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a b s t r a c t

We give a sheaf theoretic interpretation of Potts models with external magnetic field, in
terms of constructible sheaves and their Euler characteristics. We show that the polyno-
mial countability question for the hypersurfaces defined by the vanishing of the partition
function is affected by changes in the magnetic field: elementary examples suffice to see
non-polynomially countable cases that become polynomially countable after a perturba-
tion of the magnetic field. The same recursive formula for the Grothendieck classes, under
edge-doubling operations, holds as in the case without magnetic field, but the closed for-
mulae for specific examples like banana graphs differ in the presence of magnetic field. We
give examples of computation of the Euler characteristic with compact support, for the set
of real zeros, and find a similar exponential growth with the size of the graph. This can be
viewed as ameasure of topological and algorithmic complexity. We also consider the com-
putational complexity question for evaluations of the polynomial, and show both tractable
and NP-hard examples, using dynamic programming.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Several combinatorial graph polynomials have physical significance, either as partition functions of statisticalmechanical
models on graphs (Ising and Potts models), or as the Kirchhoff and Symanzik polynomials that appear in the parametric
form of Feynman integrals in perturbative quantum field theory. In both cases, it is interesting to consider various questions
related to the properties of these polynomials and of the hypersurfaces they define. For a survey of the quantum field theory
case, we refer the reader to [1], and for the case of Potts models, to [2,3] and to the general survey [4].

In this paper, we focus on another such polynomial with physical significance: the V-polynomial, which gives the
partition function of the Potts models with external magnetic field.

After recalling some general facts about these polynomials, we show in Section 2 that they admit a sheaf theoretic
interpretation as the Euler characteristics of a constructible complex F •

Γ over the graph configuration space ConfΓ (X) of
a smooth projective variety. This addresses a question posed to the second author by Spencer Bloch.

In Section 3, we consider the hypersurfaces defined by the vanishing of the V-polynomial, and the question of whether
these varieties are polynomially countable, that is, whether the counting of points over finite fields Fp is a polynomial in p. In
the case of quantum field theory, the analogous polynomial countability question has drawn a lot of attention in recent years,
in relation to questions on the occurrence of motives and periods in Feynman integrals. Counterexamples to polynomial
countability for the Kirchhoff polynomials of quantum field theory are very elusive, and only occur for combinatorially
complicated graphs with a large number of edges and loops (see the recently found examples in [5] and [6]). It is much
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simpler to find non-polynomially countable examples in the case of the Potts model partition function, see [3]. As expected,
even smaller graphs give rise to non-polynomially countable hypersurfaces in the case of the V-polynomial. However, a new
phenomenon occurs: polynomial countability depends on themagnetic field, and can occasionally be restored bymodifying
the magnetic field. We illustrate these phenomena in the simplest examples.

In Section 4 we consider the class in the Grothendieck ring of varieties of the complement of the hypersurface defined
by the vanishing of the V-polynomial. We show that the same recursive formula for edge-doubling, proved in [2] in the case
without magnetic field, continues to hold in this case. However, the presence of magnetic field alters the initial terms of the
recursion. We compute the resulting closed form of the class for the case of banana graphs and compare it with the case
without magnetic field. As in [2], we then focus on the set of real zeros, and its Euler characteristic with compact support, as
a measure of complexity (topological and algorithmic) of the analytic set of real zeros. We provide simple examples where
this quantity grows exponentially with the size of the graph.

In Section 5we consider a different kind of complexity question regarding the V-polynomials, namely the computational
complexity of evaluating at a point. Using dynamic programming, we show that line and polygon graphs are tractable, while
full binary trees, and trees that limit to the line are NP-hard.

1.1. The V-polynomial

The correspondence between the Tutte polynomial and the partition function assumes a zero-field Hamiltonian [7],
which excludes several important cases, including the presence of an external magnetic field. However, there exists a
combinatorial polynomial that is the evaluation of the Potts model with an external field, the V-polynomial. In this paper,
we will study the algebraic, topological, and computational complexity of the V-polynomial.

Let Γ be a finite graph, with edge set E(Γ ) and vertex set V (Γ ). A vertex weight on Γ is a function ω : V (Γ ) → S, with
S a torsion-free abelian semigroup.

We recall from [7] the definition of the V-polynomial. It is a polynomial in Z[t = (te)e∈E(Γ ), x = (xs)s∈S], where the te
are edge variables (edge weights), and the xs account for the presence of the magnetic field. We view the V-polynomial as
a map VΓ : A#E(Γ )

× A#S
→ A. For a subset A ⊆ E(Γ ), we denote by ΓA ⊂ Γ the subgraph of Γ with V (ΓA) = V (Γ ) and

E(ΓA) = A. Let ΓA,j, for j = 1, . . . , b0(ΓA) be the connected components of ΓA. Then the V-polynomial is defined as

VΓ (t, x) =


A⊆E(Γ )

b0(ΓA)
j=1

xsj

e∈A

te, (1.1)

where sj =


v∈ΓA,j
ω(v) is the sum of the weights attached to all the vertices in the jth component.

The V-polynomial is determined recursively by the deletion–contraction relation.
• For an edge e ∈ E(Γ ) that is not a looping edge,

VΓ (t, x) = VΓ re(t̂, x) + te VΓ /e(t̂, x), (1.2)

with t̂ the vector of edge variables with te removed.
• For a looping edge e

VΓ (t, x) = (te + 1)VΓ re(t̂, x). (1.3)
• If Γ consists of a set of vertices V (Γ ) and no edges, E(Γ ) = ∅, then

VΓ (t, x) =


v∈V (Γ )

xω(v), (1.4)

where ω : V (Γ ) → S is the vertex weight.

Relations between the V-polynomial, theW -polynomial of [8], and the multivariable Tutte polynomial are described in [7].

1.2. The V-polynomial and magnetic field

The physical interpretation of the V-polynomial as partition function of the Potts model with magnetic field comes from
rewriting the Fortuin–Kasteleyn representation (1.1) of the polynomial as the partition function

ZΓ =


A⊆E(Γ )

b0(ΓA)
j=1

XMcj


a∈A

(e−βJe − 1),

where β is a thermodynamic inverse temperature parameter, the Je are the nearest-neighbor interaction energies along the
edges, and M is the magnetic field vector, with

XMcj
=


v∈V (ΓA,j)

e−βMv ,

with ΓA,j the jth connected component of the graph ΓA.
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2. A sheaf-theoretic interpretation of Potts models with magnetic fields

It is known (see [9]) that the values at integers n of the chromatic polynomial of a graph are the Euler characteristics of
the graph configuration spaces ConfΓ (Pn−1).

A natural question then arises: whether one can similarly interpret the V-polynomial VΓ (t, x) of the Potts model with
magnetic field as an Euler characteristic of some constructible sheaf (or constructible complex) F •

Γ on the configuration
spaces ConfΓ (X) of some smooth projective variety X . In this section we give a positive answer to this question. For
generalities about constructible sheaves, we refer the reader to the monographs [10] and [11].

The graph configuration spaces are defined as follows. Let X be a smooth projective variety and let Γ be a finite graph
with no looping edges and no parallel edges. Then one defines

ConfΓ (X) = X#V (Γ ) r ∪e∈E(Γ ) ∆e, (2.1)

where ∆e ⊂ X#V (Γ ) is the diagonal ∆e = {(xv)v∈V (Γ ) | xs(e) = xt(e)}, where {s(e), t(e)} = ∂e. Graph configuration
spaces and their compactifications were recently used in Feynman integral computations in relation to periods andmotives,
[12,13].

In order to recover the VΓ (t, x) as Euler characteristic χ(ConfΓ (X), F •
Γ ), it suffices to show that the latter satisfies the

deletion–contraction relation (1.2) and the normalization (1.4), which completely characterize the V-polynomial.

Theorem 2.1. Let Γ be a finite graph with no looping edges and no parallel edges. Let S be the set of vertex weights. Let X be a
smooth projective variety, and, for each s ∈ S, let F •

s be a constructible complex on X with

xs := χ(X, F •

s ). (2.2)

Assume all the χ(X, F •
s ) ≠ 0, for all s ∈ S. For ∆e ⊂ Xs(e) × Xt(e) the edge diagonal, and for F •

ω(s(e)), F
•

ω(t(e)) constructible
complexes on X, let

te := −
χ(∆e, ι

!

∆e
(F •

ω(s(e))

L
� F •

ω(t(e))))

χ(X, F •

ω(s(e))+ω(t(e)))
. (2.3)

There is a constructible complex F •
Γ on ConfΓ (X), determined by the constructible complexes F •

s on X, with s ∈ S, such that the
V-polynomial satisfies

VΓ (t, x) = χ(ConfΓ (X), F •

Γ ). (2.4)

Proof. The hypothesis that the graphΓ has no parallel edges and no looping edges ismotivated by the observation that, ifΓ
has at least one looping edge ewith xs(e) = xt(e) then the diagonal associated to that edge is the whole space ∆e = X#VΓ and
the configuration space is empty ConfΓ (X) ⊂ X#V (Γ ) r ∆e = ∅, hence in such cases the statement is vacuous. Moreover,
if Γ has multiple parallel edges, say e1, e2 with ∂(e1) = ∂(e2), then ∆e1 = ∆e2 , and the configuration space ConfΓ (X)
is the same as that of the same graph where all but one in each set of parallel edges are removed. Thus, we can assume
to work only with graphs with neither parallel nor looping edges. In the procedure that follows we will perform repeated
operations of deleting and contracting edges from the initial graph. If Γ has no parallel edges then all the contractions Γ /e
have no looping edges. If some contraction has parallel edges, we interpreted the resulting configuration space equivalently
as the configuration of the corresponding graph with only simple edges, as above, so that looping edges do not appear when
performing further contractions, hence all the resulting configuration spaces are non-empty.

Recall that a continuous function f determines an exceptional inverse image functor f !, which is the right adjoint of Rf!
(Verdier duality), see §3.2 of [10]. In the particular case of the inclusion ι : Z ↩→ X of a locally closed subspace, a more
explicit description of the exceptional inverse image functor ι! is given in Proposition 3.2 of [10] and in §3.1.12 of [11]. Let
ι∆e : ∆e ↩→ Xs(e)×Xt(e) ↩→ X#VΓ be the inclusion of the diagonal corresponding to an edge e, and let ι!∆e

be the corresponding
exceptional inverse image functor. Let e be an edge in Γ . Then

ConfΓ re(X) = ConfΓ (X) ∪ ConfΓ /e(X)

is a Whitney regular stratification (see Example 1.8 of [14]). Thus, by Theorem 4.1.22 of [10], given a constructible complex
F • on ConfΓ re(X), we have

χ(ConfΓ (X), F •) = χ(ConfΓ re(X), F •) − χ(ConfΓ /e(X), ι!∆e
F •). (2.5)

Note that if e is in a set of multiple parallel edges of Γ so that the contraction Γ /e has looping edges, the last term in (2.5)
is trivial, since ConfΓ /e(X) is empty, and we simply get the relation χ(ConfΓ (X), F •) = χ(ConfΓ re(X), F •), which means
we can reduce multiple edges to simple edges, as assumed above.

Iterating this relation by repeatedly removing and contracting edges, until there are no edges left,we obtain an expression
for χ(ConfΓ (X), F •) as a sum over the set of all subsets A ⊆ E(Γ ), of terms (with signs) of the form χ(ConfΓA/A(X), ι!AF

•),
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where ΓA is the graph with vertex set V (ΓA) = V (Γ ) and edge set E(ΓA) = A, while ΓA/A is the graph obtained from ΓA
by contracting all the edges. This is a graph with #V (ΓA/A) = b0(ΓA), the number of connected components, and with
E(ΓA/A) = ∅.

Recall that, for a product X1 × X2, with pi, i = 1, 2 the projections onto the two factors, and for constructible complexes

F •

i over Xi, one denotes by F •

1

L
� F •

2 = p−1
1 F •

1

L
⊗ p−1

2 F •

2 the external left derived tensor product of the F •

i , see Corollary
2.3.30 of [10]. We consider on ConfΓA/A(X) = Xb0(ΓA) a constructible complex of the form

F •

ΓA/A :=
L
�j=1,...,b0(ΓA)F

•

sj ,

where the F •
sj are the constructible complexes in the collection {F •

s }s∈S , where sj = ω(vj) is the weight of the jth vertex vj

of ΓA/A. Then, by the Künneth formula of Corollary 2.3.31 of [10], we have

χ(ConfΓA/A(X), F •

ΓA/A) =

b0(ΓA)
j=1

χ(X, F •

sj ).

Thus, we only need then to compare the Euler characteristic χ(ConfΓA/A(X), ι!AF
•) with the Euler characteristic

χ(ConfΓA/A(X), F •

ΓA/A).
Recall that, if v1 and v2 are two vertices in a graph Γ , connected by an edge e ∈ E(Γ ) and if v is the corresponding

vertex in the contraction graph Γ /e, then the vertex weights satisfy ω(v) = ω(v1) + ω(v2) ∈ S, see §2.2. of [7]. Consider

the constructible complex F •
=

L
�v∈V (Γ )F

•

ω(v) on X#V (Γ ). We have χ(X#V (Γ ), F •) =


v χ(X, F •

ω(v)). When we contract an
edge e ∈ A, we obtain, by definition of the variable te

χ(X, ι!∆e
(F •

ω(s(e))
L
� F •

ω(t(e)))) = −te χ(X, F •

ω(s(e))+ω(t(e))).

Let V (ΓA,j) be the set of vertices in the jth connected component of ΓA. Inductively, we obtain

χ(ConfΓA/A(X), ι!AF
•) = (−1)#A


e∈A

te
b0(ΓA)
j=1

χ(X, F • 
v∈V (ΓA,j)

ω(v)).

Thus, we obtain

χ(ConfΓ (X), F •) =


A⊆E(Γ )


e∈A

te
b0(ΓA)
j=1

xj

where xj = χ(X, F •
v∈V (ΓA,j)

ω(v)
). �

3. Polynomial countability (arithmetic complexity)

In this section we consider the polynomial countability question for the affine hypersurfaces defined by the vanishing
of the V-polynomial. We show that one can find non-polynomially countable examples already for the simplest polygonal
graphs. However, we also show in a very simple example that one can sometime restore polynomial countability by changes
to the magnetic field.

3.1. The V-hypersurfaces

Let Var(Γ ) ⊂ E(Γ ) × S be the set of indices of variables (t, x) the V-polynomial of Γ depends on, and let

VΓ = {(t, x) ∈ A#Var(Γ )
| VΓ (t, x) = 0} ⊂ A#Var(Γ ) (3.1)

be the affine hypersurface determined by the vanishing of the V-polynomial. Since the polynomial has integer coefficients
(in fact, all coefficients are equal to 1), we can regard the variety VΓ as defined over Q, and in fact over Z.

For the reduction of VΓ modulo a prime p, we let NVΓ
(q) be the counting function that gives the number of Fq-points,

for a power q = pr . The hypersurface VΓ is polynomial countable if, for all p and q = pr , the counting function NVΓ
(q) is a

polynomial in q with Z-coefficients.
We can regard the behavior (polynomial or non-polynomial) of the counting function NVΓ

(q) as an indicator of the
arithmetic (or motivic) complexity of the hypersurfaces VΓ .
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3.2. The polynomial countability question

For the Kirchhoff polynomial, all graphswith fewer than 12 edgeswere verified to give rise to polynomially countable hy-
persurfaces in [15], using amethod of [16]. However, a general result of [17] showed that the graph hypersurfaces additively
generate a localization of theGrothendieck ring of varieties, hencemost graphs havenecessarily non-polynomially countable
hypersurfaces. Indeed, more recently, explicit non-polynomially countable examples (starting at 14 edges) were obtained
in [5] and [6]. The analogous polynomial countability question for the hypersurfaces defined by the Potts model polynomial
is considerably simpler. It was shown in [3] that already the Potts model hypersurface associated to the tetrahedron graph
Γ = K4 is not polynomially countable. Similarly, hypersurfaces defined by polynomials arising in Ponzano–Regge models
of quantum gravity were shown to be non-polynomially countable for the tetrahedron graph, [18]. Clearly, one expects that
polynomial countabilitywill fail evenmore easily in the case of Pottsmodelswith externalmagnetic fields. This is indeed the
case, in the sense that it is very easy to find very small graphs for which the V-hypersurface is not polynomially countable.
However, a new phenomenon occurs: a perturbation of the magnetic field can restore polynomial countability.

3.3. Constant magnetic field and perturbations

We discuss here the simplest possible example that illustrates the phenomenon described above. We first consider
the triangle graph with constant external magnetic field. We show that the associated V-hypersurface is not polynomially
countable. We then show that changing the magnetic field can restore polynomial countability.

Lemma 3.1. The V-polynomial for the triangle graph with a constant magnetic field (equal to 1 at each vertex) is given by

x31 + (te1 + te2 + te3)x2x1 + (te1 te2 + te2 te3 + te1 te3 + te1 te2 te3)x3. (3.2)

Proof. This follows directly from (1.1), in the case with a constant magnetic field. �

Theorem 3.2. TheV-hypersurface of the triangle graphwith a constantmagnetic field equal to1 at each vertex is not polynomially
countable.

Proof. We write (3.2) equivalently as

x31 + (te1 + te2 + te3)x2x1 + x3(te1(te2 + te3 + te2 te3) + te2 te3). (3.3)

We break the counting of zeros of the polynomial over a finite field Fp into several cases. First, when x1 = 0 then x2 can be
anything. Still assuming x1 = 0, the case when x3 = 0 then contributes p4 zeros. When x3 ≠ 0 (with x1 = 0), then we have

te1(te2 + te3 + te2 te3) + te2 te3 = 0. (3.4)

If te2 + te3 + te2 te3 = 0, then te2 te3 = 0, so both te2 and te3 are 0 and te1 can be anything. Thus, this case contributes p2(p− 1)
points. Otherwise, we have

te2 ≠ −
te3

te3 + 1
and te1 = −

te2 te3
te2 + te3 + te2 te3

,

contributing p2(p − 1)2 points.
Now, suppose that x1 ≠ 0. Then, when te1 + te2 + te3 ≠ 0, we can solve for x2 with x3 arbitrary. This case contributes

p3(p − 1)2 points. Now suppose that te1 = −(te2 + te3). Then x2 can be arbitrary. Substituting for te3 , we have

x31 + x3(t2e1 + t2e2 + te1 te2 + t2e1 te2 + te1 t
2
e2) = 0. (3.5)

Let us set

f (te1 , te2) = t2e1 + t2e2 + te1 te2 + t2e1 te2 + te1 t
2
e2 . (3.6)

Then, whenever f (te1 , te2) ≠ 0, we have that

x3 =
x31

f (te1 , te2)
.

This contributes a number of points equal to (p − 1)p(p2 − Z[f (te1 , te2)]), where Z[f (te1 , te2)] denotes the number of Fp-
points of f (te1 , te2) = 0. Now, arguing as in [15], if Z[f (te1 , te2)] were a polynomial, it would have to be linear, which it is
not by inspection. �

Wenow consider the same graph, butwith a variablemagnetic field. In particular, we look at the casewhere themagnetic
field is zero at two of the vertices.
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Lemma 3.3. The V-polynomial of the triangle graph with a magnetic field of 1 at one of the vertices and 0 at the others is given
by

x1(x20 + x0(te1 + te2 + te3) + te1(te2 + te3 + te2 te3) + te2 te3). (3.7)

Proof. Again, this follows immediately from (1.1). �

Theorem 3.4. The V-polynomial of the triangle graph with a magnetic field of 1 at one of the vertices and 0 at the others is
polynomially countable.

Proof. If x1 = 0, then the polynomial (3.7) is zero, with the other variables free, hence contributing p4 points over Fp. If
x1 ≠ 0, then suppose x0 ≠ −te2 − te3 − te3 te2 . In this case we have

te1 =
x20 + x0(te2 + te3) + te2 te3
x0 + te2 + te3 + te2 te3

,

with te2 and with te3 free. This case thus contributes (p− 1)2p2 points. If x0 = −te2 − te3 − te3 te2 , then, after substituting, we
need to solve for te2 te3 + te2 t

2
e3 + t2e2 te3 + t2e2 t

2
e3 = 0. Counting the pairs which satisfy this equation, this contributes a total

of (p − 1)p(2(p − 2) + p) zeros. Therefore, the total number of zeros of the polynomial is 4p − 7p2 + 2p3 + 2p4, which is a
polynomial in p. �

4. The Euler characteristic (topological complexity)

The polynomial countability question considered in the previous section is closely related to the form of the class
[VΓ ] of the hypersurface in the Grothendieck ring of varieties. Recall that, for R a field or ring, the Grothendieck ring
K0(VR) of varieties over R is generated by the isomorphism classes [X] of smooth quasi-projective varieties, with the
inclusion–exclusion relation [X] = [Y ] + [X r Y ] for Y ⊂ X a closed embedding and with the product given by [X][Y ] =

[X × Y ]. The Lefschetz motive L = [A1
] is the class of the affine line. If the class of a variety is a polynomial [X] =


k akL

k

in the Lefschetz motive, then X is polynomially countable, and the converse is conditional to conjectures on motives.
In the case of the graph polynomials of quantum field theory, [19], and of the Potts model without magnetic field, [2],

recursive formulae were obtained for the Grothendieck classes of the hypersurface complements, under simple operations
performed on the underlying graph, such as doubling or splitting edges.

In this section we consider the edge-doubling operation and we show that the same recursion continues to hold in the
case with magnetic field, but the initial step of the recursion is changed by the presence of the magnetic field. We compute
the resulting classes for the banana graphs.

We then compute the Euler characteristic with compact support of the set of real solutions, again in the case of the
banana graphs, where we show it grows exponentially with the size of the graph. As shown in [2] (see also [20–22]), the
Euler characteristic with compact support can be used as an estimate of algorithmic complexity of the analytic set of real
solutions.

4.1. Deletion–contraction relation and classes in the Grothendieck ring

In both the cases of the graph polynomials of quantum field theory and the Potts model partition function, the key ingre-
dient in order to obtain recursive formulae for the Grothendieck classes under iterated edge doubling, is a formula relating
the deletion–contraction property of the polynomial to a relation between the classes. One does not have an actual dele-
tion–contraction relation at the level of Grothendieck classes (for example, because if such a relation existed, then the classes
would always remain in the Tate part Z[L] of the Grothendieck ring, which we know is not the case). However, one obtains
from (1.2) a relation

[A#Var(Γ ) r VΓ ] = L[A#Var(Γ )−1 r (VΓ re ∩ VΓ /e)] − [A#Var(Γ )−1 r VΓ re]. (4.1)

The remaining cases (bridges and looping edges) are simpler, and give the class [A#Var(Γ ) r VΓ ] as a function of either the
class of the deletion or that of the contraction and the Lefschetz motive, see [2].

4.2. Edge doubling and parallel edges recursion

Let eΓ denote the graph obtained from a given graph Γ by doubling an edge e that is not a looping edge. We also denote
by mΓ the graph obtained by adding m edges parallel to e in Γ . Let f denote the new edge resulting from the doubling of
an edge e. Using the deletion–contraction relation (1.2) for the V-polynomial, we obtain the following expression for the
V-polynomials of eΓ :

VeΓ = VΓ re + (te + tf + tetf )VΓ /e. (4.2)
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As in [2], we set ue = 1 + te and uf = 1 + tf . With this change of variables, we can write (4.2) equivalently as

VeΓ = VΓ re + (ueuf − 1)VΓ /e. (4.3)

Let Var(Γ ) ⊂ E(Γ ) × S be the set of indices of variables (t, x) the V-polynomial of Γ depends on. This set depends
not only on Γ but also on the assignment of the magnetic field. Let VeΓ = {(t, x) ∈ A#Var(eΓ )

| VeΓ (t, x) = 0} denote the
hypersurface in A#Var(eΓ ) determined by the vanishing of the V-polynomial. Let {VeΓ } denote the class in the Grothendieck
ring of the hypersurface complement

{VeΓ } := [A#Var(eΓ ) r VeΓ ] ∈ K0(VZ). (4.4)

The following result is the analog, in the case with magnetic field, of Theorem 6.1 of [2] for the Potts model without
magnetic field. Notice that the presence of the magnetic field does not alter the edge-doubling relation, which remains the
same as in the original Potts model case.

Theorem 4.1. Let eΓ be the graph obtained by doubling an edge e in Γ , that is not a looping edge. Then the class {VeΓ } of the
hypersurface complement satisfies

{VeΓ } = T{VΓ } − (T + 1){Z(VΓ re − VΓ /e)}, (4.5)

where T = [Gm] = L − 1 is the class of the multiplicative group, with L the Lefschetz motive, and with Z(VΓ re −VΓ /e) the locus
defined by the vanishing of the polynomial VΓ re − VΓ /e.

Proof. The argument is analogous to Theorem 6.1 of [2]. We break the computation of the Grothendieck class {VeΓ } into
several cases. If VΓ /e = 0, then VΓ re ≠ 0, and ue and uf are free variables. Thus, this case contributes a term

(T + 1)2[VΓ /e r (VΓ /e ∩ VΓ re)]. (4.6)

If VΓ /e ≠ 0, then we have one of two possibilities. The first is that VΓ /e = VΓ re, in which case ueuf ≠ 0, contributing a class

T2
[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)]. (4.7)

The other possibility is that VΓ /e ≠ VΓ re. In this case ueuf ≠ c for some c ≠ 0. If ueuf = c , then uf ≠ 0 and ue = c/uf ,
which gives a L − 1. Therefore, this term contributes a class

(T2
+ T + 1)[(A#Var(Γ )−1 r VΓ /e) r Z(VΓ re − VΓ /e)].

Thus, the class of the hypersurface complement of VeΓ is given by

(T + 1)2[VΓ /e r (VΓ /e ∩ VΓ re)] + T2
[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)]

+ (T2
+ T + 1)[(A#Var(Γ )−1 r VΓ /e) r Z(VΓ re − VΓ /e)].

This can be simplified to

(T + 1)2[VΓ /e r (VΓ /e ∩ VΓ re)] − (T + 1)[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)]

+ (T2
+ T + 1)[(A#Var(Γ )−1 r VΓ /e)]

= (T2
+ 2T + 1)[VΓ /e] − (T + 1)2[VΓ /e ∩ VΓ re] − (T + 1)[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)]

+ (T2
+ T + 1)[(A#Var(Γ )−1 r VΓ /e)]

= T[VΓ /e] − (T + 1)2[VΓ /e ∩ VΓ re] − (T + 1)[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)] + (T2
+ T + 1)L#Var(Γ )−1

= (T + 1)2(L#Var(Γ )−1
− [VΓ /e ∩ VΓ re]) − T(L#Var(Γ )−1

− [VG/e])

− (T + 1)[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)].

We can express {VΓ /e ∩ VΓ re} using the deletion–contraction relation (4.1), obtaining

(T + 1)({VΓ } + {VΓ /e}) − T({VΓ /e}) − (T + 1)[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)]

= (T + 1)({VΓ }) + {VΓ /e} − (T + 1)[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )|−1 r VΓ /e)].

Then, since we have

(T + 1)[Z(VΓ re − VΓ /e) ∩ (A#Var(Γ )−1 r VΓ /e)] = Z(VΓ re − VΓ /e) r (VΓ /e ∩ VΓ re),

applying deletion–contraction once more, we get that the class of the complement is equal to (4.5). �

As in Theorem 6.4 of [2], we then obtain the recursion relation for multiple parallel edges. Again, this is unaltered with
respect to the case without magnetic field.
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Corollary 4.2. Let mΓ be the graph obtained by adding m ≥ 2 edges parallel to e in Γ . The Grothendieck classes {VmΓ } of the
hypersurface complements satisfy the recursion relation

{VmΓ } = (2T + 1){Vm−1Γ } − T(T + 1){Vm−2Γ }. (4.8)

Proof. As in [2], the relation (4.8) is obtained from the relation for the class {VeΓ } of the graph eΓ obtained by doubling the
edge e. �

Thus, for the case with magnetic field, we obtain the same generating function as in Theorem 6.5 of [2] for the original
case without magnetic field.

Corollary 4.3. The exponential generating function for the hypersurface complements {VmΓ } is
m≥0

{VmΓ }
sm

m!
= ((T + 1){VΓ } − {V1Γ })eTs

+ ({V1Γ } − T{VΓ })e(T+1)s. (4.9)

Proof. The argument is the same as in Theorem 6.5 of [2]. �

4.3. Potts models with magnetic field on banana graphs

As in [2], we can use the recursive formula for multiple edges described above to compute the Grothendieck classes of
the hypersurface complements for the banana graphs. The nth banana graph is the graph with two vertices of valence n and
n parallel edges connecting them.

Lemma 4.4. 0Γ is the graph with two vertices and a single non-looping edge between them. The corresponding Grothendieck
class is

{V0Γ } = (T + 1)T2
+ (T + 1)2T2. (4.10)

Proof. The V-polynomial of 0Γ is given by

V0Γ = texc1+c2 + xc1xc2. (4.11)

If xc1+c2 = 0, then te is free and xc1xc2 ≠ 0, contributing a class

L(L − 1)2 = (T + 1)T2. (4.12)

If xc1+c2 ≠ 0, then te ≠ −
xc1xc2
xc1+c2

contributing a class

L2(L − 1)2 = (T + 1)2T2. � (4.13)

Lemma 4.5. 1Γ is the graph with two vertices and a pair of parallel edges, e, f , between them. Then the Grothendieck class is

{V1Γ } = (T + 1)2T2
+ (T + 1)2T3

+ T(T + 1)(T2
+ T + 1). (4.14)

Proof. The V-polynomial of this graph is

V1Γ = xc1+c2(te + tf + tetf ) + xc1xc2. (4.15)

If xc1+c2 = 0, then xc1xc2 ≠ 0 and te and tf are free, contributing a class

L2(L − 1)2 = (T + 1)2T2. (4.16)

If xc1+c2 ≠ 0, then xc1+x2(tf + 1)te ≠ −xc1xc2 − tf . So if tf ≠ −1, this is equivalent to

te ≠
−xc1xc2 − tf
xc1+x2(tf + 1)

,

contributing a class

L2(L − 1)3 = (T + 1)2T3. (4.17)

If tf = −1, then this is equivalent to xc1xc2 ≠ −1, contributing a class

L(L − 1)((L − 1)2 + L) = T(T + 1)(T2
+ T + 1). (4.18)

Therefore, in total, we obtain (4.14). �
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We then obtain the following.

Theorem 4.6. The Grothendieck class {VmΓ } of the hypersurface complement for the Potts model with magnetic field on the mth
banana graph is given by

{VmΓ } = −(1 + T)Tm+1
+ T(T + 1)m+3. (4.19)

Proof. Using Lemmas 4.4 and 4.5, together with the generating function (4.9), we obtain

{VmΓ } = ((T + 1)((T + 1)T2
+ (T + 1)2T2) − ((T + 1)2T2

+ (T + 1)2T3
+ T(T + 1)(T2

+ T + 1)))Tm

+ (((T + 1)2T2
+ (T + 1)2T3

+ T(T + 1)(T2
+ T + 1)) − T((T + 1)T2

+ (T + 1)2T2))(T + 1)m.

Simplifying, we obtain (4.19). �

Remark 4.7. One should compare (4.19) with the case without magnetic field described in Example 6.6 of [2]. The
Grothendieck class of the hypersurface complement of the mth banana graph, in the case of the Potts model without
magnetic field is given by Tm

+ (T−1)(T+1)m+1. While the presence of the magnetic field does not change the form of the
recursion and the generating function, it does affect the individual terms, hence the resulting expression as a function of T.

4.4. The Euler characteristic with compact support

The Euler characteristic factors through theGrothendieck ring. In the example of the banana graphs,we can then compute
the Euler characteristic with compact support χc(VmΓ (R)) of the set of real zeros VmΓ (R) of the partition function of the
Potts model with magnetic field.

Proposition 4.8. For the mth banana graph mΓ , the Euler characteristic with compact support χc(VmΓ (R)) is given by

χc(VmΓ (R)) = (−2)m+1
+ (−1)m2 (4.20)

Proof. This follows directly from (4.19) using the fact that χc(T) = χc(Gm(R)) = −2, and the fact that χc defines a ring
homomorphism χc : K0(VR) → Z. �

The expression for the Euler characteristicwith compact support is concise, reflecting the simplicity of the banana graphs,
but the rate of growth is exponential, reflecting the complexity of the V-polynomial.

5. V-polynomial evaluation (computational complexity)

The V-polynomial grows exponentially with the size of the graph. Thus, rather than considering the complexity of the
problem of providing the entire V-polynomial of a graph, we focus on other related computational complexity questions.
In the literature on the complexity of various combinatorial polynomials of graphs that arise in relation to Potts models,
problems of computing a specific coefficient of the polynomial and of evaluating the polynomial at a point have been
characterized, see [8,23]. Since for the V-polynomial all the coefficients are equal to one, the relevant complexity problem
remains that of evaluating the polynomial at a point. This problem is important because for the cases in which evaluating
the polynomial at a point is tractable, determining whether a point is a phase transition is also tractable.

The specific problem is determining, given a graph Γ and the specification of a point where all variables not included are
assumed to be zero, whether the value of the V-polynomial at that point is greater than a number N .

5.1. Potts model with magnetic field on the line graph and on polygons

In [8], computing the partition function for a restricted case of the W-polynomial was shown to be NP-hard for the star
graph, so we investigate the complexity of more restricted trees. The first tree we consider is the 1-D Potts model or line
graph, which is the tree with n consecutive vertices, with every vertex but the first and the last having two neighbors each.

Theorem 5.1. Evaluating the V-polynomial for the line graph is tractable

Proof. We can see that the Fortuin–Kasteleyn representation (1.1) for the polynomial has exponentially many terms in the
size of the line. We label the vertices 1 through n from left to right, and label the edges e1, e2, . . . , en−1 also from left to right.
Then the Fortuin–Kasteleyn representation is

A⊆E

xc1xc2 . . . xck(A)


e∈A

te (5.1)
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where ci is the sumof theweights of all the vertices in the ith connected component ofA, and k(A) is the number of connected
components.

Thus, to every connected component that appears in a subset of edges A we can associate a product of terms that
appears in the sum χi,j = xci,j

j
k=i tek , where ci,j =

j
k=i wk, with wi the weight of the ith vertex. We can think of χi,j

as corresponding to the connected component that starts at vertex i and ends j with the vertices also labeled from left to
right. There are only O(n2) connected components, so the values of these connected components can be computed and
stored in a table in polynomial time. Now the sum can be rewritten as


A⊆E

k(A)
k=1

χik,jk . (5.2)

Computing the sum naively still would require a prohibitive amount of time, since there are exponentially many terms.
So we use the recursive structure of the line. Let Vi(x, t) be the V-polynomial of the sub-line starting at vertex i. Every subset
A ⊆ E has a first connected component, namely the connected component containing v1, which can be represented by χ1,i.
Thus, we can write our sum for V1(x, t) as

V1(x, t) =

n
i=1

χ1,iVi+1(x, t). (5.3)

Now, we use dynamic programming to compute the sum in O(n2) time. In round j, assume that we have the values of Vj+1
through Vn precomputed. Then we can compute

Vj(x, t) =

n
i=j

χj,iVi+1(x, t) (5.4)

in n − j steps. Therefore, the number of steps it takes to compute rounds 1 through n is
n

i=1

i = O(n2). �

As an easy consequence, we see that polygonal graphs are also tractable.

Corollary 5.2. Evaluating the V-polynomial on the polygonal graphs is tractable.

Proof. Let (n)Γ be the circle graph with n edges. It is tractable since (n)Γ r e is the line graph with n − 1 edges, and
(n)Γ /e=

(n−1) Γ . So T (n) ≤ T (n − 1) + O(n2), where T (n) is the number of steps to evaluate (n)Γ . Therefore

T (n) ≤

n
i=1

O(n2) ∈ O(n3). � (5.5)

5.2. Potts model with magnetic field on full binary trees

The next case we consider is the full binary tree. In contrast to the previous cases, we have the following result.

Theorem 5.3. Evaluating the V-polynomial for the binary tree is NP-hard.

Proof. We reduce from 1
2 -partition. The problem is, if we are given a finite subset S ⊂ N, to determine whether we can

partition S into two parts with equal sums. Given a subset S of size n, let M =


s∈S s. Then create a binary tree of height
⌈log(n)⌉ + 1. Now number S and set the vertex weights for the first n leaf nodes to be si ∈ S. Set the weights of the rest of
the leaf nodes to zero and set the vertex weights of all other nodes to ⌊

3
2M⌋. We then evaluate the polynomial at a point

where we set xsi = 1, te = 1, xm⌊
3
2M⌋+⌊

1
2M⌋

= 1, for all m such that m ≤ 2⌈log(n)⌉, with all the other x variables set to zero.

The V-polynomial evaluates to something greater than 0 if and only if there exists a 1
2 -partition for S. To see this, observe

the Fortuin–Kasteleyn representation of the polynomial
A⊆E

xc1xc2 . . . xck(A)


e∈A

te. (5.6)

Now, if any term is non-zero, then that means that, since A has edges, for some iwe have xci = 1, with ci = m⌊
3
2M⌋+⌊

1
2M⌋.

The only way that this could happen would be as a contribution of 1
2M from the leaf nodes.
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Conversely, suppose there exists a subset B ⊆ S, such that


b∈B b =
1
2M . Then look at the subset A of E in which we

take all of the edges above the nodes labeled with elements in B, as well as all of the other edges in the tree. The xci variables
in that term will correspond either to the unique non-singleton connected component defined by the edge subset B, or to
some si ∈ S. In the first case, there are an odd number of nodes with vertex weight 3

2M and leaf nodes with vertex weights
that contribute another 1

2M . In the second case, all the variables in the term are equal to one. Therefore, we have
A⊆E

xc1xc2 . . . xck(A)


e∈A

te ≥ 1. � (5.7)

5.3. Trees limiting to the line graph

The method used in Theorem 5.3 is sufficiently general that we can extend it to a class of trees that limits to the line
graph.

Definition 5.4. A tree is a 1 +
1
n -ary tree, if 1

n of its non-leaf nodes have two children, with the rest having one child.

For instance, a 1+1-ary treewould be a binary tree. Note that, in general, there aremany non-isomorphic 1+
1
n -ary trees

of the same size. However, if two 1 +
1
n -ary trees are the same size, then they have the same number of leaves. We can see

this because the number of leaves is equal to the number of nodes with 2 descendants plus 1, by induction. In particular, for
all n, the number of leaves increases linearly with the size of the 1+

1
n -ary tree. The following statement takes into account

this ambiguity in the non-isomorphic trees.

Theorem 5.5. For all n ∈ N evaluating the V-polynomial on a family of 1 +
1
n -ary trees with elements of every possible size is

NP hard.

Proof. Suppose given an instance of 1
2 -partition of size |S| = m. Place the nodes on the leaves of one of the 1+

1
n -ary trees,

T , with a minimal number of nodes, while still having more thanm leaves. Set xsi = 1, te = 1, and xm⌊
3
2M⌋+⌊

1
2M⌋

= 1, where
m is less than the number of nodes of T . Then, by same reasoning as above, the polynomial evaluates to something greater
than zero if and only if there exists a 1

2 -partition. �

This shows that the binary tree is NP-hard not because of its completeness, but because it has a constant proportion of
branching.
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