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1. Introduction

By aJ*-algebra we mean a closed subspace A of a C*-algebra such that xx*x € Awhenever x € A. Many familiar spaces are
J*-algebras [1], for example: (i) every Cartan factor of type |, i.e., the space of all bounded operators B(H, K) between Hilbert
spaces H and K;; (ii) every Cartan factor of type IV, i.e., a closed x-subspace A of B(H) in which the square of each operator
in A is a scalar multiple of the identity operator on H; (iii) every JC*-algebra; (iv) every ternary algebra of operators [2].
A J*-homomorphism between J*-algebras A and B is defined to be a linear mapping h : A — B such that

h(aa*a) = h(a)h(a)*h(a)
foralla € A.

In particular, every x-homomorphism between C*-algebras is a J*-homomorphism. In [3], the stability of J*-homo-
morphisms between J*-algebras has been studied (see also [4,5]).

The stability of functional equations was first introduced by Ulam [6] in 1940. More precisely, he proposed the following
problem: Given a group Gy, a metric group (G,, d) and a positive number ¢, does there exist a § > 0 such that if a function
f 1 Gi = G satisfies the inequality d(f (xy), f (X)f (¥)) < § forall x, y € Gy, then there exists a homomorphism T : G; — G,
such that d(f(x), T(x)) < € for all x € G;? As mentioned above, when this problem has a solution, we say that the
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homomorphisms from G; to G, are stable. In 1941, Hyers [7] gave a partial solution of Ulam’s problem for the case of
approximate additive mappings under the assumption that G; and G, are Banach spaces. In 1978, Rassias [8] generalized the
theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability
that was introduced by Rassias [8] is called the generalized Hyers-Ulam stability.

Theorem 1.1. Let f : E — E’ be a mapping from a norm vector space E into a Banach space E’ subject to the inequality

If x+y) = FC) = fWI < eIxI” + lIyII) (1.3)

forallx,y € E, where € and p are constants with e > 0 and p < 1. Then there exists a unique additive mapping T : E — E’ such
that

2€
IFe =TI = 5=,

forallx € E.If p < 0 then inequality (1.3) holds for all x, y # 0, and (1.4) for x # 0. Also, if the function t > f(tx) from R into
E’ is continuous for each fixed x € E, then T is R-linear.

[Ix[1P (1.4)

During the last few decades several stability problems of functional equations have been investigated by many mathe-
maticians. A large list of references concerning the stability of functional equations can be found in [9-13].

Recently, Cadariu and Radu applied the fixed point method to the investigation of the functional equations. (See also
[14-19].)

In this paper, we will use the fixed point alternative of Cadariu and Radu to prove the stability and superstability of
J*-homomorphisms between J*-algebras for the generalized Jensen-type functional equation

X+y x—y\ _
() 4 (552) s

Throughout this paper assume that A, B are two J*-algebras.

2. Main results

Before proceeding to the main results, we will state the following theorem.

Theorem 2.1 (The Fixed Point Alternative [20]). Suppose that we are given a complete generalized metric space (2, d) and a
strictly contractive mapping T : Q — 2 with Lipschitz constant L. Then for each given x € , either

d(T™x, T"t1x) = oo forallm > 0,

or other exists a natural number mq such that:

* d(T™x, T™1x) < oo forallm > mg;

* the sequence {T™x} is convergent to a fixed point y* of T;

* y* is the unique fixed point of T intheset A = {y € Q : d(T™x,y) < o0};

* d(y,y*) < 77d(y, Ty) forally € A.

Lemma 2.2 ([5]). Let f : X — Y be an additive mapping such that f (ux) = uf (x) forallx € X and all u € T', where X and Y
are linear spaces. Then the mapping f is C-linear.

Theorem 2.3. Let f : A — B be a mapping with f (0) = 0 for which there exists a function ¢ : A> — [0, oo) such that

X+zz"z+y X+zz*z —y
Huf (f> + uf <f —f(ux) — uf @Df @ f@)|| < P(x,y,2) (2.1)
forallp e T:={u e C:|u| =1}andallx,y,z € A. If there exists a constant 0 < L < 1 such that
Xy z
X,y,2) < 2L (7, 7 f) 22
ox,y,2) <2L¢ 233 (2.2)

forallx,y,z € A, then there exists a unique J*-homomorphism h : A — B such that

L
If ) — hx)]| < ﬁ¢(x, 0,0) (2.3)
forallx € A.
Proof. It follows from (2.2) that
27 2%, 2y, 2z2) < Up(x,y,2)

forall x, y, z € A and all integers j. Hence
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lim 279 (2x, 2y, 2z) = 0 (2.4)

j—oo

forallx,y,z € A. Putting u = 1andy = z = 0in (2.2), we obtain
X
[ (5) —fw| <o 0.0 (25)
for all x € A. Hence

H @0~ (9| = 59(2%,0,0) < 16(x,0,0) (2.6)

for all x € A. Consider theset X := {g | g : A — B, g(0) = 0} and introduce the generalized metric on X:
d(h, g) :==inf{C e R" : ||g(x) — h(x)|| < Co(x, 0, 0) for all x € A}.
It is easy to show that (X, d) is complete. Now we define the linear mappingJ : X — X by

1
J@X) = Eg(ZX)

forallx € A.Itis easy to show thatd(J(g), J(h)) < Ld(g, h) forallg, h € X (see [20]). It follows from (2.6) that d(f, J(f)) < L.
By Theorem 2.1, {J"f} converges to a unique fixed point h of ] in the set X; := {g € X : d(f,g) < o0}. So h satisfies
h(2x) = 2h(x) and

1 1
h(o) = lim ﬁf(Z"X), d(f,h) < ﬁd(f,](f))

for all x € A. Therefore d(f, h) < ﬁ This implies the inequality (2.3). Put z = 0 in (2.1). It follows from the definition of |
and (2.4) that

o (£32) (17 s

forallx,y € A. So
X+ X —
1uh ( . y) + uh (Ty) = h(ux) 2.7)

forallx,y € A. Puttingu = % andv = % in (2.7), we get

ph(u) + ph(v) = h(uu + pv)

for all u, v € A. Since h(0) = O, h is additive and h(ux) = wh(x) for all uw € T and all x € A. Hence, h is C-linear by
Lemma 2.2. Settingx =y = 0and = 1in(2.1), we have

1
dm Iaf Q" X+ ) + 1f QT x =) = fFRMY0 |

IA

. 1
lim —¢(2"x,2"y,0) =0
n—oo 2N

Ih(zz*2) — h(D)h(@)*h@)]| th (ZZZ*Z) — h@)h(2)*h(z)

. 1
= lim —
n—oo 8N

8?1 *
2f< ZZZ Z) — FQ@"D)f (2"2)*f (2"2)

.1 n -1 n
< Jim 16(0.0.22) < lim —$(0.0,22) =0
forallz € A. Thush : A — Bis aJ*-homomorphism satisfying (2.3), as desired. O
We prove the following generalized Hyers-Ulam stability problem for J*~-homomorphisms on J*-algebras.

Corollary 2.4. Let p € (0, 1) and §, 6 > 0 be real numbers. Suppose f : A — B satisfies f (0) = 0 and

uf (w) ouf <w> —F ) — W @DF @@ | < 8 +0UIKIP + IyIP + l217)

2 2
forall w € Tandallx,y, z € A. Then there exists a unique J*-homomorphism h : A — B such that
2P§ 2P0 »
If (%) —h@)|l < + llxIl

2—2p 2—2p
forallx € A
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Proof. Set ¢(x,y,z) = & + O(||x||P + |[y||I> + |Iz||P) for all x, y, z € A. Then we get the desired result by L = 2P~' in
Theorem 2.3. O

Remark 2.5. Letf : A — B be a mapping with f (0) = 0 for which there exists a function ® : A> — [0, co) such that

'Mf (w) o <><+Z“—y> — () — W @Of @ F @)

<dXx,y,z
5 5 < P(x,y,2)

forallu € Tandallx,y,z € A.Let0 < L < 1 be a constant such that 2d(x, y, z) < L®(2x, 2y, 2z) forallx,y,z € A.By a
method similar to that of the proof of Theorem 2.3, one can show that there exists a unique J*-homomorphismh : A — B
satisfying

1
If ®) — h®| < ﬁd%x, 0,0)

forallx € A.
For the case ®(x,y,z) = 6(||x|IP + |ly|I” + ||z||P) (where 6 is a non-negative real number and p > 1), there exists a
unique J*-homomorphism h : A — B satisfying
p

If ) —h@)|| <

xP
< 5 I

for all x € A.

The case in which p = 1 was excluded in Corollary 2.4 and Remark 2.5. Indeed the results are not valid when p = 1. Here
we use Gajda’s example [21] to give a counter-example.

Proposition 2.6. Let ¢ : C — C be defined by

x for|x| <1;

PX) = {1 for |x| > 1.
Consider the function f : C — C given by the formula

f) =) 27"p2").

n=0
Let
Df(x.y.2) = uf (%) +uf ("“Z%) —f (0 — wf @ Df @)
forallu € Tandallx,y, z € C. Then f satisfies

IDuf (%, ¥, 2)| < 36| + |yl + |2]) (2.8)
forallp € Tandallx, y, z € C, and the range of |f (x) —A(x)|/|x| for x # 0is unbounded for each additive functionA : C — C.
Proof. It is clear that f is bounded by 2 on C. If |x| + |y| + |z| = 0 or |x| + |y| + |z| > 1, then

ID.f(x, y, 2)| < 14 < 14| + ly| + |z]).

Now suppose that 0 < |x| + |y| + |z| < 1. Then there exists an integer k > 0 such that

1 1
W§|x|+ly|+|z|<?. (2.9)
Therefore
2™ x +zzz £y, 2™ | ux|, 2™z < 1

forallm =0, 1,..., k — 1. From the definition of f and (2.9), we have

o0
F@] < kizl + Y2 9@ ] < Kizl + =

n=k

; 6 3 3.3 8 6k*+ 12k

Duf (.. 2| < Kzl + 5 + F@F < k4D + o + 1zl
k3 + 6k* + 13k 8
. HAtm
20z| + 16(|x| + ly| + |z])
36(1x] + Iyl + I20).

INTA
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Therefore f satisfies (2.8). Let A : C — C be an additive function such that
If(x) —AX)| =< Blx|
for all x € C. Then there exists a constant ¢ € C such that A(x) = cx for all rational numbers x. So we have
IFeOl = (B +Ichlxl (2.10)

for all rational numbers x. Let m € N withm > B + |c|. If x is a rational number in (0, 2'™™), then 2"x e (0, 1) for all
n=0,1,...,m—1.So

m—1
F =) 272" = mx > (B + |cx

n=0
which contradicts (2.10). O
Now we establish the superstability of J*~-homomorphisms as follows.

Theorem 2.7. Let |r| > 1, and let f : A — B be a mapping satisfying f(rx) = rf (x) forallx € A. Let ¢ : A> — [0, 00) be a
mapping such that

lif (x + 222 +y) + uf (x — y) = 2f (ux) — wf @Df @ f @D < ¢(x,y.2) (2.11)

forallp € Tand allx,y, z € A. If there exists a constant 0 < L < 1 such that ¢(x,y,z) < |r|L¢(f, 3;’ f)for allx,y,z € A,
then f is a J*-homomorphism.

Proof. By using equation f (rx) = rf(x) and (2.11), we have f(0) = 0 and

lif % +y) + puf (x = y) = 2f (uo)l < Ir| "¢ ("%, 1"y, 0), (2.12)
If zz*2) = f@f @)*F @) < IrI7"$(0,0,1"2) (2.13)
forall x, y € A and all integers n. It follows from ¢ (x, y, z) < |r|L¢>(’r—‘, { f) that
Jim [r|""¢ "%, 1"y, 1"2) = 0
forall x, y, z € A. Hence we get from (2.12) and (2.13) that
W &x+y) +ufx—y) =2f(ux),  f@zz"2) = f@)f @)f(2)

forall u € Tandallx,y,z € A.So f is additive and f (ux) = uf(x) forall u € T and all x € A. By Lemma 2.2, f is C-linear
and we conclude that f is a J*~-homomorphism. O

The following theorem gives a similar result to Theorem 2.7 and we omit its proof.
Theorem 2.8. Let 0 < |r| < 1, and let f : A — B be a mapping satisfying f (rx) = rf (x) forall x € A. Let ¢ : A> — [0, c0) be

a mapping satisfying (2.11). If there exists a constant 0 < L < 1such that |r|¢(x,y,z) < Lo(rx, ry, 1z) forallx,y, z € A, then
f is aJ*-homomorphism.

Corollary 2.9. Let 0 < |r| # 1,p € (0,1) and §,6 > 0 be real numbers. Suppose that f : A — B is a mapping satisfying
f(@rx) = rf (x) for all x € A and the following inequality:

lif (x + 22"z +y) + uf (x —y) = 2f (ux) — wWf @DF @ f @I < 8 +0UxIP + IyIP + l1z1IP)
forallw € Tandallx,y, z € A. Then f is a J*-homomorphism.

Proof. Set ¢(x,y,z) = 8 + O(||x||” + |lylP + |lz||I?) allx,y,z € A.For |[r| > 1,letL = |r|P"'and for0 < |r| < 1, let
L = |r|'~P. Then we get the desired result by Theorem 2.7 (for |r| > 1) and Theorem 2.8 (for0 < |r| < 1). O

Corollary 2.10. Let 0 < |r| # 1,p > 1and & > 0 be real numbers. Suppose that f : A — B is a mapping satisfying
F(x) = 1f (x) for all x € A and the following inequality:

liuf (x + 22"z +y) + uf (x —y) = 2f (ux) — wf @OF @ F @1 < oUxI” + IyIP + l1zIIP)
forallpw € Tandallx,y, z € A. Then f is a J*-homomorphism.
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