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a b s t r a c t

We discuss a model of nonlocal dynamics describing non-dissipative interaction of
quantum systems. Within this framework, the evolution of the composite system is
governed by an operator equation

−iK̇ = KH + ĤK + βKf (K ∗K).

Here, H and Ĥ are time-independent self-adjoint Hamiltonians, x → f (x) is a real analytic
function, and β is a real parameter. We demonstrate that the equation is completely
solvable in the sense that a solution K = K(t) may be represented as a composition of
three factors, each determined from a decoupled linear problem. Namely, if K(0) = K0
then

K(t) = exp[iĤt] ◦ K0 ◦ exp[iβf (K ∗

0 K0)t] ◦ exp[iHt].

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The operator equation central to our discussion – see Eq. (17) – describes the evolution of a composite quantum state
via a nonlocal, nonlinear type dynamics. It is a direct generalization of an equation, which has already been introduced
in [1]. In that early stage the equation emerged from an attempt to reinterpret certain nonlinear Maxwell equations, [2,3],
and to explain their curiously nonclassical phenomenology. Strictly speaking, that prototype equation corresponds to the
case f (x) = x−1 and Ĥ = 0. Its solutions were described in [4] within the framework of finite-rank operators. Taking
a step toward equations with two local Hamiltonians is as natural mathematically as it is necessary from the physical
point of view. Mathematically, it accomplishes a symmetrization of the equation with respect to the Hermitian adjoint.
The physical motivation emerges from an interpretation of the equation on grounds of the Quantum Information Theory
(QIT), which we are lead to by applications. The main application thus far is that proposed in [5], where the equation is used
to develop a PDEmodel of QuantumHall type systems. In retrospect, themodelmay be interpreted through nonlocal pairing
of distinct quantum systems (one magnetic and one electronic). This has been brought to light in [6,7], where a link with
nonlocality, quantumentanglement, and other notions of QIT has beenmade explicit. An equation based on two independent
Hamiltonians has first been discussed in [8], albeit for the finite-dimensional casewith f (x) = x−1 only. Subsequently, I have
given a general description of the stationary states in [9], and a discussion of the spectra, mainly for f (x) = log x, in [10].
Remarkably, in this type of dynamics the spectrum (i.e. the set of the energy levels of the stationary states of the composite
system) can have a rich and nontrivial structure, e.g. it is shown in [10] that for a certain choice of the constituents the
spectrum is a Cantor set. This inherent complexity of the spectra encourages my belief that the nonlocal dynamics provides
quite a versatile modelling tool, adaptable to a variety of tasks one encounters in quantum and nano-system engineering.
An additional attractive feature of the nonlocal dynamics is how it blends many different themes, sometimes leading to
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unexpected new perspectives at the important classical objects, e.g. it is demonstrated in [10] that for a certain choice
of the constituents, the Riemann zeta function (that takes s = 1/β as its independent variable) comes to the fore in the
characterization of the ground state of the composite system.

In this article I discuss the time-dependent equation in a fairly general, infinite-dimensional setting. The main result is
an explicit formula for the solutions. It takes considerable effort to extend the finite-dimensional version of the results to
infinite-dimensions. The approach that seems to work best is based on the notion of strong derivatives, and this is the one
taken here. In consequence, the reader will find that the analytic structures employed below blend smoothly with those
needed in the formulation of the Hille–Yosida type theorems for the one-parameter semigroups. The results presented here
rely upon those classical theorems, and may be viewed as their direct extension toward nonlinear problems. The classical
Ref. [11] contains a very elegant exposition of the one-parameter semigroup theory, and has been particularly helpful in the
process of setting the main result on a rigorous foundation.

Operator equations are natural and frequently encountered in the quantum theory. Perhaps the most known examples
are the von Neumann equation (VNE), [12], and the quantum Markovian master equation (QMME), [13,14]. A number of
authors, motivated by different pursuits, has considered nonlinear generalizations of QMME, [15–19], or VNE, [20–22].
All those equations appear to have an essentially different structure than the one considered here, and require different
methods in order to describe solutions. Perhaps the general type of equations discussed in [23–25] have more in common
with the one considered here: while based on a single local Hamiltonian, they can have the same type of nonlinearity as
the one considered here. However, an analysis of the solutions is not undertaken therein. The reader may wish to consult
the Appendix in [9] for further comments about nonlinear operator equations encountered in the physics and mathematics
literature, and their relation to the equation considered here. In my view, one of the essential distinct features of Eq. (17)
– both mathematically and physically – is an insertion of nonlinearity in conformity with the Hamiltonian framework and
with the standard kinematics of composite quantum systems. A good question to be addressed in future is how to extend
the method developed here to discuss a model enhanced with a Jaynes–Cummings, [26], or similar type interaction term
in addition to the nonlinear term (see [27] for a brief discussion of the compatibility, but also differences, between the
two types of dynamics). It is also very intriguing to ask if these methods could be extended and applied to dissipative-type
dynamics. Such an extension would by no means be trivial, see e.g. Remark 5 at the end of the article.

2. Local quantum dynamics

Wewill briefly review the linear quantumdynamics in operator formalism; the reader interested in a thorough exposition
of this material may consult [11]. Let H be a separable Hilbert space. The state of a quantum system is a unit length
vector ψ ∈ H. Time evolution of the state may be described via a one-parameter family of isometry transformations
V (t) : H −→ H, t ∈ (−∞,∞). Moreover, the path V (t) is described infinitesimally via equation

− iV̇ (t) = V (t)H with an initial condition : V (0) = I. (1)
The operatorH is theHamiltonian of the quantum system. It is a self-adjoint linear operator, densely defined inH.We denote
its domain by D(H). D(H) ⊂ H is a dense linear subspace of H, and for all ψ ∈ D(H),Hψ ∈ H. The derivatives V̇ (t) and Eq.
(1) are understood in the strong sense, i.e.

−iV̇ (t)ψ = V (t)Hψ, ψ ∈ D(H),
where V̇ (t)ψ := limh→0

1
h (V (t + h)−V (t))ψ . As is well known, [11], Ch. IX, the initial value problem has a unique solution

V = V (t) : H −→ Hwith V (0) = I . Moreover, V (t) satisfies the group property
V (t + s) = V (t)V (s), for arbitrary t, s.

Since V (t) V (−t) = U(t − t) = U(0) = I , we have V (−t) = V (t)−1. In addition, V (t) is an isometry, i.e. V (t)∗ = V (t)−1
=

V (−t). Finally, V commutes with H , i.e.
V (t)Hψ = HV (t)ψ for ψ ∈ D(H). (2)

It is worthwhile mentioning that V (t) is constructed via a (strong) limit formula

V (t)ψ = lim
n→∞


1 − i

t
n
H

−n

ψ, ψ ∈ H.

It is common to use the notation V (t) = exp[iHt]. Since in our case H is a self-adjoint operator, V (t) may also be defined
via the functional calculus, [28], i.e.

V (t) =

∫
∞

−∞

eiλt dPλ,

where dPλ is the projection valuedmeasure induced by H

and H =


∞

−∞
λ dPλ


. Let us also take note of the fact that V̇ (t)ψ

exists if and only ifψ ∈ D(H), see [28, VIII. 4 (Stone’s theorem)]. This fact toomay be connectedwith the functional calculus.
Indeed, V̇ may be represented in the form

V̇ (t) =

∫
∞

−∞

iλ eiλt dPλ.
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Thus, the operator is well-defined on the set

D =


ψ ∈ H :

∫
∞

−∞

|iλ eiλt |2 d⟨ψ |Pλ|ψ⟩ < ∞


=


ψ ∈ H :

∫
∞

−∞

λ2 d⟨ψ |Pλ|ψ⟩ < ∞


= D(H).

In order to fix the notation, we introduce another quantum system described in the same way. It is endowed with another
separable Hilbert spaceH, state vectors denoted ϕ, and the evolution determined by a local Hamiltonian Ĥ via the equation

− iU̇ = ĤU = UĤ, U : H → H, U(0) = I. (3)

Again, the time derivative of U(t) is understood in the strong sense, and Eq. (3) is understood in the strong sense. Naturally,
U(t) has all the same properties as V (t).

Observe also that the strong limit is interchangeable with the operation of adjoint. In particular

(U̇(t))∗ = (U(t)∗)·. (4)

(This identity is also a direct consequence of the functional calculus.) Note that the domain of this operator (as defined by
either side of the identity) is D(Ĥ). It follows that

iU̇∗
= U∗Ĥ = ĤU∗, similarly iV̇ ∗

= V ∗H = HV ∗. (5)

We will also use the product rule for strong derivatives. Consider a composition A(t)B(t), where A = A(t) and B = B(t) are
each a one-parameter family of bounded operators. An elementary argument shows that if an argument vector ψ is such
that both Ḃψ and ȦBψ exist, then (AB)·ψ = ȦBψ + AḂψ .

3. Nonlocal dynamics of a composite system

LetH andH be two separableHilbert spaces, attributed to two quantum systems. Depending on the systems either Hilbert
space may be infinite dimensional or finite-dimensional. We wish to consider a composite system consisting of the two
subsystems. According to the standard rules of quantummechanics, such system is associatedwith the tensor product spaceH⊗H, [29]. This structure is the foundation formany kinematic concepts of quantummechanics, e.g. nonlocality, violation of
Bell inequalities, or quantum teleportation, [29], as well as some models of dynamics, such as the Jaynes–Cummings model
for cavity QED, [26,30]. In what follows we discuss a specific type of dynamics of a composite system, previously explored
in [7,8].

We find it convenient to work with H∗ (the dual space) rather than H itself—naturally all properties of the subsystem
can be inscribed in one space as well as the other, and the distinction is only formal. However, the algebraic structure of the
composite system space H ⊗ H∗ is better adapted to our purposes, as it enables an operator interpretation of the vectors.
Indeed, consider a Hilbert–Schmidt (H–S for short) operator of the form

K =

−
Kmn|ϕm⟩⟨ψn| : H → H (6)

where each of the two collections {ψn ∈ H}, {ϕm ∈ H} furnishes an orthonormal basis. Recall that the set of H–S operators
HS(H,H) = {K : H → H : Tr (KK ∗) < ∞} with the Hermitian product

⟨K |L⟩ = Tr

KL∗


(7)

is a separable Hilbert space. Indeed, there is an obvious canonical isomorphism

HS(H,H) ∼= H ⊗ H∗.

This isomorphism enables one to establish a ‘1–1’ identification of H–S operators with the (pure) states of a composite
quantum system, e.g. K is identified with |Ψc⟩ =

∑
Kmn|ϕm⟩ ⊗ ⟨ψn| ∈ H ⊗ H∗. The composite system at hand is composed

of subsystemsH and H∗. Let us define

ρ := K ∗K : H → H, ρ̂ := KK ∗
: H → H. (8)

Now, if K is a H–S operator, then ρ and ρ̂ are trace class operators. In addition, assuming ⟨K |K⟩ = 1 one automatically has
Tr ρ = 1 = Tr ρ̂. Such normalization conditions allow one to interpret ρ and ρ̂ as density operators, characterizing the
mixed states of the subsystems. Observe that

ρT
= TrH (|Ψc⟩⟨Ψc |) : H∗

→ H∗,

ρ̂ = TrH (|Ψc⟩⟨Ψc |) : H → H. (9)

In other words, our definition of ρ̂ fully coincides with the standard definition, prevalent in quantummechanics, while our
ρ is the transpose of the standard one.
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Recall that H–S operators are compact. Since compact operators form a two-sided ideal, [31,32], trace class operators are
a fortiori compact. In particular, ρ has a discrete spectrum. It consists of either a finite set of non-negative eigenvalues, or an
infinite set of positive eigenvalues and its accumulation point, 0, say

1 ≥ ρ1 ≥ ρ2 ≥ · · · 0.

In the latter case 0may but need not be an eigenvalue. Identities (8) directly imply that the sequence of nonzero eigenvalues
of ρ (listed with multiplicities) is identical with that of ρ̂. Therefore the spectra of both density operators are identical.
However, in the infinite-dimensional case it is a priori possible that 0 is an eigenvalue of ρ but not ρ̂, or vice versa. (To
illustrate this with an example, one can takeH = H, and let K :=

∑
∞

n=1
1
n |ϕn⟩⟨ϕn+1|. In this case ρ has a nontrivial kernel,

while ρ̂ is one-to-one, but not onto.)
We now turn attention to the dynamics of the composite system H ⊗ H∗. When the subsystems H and H∗ are isolated,

their evolution is governed by the rules of local quantum dynamics outlined in Section 2. At this stage, however, we wish to
allow the systems to interact. We assume a particular model of interaction, which is based on the energy functional

E(ρ, ρ̂) = Tr[Hρ] + Tr[ρ̂Ĥ] + βTrF(ρ). (10)

Here, F is an analytic function, such that F(x) is real for real argument x ∈ [0,∞), and β is a real parameter. (In some
applications, it may be appropriate to consider F that is defined only for x ≠ 0, such as F = log. The discussion then requires
an a priori assumption that ρ be nonsingular, or amodification of themeaning of log ρ. In order to keep technical complexity
in check we will adhere to the simpler scenario.) Note that

Tr F(ρ) =

∞−
k=1

F(ρk) = Tr F(ρ̂).

Note that the first two terms of (10) represent the expectation value of energy stored in the two subsystems, and so the
third term is the energy of interaction between the subsystems. The actual value of E depends on the composite system
state K , albeit indirectly, through the partial traces. It seems helpful to emphasize at this point that the spatial proximity or
remoteness of the two subsystems is of no consequence to the composite system state and, a fortiori, has no bearing on the
value of E. The model of interaction is not geometric. Hence, it is best described as nonlocal.

Note also, that for a special choice of F(x) = −x ln x, the third term represents the von Neumann entropy of either
subsystem, [12]. There are essential reasons to consider a general function F in its place. First, doing so does not make the
theory any more complex—on the contrary, it helps to reveal its underlying structure. Second, other choices of F are of
interest when one is modelling quantum systems, e.g. F = log is featured in [1,4,5]. At the same time, the interpretation
of Tr F(ρ) as entropy puts emphasis on the formal analogy between our suggestion to calculate the energy of a composite
system via E(ρ) and the statistical treatment of quantum ensembles, [33]. We emphasize, however, that here ρ describes a
specific single subsystem in amixed state, as opposed to a statistical ensemble. Also, in contrast to the techniques employed
in quantum statistical mechanics, we will use the functional E(ρ) to derive the dynamics.

Wewish to describe the evolution of the composite system state. (Recall that a state vector is identified with an operator
denoted K .) Substituting decomposition (8) into (10) yields

Ξ(K) =
1
2
E(K ∗K) =

1
2
Tr[K ∗KH] + Tr[K ∗ĤK ] + βTr F(K ∗K). (11)

With the H–S product this can be expressed in the form

2Ξ(K) = ⟨KH|K⟩ + ⟨ĤK |K⟩ + βTr F(K ∗K). (12)

Ξ assumes finite values on the set

ΓH,Ĥ,F := {K ∈ HS(H,H) : |⟨KH|K⟩| < ∞, |⟨ĤK |K⟩| < ∞, Tr F(K ∗K) < ∞}. (13)

One may view ΓH,Ĥ,F as an object analogous to a Sobolev space, e.g. we have:

Proposition 3.1. Let F(x) =
∑

∞

n=0 Fnx
n be an entire function such that

∑
∞

n=0 |Fn| |x|n < ∞ for all x. Then ΓH,Ĥ,F is a dense
linear subspace of HS(H,H).
Proof. We first show that ΓH,Ĥ,F is a linear space. Let K ≠ 0, so that Tr (K ∗K) = c with positive c. Since Tr

 1
c K

∗K


= 1,
all eigenvalues of 1

c K
∗K are nonnegative and bounded above by 1. Therefore

 1
c K

∗K
n

≤
1
c K

∗K , and Tr (K ∗K)n ≤ cn. This
implies

|Tr F(K ∗K)| ≤ Tr|
∞−
n=0

Fn(K ∗K)n| ≤ Tr
∞−
n=0

|Fn|(K ∗K)n =

∞−
n=0

|Fn|Tr(K ∗K)n ≤

∞−
n=0

|Fn|cn < ∞.
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Therefore, Tr F(K ∗K) is finite for allH–S operators. Now, since ⟨KH|K⟩ = ⟨KH
1
2 |KH

1
2 ⟩, condition |⟨KH|K⟩| < ∞ is equivalent

to KH
1
2 ∈ HS(H,H). The latter condition is manifestly linear, and defines a linear subspace in HS(H,H). The analogous

condition Ĥ
1
2 K ∈ HS(H,H) is also linear. This shows that ΓH,Ĥ,F is a linear subspace of H–S.

In order to see that ΓH,Ĥ,F is dense in H–S, we observe the following: Let K : H → H be of the form

K =

−
Kmn|ϕm⟩⟨ψn|, ψn ∈ D(H), ϕm ∈ D(Ĥ) (finite sum). (14)

Obviously, K ∈ ΓH,Ĥ,F . At the same time, operators of this form are a dense subset of H–S. Indeed, since the set of all finite
rank operators is dense in H–S, see e.g. [32], it suffices to check that finite rank operators can be approximated by operators
of type (14). This is seen as follows. Given

K =

−
Kmn|um⟩⟨vn|, um ∈ H, vn ∈ H (finite sum),

pick approximating sequences D(Ĥ) ∋ ϕ l
n → un, and D(H) ∋ ψ l

m → vm, and let

K (l) :=

−
Kmn|ϕ

l
m⟩⟨ψ l

n|.

It is a straightforward exercise to verify that ‖K (l) − K‖ → 0 (convergence in H–S norm). This completes the proof. �

The real-imaginary decomposition of the scalar product, ⟨K |L⟩ = (K , L)+ iω(K , L) introduces a symplectic form ω. It is
useful to observe the identity

2ω(L,−iK) = ⟨K |L⟩ + ⟨L|K⟩. (15)

We will show that the gradient of functionalΞ may be expressed as

DΞ(K)[Φ] = ω(Φ,−iKH − iĤK − iKf (K ∗K)), where f = F ′. (16)

The calculation of the gradient of the two sesquilinear terms is straightforward. The nonlinear part is more subtle and needs

to be discussed inmore detail. Wewish to calculate d
dε


ε=0

Tr F [(K +εΦ)∗(K +εΦ)]. Let us denote ρε = (K +εΦ)∗(K +εΦ),

and introduce the resolvent

R(ε, z) := (ρε − z)−1 , and R(z) := R(0, z).

The Dunford–Taylor formula, [11], reads

F [(K + εΦ)∗(K + εΦ)] = −
1

2π i

∫
γ

F(z)R(ε, z)dz, (ε sufficiently small).

The integral converges in the sense of operator norm, a fortiori in the strong sense. Here γ is a closed smooth curve in the
resolvent set of ρ0, which encircles the spectrum of ρ0. Note that if ε → 0, then ‖ρε − ρ0‖ → 0 (operator norm). Therefore
γ lies entirely in the resolvent set and retains the spectrum of ρε in its interior, for ε > 0 sufficiently small, see [11, Ch. IV,
Theorems 3.11 and 2.23]. Next, it follows from the second Neumann series, [11], that

d
dε


ε=0

F [(K + εΦ)∗(K + εΦ)] =
1

2π i

∫
γ

F(z)R(z)

Φ∗K + K ∗Φ


R(z)dz.

Since the integral converges in the strong sense we can interchange integration with trace. In this way we obtain

d
dε


ε=0

Tr F [(K + εΦ)∗(K + εΦ)] = Tr
d
dε


ε=0

F [(K + εΦ)∗(K + εΦ)]

=
1

2π i

∫
γ

F(z)Tr

R(z)


Φ∗K + K ∗Φ


R(z)


dz

=
1

2π i

∫
γ

F(z)Tr

R(z)2


Φ∗K + K ∗Φ


dz.

Subsequently, we note that ∂
∂z R(z) = R(z)2 (e.g. via the first Neumann series). Therefore, integrating the last expression by

parts we obtain
1

2π i

∫
γ

F(z)R(z)2 dz = −
1

2π i

∫
γ

f (z)R(z)dz = f (K ∗K) (f = F ′).

Therefore

⟨Kf (K ∗K)|Φ⟩ = Tr

f (K ∗K)Φ∗K


=

1
2π i

∫
γ

F(z)Tr

R(z)2Φ∗K


dz,
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and also

⟨Φ|Kf (K ∗K)⟩ = Tr

f (K ∗K)K ∗Φ


=

1
2π i

∫
γ

F(z)Tr

R(z)2K ∗Φ


dz.

Collecting the results, we have

d
dε


ε=0

Tr F [(K + εΦ)∗(K + εΦ)] = ⟨Kf (K ∗K)|Φ⟩ + ⟨Φ|Kf (K ∗K)⟩ = 2ω(Φ,−if (K ∗K)K),

where we have applied (15). In view of (16), the Hamiltonian flow ofΞ has the form

− iK̇ = KH + ĤK + βKf (K ∗K). (17)

An analysis of this evolution equation is the main focus of this article.
In the closing of this section, we make the following useful observation.

Lemma 3.1. Let K be a bounded operator and let f be analytic in an open set containing the spectrum of K∗K . Then Kf (K ∗K) =

f (KK ∗)K .

Proof. Observe that K(K ∗K − z) = (KK ∗
− z)K . Therefore, for z from the resolvent set we have

K(K ∗K − z)−1
= (KK ∗

− z)−1K .

Let γ be a curve in the resolvent set, encircling the spectrum of K ∗K . The Dunford–Taylor formula implies:

Kf (K ∗K) = −
1

2π i
K

∫
γ

f (z)(K ∗K − z)−1 dz = −
1

2π i

∫
γ

f (z)(KK ∗
− z)−1 dzK = f (KK ∗)K .

Note that the spectrum of K ∗K coincides with the spectrum of KK ∗, with the possible exception of a single point 0, so that
the same curve γ can be used in both integrals. �

4. A special class of solutions

Here, we assume that H (resp. Ĥ) have a purely discrete spectrum, consisting of eigenvalues hi (ĥi), say, h0 ≤ h1 ≤ · · ·

(resp. ĥ0 ≤ ĥ1 ≤ · · ·). In this case, it is not hard to find a matrix representation of the operators satisfying Eq. (17). Indeed,
let us assume

H =

∞−
n=0

hn|ψn⟩⟨ψn| (18)

and

Ĥ =

∞−
n=0

ĥn|ϕn⟩⟨ϕn| (19)

where (ψn)
∞

n=0 (respectively, (ϕn)
∞

n=0) is a complete list of the eigenfunctions of H (resp. Ĥ). The crucial step is to introduce
an Ansatz

K(t) =

∞−
n=0

kn|ϕn⟩⟨ψn|. (20)

Substituting (18)–(20) into Eq. (17) we obtain

ik̇n = kn

hn + ĥn + βf (|kn|2)


, n = 0, 1, 2, . . . .

Let the polar representation of the complex coefficients be

kn = rneiθn

We readily obtain ṙn = 0, so that rn(t) = rn(0) = rn, and θ̇n = hn + ĥn + βf (r2n ). Summarizing, the solution is represented
in the form

K(t) =

∞−
n=0

kn(0) e
it

hn+ĥn+βf (r2n )


|ϕn⟩⟨ψn|. (21)

Let us observe that in this case the mixed states of the subsystems are frozen in time, i.e. ρ(t) = ρ(0), ρ̂(t) = ρ̂(0). In
general, the mixed states may evolve in time, but their eigenvalue collections will be time-independent—see Corollary 5.1,
and the remark that follows it. It is also interesting to make the following observations (we will see later, cf. Corollary 5.2,
that they remain true for general solutions as well):
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Proposition 4.1. Let K(t) be given by (21). We have
1. If K(0) is a bounded operator, then K(t) is bounded for all t.
2. If K(0) is compact, then K(t) is compact for all t.
3. If K(0) is a Hilbert–Schmidt operator, then K(t) is Hilbert–Schmidt for all t.
4. If K(0) is a finite-rank operator, then K(t) is finite-rank for all t.

Proof. The class of K(t) is decided by the properties of the sequence (|kn(t)|)∞n=0, which is time-independent, i.e. |kn(t)| =

|kn(0)| =: |kn| for all t . The operator norm ‖K(t)‖ = sup{|kn(t)| : n = 0, 1, 2, . . .} is the same for all t . We conclude that
if K(0) is bounded, then K(t) is bounded for all t . For the operators K(t) to be compact it is necessary and sufficient that
the sequence (|kn|) is either finite (finite-rank operator), or infinite with the only accumulation point being 0. The operators
K(t)will be H–S if

∑
n |kn|2 < ∞. �

5. General solutions

In this section we assume for simplicity that f is continuous on [0,∞). This excludes functions that have a pole at 0 such
as f = log. However, we need this assumption to ensure that when K is a bounded operator, f (K ∗K) is also bounded. Also,
we emphasize that we do not introduce any restrictions on the spectra ofH or Ĥ . As wewill see, general solutions of Eq. (17)
have a triunitary structure, i.e. they can be expressed via an appropriate product of the initial condition and three distinct
operator exponentials. We begin with a formal definition of solutions.

Definition 5.1. An nontrivial (i.e. ≠0) operator K = K(t) : H → H, t ∈ (−∞,∞) is a solution of Eq. (17) if it satisfies the
following three conditions:
1. K(t) is a bounded operator for all t .
2. All K(t)map the domain of H into the domain of Ĥ , i.e.

K(t)[D(H)] ⊂ D(Ĥ), arbitrary t. (22)

3. Eq. (17) holds in the strong sense, i.e.

− iK̇ψ = KHψ + ĤKψ + βKf (K ∗K)ψ, ψ ∈ D(H). (23)

Here, f (K ∗K) = f (K(t)∗K(t)) is interpreted via the spectral theorem, and K̇(t) =
d
dt K(t) denotes the strong derivative.

The following observation is crucial in describing the solutions of (17).

Lemma 5.1. Assume that K(t) : H → H is a solution of (17), and define

T (t) := U∗(t) ◦ K(t) ◦ V (t)∗,

where V and U satisfy (1) and (3) (respectively). The operator T (t) : H → H is bounded, and satisfies

− iṪψ = βTf (T ∗T )ψ, ψ ∈ H. (24)

Proof. Since K(t) are bounded by definition, and U(t) and V (t) are unitary, T (t) are also bounded. Observe that for a
ψ ∈ D(H) one has

−iṪψ = −iU̇∗KV ∗ψ − iU∗K̇V ∗ψ − iU∗KV̇ ∗ψ.

We will inspect the right-hand side term by term. First, applying (5), we have

−iU∗KV̇ ∗ψ = −U∗KHV ∗ψ, ψ ∈ D(H).

Second, (5) implies V ∗ψ ∈ D(H), and the a priori assumption (22) ensures KV ∗ψ ∈ D(Ĥ). Therefore, applying (5), again, we
have

−iU̇∗KV ∗ψ = −U∗ĤKV ∗ψ, ψ ∈ D(H).

Furthermore, substituting ψ = V ∗ψ in (23), we obtain

−iU∗K̇V ∗ψ = U∗KHV ∗ψ + U∗ĤKV ∗ψ + βU∗Kf (K ∗K)V ∗ψ.

The last four equations put together imply

−iṪψ = βU∗Kf (K ∗K)V ∗ψ.

Observe that since T ∗T = VK ∗KV ∗, we have f (T ∗T ) = Vf (K ∗K)V ∗. This shows that Eq. (24) is satisfied for all ψ ∈ D(H).
However, since T (t) are continuous, the composition operators T (t)f (T (t)∗T (t)) are also continuous. Therefore, the equation
extends from the dense subset D(H) to the entire space H. �

Note that Eq. (24) involves only bounded operators. Next, we will characterize its solutions.
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Lemma 5.2. If T = T (t) satisfies Eq. (24) and T (0) = T0, then

T (t) = T0 exp[iβf (T ∗

0 T0)t]. (25)

Proof. Since the strong derivative and the adjoint operations commute (24) implies

iṪ ∗φ = βf (T ∗T )T ∗φ, φ ∈ H.
Using this, we calculate

−i(T ∗T )·ψ = −iṪ ∗Tψ − iT ∗Ṫψ = β

−f (T ∗T )T ∗T + T ∗Tf (T ∗T )


ψ = 0

for an arbitrary ψ ∈ H. Therefore T (t)∗T (t) = T ∗

0 T0, and T satisfies

− iṪ = βTf (T ∗

0 T0). (26)

Recall that f = f (x) is real for x ∈ [0, 1] by assumption, which ensures selfadjointness of the bounded operator f (T ∗

0 T0). It
follows that T (t) is as in (25). �

The following theorem is the main result, characterizing solutions of (17).

Theorem 5.1. All solutions of Eq. (17) have the triunitary structure characterized in statement I . Statement II gives sufficient
conditions on the initial condition K(0) = K0 that ensure the existence of a solution.

(I) If K(t) is a solution of Eq. (17) with initial condition K(0) = K0, then

K(t) = U(t)K0 exp[iβf (K ∗

0 K0)t]V (t), (27)

where V and U satisfy (1) and (3) (respectively). In particular a solution is uniquely determined by its initial value K(0).
(II) Assume that a bounded operator K0 : H → H satisfies

(i) K0[D(H)] ⊂ D(Ĥ).
(ii) exp[iβf (K ∗

0 K0)t][D(H)] ⊂ D(H).
Then, operator K(t) determined by K0 via (27) is a solution of (17).

Proof. (I) It follows from Lemmas 5.1 and 5.2 that if K(t) is a solution of (17) with K(0) = K0, then K(t) = U(t)T (t)V (t),
where T (t) satisfies (25) with T0 = T (0) = K0. Therefore, K(t) has the form (27).
(II) Let K(t) be defined by (27) with K0 such that all three conditions in II are satisfied. Since K(t) is automatically bounded,
we only need to verify that it satisfies (23). Let ψ ∈ D(H). We calculate

− iK̇ψ = −iU̇(t)K0 exp[iβf (K ∗

0 K0)t]V (t)ψ + βU(t)K0 exp[iβf (K ∗

0 K0)t]f (K ∗

0 K0)V (t)ψ

− iU(t)K0 exp[iβf (K ∗

0 K0)t]V̇ (t)ψ. (28)

Wewill examine the right-hand side term by term. First, it follows from (1) directly that the last term on the right-hand side
may be represented in the form

−iU(t)K0 exp[iβf (K ∗

0 K0)t]V̇ (t)ψ = U(t)K0 exp[iβf (K ∗

0 K0)t]V (t)Hψ = K(t)Hψ.

Next, we inspect the middle term. Observe that K(t)∗K(t) = V (t)∗K ∗

0 K0V (t) and subsequently

V (t)∗f (K ∗

0 K0)V (t) = f (K(t)∗K(t)).

Therefore, inserting V (t)V (t)∗ = I , we obtain

U(t)K0 exp[iβf (K ∗

0 K0)t]f (K ∗

0 K0)V (t)ψ = U(t)K0 exp[iβf (K ∗

0 K0)t]V (t)V (t)∗f (K ∗

0 K0)V (t)ψ
= K(t)f (K(t)∗K(t))ψ.

Finally, observe that Vψ ∈ D(H) by virtue of (2). Hence, condition (ii) ensures that exp[iβf (K ∗

0 K0)t]Vψ ∈ D(H). Condition
(i), in turn, ensures that K0 exp[iβf (K ∗

0 K0)t]Vψ ∈ D(Ĥ). Thus, we can substitute ψ = K0 exp[iβf (K ∗

0 K0)t]Vψ in (3), which
leads to

−iU̇(t)K0 exp[iβf (K ∗

0 K0)t]V (t)ψ = ĤU(t)K0 exp[iβf (K ∗

0 K0)t]V (t)ψ

= ĤK(t)ψ.

Collecting the above expressions for the right-hand side terms in (28), we see that K(t) satisfies (23). This completes the
proof of the theorem. �

As an immediate corollary, we obtain:
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Corollary 5.1. Let K(t) be a solution of Eq. (17). The evolution of the corresponding mixed state ρ = K ∗K, which represents the
first subsystem, is governed by the local H-dynamics, i.e.

ρ(t) = K(t)∗K(t) = V (t)∗K ∗

0 K0V (t), or infinitesimally: iρ̇(t) = [H, ρ] (strong). (29)

Similarly, the mixed state of the second subsystem, ρ̂ = KK ∗, evolves according to

ρ̂ = U(t)ρ̂0U(t)∗, −i ˙̂ρ(t) = [H, ρ̂] (strong). (30)

Proof. Observe that exp[iβf (K ∗

0 K0)t] commutes with K ∗

0 K0. With this in mind, both (29) and (30) follow directly from (27).
The infinitesimal versions are a consequence of (1) and (3). �

Remark 1. The above corollary shows that the mixed states of subsystems evolve according to the von Neumann equation.
Therefore the subsystemdynamics is local and linear. The nonlinearity inherent in (17) cannot be detected via an experiment
conducted on a subsystem. It alsomeans that interaction of the subsystems is non-dissipative. Indeed, dissipativeMarkovian
interaction is described by the master equation in Lindblad form, [13,12,29], which in addition to the commutator requires
a few extra terms.

Remark 2. It is interesting to observe that even if K(0) = K0 is normal, i.e. the two Hilbert spaces are identified H = H, and
K ∗

0 K0 = K0K ∗

0 , K = K(t) does not need to be normal for t ≠ 0. Indeed, the operators are normal if and only if V (t) = U(t)∗.

Corollary 5.2. If K∗

0 K0 is a trace class operator, then K(t)∗K(t) is a trace class operator for all t , and

Tr(K ∗K) = Tr(K ∗

0 K0). (31)

Moreover, if F(K0K ∗

0 ) is trace class, then

Tr F(K ∗K)· = 0. (32)

Similarly, if K0HK ∗

0 is trace class, then

Tr(KHK ∗)· = 0. (33)

Also, if K ∗

0 ĤK0 is trace class, then

Tr(K ∗ĤK)· = 0. (34)

A fortiori, if all compositions listed above are trace class, then

Ξ(K)· = 0 (conservation of energy). (35)

Proof. By Corollary 5.1 K ∗K = V (t)∗K ∗

0 K0V (t), which implies F(K ∗K) = V (t)∗F(K ∗

0 K0)V (t). Identities (31) and (32) are a
direct consequence. Next, applying Lemma 3.1 with the function exp[iβf (x)t] instead of f (x), we obtain

K0 exp[iβf (K ∗

0 K0)t] = exp[iβf (K0K ∗

0 )t]K0.

Next, substitute (27) and, using the above identity and (2), obtain

KHK ∗
= UK0 exp[iβf (K ∗

0 K0)t]VHV ∗ exp[−iβf (K ∗

0 K0)t]K ∗

0U
∗

= UK0 exp[iβf (K ∗

0 K0)t]HVV ∗ exp[−iβf (K ∗

0 K0)t]K ∗

0U
∗

= U exp[iβf (K0K ∗

0 )t]K0HK ∗

0 exp[−iβf (K0K ∗

0 )t]U
∗

=

U exp[iβf (K0K ∗

0 )t]

K0HK ∗

0


U exp[iβf (K0K ∗

0 )t]
∗
.

This shows thatKHK ∗ andK0HK ∗

0 are unitarily equivalent, and proves (33). Identity (34) follows froman analogous argument.
In view of the definition (11), identity (35) is a direct consequence of all the previous ones, and the well known cyclicity of
the trace Tr(KHK ∗) = Tr(K ∗KH). �

Corollary 5.3. If K0 is a compact operator, then K(t) is compact for all t .

Proof. Since the set of compact operators is an ideal, the claim follows directly from (27). �

Corollary 5.4. If K = K(t) satisfies (17), and K(0) = K0 is Fredholm, then K(t) is Fredholm for all t. Moreover,

index K(t) = index K0.

Proof. In view of (27) for a fixed tK(t) is a composition of K0 with unitary operators. Therefore, the two operators are either
simultaneously Fredholm, or simultaneously fail to be Fredholm. They belong in the same index class, because a composition
of operators is a sum of the indices of those operators, and the index of a unitary operator is zero, [32]. �
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Remark 3 (Polar Representation of Solutions). As is well-known, [31], any bounded operator, say, K : H → H admits a polar
decomposition in the form

K = WR,

where the self-adjoint non-negative operator R =
√
K ∗K : H → H is defined via the spectral decomposition theorem, and

W is a partial isometry, i.e. an isometry of KerW = (Im R)⊥ onto ImW ⊆ H. In particular,

W ∗W = E, WW ∗
= F , (36)

where E is the orthogonal projection onto (KerW )⊥ in H, and F is the orthogonal projection onto ImW = Im K inH.

While formula (27) provides a complete description of solutions to Eq. (17), it is interesting to display the solution in the
polar decomposition form K(t) = W (t)R(t). First, let K0 = W0R. Second, observe that ρ = K ∗K = R2 and by Corollary 5.1,
R2

= ρ(t) = V (t)∗ρ0V (t). It follows that

R(t) = V (t)∗R0V (t). (37)
On the other hand (27) yields

K = U(t)W0R0 exp[iβf (R2
0)t]V (t)

= U(t)W0 exp[iβf (R2
0)t]R0V (t)

= U(t)W0 exp[iβf (R2
0)t]V (t)V (t)

∗R0V (t).
Therefore,

W (t) = U(t)W0 exp[iβf (R2
0)t]V (t). (38)

It is interesting to observe that if H = 0 (while Ĥ is nontrivial), then V = I is time-independent, and so is R, i.e. only the
partial isometryW (t) evolves in time. Solutions of this type were investigated already in [4], albeit in a less general setting
in which K was a priori assumed to be a finite-rank operator.

Remark 4 (Application to Integro-Differential Equations). Let K be defined via integral kernel function k ∈ L2([0, 1]× [0, 1]),
i.e. for u ∈ L2[0, 1] set

Ku(x) =

∫
k(x, y)u(y)dy.

This is a basic model for Hilbert–Schmidt (H–S) operators. It is easy to see that K : L2[0, 1] → L2[0, 1] is a bounded
operator, whose operator norm equals the L2-norm of the kernel k [32]. An operator K ∗ is also a H–S operator with kernel
k∗(x, y) = k(y, x). For the sake of this example, we assume that H and Ĥ are also H–S with respective kernels h and ĥ. Let
for simplicity f (x) = x, and consider equation

− iK̇ = KH + ĤK + βKK ∗K . (39)

Equivalently, the equation may be written as an integro-differential equation for the kernel k, i.e.

− ik̇(x, y) =

∫
k(x, z)h(z, y)dz +

∫
ĥ(x, z)k(z, y)dz + β

∫∫
k(x, t)k(z, t)k(z, y)dz dt. (40)

Theorem 5.1 may be applied to see that the solution has the triunitary structure (27). In particular, the Theorem indicates
a nontrivial conclusion that the solution will remain a H–S operator for all times. Formula (27) may also be applied to the
numerical investigation of the discretized problem.

Remark 5. It is natural to ask if themain result will still hold if β is allowed to assume complex (or purely imaginary) values.
The answer is negative. Indeed, if β is complex, then the claim in Lemma 5.2 is no longer true. In consequence, formula (27)
cannot be expected to hold in that case.
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