6)

The first claim follows from(5.5) and (5.6). In the same way, we can show that the same
estimate holds for the operator�cR. �

Lemma 5.3. For R� 0, there are positive constantsc1 andc2 such that∣∣∣∣∣Tr⊥
(∫ R2−ε

0
γ(e−t�R − e−t�

c
R )γ∗ dt

)∣∣∣∣∣ ≤ c1 e−c2R
ε

. (5.7)

Proof. It is sufficient to show that the following term has the claimed bound

∫ R2−ε

0

∫
Y

‖γ(e−t�R (x, x)− e−t�
c
R (x, x))γ∗‖dy dt.

For this, we applyfinite propagation speed property for the wave operatorto compare�R
overMR with �cR overNR where we identify the partsNR/2 of these in an obvious way.
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Then, we obtain the estimate

‖ER(t; x, y)− EcR(t; x, y)‖ ≤ c3 e−c4(R2/t),

whereER(t; x, y) andEcR(t; x, y) are heat kernels of�R and�cR, respectively, andx, y ∈
NR/2. Therefore, the following estimate holds

‖γ(e−t�R − e−t�
c
R )γ∗‖ ≤ c3 e−c4(R2/t). (5.8)

We combine(5.8)with the following inequality

c3

∫ R2−ε

0
e−c4(R2/t) dt ≤ c1 e−c2R

ε

.

This completes the proof. �
Puttingε = 1

2, Lemmas 5.2 and 5.3complete the proof ofProposition 5.1.
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