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A bicategory of reduced orbifolds from the point of view of differential
geometry

Matteo Tommasini

Abstract

We describe a bicategory (RedOrb) of reduced orbifolds in the framework of classical differential geometry

(i.e. without any explicit reference to the notions of Lie groupoids or differentiable stacks, but only using

orbifold atlases, local lifts and changes of charts). In order to construct such a bicategory, we firstly define

a 2-category (RedAtl) whose objects are reduced orbifold atlases (on any paracompact, second countable,

Hausdorff topological space). The definition of morphisms is obtained as a slight modification of a definition

by A. Pohl, while the definitions of 2-morphisms and compositions of them are new in this setup. Using

the bicalculus of fractions described by D. Pronk, we are able to construct the bicategory (RedOrb) from

the 2-category (RedAtl). We prove that (RedOrb) is equivalent to the bicategory of reduced orbifolds

described in terms of proper, effective, étale Lie groupoids by D. Pronk and I. Moerdijk and to the well-

known 2-category of reduced orbifolds constructed from a suitable class of differentiable Deligne-Mumford

stacks.
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Introduction

A well-known issue in mathematics is that of modeling geometric objects where points have non-trivial groups

of automorphisms. In topology and differential geometry the standard approach to these objects (when each

point has a finite group of automorphisms) is through orbifolds. This concept was formalized for the first

time by Ikiro Satake in 1956 in [Sa] with some different hypotheses than the current ones, although the

informal idea dates back at least to Henri Poincaré (for example, see [Poi]). Currently there are at least 3

main approaches to orbifolds:

(1) via orbifold atlases and “good maps” between them, as described in [CR],

(2) via the 2-category of proper, étale (Lie) groupoids, “localized” with respect to weak equivalences (see for

example [Pr], [M] and [MM]),

(3) via a family of C∞-Deligne-Mumford stacks (see for example [J1] and [J2]).

On the one hand, the approach in (1) gives rise to a 1-category. On the other hand, the approach in (2) gives

rise to a bicategory (i.e. almost a 2-category, where compositions of 1-morphisms is associative only up to

canonical 2-morphisms) and the approach in (3) gives rise to a 2-category. It was proved in [Pr] that (2) and

(3) are equivalent as bicategories. Since (2) and (3) are compatible approaches, then one might argue that:

(i) there should also exist a non-trivial structure of 2-category or bicategory, having as objects orbifold

atlases or equivalence classes of them (i.e. orbifold structures);

(ii) the structure of (i) should be compatible with the approaches of (2) and (3), and it should replace the

approach of (1) (since (1) gives rise only to a 1-category instead of a 2-category or bicategory).

In the present paper we will manage to prove both (i) and (ii) for the family of all reduced orbifolds, i.e.

orbifolds that are locally modeled on open connected sets of some Rn, modulo finite groups acting smoothly

and effectively on them. In order to do that, we proceed as follows.

• We describe a 2-category (RedAtl) whose objects are reduced orbifold atlases on any paracompact,

second countable, Hausdorff topological space. The definition of morphisms is obtained as a slight mo-

dification of an analogous definition given by Anke Pohl in [Po], while the notion of 2-morphisms (and

compositions of them) is new in this setup (see Definitions 1.9). Such notions are useful for differential

geometers mainly because they don’t require any previous knowledge of Lie groupoids and/or differen-

tiable stacks. (RedAtl) is a 2-category, but it is still not the structure that we want to get in (i); indeed

in (RedAtl) different orbifold atlases representing the same orbifold structure in general are not related

by an isomorphism or by an internal equivalence.

• We recall briefly the definition of the 2-category (PEÉ Gpd), whose objects are proper, effective, étale

differentiable groupoids, and we describe in Theorem 3.15 a 2-functor F red : (RedAtl)→ (PEÉ Gpd).
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• In [Pr] Dorette Pronk proved that the class WPEÉ Gpd of all weak equivalences in (PEÉ Gpd) (also known

as essential equivalences) admits a right bicalculus of fractions. Roughly speaking, this amounts to saying

that there are a bicategory (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
and a pseudofunctor

UWPEÉ Gpd
: (PEÉ Gpd) −→ (PEÉ Gpd)

[
W−1

PEÉ Gpd

]

that sends each weak equivalence to an internal equivalence, and that is universal with respect to this

property. The bicategory obtained in this way is the bicategory that we mentioned in (2) above, if we

restrict to the case of reduced orbifolds.

• In (RedAtl) we select a class WRedAtl of morphisms (that we call “refinements” of reduced orbifold

atlases, see Definition 5.1), and we prove that such a class admits a right bicalculus of fractions. Therefore,

we are able to construct a bicategory (RedOrb) and a pseudofunctor

UWRedAtl
: (RedAtl) −→ (RedOrb) := (RedAtl)

[
W−1
RedAtl

]

that sends each refinement to an internal equivalence, and that is universal with respect to this property

(see Proposition 6.1). Objects in this new bicategory are again reduced orbifold atlases; a morphism from

an atlas X to an atlas Y is any triple consisting of a reduced orbifold atlas X ′, a refinement X ′ → X
and a morphism X ′ → Y. In other terms, a morphism from X to Y is given firstly by replacing X with

a “refined” atlas X ′ (keeping track of the refinement), then by considering a morphism from X ′ to Y in

(RedAtl). We refer to Description 6.3 for the notion of 2-morphisms in this bicategory.

• Lastly, using the results about bicategories of fractions that we proved in our previous papers [T3] and [T4],

we are able to prove that:

Theorem A (Proposition 7.5 and Theorem 8.3). There is pseudofunctor G red (explicitly constructed),

making the next diagram commute; assuming the axiom of choice, G red is an equivalence of bicategories.

(RedAtl) (PEÉ Gpd)

(RedOrb) (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
.

yUWRedAtl

G red

UWPEÉ Gpd

F red

(0.1)

Since (2) and (3) are equivalent approaches by [Pr], this implies at once that:

Theorem B (Theorem 8.4). (RedOrb) is equivalent to the 2-category (Orbeff ) of effective orbifolds

described as a full 2-subcategory of the 2-category of C∞-Deligne-Mumford stacks.

In all this paper we will not use explicitly the language of stacks; however, it is important to remark that:
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• in the language of (differentiable) stacks, the notion of objects is complicated and does not provide a

simple geometric intuition, since it is based on the the notions of pseudofunctor (or category fibered

in groupoids), Grothendieck topology and descent conditions. However, having managed to understand

stacks, 1-morphisms and 2-morphisms are almost straightforward to define and the resulting structure is

that of a 2-category;

• in the language used in the present paper, objects are very easy to describe since they are simply reduced

orbifold atlases; as we mentioned above, morphism are also easy to describe. However, compositions of 1-

morphisms and the notion of 2-morphisms require more care (see Description 6.3); moreover the resulting

structure will be that of a bicategory, hence compositions will be associative only up to canonical 2-

morphisms.

One important problem remains still open: we have described a bicategory that solves problems (i) and (ii)

by restricting to reduced orbifolds. Is it possible to give an analogous description of a bicategory (Orb) also

in the more general case of (possibly) non-reduced orbifolds? Since the bicategories of (2) and (3) are also

defined (and equivalent) in this more general setup, in principle this should be possible, but it would require

much more work.

1. Reduced orbifold atlases

Let us review some basic definitions about reduced orbifolds.

Definition 1.1. [MP, § 1] Let X be a paracompact, second countable, Hausdorff topological space and
let X ′ ⊆ X be open and non-empty. Then a reduced orbifold chart (also known as reduced uniformizing
system) of dimension n for X ′ is the datum of a connected open subset X̃ of Rn, a finite group G of smooth
automorphisms of X̃ and a continuous, surjective and G-invariant map π : X̃ � X ′, which induces an
homeomorphism between X̃/G and X ′ (where we give to X̃/G the quotient topology)

Remark 1.2. We will always assume that G acts effectively ; the orbifolds that have this property are usually
called reduced or effective. Some of the current literature on orbifolds assumes that X̃ is only a connected
smooth manifold instead of an open connected subset of some Rn. This makes a difference for the definition
of charts, but the arising notion of orbifold is not affected by that.

The following definition is a special case of [Po, § 2.1].

Definition 1.3. Let us fix any pair of reduced charts (X̃1, G1, π1) and (X̃2, G2, π2) for subsets X1, X2 of X.
Then a change of charts from (X̃1, G1, π1) to (X̃2, G2, π2) is any diffeomorphism λ : Ỹ1

∼→ Ỹ2 such that:

• Ỹ1 is any connected component of π−1
1 (Y ) for some open non-empty subset Y of X1 (since the action of

G1 on X̃1 permutes such connected components, then π1(Ỹ1) = Y );

• Ỹ2 is an open subset of X̃2;

• π2 ◦ λ = π1|Ỹ1
.

Using [MP, Lemma A.2] and the fact that λ is a diffeomorphism, it turns out that Y is contained also in
X2 and that Ỹ2 is a connected component of π−1

2 (Y ). So the inverse of any change of charts is again a
change of charts. If λ is any change of charts, we denote by domλ its domain and by codλ its codomain.
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If x̃ ∈ domλ, then germx̃ λ denotes the germ of λ at x̃. An embedding is any change of charts λ as above,
such that domλ = X̃1. Two charts as before are called compatible if for each pair x̃1 ∈ X̃1, x̃2 ∈ X̃2 with
π1(x̃1) = π2(x̃2), there exists a change of charts λ from (X̃1, G1, π1) to (X̃2, G2, π2), with x̃1 ∈ domλ. Up
to composing λ with an element of G2, this is equivalent to the existence of a change of charts λ such that
x̃1 ∈ domλ and λ(x̃1) = x̃2.

Using [MM, Lemma 2.10], the following definition is equivalent to [MP, § 1].

Definition 1.4. Let X be a paracompact, second countable, Hausdorff topological space; a reduced orbifold
atlas of dimension n on X is any family X = {(X̃i, Gi, πi)}i∈I of reduced orbifolds charts of dimension n,
such that {Xi := πi(X̃i)}i∈I is an open cover of X, and any two charts of X are compatible. Given any pair
(i, i′) ∈ I × I, we denote by Ch(X , i, i′) the set of all changes of charts λ from (X̃i, Gi, πi) to (X̃i′ , Gi′ , πi′)
and we set Ch(X ) :=

∐
(i,i′)∈I×I Ch(X , i, i′). If X ′ is another reduced orbifold atlas for X, we say that it is

equivalent to X if and only if any chart of X is compatible with any chart of X ′ (equivalently, if the union of
X and X ′ is still an atlas). A reduced orbifold of dimension n is any pair (X, [X ]) consisting of a paracompact,
second countable, Hausdorff topological space X and a class [X ] of equivalent atlases on X.

Definition 1.5. Let us fix any pair of reduced orbifold atlases X = {(X̃i, Gi, πi)}i∈I and Y = {(Ỹj , Hj , χj)}j∈J
forX and Y respectively. Then a representative of a morphism from X to Y is any tuple f̂ := (f, f , {f̃i}i∈I , Pf ,
νf ) that satisfies the following conditions:

(M1) f : X → Y is any continuous map;

(M2) f : I → J is any set map, such that f(πi(X̃i)) ⊆ χf(i)(Ỹf(i)) for each i ∈ I;

(M3) for each i ∈ I, f̃i is a C∞-map X̃i → Ỹf(i) that is a local lift of f with respect to the orbifold charts

(X̃i, Gi, πi) ∈ X and (Ỹf(i), Hf(i), χf(i)) ∈ Y, i.e. χf(i) ◦ f̃i = f ◦ πi;

(M4) Pf is any subset of Ch(X ) with the property that for any λ ∈ Ch(X ) and for any x̃ ∈ domλ, there
exists λ̂ ∈ Pf , such that x̃ ∈ dom λ̂ and germx̃ λ = germx̃ λ̂;

(M5) νf : Pf → Ch(Y) is any set map that assigns to each λ ∈ Pf (i, i′) a change of charts νf (λ) ∈
Ch(Y, f(i), f(i′)), such that:

(a) dom νf (λ) is an open set containing f̃i(domλ),

(b) cod νf (λ) is an open set containing f̃i′(codλ),

(c) f̃i′ ◦ λ = νf (λ) ◦ f̃i|domλ,

(d) for all i ∈ I, for all λ, λ′ ∈ Pf (i,−) and for all x̃i ∈ domλ ∩ domλ′ with germx̃i
λ = germx̃i

λ′, we
have

germf̃i(x̃i)
νf (λ) = germf̃i(x̃i)

νf (λ′),

(e) for all (i, i′, i′′) ∈ I3, for all λ1 ∈ Pf (i, i′), for all λ2 ∈ Pf (i′, i′′) and for all x̃i ∈ λ−1
1 (codλ1∩domλ2),

we have

germf̃i′ (λ1(x̃i))
νf (λ2) · germf̃i(x̃i)

νf (λ1) = germf̃i(x̃i)
νf (λ3),

where λ3 is any element of Pf (i, i′′) such that germx̃i
λ3 = germx̃i

λ2 ◦ λ1 (it exists by (M4)),

(f) for all i ∈ I, for all λ ∈ Pf (i, i) and for all x̃i ∈ domλ such that germx̃i
λ = germx̃i

idX̃i
, we have

germf̃i(x̃i)
νf (λ) = germf̃i(x̃i)

idỸf(i)
.
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Given another representative f̂ := (f ′, f
′
, {f̃ ′i}i∈I , Pf ′ , νf ′) of a morphism from X to Y, we say that f̂ is

equivalent to f̂ ′ if and only if f = f ′, f = f
′
, f̃i = f̃ ′i for all i ∈ I, and

germf̃i(x̃i)
νf (λ) = germf̃i(x̃i)

νf ′(λ′) (1.1)

for all i ∈ I, for all λ ∈ Pf (i,−), λ′ ∈ Pf ′(i,−) and for all x̃i ∈ domλ ∩ domλ′ with germx̃i
λ = germx̃i

λ′.
This defines an equivalence relation (it is reflexive by (M5d)). The equivalence class of f̂ will be denoted by

[f̂ ] =
(
f, f ,

{
f̃i

}
i∈I

, [Pf , νf ]
)

: X −→ Y (1.2)

and it will be called a morphism of reduced orbifold atlases from X to Y over the continuous map f : X → Y .

Remark 1.6. In the notations of [Po], condition (M4) is the condition that Pf generates the pseudogroup
Ch(X ) inside the larger pseudogroup Ψ(X ) defined and used in [Po]; such a pseudogroup is obtained by
taking into account all changes of charts of X with a more general definition than the one used in the present
paper. In [Po] there are other two technical conditions (axioms of “quasi-pseudogroup”), but they are implied
by (M4) in our case, so we can omit them. Under this remark, our next definition of morphism of orbifold
atlases X → Y is equivalent to the definition of “orbifold map with domain atlas X and range atlas Y” stated
in [Po, Definitions 4.4 and 4.10] (even if the representatives for the maps described in [Po] are different from
the representatives used in the present paper).

Construction 1.7. Let us fix orbifold atlases X , Y (as above) and Z = {(Z̃l,Kl, ηl)}l∈L, and any two
morphisms

[f̂ ] =
(
f, f ,

{
f̃i

}
i∈I
, [Pf , νf ]

)
: X −→ Y, [ĝ ] =

(
g, g,

{
g̃j

}
j∈J

, [Pg, νg]
)

: Y −→ Z. (1.3)

Then we define a composition

[ĝ ] ◦ [f̂ ] :=
(
g ◦ f, g ◦ f,

{
g̃f(i) ◦ f̃i

}
i∈I

, [Pg◦f , νg◦f ]
)

: X −→ Z. (1.4)

Here we construct the class [Pg◦f , νg◦f ] as follows. Firstly, we fix any representative (Pg, νg) for [Pg, νg]; since
Pg ⊆ Ch(Y) satisfies condition (M4), following the lines of [Po, Construction 5.9] (with the only differences
due to Remark 1.6) we can construct a subset Pg◦f ⊆ Ch(X ), satisfying property (M4), and a set map
νind
f : Pg◦f → Pg ⊆ Ch(Y), such that (Pg◦f , νind

f ) is a representative for [Pf , νf ]. Then we simply define
νg◦f := νg ◦ νind

f . The construction of the pair (Pg◦f , νind
f ) depends on the choices, but using axioms (M) it

is easy to prove that (1.4) does not depend on such choices. Moreover, we have:

Lemma 1.8. The composition (1.4) is associative.

The proof is obvious for what concerns the composition of maps of the form f, f and f̃i; the proof of the

associativity on the pairs of the form [Pf , νf ] is straightforward, so we omit it. As we said in the introduction,

our first aim is to construct a 2-category (RedAtl) of reduced orbifold atlases. Roughly speaking, a 2-

category is the datum of objects, morphisms and “morphism between morphisms” (known as 2-morphisms),

together with identities and compositions of morphisms and 2-morphisms (for more details we refer e.g.

to [Lei]). First of all, we give the following:

Definition 1.9. Let us fix any pair of reduced orbifold atlases X = {(X̃i, Gi, πi)}i∈I , Y := {(Ỹj , Hj , χj)}j∈J
over X and Y respectively. Moreover, let us fix two morphisms [f̂m] := (f, f

m
, {f̃mi }i∈I , [Pfm , νfm ]) : X → Y

for m = 1, 2, over the same continuous function f : X → Y . Then a representative of a 2-morphism from
[f̂1] to [f̂2] is any set of data δ := {(X̃a

i , δ
a
i )}i∈I, a∈A(i), such that:

(2Ma) for all i ∈ I the set {X̃a
i }a∈A(i) is an open covering of X̃i;
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(2Mb) for all i ∈ I and for all a ∈ A(i), δai is a change of charts in Y, such that

f̃1
i

(
X̃a
i

)
⊆ dom δai ⊆ Ỹf1

(i)
, f̃2

i

(
X̃a
i

)
⊆ cod δai ⊆ Ỹf2

(i)
;

(2Mc) for all i ∈ I and for all a ∈ A(i), we have f̃2
i |X̃a

i
= δai ◦ f̃1

i |X̃a
i
;

(2Md) for all i ∈ I, for all a, a′ ∈ A(i) and for all x̃i ∈ X̃a
i ∩ X̃a′

i , we have germf̃1
i (x̃i)

δai = germf̃1
i (x̃i)

δa
′
i ;

(2Me) for all (i, i′) ∈ I × I, for all (a, a′) ∈ A(i)× A(i′), for all λ ∈ Ch(X , i, i′) and for all x̃i ∈ domλ ∩ X̃a
i

such that λ(x̃i) ∈ X̃a′
i′ , there exist data

(Pfm , νfm) ∈ [Pfm , νfm ] , λm ∈ Pfm(i, i′) for m = 1, 2, (1.5)

such that

x̃i ∈ domλm, germx̃i
λm = germx̃i

λ for m = 1, 2 (1.6)

and

germf̃2
i (x̃i)

νf2(λ2) · germf̃1
i (x̃i)

δai = germf̃1
i′ (λ(x̃i))

δa
′
i′ · germf̃1

i (x̃i)
νf1(λ1). (1.7)

Given another representative of a 2-morphisms from [f̂1] to [f̂2] as follows

δ :=
{(
X̃a
i , δ

a

i

)}
i∈I, a∈A(i)

,

we say that δ is equivalent to δ if and only if for all i ∈ I, for all pairs (a, a) ∈ A(i) × A(i) and for all
x̃i ∈ X̃a

i ∩ X̃a
i (if non-empty), we have

germf̃1
i (x̃i)

δai = germf̃1
i (x̃i)

δ
a

i .

This gives rise to an equivalence relation (it is reflexive by (2Md)). We denote by [δ] : [f̂1] ⇒ [f̂2] the class
of any δ as before and we say that [δ] is a 2-morphism from [f̂1] to [f̂2]. We denote by [δ]−1 the class of the
collection {(X̃a

i , (δ
a
i )−1)}i∈I, a∈A(i).

Remark 1.10. Let us suppose that there exist data as in (1.5) that satisfy conditions (1.6) and (1.7). Let
(P ′fm , ν′fm , λ′m) for m = 1, 2 be another set of data as in (1.5) that satisfies condition (1.6). Then by (M5d)
we conclude that germf̃m

i (x̃i)
νfm(λm) = germf̃m

i (x̃i)
ν′fm(λ′m) for m = 1, 2, so (1.7) is verified also by the new

set of data. Therefore, (2Me) is equivalent to:

(2Me)′ for all (i, i′) ∈ I × I, for all (a, a′) ∈ A(i)×A(i′), for all λ ∈ Ch(X , i, i′), for all x̃i ∈ domλ∩ X̃a
i such

that λ(x̃i) ∈ X̃a′
i′ and for all the data (1.5) that satisfy (1.6), we have that (1.7) holds.

2. The 2-category (Red Atl)

We assume here that the reader is familiar with the notions of 2-category, bicategory, pseudofunctor and

2-functor; we refer to [Lei, § 1.5] for a general overview on this subject.

Construction 2.1. Let us fix two reduced orbifold atlases X = {(X̃i, Gi, πi)}i∈I , Y = {(Ỹj , Hj , χj)}j∈J for
X and Y respectively, any continuous map f : X → Y and any triple of morphisms from X to Y over f :

[f̂m] :=
(
f, f

m
,
{
f̃mi

}
i∈I

, [Pfm , νfm ]
)

for m = 1, 2, 3.
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In addition, let us fix any 2-morphism [δ] : [f̂1] ⇒ [f̂2] and any 2-morphism [σ] : [f̂2] ⇒ [f̂3]. We want to
define a vertical composition [σ]� [δ] : [f̂1]⇒ [f̂3]; in order to do that, let us fix any representative

σ =
{(
X̃b
i , σ

b
i

)}
i∈I, b∈B(i)

for [σ]. Then it is not difficult to construct a (in general non-unique) representative

δ =
{(
X̃a
i , δ

a
i

)}
i∈I, a∈A(i)

for [δ], such that for each i ∈ I and for each (a, b) ∈ A(i) × B(i), the set map δai restricted to the set
Ỹ a,bi := (δai )−1(cod δai ∩domσbi ) (if non-empty) is again a change of charts of Y, so that also θa,bi := σbi ◦δai |Ỹ a,b

i

is a change of charts of Y. Then for each i ∈ I and for each (a, b) ∈ A(i)× B(i) we set X̃a,b
i := X̃a

i ∩ X̃b
i ; if

X̃a,b
i is non-empty, then by (2Mb) Ỹ a,bi is also non-empty. Then we define:

θ :=
{(
X̃a,b
i , θa,bi

)}
i∈I, (a,b)∈A(i)×B(i) s.t. X̃a,b

i 6=∅
.

A straightforward proof shows that:

Lemma 2.2. The collection θ defined above is a representative of a 2-morphism from [f̂1] to [f̂3]. Moreover,
the class [θ] does not depend on the choices of representatives δ for [δ] and σ for [σ].

Therefore, it makes sense to give the following definition.

Definition 2.3. Given any pair [δ], [σ] as before, we define their vertical composition as:

[σ]� [δ] := [θ] : [f̂1] =⇒ [f̂3].

Construction 2.4. Let us fix any triple of reduced orbifold atlases X , Y and Z for X, Y and Z respectively
(with the same notations used above), and any set of morphisms

[f̂m] :=
(
f, f

m
,
{
f̃mi

}
i∈I
, [Pfm , νfm ]

)
: X −→ Y for m = 1, 2,

[ĝm] :=
(
g, gm,

{
g̃mj

}
j∈J

,
[
Pgm , νgm

])
: Y −→ Z for m = 1, 2.

Moreover, let us choose any 2-morphism [δ] : [f̂1] ⇒ [f̂2] and any 2-morphism [ξ] : [ĝ1] ⇒ [ĝ2]. Our aim
is to define an horizontal composition [ξ] ∗ [δ] : [ĝ1] ◦ [f̂1] ⇒ [ĝ2] ◦ [f̂2]. In order to do that, we fix any
representative (Pg1 , νg1) for [Pg1 , νg1 ]. Then it is easy to construct a representative δ := {(X̃a

i , δ
a
i )}i∈I, a∈A(i)

for [δ], such that for each i ∈ I and for each a ∈ A(i), the change of charts δai belongs to Pg1 . We choose
also any representative ξ := {(Ỹ cj , ξcj )}j∈J,c∈C(j) for [ξ]. Let us fix any i ∈ I, a ∈ A(i), c ∈ C(f

2
(i)) and let us

consider the (possibly empty) sets

Z̃a,ci :=
(
ν1
g (δai )

)−1
(

cod ν1
g (δai ) ∩ dom ξc

f
2
(i)

)
, X̃a,c

i := X̃a
i ∩

(
g̃1

f
1
(i)
◦ f̃1

i

)−1 (
Z̃a,ci

)
.

Let us fix any point xi ∈ X̃a,c
i and let us set zi := g̃1

f
1
(i)
◦ f̃1

i (xi) ∈ Z̃a,ci . Then we can easily construct a

(non-unique) open connected subset Z̃a,c,xi

i ⊆ Z̃a,ci , such that:

• zi ∈ Z̃a,c,xi

i ;

• for all h ∈ H
g1◦f1

(i)
such that h(zi) = zi, we have h(Z̃a,c,xi

i ) = Z̃a,c,xi

i ;

• for all h ∈ H
g1◦f1

(i)
such that h(zi) 6= zi, we have h(Z̃a,c,xi

i ) ∩ Z̃a,c,xi

i = ∅
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(in this way, ν1
g (δai ) is a change of charts of Z if restricted to Z̃a,c,xi

i ). Then we set

γ :=
{(

X̃a
i ∩

(
g̃1

f
1
(i)
◦ f̃1

i

)−1

(Z̃a,c,xi

i ), ξc
f

2
(i)
◦ ν1

g (δai )
∣∣∣
Z̃

a,c,xi
i

)}

i∈I, (a,c)∈A(i)×C(f
2
(i)), xi∈X̃a,c

i

.

A direct check proves that:

Lemma 2.5. The collection γ defined above is a representative of a 2-morphism from [ĝ1]◦ [f̂1] to [ĝ2]◦ [f̂2].
Moreover, the class [γ] does not depend on the representatives (Pg1 , νg1), δ and ξ chosen for [P 1

g , ν
1
g ], [δ] and

[ξ] respectively, nor on the choices of the sets Z̃a,c,xi

i made above.

So it makes sense to give the following definition.

Definition 2.6. Given any pair [δ], [ξ] as before, we define their horizontal composition as:

[ξ] ∗ [δ] := [γ] : [ĝ1] ◦ [f̂1] =⇒ [ĝ2] ◦ [f̂2].

Then we have:

Proposition 2.7. The definitions of reduced orbifold atlases, morphisms, 2-morphisms, and compositions
◦, � and ∗ give rise to a 2-category (that we denote by (RedAtl)), where every 2-morphism is invertible.

Proof. In order to construct a 2-category, we define some data as follows.

(1) The class of objects is the set of all the reduced orbifold atlases X for any paracompact, second countable,
Hausdorff topological space X.

(2) If X and Y are reduced atlases for X and Y respectively, we define a small category (RedAtl)(X ,Y) as
follows: the space of objects is the set of all morphisms [f̂ ] : X → Y over any continuous map f : X → Y ;
for any pair of morphisms [f̂ ] and [ĝ ] over f and g respectively, using Definition 1.9 we set:

(
(RedAtl)(X ,Y)

)
([f̂ ], [ĝ ]) :=

{
all 2-morphisms [δ] : [f̂ ]⇒ [ĝ ] if f = g,

∅ otherwise.
(2.1)

The composition in any such category is the vertical composition �, that is clearly associative; the
identity over any object [f̂ ] is given by the class i[f̂ ] of the collection {(X̃i, idỸf(i)

)}i∈I . Then the inverse

of any [δ] as above is the class [δ]−1 described in Definition 1.9.

(3) For every reduced orbifold atlas X = {(X̃i, Gi, πi)}i∈I on a topological space X, we define the identity
of X as the morphism

idX :=
(

idX , idI ,
{

idX̃i

}
i∈I

,
[
Ch(X ), idCh(X )

])
: X −→ X .

(4) For every triple of reduced atlases X ,Y,Z, we define a functor “composition”

(RedAtl)(X ,Y)× (RedAtl)(Y,Z) −→ (RedAtl)(X ,Z)

as ◦ on any pair of morphisms and as ∗ on any pair of 2-morphisms. We want to prove that this gives
rise to a functor. It is easy to see that identities are preserved, so one needs only to prove the interchange
law (see [Bo, Proposition 1.3.5]). In this setup, this amounts to proving that for any diagram as follows

X
[f̂2] [ĝ2]

Y Z,
⇓ [δ]

⇓ [σ]

⇓ [ξ]

⇓ [η]

[f̂1]

[f̂3]

[ĝ1]

[ĝ3]
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we have ([η]� [ξ]) ∗ ([σ]� [δ]) = ([η] ∗ [σ])� ([ξ] ∗ [δ]). This is long but completely straightforward, so we
omit it.

�

3. From reduced orbifold atlases to proper, effective, étale groupoids

The aim of this section is to define a 2-functor F red from (RedAtl) to the 2-category of proper, effective,

étale Lie groupoids. We recall briefly the necessary definitions and notations.

Definition 3.1. [Ler, Definition 2.11] A Lie groupoid is the datum of two smooth (Hausdorff, paracompact)
manifolds X0,X1 and five smooth maps:

• two submersions s, t : X1 ⇒ X0, called source and target of the Lie groupoid;

• m : X1 t ×s X1 →X1, called multiplication;

• i : X1 →X1, known as the inverse map of the Lie groupoid;

• e : X0 →X1, called identity ;

which satisfy the following axioms:

(LG1) s ◦ e = 1X0 = t ◦ e;

(LG2) if pr1 and pr2 are the two projections X1 t ×s X1 →X1, then s ◦m = s ◦ pr1 and t ◦m = t ◦ pr2;

(LG3) the two morphisms m ◦ (idX1 ×m) and m ◦ (m× idX1) from X1 t ×s X1 t ×s X1 to X1 are equal;

(LG4) the two morphisms m ◦ (e ◦ s, idX1) and m ◦ (idX1 , e ◦ t) from X1 to X1 are both equal to the idX1 ;

(LG5) i ◦ i = idX1 , s ◦ i = t, m ◦ (idX1 , i) = e ◦ s and m ◦ (i, idX1) = e ◦ t.

For simplicity, we will denote any Lie groupoid as before by X . In the following pages, even if we will deal

with several Lie groupoids, we will denote by s the source morphism of any such object, and analogously for

the morphisms t,m, e and i. This will not create any problem, since it will be always clear from the context

what is the Lie groupoid we are working with. We denote by denote by X0/X1 the topological quotient of

X0 obtained by identifying any two points x0 and x′0 if and only if there is x1 ∈ X1, such that s(x1) = x0

and t(x1) = x′0; we denote by prX : X0 � X0/X1 the quotient map.

Definition 3.2. [M, § 2.1] Given two Lie groupoids X and Y , a morphism between them is any pair
ψ = (ψ0, ψ1), where ψ0 : X0 → Y0 and ψ1 : X1 → Y1 are smooth maps, which together commute with all
structure morphisms of the two Lie groupoids. In other words, we require that s ◦ψ1 = ψ0 ◦ s, t ◦ψ1 = ψ0 ◦ t,
ψ0 ◦ e = e ◦ ψ0, ψ1 ◦m = m ◦ (ψ1 × ψ1) and ψ1 ◦ i = i ◦ ψ1.

Definition 3.3. [PS, Definition 2.3] Let us fix two morphisms of Lie groupoids ψm : X → Y for m = 1, 2.
Then a natural transformation α : ψ1 ⇒ ψ2 is the datum of any smooth map α : X0 → Y1, such that the
following conditions hold:

(NT1) s ◦ α = ψ1
0 and t ◦ α = ψ2

0 ;

(NT2) m ◦ (α ◦ s, ψ2
1) = m ◦ (ψ1

1 , α ◦ t).

There are well-known notions of identities, compositions of morphisms, vertical and horizontal compositions

of natural transformations (constructed as the corresponding notions in the 2-category of small categories).

These data give rise to the 2-category of Lie groupoids, usually denoted by (LieGpd) (see [PS, § 2.1]).
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Definition 3.4. [M, § 1.2 and § 1.5] A Lie groupoid X is called proper if the map (s, t) : X1 →X0×X0 is
proper; it is called étale if the map s (equivalently, t) is étale (i.e. a local diffeomorphism). Since each étale
map is a submersion, in general we will simply write “étale groupoid” instead of “étale Lie groupoid”.

Remark 3.5. Let X be a proper étale groupoid and let us fix any pair of points x0, x
′
0 ∈ X0. Since both

s and t are étale, for every point x1 in X1 such that s(x1) = x0 and t(x1) = x′0, we can find a sufficiently
small open neighborhood Wx1

of x1 where both s and t are invertible. Then the set map

t ◦ (s|Wx1
)−1 : s(Wx1

) −→ t(Wx1
).

is a diffeomorphism from an open neighborhood of x0 to an open neighborhood of x′0, and it commutes with
the projection prX . So for each pair of points x0, x

′
0 as above we can define a set map

κX (x0, x
′
0,−) : {x1 ∈X1, such that s(x1) = x0 and t(x1) = x′0} −→

−→ {germx0
f, ∀ diffeomorphisms f around x0, such that f(x0) = x′0 and prX ◦f = prX } (3.1)

by setting:

κX (x0, x
′
0, x1) := germx0

(
t ◦ (s|Wx1

)−1
)

= germx1
t ·
(
germx1

s
)−1

.

We claim that κX (x0, x
′
0,−) is surjective. For that, we have to consider two cases separately; if prX (x0) 6=

prX (x′0), then both the first and the second set in (3.1) are empty, so κX (x0, x
′
0,−) is a bijection. If

prX (x0) = prX (x′0), this means that there is a (in general non-unique) point x1 ∈X1, such that s(x1) = x0

and t(x1) = x′0. Let us fix any germx0
f as in the second line of (3.1) (for some diffeomorphism f such that

f(x0) = x′0 and prX ◦f = prX ). Then the function

g := s ◦ (t|Wx1
)−1 ◦ f |f−1(t(Wx1 ))

(3.2)

is a diffeomorphism around x0, it fixes x0 and it commutes with prX . As a simple consequence of [N, Theorem
2.3], there is a (in general non-unique) point x̃1 in X1, such that s(x̃1) = x0 = t(x̃1) and κX (x0, x0, x̃1) =
germx0

g. Using (3.2), this implies that

germx0
f = κX (x0, x

′
0, x1) · κX (x0, x0, x̃1) = κX (x0, x

′
0,m(x̃1, x1)),

so we have proved that κX (x0, x
′
0,−) is surjective.

Definition 3.6. [M, Example 1.5] Let us fix any proper, étale groupoid X . We say that X is effective (or
reduced) if κX (x0, x0,−) is injective for every x0 ∈X0.

Using this definition and Remark 3.5, it is not difficult to prove the following:

Lemma 3.7. Let us fix any proper, effective, étale groupoid X . Then the set map κX (x0, x
′
0,−) is a

bijection for every pair of points x0, x
′
0 in X0.

Definition 3.8. We define the 2-categories (É Gpd), (PÉ Gpd) and (PEÉ Gpd) as the full 2-subcategories of
(LieGpd) obtained by restricting to étale groupoids, respectively to proper, étale Lie groupoids, respectively
to proper, effective, étale groupoids (morphisms and 2-morphisms are simply restricted according to that).

Construction 3.9. (adapted from [Pr2, § 4.4] and from [Po, Construction 2.4]) Let us fix any reduced
orbifold atlas X = {(X̃i, Gi, πi)}i∈I of dimension n. Then we define F red(X ) as the following Lie groupoid.

• F red(X )0 :=
∐
i∈I X̃i, with manifold structure given by the fact that each X̃i is an open subset of Rn.

• As a set, we define

F red(X )1 :=
{

germx̃i
λ, ∀ i ∈ I, ∀λ ∈ Ch(X , i,−), ∀ x̃i ∈ domλ

}
;

its topological and differentiable structure are given by the germ topology and by the germ differentiable
structure. In particular for each i ∈ I and each λ ∈ Ch(X , i,−), the subset

{
germx̃i

λ, ∀ x̃i ∈ domλ
}
is

open and diffeomorphic to domλ ⊆ X̃i ⊆ Rn (see [Po, Construction 2.4] for more details).
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• The structure maps are defined as follows:

s(germx̃i
λ) := x̃i, t(germx̃i

λ) := λ(x̃i), m(germx̃i
λ, germλ(x̃i) λ

′) := germλ(x̃i) λ
′ · germx̃i

λ,

i(germx̃i
λ) := germλ(x̃i) λ

−1, e(x̃i) := germx̃i
idX̃i

. (3.3)

A direct check proves that s and t are both étale, that m, e, i are smooth and that axioms (LG1) – (LG5)
are satisfied, so F red(X ) is an étale groupoid.

It is straightforward to see that:

Lemma 3.10. For every reduced orbifold atlas X , the étale groupoid F red(X ) is proper and effective, i.e. it
belongs to (PEÉ Gpd).

Until now we have associated to each object of (RedAtl) an object of (PEÉ Gpd); we want to do the same

for morphisms and 2-morphisms.

Construction 3.11. (adapted from [Po, Proposition 4.7]) Let us fix any pair of reduced orbifold atlases
X := {(X̃i, Gi, πi)}i∈I and Y := {(Ỹj , Hj , χj)}j∈J for X and Y respectively and any morphism [f̂ ] : X → Y,
with representative f̂ := (f, f , {f̃i}i∈I , Pf , νf ). As we did above for X, the groupoid F red(Y) is defined by

F red(Y)0 :=
∐

j∈J
Ỹj , F red(Y)1 :=

{
germỹj

ω, ∀ j ∈ J, ∀ω ∈ Ch(Y, j,−), ∀ ỹj ∈ domω
}
.

Then we define a set map F red([f̂ ])0 : F red(X )0 → F red(Y)0 as

F red([f̂ ])0

∣∣∣
X̃i

:= f̃i : X̃i −→ Ỹf(i) ⊆ F red(Y)0

for all i ∈ I. Now let x1 be any point in F red(X )1 and let x̃i := s(x1) ∈ X̃i for some i ∈ I. Since
Pf satisfies condition (M4), then there is a (non-unique) λ ∈ Pf (i,−) such that x1 = germx̃i

λ. We set
F red([f̂ ])1(x1) := germf̃i(x̃i)

νf (λ) ∈ F red(Y)1. By (M5d) F red([f̂ ])1 is well-defined; by (M5e) and (M5f)

the pair F red([f̂ ]) := (F red([f̂ ])0,F red([f̂ ])1) is a morphism of Lie groupoids F red(X ) → F red(X ), and it
does not depend on f̂ , nor on the choice of λ as above, but only on [f̂ ].

Construction 3.12. Now let us fix any pair of atlases X and Y as in Construction 3.11, and any pair of mor-
phisms [f̂1], [f̂2] : X → Y over a continuous map f : X → Y , with representatives f̂m := (f, f

m
, {f̃mi }i∈I , Pfm ,

νfm) for m = 1, 2. Moreover, let us fix any 2-morphism [δ] : [f̂1] ⇒ [f̂2] and any representative δ :=
{(X̃a

i , δ
a
i )}i∈I, a∈A(i) for it. Then we define a set map

F red([δ]) : F red(X )0 =
∐

i∈I
X̃i → F red(Y)1, F red([δ])(x̃i) := germf̃1

i (x̃i)
δai ∀ i ∈ I, ∀ a ∈ A, ∀ x̃i ∈ X̃a

i .

F red([δ]) is well-defined by property (2Md) for δ; using the germ topology on F red(Y)1 and (M3) it is
a smooth map. Using (3.3), (2Mc) and Remark 1.10, we get that F red([δ]) is a natural transformation
F red([f̂1]) ⇒ F red([f̂2]). Using the last part of Definition 1.9, it depends only on [δ] and not on the
representative δ chosen above

A direct check proves that:

Lemma 3.13. For every pair of morphisms [f̂ ] : X → Y and [ĝ ] : Y → Z, we have F red([ĝ ] ◦ [f̂ ]) =
F red([ĝ ]) ◦F red([f̂ ]). For every reduced orbifold atlas X we have F red(idX ) = idF red(X ) ; for every morphism
[f̂ ] between reduced orbifold atlases we have F red(i[f̂ ]) = iF red([f̂ ]) .
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Moreover, using the definition of vertical and horizontal compositions in (PEÉ Gpd) (as induced by restriction

from the bigger 2-category (LieGpd) of Lie groupoids), it is easy to see that:

Lemma 3.14. For each diagram in (RedAtl) as follows

X
[f̂2]

Y Z,
⇓ [δ]

⇓ [σ]
⇓ [ξ]

[ĝ1]

[ĝ2]

[f̂1]

[f̂3]

F red([σ]� [δ]) = F red([σ])�F red([δ]) and F red([ξ] ∗ [δ]) = F red([ξ]) ∗ F red([δ]).

Lemmas 3.10, 3.13 and 3.14 prove that:

Theorem 3.15. F red is a 2-functor from (RedAtl) to (PEÉ Gpd).

We state some properties of F red that we are going to use soon.

Lemma 3.16. (adapted from [Po, Proposition 4.9]) Let us fix any pair of reduced orbifold atlases X ,Y and
any morphism ψ : F red(X ) → F red(Y). Then there is a unique morphism [f̂ ] : X → Y in (RedAtl), such
that F red([f̂ ]) = ψ.

Proof. Let us X be the collection {(X̃i, Gi, πi)}i∈I over X and let Y be the collection {(Ỹj , Hj , χj)}j∈J over
Y . Since each X̃i is connected by definition of orbifold atlas, then the morphism ψ0 : F red(X )0 → F red(Y)0

induces a set map f : I → J such that ψ0(X̃i) ⊆ Ỹf(i) for every i ∈ I. For each i ∈ I we set f̃i := ψ0|X̃i
:

X̃i → Ỹf(i). Moreover, we define a set map f : X → Y by

f(πi(x̃i)) := χf(i) ◦ f̃i(x̃i) ∀ i ∈ I, ∀ x̃i ∈ X̃i. (3.4)

Using Construction 3.11, f is well-defined. Moreover, it is continuous since on each open set of X of the form
Xi = πi(X̃i) f coincides with the continuous map χf(i) ◦ f̃i. Following the proof of [Po, Proposition 4.9], one
can construct a subset Pf ⊆ Ch(X ), satisfying condition (M4), and a set map νf : Pf → Ch(Y), such that
for each λ ∈ Pf and for each x̃i ∈ domλ we have:

germf̃i(x̃i)
νf (λ) = ψ1(germx̃i

λ). (3.5)

Using Definition 3.2, it is easy to see that the collection f̂ := (f, f , {f̃i}i∈I , Pf , νf ) is a representative of a
morphism from X to Y. The collection f̂ depends on some choices, but the class [f̂ ] depends only on ψ . A
direct check using (3.4) and (3.5) proves that F red([f̂ ]) = ψ , and that [f̂ ] is the unique morphism with such
a property. �

Lemma 3.17. Let us fix any pair of reduced orbifold atlases X and Y, any pair of morphisms [f̂m] : X → Y
for m = 1, 2, and any natural transformation α : F red([f̂1]) ⇒ F red([f̂2]). Then there exists a unique
2-morphism [δ] : [f̂1]⇒ [f̂2] such that F red([δ]) = α.

Proof. For each m = 1, 2, let us fix a representative f̂m := (f, f , {f̃mi }i∈I , Pfm , νfm) for [f̂m]. By Defini-
tion 3.3, α is a smooth map from F red(X )0 to F red(Y)1, such that s ◦α = F red([f̂1])0; so for each i ∈ I and
for each xi ∈ X̃i ⊆ F red(X )0, we can choose a change of charts δxi of Y, such that

α(xi) = germF red([f̂1])0(xi)
δxi = germf̃1

i (xi)
δxi . (3.6)

Using Construction 3.9 (for Y instead of X ), the set
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S(δxi) :=
{

germỹ
f1(i)

δxi , ∀ ỹ
f

1
(i)
∈ dom δxi

}
⊆ F red(Y)1 (3.7)

is open in F red(Y)1, hence α−1(S(δxi)) is open in F red(X )0. Therefore the set X̃xi
i := α−1(S(δxi)) ∩ X̃i is

an open set in X̃i. We want to prove that the collection δ := {(X̃xi
i , δ

xi)}i∈I,xi∈X̃i
is a representative of a

2-morphism from [f̂1] to [f̂2]. So let us fix any i ∈ I, any xi ∈ X̃i and any x̃i ∈ X̃xi
i ; the point α(x̃i) belongs

to (3.7), hence it is of the form germỹ
f1(i)

δxi for a unique point ỹ
f

1
(i)
. Using condition (NT1) for α (see

Definition 3.3), we have: ỹ
f

1
(i)

= s(germỹ
f1(i)

δxi) = s(α(x̃i)) = F red([f̂1])0(x̃i) = f̃1
i (x̃i). Therefore

α(x̃i) = germỹ
f1(i)

δxi = germf̃1
i (x̃i)

δxi (3.8)

(in other terms, (3.6) holds not only for the point xi, but also for any x̃i in X̃xi
i ). Again by (NT1) we have

t ◦ α = F red([f̂2])0, so for each x̃i ∈ X̃xi
i we have

f̃2
i (x̃i) = F red([f̂2]))0(x̃i) = t ◦ α(x̃i)

(3.8)
=
(

germf̃1
i (x̃i)

δxi

)
(3.3)
= δxi ◦ f̃1

i (x̃i),

so in particular

f̃1
i (X̃xi

i ) ⊆ dom δxi and f̃2
i (X̃xi

i ) ⊆ cod δxi ;

therefore properties (2Ma), (2Mb) and (2Mc) (see Definition 1.9) are verified for δ. If xi and x̂i are both in
X̃i and x̃i ∈ X̃xi

i ∩ X̃ x̂i
i , then by (3.8) we have

germf̃1
i (x̃i)

δxi = α(x̃i) = germf̃1
i (x̃i)

δx̂i ,

so (2Md) holds. Now let us fix any (i, i′) ∈ I × I, any (xi, x̂i′) ∈ X̃i × X̃i′ , any λ ∈ Ch(X , i, i′) and any
x̃i ∈ domλ ∩ X̃xi

i such that λ(x̃i) ∈ X̃
x̂i′
i′ . Since both Pf1 and Pf2 satisfy condition (M4), then for each

m = 1, 2 there exists λm ∈ Pfm(i, i′) such that x̃i ∈ domλm and germx̃i
λm = germx̃i

λ. We recall (see
Construction 3.11) that

F red([f̂m])1(germx̃i
λ) = germf̃m

i (x̃i)
νfm(λm) for m = 1, 2.

Therefore:

germf̃2
i (x̃i)

νf2(λ2) · germf̃1
i (x̃i)

δxi = m
(

germf̃1
i (x̃i)

δxi , germf̃2
i (x̃i)

νf2(λ2)
)

(3.8)
=

(3.8)
=
(
m ◦

(
α ◦ s,F red([f̂2])1

))
(germx̃i

λ2)
(NT2)

=
(
m ◦

(
F red([f̂1])1, α ◦ t

))
(germx̃i

λ1) =

= m
(

germf̃1
i (x̃i)

νf1

(
λ1
)
, germf̃1

i′ (λ
1(x̃i))

δx̂i′
)

= germf̃1
i′ (λ(x̃i))

δx̂i′ · germf̃1
i (x̃i)

νf1(λ1).

So also property (2Me) holds. Therefore δ is a representative of a 2-morphism from [f̂1] to [f̂2]. Different
choices of changes of charts of the form δxi give rise to different δ’s, but their equivalence class [δ] is the same.
By (3.8) we get that F red([δ]) = α, and that [δ] as above is the only 2-morphism with such a property. �

So we have proved that for every pair of reduced orbifold atlases X ,Y the functor

F red(X ,Y) : (RedAtl)(X ,Y) −→ (PEÉ Gpd)(F red(X ),F red(Y))

is a bijection on objects and morphisms (i.e. on 1-morphisms and 2-morphisms of (RedAtl) and of (PEÉ Gpd)).
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4. Weak equivalences between étale groupoids

As we mentioned in the Introduction, the bicategory of reduced orbifold atlases described in terms of proper,

effective and étale groupoids is not (PEÉ Gpd), rather a bicategory obtained from (PEÉ Gpd) by selecting a

suitable class of morphisms (weak equivalences, see below) and by “turning” them into internal equivalences.

This is a special case of the following setup:

Definition 4.1. ([Pr, § 2.1], restricting to 2-categories for simplicity of exposition) Let us fix any 2-category
C and any class W of morphisms in C ; then the pair (C ,W) admits a right bicalculus of fractions if and
only if the following conditions hold:

(BF1) for every object A of C , the 1-identity idA belongs to W;

(BF2) W is closed under compositions;

(BF3) for every morphism w : A → B in W and for every morphism f : C → B, there are an object D, a
morphism w′ : D → C in W, a morphism f ′ : D → A and an invertible 2-morphism α : f ◦w′ ⇒ w ◦f ′;

(BF4) (a) given any morphism w : B → A in W, any pair of morphisms f1, f2 : C → B and any α : w ◦f1 ⇒
w ◦f2, there are an object D, a morphism v : D → C in W and a 2-morphism β : f1 ◦ v⇒ f2 ◦ v,
such that α ∗ iv = iw ∗ β;

(b) if α in (a) is invertible, then so is β;
(c) if (D′, v′ : D′ → C, β′ : f1 ◦ v′ ⇒ f2 ◦ v′) is another triple with the same properties of (D, v, β) in

(a), then there are an object E, a pair of morphisms u : E → D, u′ : E → D′ and an invertible 2-
morphism ζ : v ◦ u⇒ v′ ◦ u′, such that v ◦u belongs to W and (β′∗iu′)�(if1∗ζ) = (if2∗ζ)�(β∗iu);

(BF5) if w : A→ B is a morphism in W, v : A→ B is any morphism and if there is an invertible 2-morphism
α : v⇒ w, then also v belongs to W.

Theorem 4.2. [Pr, Theorem 21] Given any pair (C ,W) satisfying axioms (BF), there are a bicategory
C
[
W−1

]
(called (right) bicategory of fractions) and a pseudofunctor UW : C → C

[
W−1

]
that sends each

element of W to an internal equivalence, and that is universal with respect to such a property.

In [Pr] the theorem above is stated with (BF1) replaced by a slightly stronger hypothesis, but actually all

the proofs in [Pr] use only the weaker axiom (BF1), so we can state the theorem of [Pr] as we did above.

We refer to [Pr, § 2.2, 2.3, 2.4] and to our paper [T2] for more details on the construction of bicategories

of fractions. As we mentioned above, we are interested in the case when the class W is the class of all the

weak equivalences in the bicategory (PEÉ Gpd). We recall (see [M, § 2.4]) that a morphism ψ : X → Y

between Lie groupoids is a weak equivalence (also known as essential equivalence) if and only if the following

conditions hold:

(ME1) the smooth map t ◦ π1 : Y1 s×ψ0 X0 → Y0 is a surjective submersion (here π1 is the projection

Y1 s×ψ0 X0 → Y1 and the fiber product is a manifold since s is a submersion);

(ME2) the following diagram is cartesian (it is commutative by Definition 3.2):

X1 Y1

X0 ×X0 Y0 × Y0.

ψ1

(s,t) (s,t)

(ψ0×ψ0)
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Any two Lie groupoids X and Y are said to be Morita equivalent if and only if there are a Lie groupoid Z

and two weak equivalences as follows:

X Z Y .
ψ1 ψ2

This is actually an equivalence relation, see for example [MM, Chapter 5]. We denote by WÉ Gpd the set

of all weak equivalences in (É Gpd). Analogously, we denote by WPÉ Gpd, respectively by WPEÉ Gpd, the

set of all weak equivalences between proper and étale groupoids, respectively between proper, effective and

étale groupoids. Then we have the following standard result, that is a direct application of [Pr, § 4.1], [MM,

Example 5.21(2) and Proposition 5.26], and of the explicit construction of bicategories of fractions in [Pr].

Proposition 4.3. The pairs ((É Gpd),WÉ Gpd), ((PÉ Gpd),WPÉ Gpd) and ((PEÉ Gpd),WPEÉ Gpd) admit
all a right bicalculus of fractions; moreover, there is a commutative diagram as follows, where each horizontal
map is an embedding of full 2-subcategories or full bi-subcategories, and each vertical pseudofunctor sends
each weak equivalence to an internal equivalence (and is universal with respect to this property):

(PEÉ Gpd) (PÉ Gpd) (É Gpd)

(É Gpd)
[
W−1

É Gpd

]
.(PEÉ Gpd)

[
W−1

PEÉ Gpd

]
(PÉ Gpd)

[
W−1

PÉ Gpd

]
y yUWPEÉ Gpd

UWPÉ Gpd
UWÉ Gpd

The bicategory (PÉ Gpd)
[
W−1

PÉ Gpd

]
is usually called the bicategory of orbifolds (from the point of view of

Lie groupoids); its bi-subcategory (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
is usually called the bicategory of effective (or

reduced) orbifolds. We refer to Description 6.4 below for an explicit description of this last bicategory.

5. Refinements and weak equivalences in (Red Atl)

In this section we introduce the notions of refinements and weak equivalences in (RedAtl). Using the 2-

functor F red, the definition of weak equivalences between reduced orbifold atlases will match with the notion

of weak equivalences between proper, effective, étale groupoids (see Lemmas 5.5 and 5.6 below).

Definition 5.1. Let us fix any pair of reduced orbifold atlases X = {(X̃i, Gi, πi)}i∈I on X and Y on Y and
any morphism in (RedAtl) as follows:

[ŵ] :=
(

w,w, {w̃i}i∈I , [Pw, νw]
)

: X −→ Y. (5.1)

Then we say that [ŵ] is a refinement if and only if the following two conditions hold:

(REF1) X = Y and the continuous map w : X → X is equal to idX ;

(REF2) for each i ∈ I the smooth map w̃i is an open embedding; assuming (REF1), this implies that
[X ] = [Y].

We denote by WRedAtl the class of all the refinements in (RedAtl). We say that any [ŵ] as in (5.1) is a
weak equivalence of reduced orbifold atlases if and only if it satisfies the following conditions:

(WE1) the continuous map w : X → Y is an homeomorphism;
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(WE2) the atlas w∗(X ) := {(X̃i, Gi,w ◦πi)}i∈I on Y is equivalent to Y; equivalently, for each i ∈ I the chart
(X̃i, Gi,w ◦πi) on Y is compatible with every chart of Y.

In particular, each refinement is a weak equivalence.

Lemma 5.2. Let us fix any pair of reduced orbifold atlases X and Y, and any weak equivalence [ŵ] as in
Definition 5.1. Then for each i ∈ I the smooth map w̃i : X̃i → Ỹw(i) is étale (i.e. a local diffeomorphism).

Proof. Let us fix any i ∈ I and any x̃i ∈ X̃i. By definition of morphism in (RedAtl), we have

w ◦πi = χw(i) ◦ w̃i, (5.2)

so w ◦πi(x̃i) belongs to χw(i)(Ỹw(i)). By (WE2), the chart (X̃i, Gi,w ◦πi) is compatible with the atlas Y,
so in particular it is compatible with (Ỹw(i), Hw(i), χw(i)). Therefore there exists a change of charts λ from
(X̃i, Gi,w ◦πi) to (Ỹw(i), Hw(i), χw(i)), such that x̃i ∈ domλ. By Definition 1.3, we have

χw(i) ◦ λ = w ◦πi|domλ . (5.3)

If we denote by λ the map w̃i ◦ λ−1 : codλ −→ Ỹw(i), then we have:

χw(i) ◦ λ(ỹ) = χw(i) ◦ w̃i ◦ λ−1(ỹ)
(5.2)
= w ◦πi ◦ λ−1(ỹ)

(5.3)
= χw(i)(ỹ), ∀ ỹ ∈ domλ = codλ ⊆ Ỹw(i).

Since domλ is connected, then the previous identity together with [MM, Lemma 2.11] proves that there is a
unique h ∈ Hw(i) such that λ = h|codλ. Therefore, w̃i|domλ = λ ◦ λ = h ◦ λ, so we have proved that for each
i ∈ I the map w̃i coincides locally with a diffeomorphism. �

Using axiom (M5d), it is easy to prove the following result:

Lemma 5.3. Let us fix the following data:

(a) a pair of reduced orbifold atlases X := {(X̃i, Gi, πi)}i∈I over X and Y := {(Ỹj , Hj , χj)}j∈J over Y ;

(b) an homeomorphism w : X ∼→ Y ;

(c) a set map w : I → J ;

(d) for each i ∈ I, an étale map w̃i : X̃i → Ỹw(i), such that χw(i) ◦ w̃i = w ◦πi.

Then there is a unique class [Pw, νw], such that the collection of data [ŵ] := (w,w, {w̃i}i∈I , [Pw, νw]) is a a
weak equivalence from X to Y.

Combining this with Lemma 5.2, this means that each weak equivalence [ŵ] is completely determined by an

underlying homeomorphism w and by a collection of étale local liftings for w. In particular, each refinement

is completely determined by a collection of open embeddings from each chart of X to some charts of Y,
commuting with the projections. Using Lemmas 5.2 and 5.3 it is easy to prove that:

Lemma 5.4. Let us fix the following data:

• finitely many equivalent reduced orbifold atlases X 1, · · · ,X r over the same topological space X;

• a reduced orbifold atlas X ′ over another topological space X ′;

• an homeomorphism w : X ′ ∼→ X;

• for each m = 1, · · · , r a weak equivalence [ŵm] : X ′ → Xm defined over w.
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Then there are a reduced orbifold atlas X over X and a weak equivalence [v̂] : X → X ′, such that:

(i) [v̂] is defined over w−1 : X ∼→ X ′;

(ii) each local lift of [v̂] is an open embedding;

(iii) for each m = 1, · · · , r, [ŵm] ◦ [v̂] is a refinement.

In particular, if X ′ = X and w = idX , then also [v̂] is a refinement.

The following lemmas are similar to [Po, Propositions 5.3 and 6.2]; the significant difference is given by the

fact that we consider all the weak equivalences rather than restricting only to the “lifts of the identity” of [Po].

Lemma 5.5. If [ŵ] : X → Y is a weak equivalence of reduced orbifold atlases, then F red([ŵ]) is a weak
equivalence of proper, effective, étale groupoids.

Lemma 5.6. Let X and Y be reduced orbifold atlases, let ψ : F red(X ) → F red(Y) be a weak equivalence and
let [ŵ] : X → Y be the unique morphism in (RedAtl) such that F red([ŵ]) = ψ (see Lemma 3.16). Then [ŵ]
is a weak equivalence of reduced orbifold atlases.

So given any two reduced orbifold atlases X ,Y, the bijection of Lemma 3.16

{morphisms [f̂ ] : X → Y in (RedAtl)} −→ {morphisms φ : F red(X ) → F red(Y) in (PEÉ Gpd)}

induces a bijection between weak equivalences in (RedAtl) and weak equivalences in (PEÉ Gpd).

Lemma 5.7. Let us fix any proper, effective, étale groupoid X . Then there are a reduced orbifold atlas X
and a weak equivalence ψ : F red(X ) →X .

Proof. The reduced orbifold atlas X is obtained as in the last part of the proof of Theorem 4.1 in [MP]. In [T1,
Lemmas 4.7, 4.8 and 4.9] we proved that there is a weak equivalence as required. The proofs in [T1] were
done in the category of complex manifolds, but they can be easily adapted to the case of smooth manifolds.

�

6. The bicategories (Red Orb) and (PEÉ Gpd)
[
W−1

PEÉ Gpd

]

In this section we will prove that the pair ((RedAtl),WRedAtl) admits a right bicalculus of fractions and

we will give a simple description of the associated bicategory of fractions, that we denote by (RedOrb). We

will also give briefly a description of the bicategory of fractions (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
; in the next section

we will prove that such two bicategories are equivalent.

Proposition 6.1. The pair ((RedAtl),WRedAtl) admits a right bicalculus of fractions, so there are a
bicategory (RedOrb) := (RedAtl)

[
W−1
RedAtl

]
and a pseudofunctor

UWRedAtl
: (RedAtl) −→ (RedOrb)

that sends every refinement of reduced orbifold atlases (i.e. every element of WRedAtl) to an internal equi-
valence, and that is universal with respect to such a property.

Proof. Condition (BF1) is obviously satisfied and (BF2) is an easy consequence of the definition of composi-
tions (see Construction 1.7). Let us consider (BF3), so let us fix any triple of reduced orbifold atlases X ,Y,Z,
any refinement [ŵ] : X → Y and any morphism [f̂ ] : Z → Y. Using Lemmas 5.5 and 3.10 we have that
F red([ŵ]) is a weak equivalence between proper, effective and étale groupoids; moreover by Proposition 4.3
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the set WPEÉ Gpd satisfies (BF3). Therefore there are a proper, effective, étale Lie groupoid U , a weak
equivalence ψ′, a morphism φ′ and a natural transformation α as follows:

U

F red(Z) F red(Y) F red(X ).
⇒
α

ψ′

F red([ŵ])F red([f̂ ])

φ′

By Lemma 5.7 there are a reduced orbifold atlas U and a weak equivalence ψ′′ : F red(U) → U . Using
Lemmas 3.16 and 3.17, there are a pair of morphisms [v̂], [ĝ ] and a 2-morphism [θ] in (RedAtl) as follows

U

Z Y X ,
⇒
[θ][v̂]

[ŵ][f̂ ]

[ĝ ]

such that the 2-functor F red maps such a diagram to

F red(U)

F red(Z) F red(Y) F red(X ).
⇒

α ∗ iψ′′
ψ′◦ψ′′

F red([ŵ])F red([f̂ ])

φ′◦ψ′′

Now ψ′ ◦ ψ′′ is a weak equivalence (by condition (BF2) for the class WPEÉ Gpd). So by Lemma 5.6 we have
that [v̂] is a weak equivalence of reduced orbifold atlases. By Lemma 5.4 there is a reduced orbifold atlas V
and a weak equivalence [û] : V → U , such that [v̂] ◦ [û] is a refinement. Then we set

[ŵ′] := [v̂] ◦ [û], [f̂ ′] := [ĝ ] ◦ [û], [δ] := [θ] ∗ i[û].

Since each 2-morphism in (RedAtl) is invertible, the data (V, [ŵ′], [f̂ ′], [δ]) prove that (BF3) holds for
WRedAtl. The proof that (BF4) holds follows the same ideas described for (BF3).

Lastly, let us prove condition (BF5), so let us fix any pair of reduced orbifold atlases X := {(X̃i, Gi, πi)}i∈I
over X and Y := {(Ỹj , Hj , χj)}j∈J over Y , any pair of morphisms

[ŵm] :=
(

wm,wm, {w̃m
i }i∈I , [Pwm , νwm ]

)
: X −→ Y, m = 1, 2

and any 2-morphism [δ] : [ŵ1]⇒ [ŵ2] in (RedAtl), with representative δ := {(X̃a
i , δ

a
i )}i∈I,a∈A(i). Moreover,

let us suppose that [ŵ2] is a refinement. This implies that X = Y , w2 = idX and that every smooth map w̃2
i

is an open embedding. Using Definition 1.9, we get that w1 = w2 = idX , so condition (REF1) holds for [ŵ1].
Now let us prove also (REF2), so let us fix any i ∈ I, any a ∈ A(i) and any point x̃i in the open set X̃a

i . By
(2Mc) we have that w̃1

i (x̃i) = (δai )−1 ◦ w̃2
i (x̃i), so w̃1

i locally coincides with an open embedding, hence w̃1
i is

an étale map. Again by (2Mc) we get

x̃i = (w̃2
i )
−1 ◦ δai ◦ w̃1

i (x̃i). (6.1)

If we fix any other index a′ ∈ A(i) and any other point x̃′i ∈ X̃a′
i , then we have also

x̃′i = (w̃2
i )
−1 ◦ δa′i ◦ w̃1

i (x̃
′
i). (6.2)

Now if w̃1
i (x̃i) = w̃1

i (x̃
′
i), then by condition (2Md) (see Definition 1.9) we have δai ◦w̃1

i (x̃i) = δa
′
i ◦w̃1

i (x̃
′
i). Hence

using (6.1) and (6.2) we conclude that x̃i = x̃′i, i.e. the map w̃1
i is injective. Since we have already proved
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that it is locally an open embedding, we conclude that it is globally an open embedding, hence condition
(REF2) holds for [ŵ1]. Therefore, (BF5) is verified for WRedAtl. �

Lemma 6.2. Given any pair of morphisms [f̂ ] : X → Y and [ĝ ] : Y → Z in (RedAtl), we have:

(i) if [f̂ ] and [ĝ ] belong to WRedAtl, then so does [ĝ ] ◦ [f̂ ];

(ii) if [ĝ ] and [ĝ ] ◦ [f̂ ] belong to WRedAtl, then so does [f̂ ].

Proof. (i) is simply (BF2) for the class WRedAtl (see Proposition 6.1). For (ii), let us suppose that [f̂ ] and
[ĝ ] are as in (1.3). Since [ĝ ] is a refinement, then Y = Z, g = idZ and g̃j is an open embedding for each
j ∈ J . Since [ĝ ] ◦ [f̂ ] is a refinement, then X = Z, g ◦ f = idZ and g̃f(i) ◦ f̃i is an open embedding for each

i ∈ I. From this we get that f = idX and that f̃i is an open embedding for each i ∈ I, i.e. [f̂ ] is a refinement.
�

For the explicit description of (RedOrb) below, we use the original construction of bicategories of fractions

in [Pr, § 2.2, 2.3 and 2.4] and our previous paper [T2], where we provided simple constructions of associators

and compositions of 2-morphisms in any bicategory of fractions, as well as a definition of 2-morphisms that

is equivalent to the one in [Pr], but much shorter. In order to construct explicitly a bicategory of fractions,

one has to make some choices as in the following description. By [Pr, Theorem 21], different choices will

give equivalent bicategories of fractions where objects, 1-morphisms and 2-morphisms are the same, but

compositions of 1-morphisms and 2-morphisms are (possibly) different.

Description 6.3. In order to describe (RedOrb), for any pair of morphisms

X ′ Y Y ′
[f̂ ] [v̂]

(6.3)

with [v̂] refinement, using the axiom of choice we choose any reduced orbifold atlas X ′′, any pair of morphisms
[v̂′] and [f̂ ′] in (RedAtl) with [v̂′] refinement, and any 2-morphism [δ] in (RedAtl) as follows:

X ′′

X ′ Y ′.Y

[δ]
⇒

[v̂]

[f̂ ′]

[f̂ ]

[v̂′]

(6.4)

Such a choice is always possible by (BF3) (see Proposition 6.1) but in general it is not unique. By [Pr, § 2.2]
we only have to force such a choice in the following special cases:

(a) whenever (6.3) is such that Y = X ′ and [f̂ ] = idY , then we have to choose X ′′ := Y ′, [f̂ ′] := idY′ ,
[v̂′] := [v̂] and [δ] := i[v̂];

(b) whenever (6.3) is such that Y = Y ′ and [v̂] = idY , then we have to choose X ′′ := X ′, [f̂ ′] := [f̂ ],
[v̂′] := idX ′ and [δ] := i[f̂ ].

Moreover, for simplicity of computations we impose also the following two condition (compatible with the
previous ones):

(c) whenever (6.3) is such that X ′ = Y ′ and [f̂ ] coincides with the refinement [v̂], then we choose X ′′ := X ′,
[f̂ ′] := idX ′ , [v̂′] := idX ′ and [δ] := i[v̂];
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(d) let us fix data as in (6.3) with associated data (6.4). Let X ′ be the underlying topological space of X ′
and Y the underlying topological space of both Y and Y ′; moreover let us fix another pair of topological
spaces X̃ ′ and Ỹ , and a pair of homeomorphisms p : X ′ ∼→ X̃ ′ and q : Y ∼→ Ỹ . Then we denote by
p∗(X ′) the atlas induced on X̃ ′ (as we did in Definition 5.1), and analogously for the atlases q∗(Y) and
q∗(Y ′), both defined on Ỹ ; moreover, we denote by q ◦ [f̂ ]◦p−1 the induced morphism in (RedAtl) from
p∗(X ′) to q∗(Y) and by q ◦ [v̂] ◦ q−1 the induced refinement from q∗(Y ′) to q∗(Y). Then we impose that
the data associated to

p∗(X ′) q∗(Y) q∗(Y ′)
q ◦ [f̂ ] ◦ p−1 q ◦ [v̂] ◦ q−1

is given by

X ′′

p∗(X ′) q∗(Y ′).q∗(Y)

iq ∗ [δ]
⇒

q ◦ [v̂] ◦ q−1

q ◦ [f̂ ′]

q ◦ [f̂ ] ◦ p−1

p ◦ [v̂′]

From now on, C(WRedAtl) is any fixed collection of choices (6.4) for any data (6.3), satisfying conditions
(a) – (d). Whenever we fix a pair of morphisms

X 1 X X 2
[ŵ1] [ŵ2]

(6.5)

with both [ŵ1] and [ŵ2] refinements, we denote by

X 3

X 1 X 2X

[µ]
⇒

[ŵ2]

[û2]

[ŵ1]

[û1]

(6.6)

the corresponding choice in C(WRedAtl), with [û1] refinement. Having fixed all such data and notations,
the bicategory (RedOrb) can be described as follows. The objects of (RedOrb) are exactly the objects of
(RedAtl), i.e. all the reduced orbifold atlases according to Definition 1.4. Given any pair of reduced orbifold
atlases X ,Y, a morphism in (RedOrb) from X to Y is given by any triple (X ′, [ŵ], [f̂ ]) where X ′ is any
reduced orbifold atlas, [ŵ] is any refinement and [f̂ ] is any morphism in (RedAtl), as follows:

X X ′ Y
[ŵ] [f̂ ]

Given any pair of reduced atlases X ,Y and any pair of morphisms (Xm, [ŵm], [f̂m]) : X → Y for m = 1, 2
in (RedOrb), a 2-morphism from the first morphism to the second one is an equivalence class of data
(X 4, [ t̂ ], [δ]) in (RedAtl), such that [ t̂ ] : X 4 → X 3 is a refinement and [δ] : [f̂1] ◦ [û1] ◦ [ t̂ ]⇒ [f̂1] ◦ [û2] ◦ [ t̂ ]
(here and below the data X 3, [û1], [û2] and [µ] are determined by C(WRedAtl) as in (6.6)). You can
consider the data (X 4, [ t̂ ], [δ]) as a way of filling the following diagram, already partially filled by morphisms
(Xm, [ŵm], [f̂m]) for m = 1, 2 and by the choice (6.6) fixed in C(WRedAtl):
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X

X 1

X 3

X 4

X 3

Y,

X 2

⇓ [δ]⇓ [µ] ∗ i[̂t]

[ŵ2]

[ŵ1]

[f̂2]

[f̂1]
[û1]

[̂t]

[û2]

[̂t]

(6.7)

Any other set of data (X ′4, [ t̂
′
], [δ′]) in (RedAtl) (such that [ t̂

′
] : X ′4 → X 3 is a refinement and [δ′] :

[f̂1] ◦ [û1] ◦ [ t̂
′
] ⇒ [f̂1] ◦ [û2] ◦ [ t̂

′
]) represents the same 2-morphism as (X 4, [ t̂ ], [δ]) if and only if there are

a reduced orbifold atlas X 5, a refinement [ ẑ ] : X 5 → X 4, a morphism [ ẑ′] : X 5 → X ′4 in (RedAtl), and a
2-morphism [σ] : [̂t

′
] ◦ [ẑ′]⇒ [ t̂ ] ◦ [ ẑ ], such that the compositions of the following two diagrams are equal:

X ′4 X 3 X 1

X 5 X 4 Y,

X ′4 X 3 X 2

⇓ [σ]
⇓ [ϕ]

⇓ [σ]−1

[û1]

[û2]

[ ẑ′]

[ t̂
′
]

[ t̂ ]

[ ẑ ]

[f̂1][ ẑ′]

[ t̂
′
]

[f̂2]

[ t̂ ]

X 3

X 5 X 4

X 3 X 1

Y.

X 2

⇓ [ϕ′]

[ t̂
′
]

[ ẑ′]

[ t̂
′
]

[v̂1]

[f̂1]

[v̂2]

[f̂2]

We denote by [X 4, [ t̂ ], [δ]] the class of any data as above, and we call it a 2-morphism in (RedOrb) from
(X 1, [ŵ1], [f̂1]) to (X 2, [ŵ2], [f̂2]). Given any pair of morphisms in (RedOrb) as follows:

X X ′ Y
[ŵ] [f̂ ]

Y Y ′ Z
[v̂] [ĝ ]

(with both [ŵ] and [v̂] refinements), we use the fixed choice (6.4) and we set
(
Y ′, [v̂], [ĝ ]

)
◦
(
X ′, [ŵ], [f̂ ]

)
:=
(
X ′′, [ŵ] ◦ [v̂′], [ĝ ] ◦ [f̂ ′]

)
: X −→ Z. (6.8)

In this way in general the composition of morphisms in (RedOrb) is associative only up to canonical 2-
isomorphisms, so (RedOrb) is a bicategory but not a 2-category. Also the construction of vertical and
horizontal compositions for 2-morphisms is induced by the choices C(WRedAtl). Since we don’t need
it in this paper, we refer either to the construction originally described in [Pr, § 2.3], or to the simplified
version given in our previous paper [T2]). Using the the same references you can also easily describe the
induced universal pseudofunctor UWRedAtl

: (RedAtl)→ (RedOrb) mentioned in Proposition 6.1.

Description 6.4. Since we want to induce an equivalence from (RedOrb) to (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
, we

need also to describe this last bicategory. For this, for every pair of morphisms in (PEÉ Gpd)

X ′ Y Y ′
φ ξ

(6.9)

with ξ weak equivalence, we need to choose a set of data (X ′′, φ′, ξ′, θ) in (PEÉ Gpd) as below

X ′′

X ′ Y ′,Y

θ
⇒

ξ

φ′

φ

ξ′

(6.10)
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such that ξ′ is a weak equivalence. On such choices we impose the analogous of conditions (a), (b) and (c)
listed in Description 6.3; moreover, we fix also the following condition:

(d)′ let us suppose that the data of (6.9) are given by

F red(X ′) F red(Y) F red(Y ′)
φ F red([v̂])

(6.11)

for some triple of atlases (X ′,Y,Y ′) and some refinement [v̂] : Y ′ → Y. In this case, by Lemma 3.16
there is a unique morphism [f̂ ] : X ′ → Y such that φ = F red([f̂ ]). Then we impose that the data (6.10)
associated to (6.9) are the image via F red of the data (6.4) chosen in C(WRedAtl) for (6.3).

Note that the condition above is well-defined:

• first of all, since [v̂′] in (6.4) is a refinement, hence a weak equivalence, then by Lemma 5.5 F red([v̂′]) is
a weak equivalence, as required;

• if there is more than one triple (X ′,Y,Y ′) as above, then the associated data are the same. This is an
easy consequence of the construction of F red, together with condition (d) in Description 6.3.

In particular, whenever we fix any pair of morphisms

X 1 X X 2
ψ1 ψ2

with both ψ1 and ψ2 weak equivalences, we denote by

X 3

X 1 X 2X

µ
⇒

ψ2

ξ2

ψ1

ξ1

the corresponding choice, with ξ1 weak equivalence. We denote by C(WPEÉ Gpd) any set of choices satisfying

(a), (b), (c) and (d)′. Then the objects of (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
are all the proper, effective, étale Lie

groupoids; a morphism from X to Y , is given by any set of data as follows, with ψ weak equivalence:

X X ′ Y .
ψ φ

Given morphisms (X m, ψm, φm) : X → Y in (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
for m = 1, 2, a 2-morphism from

the first one to the second one is represented by a triple (X 4, τ , ρ), such that τ : X 4 → X 3 is a weak
equivalence and ρ is a natural transformation from φ1 ◦ ξ1 ◦ τ to φ2 ◦ ξ2 ◦ τ . The equivalence relation on such
triples is analogous to the one mentioned in Description 6.3, and any 2-morphism in this setup is denoted by
[X 4, τ , ρ] : (X 1, ψ1, φ1)⇒ (X 2, ψ2, φ2). Compositions are defined analogously to (RedOrb).

7. The pseudofunctor G red

Now we are almost ready to describe a pseudofunctor G red as in (0.1). For that, we will need the following:

Definition 7.1. [T3, Definition 2.1] Let us fix any bicategory C and any class W of morphisms in it (not
necessarily satisfying conditions (BF)). Then we define a class Wsat as the class of all morphisms f : B → A
in C , such that there are a pair of objects C,D and a pair of morphisms g : C → B, h : D → C, such that
both f ◦ g and g ◦ h belong to W. We call Wsat the (right) saturation of W; we say that W is (right)
saturated if it coincides with its saturation.
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We recall (see [T3, Lemma 3.9 and Proposition 3.11]) that if (C ,W) satisfies conditions (BF), then so does

(C ,Wsat), and the bicategories C
[
W−1

]
and C

[
W−1

sat

]
are equivalent.

Definition 7.2. Let us fix any pair of 2-categories A ,B and any pair of classes WA and WB of morphisms
in A and B respectively, such that both (A ,WA ) and (B,WB,sat) satisfy conditions (BF), so that there
are bicategories of fractions A

[
W−1

A

]
and B[W−1

B,sat]. In order to construct explicitly such bicategories of
fractions, we need to fix a set of choices C(WA ) for the pair (A ,WA ) (as we did in Description 6.3) and
a set of choices C(WB,sat) for (B,WB,sat). Given any pseudofunctor F : A → B, we say that the set of
choices C(WA ) and C(WB,sat) are F-compatible if and only if the following two conditions hold:

(1) F(WA ) ⊆WB,sat;

(2) given any set of data in A as follows

A1
A AA A2

A

w1
A w2

A

(7.1)

with both w1
A and w2

A in WA , if its associated choice in C(WA ) is given by

A3
A

A1
A A2

A ,AA

δA⇒

w2
A

u2
A

w1
A

u1
A

(7.2)

then the choice for

F0(A2
A ) F0(AA ) F0(A1

A )
F1(w1

A ) F1(w2
A )

in C(WB,sat) is given by the image of (7.2) via F .

Using [T3, Theorem 0.3 and Remark 3.2] (in the special case when A and B are 2-categories and F is a

2-functor) together with [T2, Appendix], we have:

Theorem 7.3. Let us fix two pairs (A ,WA ) and (B,WB,sat), both satisfying conditions (BF), any set of
choices C(WA ) for the construction of A [W−1

A ], and analogously for C(WB,sat); moreover let us fix any
2-functor F : A → B, such that the choices C(WA ) and C(WB,sat) are F-compatible. Then there is a
pseudofunctor

G : A
[
W−1

A

]
−→ B

[
W−1

B,sat

]

such that:

• UWB,sat ◦ F = G ◦ UWA ;

• for each object AA , we have G(AA ) = F(AA );

• for each morphism (A′A ,wA , fA ) in A
[
W−1

A

]
, we have G(A′A ,wA , fA ) = (F(A′A ),F(wA ),F(fA ));

• for each 2-morphism [A4
A , tA , δA ] : (A1

A ,w
1
A , f

1
A ) ⇒ (A2

A ,w
2
A , f

2
A ) in A

[
W−1

A

]
, we have G([A4

A , tA ,
δA ]) = [F(A4

A ),F(tA ),F(δA )] (here we are assuming that the choice for the pair (7.1) is given by (7.2),
hence tA : A4

A → A3
A belongs to WA and δA is a 2-morphism from f1

A ◦ u1
A ◦ tA to f2

A ◦ u2
A ◦ tA ).
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If we want to apply Theorem 7.3 to F red, then we need to compute WB,sat, i.e. the right saturation of the

class (PEÉ Gpd). For this, we can use the following result, taken from [T3, Corollary 4.2(b) and (c) and

Proposition 2.11(ii)] (the second part of the statement can be found also in [PS, Lemma 8.1]).

Lemma 7.4. The class WPEÉ Gpd is right saturated, i.e. WPEÉ Gpd,sat = WPEÉ Gpd. Moreover, given any
pair of morphisms φ : X → Y and ψ : Y → Z in (PEÉ Gpd), if any two maps among φ, ψ and ψ ◦ φ are
weak equivalences, then so is the third one.

Proposition 7.5. There is a pseudofunctor G red : (RedOrb)→ (PEÉ Gpd)
[
W−1

PEÉ Gpd

]
, such that:

(1 ) for each reduced orbifold atlas X , G red(X ) = F red(X );

(2 ) for each morphism (X ′, [ŵ], [f̂ ]) : X → Y, we have G red(X ′, [ŵ], [f̂ ]) = (F red(X ),F red([ŵ]), F red([f̂ ]));

(3 ) for each 2-morphism [X 4, [ t̂ ], [δ]] : ([X 1, [ŵ1], [f̂1]) ⇒ (X 2, [ŵ2], [f̂2]) in (RedOrb), the 2-morphism
G red([X 4, [ t̂ ], [δ]]) coincides with the class [F red(X 4),F red( [ t̂ ]),F red([δ])].

Moreover, we have UWPEÉ Gpd
◦ F red = G red ◦ UWRedAtl

.

Proof. Let us apply Theorem 7.3 with A := (RedAtl), WA := WRedAtl (i.e. all the refinements of reduced
orbifold atlases), B := (PEÉ Gpd), WB := WPEÉ Gpd (i.e. all the weak equivalences of proper, effective, étale
groupoids) and F := F red. By Lemma 7.4 we have WB,sat = WPEÉ Gpd. Moreover, F red(WRedAtl) ⊆
WPEÉ Gpd as a consequence of Lemma 5.5. The choices C(WRedAtl) and C(WPEÉ Gpd) that we fixed
above are F red-compatible (as a consequence of conditions (a), (b), (c), (d) and (d)′), so we conclude by
Theorem 7.3. �

8. G red is an equivalence of bicategories

The main aim of this paper is to prove that the pseudofunctor G red constructed above is an equivalence of

bicategories. For this, we need [T4, Theorem 0.2], that we state below only in the special framework where

A and B are 2-categories, F is a 2-functor (also known as strict pseudofunctor), UWB ◦ F = G ◦ UWA , and

the equivalence κ appearing in [T4, Theorem 0.2] is the 2-identity of UWB ◦ F .
Theorem 8.1. [T4, Theorem 0.2] Let us fix any pair of 2-categories A , B and any pair of classes of
morphisms WA , WB, such that both (A ,WA ) and (B,WB) satisfy conditions (BF). Moreover, let us
fix any 2-functor F : A → B, such that F1(WA ) ⊆ WB,sat. In addition, let us suppose that there is a
pseudofunctor G : A

[
W−1

A

]
→ B

[
W−1

B

]
such that UWB ◦ F = G ◦ UWA , and let us assume the axiom of

choice. Then G is an equivalence of bicategories if and only if F satisfies the following 5 conditions.

(A1 ) For any object AB, there are a pair of objects AA and A′B and a pair of morphisms w1
B : A′B → F(AA )

in WB and w2
B : A′B → AB in WB,sat.

(A2 ) Let us fix any triple of objects A1
A , A

2
A , A

3
B, any morphism w1

B : A3
B → F(A1

A ) in WB and any
morphism w2

B : A3
B → F(A2

A ) in WB,sat. Then there are an object A4
A , a morphism w1

A : A4
A → A1

A

in WA , a morphism w2
A : A4

A → A2
A in WA ,sat, and a set of data (A5

B, z
1
B, z

2
B, γ

1
B, γ

2
B) as follows

A3
B

A5
BF(A1

A ) F(A2
A ),

F(A4
A )

⇓ γ2
B⇓ γ1

B

F(w2
A )

w2
B

z1
B

z2
B

F(w1
A )

w1
B

such that z1
B belongs to WB and both γ1

B and γ2
B are invertible.
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(A3 ) Let us fix any pair of objects BA , AB and any morphism fB : AB → F(BA ). Then there are an object
AA , a morphism fA : AA → BA , an object A′B, a morphism v1

B : A′B → AB in WB, a morphism
v2

B : A′B → F(AA ) in WB,sat and an invertible 2-morphism αB : fB ◦ v1
B ⇒ F(fA ) ◦ v2

B.

(A4 ) Let us fix any pair of objects AA , BA , any pair of morphisms f1
A , f

2
A : AA → BA and any pair

of 2-morphisms γ1
A , γ

2
A : f1

A ⇒ f2
A . Moreover, let us fix any object A′B and any morphism zB :

A′B → F(AA ) in WB. If F(γ1
A ) ∗ izB = F(γ2

A ) ∗ izB , then there are an object A′A and a morphism
zA : A′A → AA in WA , such that γ1

A ∗ izA = γ2
A ∗ izA .

(A5 ) Let us fix any triple of objects AA , BA , AB, any pair of morphisms f1
A , f

2
A : AA → BA , any morphism

vB : AB → F(AA ) in WB and any 2-morphism αB : F(f1
A ) ◦ vB ⇒ F(f2

A ) ◦ vB. Then there are
a pair of objects A′A , A

′
B, a triple of morphisms vA : A′A → AA in WA , zB : A′B → F(A′A ) in

WB and z′B : A′B → AB, a 2-morphism αA : f1
A ◦ vA ⇒ f2

A ◦ vA and an invertible 2-morphism
σB : F(vA ) ◦ zB ⇒ vB ◦ z′B, such that αB ∗ iz′B coincides with the following composition:

AB F(AA )

A′B F(A′A ) F(BA ).

AB F(AA )

⇓ F(αA )

⇓ σB

⇓ (σB)−1

z′B

vB

F(vA )

z′B

zB

F(f2
A )

F(vA )

F(f1
A )

vB

If we want to apply Theorem 8.1 to G red, then we need firstly to compute the class WA ,sat appearing in

conditions (A1) and (A2) above. In this case, this amounts to computing the the right saturation of the class

WRedAtl of all the refinements of (RedAtl). Using Definition 7.1 together with Lemmas 5.5, 5.6 and 7.4,

we get easily that:

Lemma 8.2. The right saturation WRedAtl,sat is the class of all weak equivalences of reduced orbifold atlases.

Then we have:

Theorem 8.3. Assuming the axiom of choice, the pseudofunctor G red is an equivalence of bicategories.

Proof. Let us verify condition (A1), so let us fix any X in (PEÉ Gpd); using Lemma 5.7 there are a reduced
orbifold atlas X and a weak equivalence ψ : F red(X ) →X . Therefore, (A1) holds if we choose the following
set of data:

F red(X ) F red(X ) X .
idF red(X) ψ

Let us consider (A2), so let us fix any pair of reduced orbifold atlases X 1,X 2 and any X 3 in (PEÉ Gpd),
together with any pair of weak equivalences as follows:

F red(X 1) X 3 F red(X 2).
ψ1 ψ2

By Lemma 5.7 there are a reduced orbifold atlas Y and a weak equivalence φ : F red(Y) → X 3. By
Lemma 5.6 there is a weak equivalence [v̂] : Y → X 1, such that F red([v̂]) = ψ1 ◦ φ. Since [v̂] is a weak
equivalence, by Lemma 5.4 there are a reduced orbifold atlas X 4 and a weak equivalence [û] : X 4 → Y, such
that the morphism [ŵ1] = [v̂] ◦ [û] : X 4 → X 1 is a refinement. We set ξ := F([û]); this morphism is a
weak equivalence by Lemma 5.5 and we have F red([ŵ1]) = ψ1 ◦ φ ◦ ξ . By Lemma 5.6 there is a unique weak
equivalence [ŵ2] : X 4 → X 2, such that F red([ŵ2]) = ψ2 ◦ φ ◦ ξ . By Lemma 8.2, we have that [ŵ2] belongs to
the right saturation of WRedAtl. Then condition (A2) is satisfied by the following set of data
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X 3

F red(X 4)F red(X 1) F red(X 2).

F red(X 4)

⇓ iF red([ŵ2])⇓ iF red([ŵ1])

F red([ŵ2])

ψ2

φ◦ξ

idF red(X4)
F red([ŵ1])

ψ1

Let us prove (A3), so let us fix any reduced orbifold atlas Y, any object X in (PEÉ Gpd) and any mor-
phism φ : X → F red(Y). By Lemma 5.7 there are a reduced orbifold atlas X and a weak equivalence
ψ : F red(X ) → X . By Lemma 3.16 there is a unique morphism [f̂ ] : X → Y, such that F red([f̂ ]) = φ ◦ ψ .
Then (A3) is easily verified with A′B := F red(X ), v1

B := ψ and v2
B := idF red(X ) .

Let us prove also (A4), so let us fix any pair of reduced orbifold atlases X ,Y, any pair of morphisms
[f̂1], [f̂2] : X → Y and any pair of 2-morphisms [γ1], [γ2] : [f̂1]⇒ [f̂2] in (RedAtl). Moreover, let us fix any
object X in (PEÉ Gpd) and any weak equivalence ψ : X → F red(X ), such that

F red([γ1]) ∗ iψ = F red([γ2]) ∗ iψ . (8.1)

By Lemma 5.7 there are a reduced orbifold atlas Z and a weak equivalence φ : F red(Z) →X . By Lemma 5.6
there is a unique weak equivalence [û] : Z → X such that F red([û]) = ψ ◦ φ. By Lemma 5.4 there are a
reduced orbifold atlas U and a weak equivalence [v̂] : U → Z, such that [ẑ] := [û] ◦ [v̂] is a refinement. So:

F red
(
[γ1] ∗ i[ẑ]

)
= F red([γ1]) ∗ iψ◦φ◦F red([v̂])

(8.1)
= F red([γ2]) ∗ iψ◦φ◦F red([v̂]) = F red

(
[γ2] ∗ i[ẑ]

)
.

By Lemma 3.17, this implies that [γ1] ∗ i[ẑ] = [γ2] ∗ i[ẑ], so (A4) holds.

Lastly, let us prove (A5), so let us fix any pair of reduced orbifold atlases X ,Y, any object X in (PEÉ Gpd),
any pair of morphisms [f̂1], [f̂2] : X → Y, any weak equivalence ψ : X → F red(X ) and any natural
transformation α : F red([f̂1]) ◦ ψ ⇒ F red([f̂2]) ◦ ψ . By Lemma 5.7 there are a reduced orbifold atlas Z
and a weak equivalence φ : F red(Z) → X . By Lemma 5.6 there is a unique weak equivalence [û] : Z → X
such that F red([û]) = ψ ◦ φ. By Lemma 5.4, there are a reduced orbifold atlas X ′ and a weak equivalence
[v̂] : X ′ → Z, such that [û] ◦ [v̂] is a refinement. Then let us consider the 2-morphism

α ∗ iφ◦F red([v̂]) : F red([f̂1] ◦ [û] ◦ [v̂]) =⇒ F red([f̂2] ◦ [û] ◦ [v̂]). (8.2)

By Lemma 3.17 there is a unique 2-morphism [δ] : [f̂1] ◦ [û] ◦ [v̂] ⇒ [f̂2] ◦ [û] ◦ [v̂] in (RedAtl), such that
F red([δ]) is equal to (8.2). Then (A5) is satisfied if we choose A′A := X ′, A′B := F red(X ′), vA := [û] ◦ [v̂] :
X ′ → X , zB := idF red(X ′) , z′B := φ ◦ F red([v̂]) : F(X ′) → X (this is a weak equivalence since it is a
composition of weak equivalences), αA := [δ], and if we define σB as the 2-identity of the morphism

F red([û] ◦ [v̂]) = ψ ◦ φ ◦ F red([v̂]).

�

As we mentioned in the introduction, a well-known way to define a 2-category of orbifolds is by exhibiting

it as a full 2-subcategory of the 2-category of C∞-stacks (these are called “differentiable stacks” in several

papers, see for example [Pr]). For the Grothendieck topology used for such stacks, we refer to [J2, Defini-

tion 8.1]. A C∞-stack X is called an orbifold (see [J2, Definition 9.25]) if it is equivalent to the stack [X ]

associated to a proper, étale groupoid X . In particular (see again [J2, Definition 9.25]) every orbifold is a

separated, locally finitely presented Deligne-Mumford C∞-stack. An orbifold X is called effective or reduced
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(see [J1, Definition 1.9.4]) if and only if it is associated to a proper, étale, effective groupoid. According

to [J2] we write (Orb) and (Orbeff ) for the full 2-subcategories of orbifolds, respectively of effective orbi-

folds, in the 2-category of C∞-stacks (or, equivalently, in the 2-category of Deligne-Mumford C∞-stacks).

Using [Pr, Corollary 43] and [J2, Theorem 9.26] there is an equivalence from the bicategory of fraction

(PEÉ Gpd)
[
W−1

PEÉ Gpd

]
to the 2-category (Orbeff ). Composing with G red, we conclude that:

Theorem 8.4. Assuming the axiom of choice, there is an equivalence between the bicategory (RedOrb) and
the 2-category (Orbeff ).
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