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shown that the canonical dual of a discrete wavelet frame for CN has the same structure.
This is not true (well known) for canonical dual of a wavelet frame for L2(R). Several
numerical examples are given to illustrate the results.
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1. Introduction

The purpose of this paper is to analyze the discretewavelet structure of the form {DaTkφ}a∈U(N),k∈IN inCN , whereDa and Tk
are dilation and translation operators on CN , respectively and φ ∈ CN . Of course, there is an extensive literature on wavelet
frames for L2(Rd) and for some special types of function spaces and it is impossible to give complete references; let us at
least mention some [1–7]. The main contributions of this paper are as follows: Firstly, we present a necessary condition
for discrete wavelet frames for CN in terms of a series associated with the Fourier transform of the window function, see
Theorem 3.2. It is observed that the necessary condition given in Theorem 3.2 is also a sufficient condition for discrete
wavelet frames in C and C2, see Proposition 3.3. Theorem 3.6 provides a sufficient condition for a family of vectors of the
form {DaTkφ}a∈U(N),k∈IN to be a frame for CN . Chui and Shi proved in [8] that the canonical dual of a wavelet frame for L2(R)
need not have awavelet structure. The situation is different for discrete wavelet frames forCN . More precisely, the canonical
dual of a discrete wavelet frame for CN has the same structure, see Theorem 3.10.

Frames are redundant building blocks which provide a series representation (not necessarily unique) for each vector in
the space. Duffin and Schaeffer [9] in 1952, introduced the concept of frame in the context of nonharmonic Fourier series.
Throughout, CN will denote an N-dimensional complex separable Hilbert space with inner product ⟨., .⟩. A family of vectors
F = {φk}

M
k=1 in CN is called a frame (or Hilbert frame) for CN if there exist constants 0 < ao ≤ bo < ∞ such that

ao∥x∥2
≤

M∑
k=1

|⟨x, φk⟩|
2

≤ bo∥x∥2 for all x ∈ CN .
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The numbers ao and bo are called lower and upper frame bounds, respectively. If it is possible to choose ao = bo, then we say
that F is tight. If F is a frame for CN , the frame operator S : CN

→ CN given by

Sx =

M∑
k=1

⟨x, φk⟩φk, x ∈ CN

is a bounded, linear, positive and invertible operator on CN . Thus, each x ∈ CN has the expansion

x = SS−1x =

M∑
k=1

⟨S−1x, φk⟩φk =

M∑
k=1

⟨x, S−1φk⟩φk.

The scalars {⟨S−1x, φk⟩} are called frame coefficients of the vector x ∈ CN . The representation of f in the reconstruction
formula need not be unique. Thus, frames allow each element in the space to be written as a linear combination of
frame elements, where linear independence of frame elements is not required. Finite frames have potential applications
in quantum mechanics [10,11]. Pfander studied Gabor frames on finite-dimensional complex vector spaces in [12]. Very
recently, Deepshikha and Vashisht [13] discussed frame properties of a system of the form {Tkφ}k∈IN inCN . Thirulogasanthar
and Bahsoun [14] discussed methods for constructing continuous, discrete and finite frames. They presented a method
to obtain frames on fractals, by using a distance function. By using the iterated function systems (IFS), Thirulogasanthar
and Bahsoun [14] obtained continuous and discrete frames, living on fractal sets, of both finite and infinite dimensional
separable abstract Hilbert spaces. For more details about the link between frames and iterated function systems, we
refer [15–17]. Discrete frames on a finite dimensional right quaternion Hilbert space were studied by Khokulan et al. in [18]
(also see [19]). Application of frames in applied mathematics with different directions can be found in the books of Casazza
and Kutyniok [10], Christensen [20,21], Daubechies [2], Han, Kornelson, Larson, and Weber [22] and Okoudjou [23].

2. Basic tools

We follow notations and definitions given in [12]. The symbol Cwill denote the set of complex numbers ; Z the set of all
integers andN a positive integer. An arbitrary element x in the unitary spaceCN is represented by ((x(0), x(1), . . . , x(N−1))T ,
where x(n) is the (n + 1)th component of the column vector x and xT denotes the transpose of x.

That is

CN
=

{
(x(0), x(1), . . . , x(N − 1))T : x(i) ∈ C, i ∈ IN = {0, 1, . . . ,N − 1}

}
.

An element p ∈ IN is called a unit in IN if it has a multiplicative inverse in IN , that is, if there exists q ∈ IN such that p.q = 1,
where multiplication is over modulo N . The set of units in IN is denoted by U(N). ByΦ(N) we denote the number of units in
IN .

We consider the following linear operators on IN . For k ∈ IN , the translation operator Tk : CN
→ CN is given by

Tk(x(0), x(1), . . . , x(N − 1))T = (x(0 − k), x(1 − k), . . . , x((N − 1) − k))T ,

where subtraction is over modulo N .
For l ∈ IN , themodulation operator Ml : CN

→ CN is defined as

Ml(x(0), x(1), . . . , x(N − 1))T = (e2π il0/Nx(0), e2π il1/Nx(1), . . . , e2π il(N−1)/Nx(N − 1))T .

Let a ∈ U(N). The dilation operator Da : CN
→ CN is given by

Da(x(0), x(1), . . . , x(N − 1))T = ( x(a.0), x(a.1), . . . , x(a.(N − 1)) )T ,

where multiplication is over modulo N .
The dilation operator Da is a unitary operator. Indeed, for all x, y ∈ CN , we have

⟨Dax, y⟩ =

N−1∑
n=0

x(a.n)y(n) =

N−1∑
n=0

x(n)y(a−1.n) = ⟨x,Da−1y⟩.

Therefore, D∗
a = Da−1 .

Furthermore

D∗

aDax = D∗

a( x(a.0), x(a.1), . . . , x(a.(N − 1)) )T

= ( x(a−1.a.0), x(a−1.a.1), . . . , x(a−1.a.(N − 1)) )T

= ( x(0), x(1), . . . , x(N − 1) )T

= x for all x ∈ CN .

Hence the dilation operator Da is unitary.
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The Fourier transform F on CN is given pointwise as follows (see [12, p. 196]):

Fx(m) = x̂(m) =

N−1∑
n=0

x(n)e−2π imn/N ,m = 0, 1, . . . ,N − 1.

One of the major properties of the Fourier transform are the Fourier inversion formula and the Parseval–Plancherel formula:

Theorem 2.1 ([12], p. 197). The normalized harmonics 1
√
N
e2π im(•)/N , m = 0, 1, . . . ,N − 1 form an orthonormal basis of CN

and, hence, we have

x =
1

√
N

N−1∑
m=0

x̂(m)e2π im(•)/N , x ∈ CN ,

and

⟨x, y⟩ =
1
N

⟨̂x, ŷ⟩, x, y ∈ CN .

It is proved in [12] that M̂lx = Tl̂x. In case of dilation, we have D̂ax = Da−1̂x. Indeed, for any x ∈ CN , a ∈ U(N),m ∈ IN , we
compute

D̂ax(m) =

N−1∑
n=0

Dax(n)e−2π imn/N
=

N−1∑
n=0

x(a.n)e−2π imn/N

=

N−1∑
n=0

x(n)e−2π ima−1. n/N

= x̂(a−1.m) = Da−1̂x(m).

Similarly we can show that T̂kφ = M−kφ̂.
In matrix notation, the Fourier transform is represented by the Fourier matrix given by

WN = (ω−rs)N−1
r,s=0, where ω = e2π i/N .

For example

W1 = [1], W2 =

[
1 1
1 e−2π i1/2

]
=

[
1 1
1 −1

]

W3 =

[1 1 1
1 e−2π i1/3 e−2π i2/3

1 e−4π i1/3 e−4π i2/3

]
=

⎡⎢⎢⎢⎣
1 1 1

1
−1 − i

√
3

2
−1 + i

√
3

2

1
−1 + i

√
3

2
−1 − i

√
3

2

⎤⎥⎥⎥⎦ .
The following lemma will be used in Example 3.4.

Lemma 2.2. For any positive integer N, we have

e−2π im/N
+ e−4π im/N

̸= 0 for all m ∈ IN .

Proof. Assume e−2π im/N
+ e−4π im/N

= 0 for somem ∈ IN . Then, we have

0 = e−2π im/N
+ e−4π im/N

= cos
(
2πm
N

)
+ cos

(
4πm
N

)
+ i

(
− sin

(
2πm
N

)
− sin

(
4πm
N

))
.

This gives cos
( 2πm

N

)
+ cos

( 4πm
N

)
= 0 and − sin

( 2πm
N

)
− sin

( 4πm
N

)
= 0.

Therefore

cos
(
2πm
N

)
= − cos

(
4πm
N

)
= cos

(
π −

4πm
N

)
.
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That is
2πm
N

= 2nπ +

(
π −

4πm
N

)
or

2πm
N

= 2nπ −

(
π −

4πm
N

)
for n ∈ Z.

Therefore,m =
N
6 (2n + 1) orm =

−N
2 (2n − 1) for n ∈ Z.

Similarly by using − sin
( 2πm

N

)
− sin

( 4πm
N

)
= 0, we can show that

m =

⎧⎪⎨⎪⎩
−N
2

n, if n is an odd integer

N
6
n, if n is an even integer.

The following cases arise:

(I) If n is odd, then m =
N
6 (2n + 1) and m =

−N
2 n is not possible simultaneously. Similarly, if m =

−N
2 (2n − 1) =

−N
2 n,

thenm =
−N
2 which is absurd sincem ∈ IN .

(II) If n is even, then m =
N
6 (2n + 1) and m =

N
6 n is not possible simultaneously. Similarly, m cannot take the values

−N
2 (2n − 1) and N

6 n at the same time.

Hence we must have

either cos
(
2πm
N

)
+ cos

(
4πm
N

)
̸= 0 or − sin

(
2πm
N

)
− sin

(
4πm
N

)
̸= 0.

Therefore, e−2π im/N
+ e−4π im/N

̸= 0 for all m ∈ IN . □

The following theorem provides necessary and sufficient conditions for a family of vectors {fk}mk=1 ⊂ CN to be a frame
for CN .

Theorem 2.3 ([21], p. 4). A family of vectors {fk}mk=1 ⊂ CN is a frame for CN if and only if span{fk}mk=1 = CN .

3. Discrete wavelet frames for CN

Definition 3.1. Let φ ∈ CN . A family of vectors {DaTkφ}a∈U(N),k∈IN in CN is a discrete wavelet frame (in short, DWF) for CN if
there exist positive scalars A ≤ B < ∞ such that

A∥x∥2
≤

∑
a∈U(N)

∑
k∈IN

|⟨DaTkφ, x⟩|2 ≤ B∥x∥2 for all x ∈ CN .

We call φ a window function (or scaling function) for the DWF .
The following theorem gives a necessary condition for DWF for CN in terms of an estimate of series associated with the

Fourier transform of the window function.

Theorem 3.2. Let φ ∈ CN and suppose {DaTkφ}a∈U(N),k∈IN is a DWF for CN with frame bounds A and B. Then,

A ≤ |̂φ(m)|2 +

∑
a∈U(N)\{1}

|̂φ(a.m)|2 ≤ B for all m ∈ IN . (3.1)

Proof. For any x ∈ CN , by using the Parseval–Plancherel formula, we compute

N2
∑

a∈U(N),k∈IN

|⟨DaTkφ, x⟩|2

= N2
∑

a∈U(N),k∈IN

⟨DaTkφ, x⟩⟨DaTkφ, x⟩

=

∑
a∈U(N),k∈IN

⟨D̂aTkφ, x̂⟩⟨D̂aTkφ, x̂⟩

=

∑
a∈U(N),k∈IN

⟨Da−1M−kφ̂, x̂⟩⟨Da−1M−kφ̂, x̂⟩

=

∑
a∈U(N),k∈IN

⟨M−kφ̂,Dâx⟩⟨M−kφ̂,Dâx⟩
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=

∑
a∈U(N),k∈IN

[
N−1∑
n=0

φ̂(n)e−2π ink/N x̂(a.n)
N−1∑
m=0

φ̂(m)e2π imk/N x̂(a.m)

]

=

∑
a∈U(N),k∈IN

[
√
N

⟨
φ̂ Dâx,

1
√
N
e2π i(•)k/N

⟩
√
N

⟨
φ̂ Dâx,

1
√
N
e2π i(•)k/N

⟩ ]

=

∑
a∈U(N),k∈IN

N
⏐⏐⏐⏐⟨φ̂ Dâx,

1
√
N
e2π i(•)k/N

⟩⏐⏐⏐⏐2
= N

∑
a∈U(N)

∑
k∈IN

⏐⏐⏐⏐⟨φ̂ Dâx,
1

√
N
e2π i(•)k/N

⟩⏐⏐⏐⏐2
= N

∑
a∈U(N)

φ̂ Dâx
2

= N
∑

a∈U(N)

N−1∑
m=0

|̂φ(m)̂x(a.m)|
2

= N
∑

a∈U(N)

N−1∑
m=0

|̂φ(a−1.m)̂x(m)|
2

= N
∑

a∈U(N)

N−1∑
m=0

|̂φ(a.m)̂x(m)|
2
.

This gives∑
a∈U(N),k∈IN

|⟨DaTkφ, x⟩|2 =
1
N

∑
a∈U(N)

N−1∑
m=0

|̂φ(a.m)̂x(m)|
2

for all x ∈ CN . (3.2)

For any m′
∈ IN , choose x ∈ CN such that x̂(m) = 0 for m ̸= m′ and x̂(m) = 1 for m = m′. Then, by using (3.2) and lower

frame inequality of DWF {DaTkφ}a∈U(N),k∈IN , we have

A = A∥̂x∥2
= AN∥x∥2

≤ N
∑

a∈U(N),k∈IN

|⟨DaTkφ, x⟩|2

=

∑
a∈U(N)

N−1∑
m=0

|̂φ(a.m)̂x(m)|
2

=

∑
a∈U(N)

|̂φ(a.m′)|2.

Thus, we have

A ≤

∑
a∈U(N)

|̂φ(a.m)|2 = |̂φ(m)|2 +

∑
a∈U(N)\{1}

|̂φ(a.m)|2 for allm ∈ IN .

The lower estimate is proved.
Next we prove upper inequality in (3.1) by contradiction method. Assume there exists a m′′

∈ IN such that∑
a∈U(N) |̂φ(a.m

′′)|2 > B.
Choose x ∈ CN such that x̂(m) = 0 form ̸= m′′ and x̂(m) = 1 form = m′′.
Then, by using (3.2), we compute∑

a∈U(N),k∈IN

|⟨DaTkφ, x⟩|2 =
1
N

∑
a∈U(N)

N−1∑
m=0

|̂φ(a.m)̂x(m)|
2

=
1
N

∑
a∈U(N)

|̂φ(a.m′′ )̂x(m′′)|
2

=
1
N

∑
a∈U(N)

|̂φ(a.m′′)|2
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>
B
N

=
B
N

∥̂x∥2
= B∥x∥2,

which is a contradiction.
Hence

|̂φ(m)|2 +

∑
a∈U(N)\{1}

|̂φ(a.m)|2 =

∑
a∈U(N)

|̂φ(a.m)|2 ≤ B for allm ∈ IN .

This completes the proof. □

For N ≥ 3, the condition given in Theorem 3.2 may not be sufficient, see Example 3.4. The situation is different for
N = 1, 2. More precisely, condition (3.1) given in Theorem 3.2 is not only necessary but also sufficient for C and C2. This is
given in the following proposition.

Proposition 3.3. Let φ ∈ CN (N = 1 or 2). A family {DaTkφ}a∈U(N),k∈IN is a DWF for CN , provided condition (3.1) holds.

Proof. First we prove the result for N = 1. Let φ = (α) ∈ C be such that

A ≤ |̂φ(m)|2 +

∑
a∈U(1)\{1}

|̂φ(a.m)|2 = |̂φ(m)|2 ≤ B for all m ∈ I1.

Then, |α|
2

= |̂φ(0)|2 ≥ A > 0. This gives φ = (α) ̸= 0. Hence {DaTkφ}a∈U(1),k∈I1 = {φ} is a DWF for C.
Let N = 2 and let φ = (α, β)T ∈ C2. Assume that there exist A, B > 0 such that

A ≤ |̂φ(m)|2 +

∑
a∈U(2)\{1}

|̂φ(a.m)|2 ≤ B for all m ∈ I2. (3.3)

Since

φ̂(0) =

1∑
n=0

φ(n)e−2π i0n/2
= α + β

and

φ̂(1) =

1∑
n=0

φ(n)e−2π in/2
= φ(0) + φ(1)e−π i

= α − β,

applying (3.3) form = 0, 1, we get

0 < A ≤ |̂φ(0)|2 +

∑
a∈U(2)\{1}

|̂φ(a.0)|2 = |̂φ(0)|2 = |α + β|
2

0 < A ≤ |̂φ(1)|2 +

∑
a∈U(2)\{1}

|̂φ(a.1)|2 = |̂φ(1)|2 = |α − β|
2.

This gives α − β, α + β ̸= 0 and hence α2
̸= β2. Therefore, by the Cramer’s rule the family of vectors {DaTkφ}a∈U(2),k∈I2 =

{(α, β)T , (β, α)T } is linearly independent and hence spans C2. Thus, by Theorem 2.3 the family of vectors {DaTkφ}a∈U(2),k∈I2
is a DWF for C2. The proposition is proved. □

We now demonstrate by a concrete example that condition (3.1) given in Theorem 3.2 is not sufficient.

Example 3.4. Choose N = 4 and φ = (0, 1, 1, 0) ∈ C4. Then, for eachm ∈ I4, by Lemma 2.2, we have

φ̂(m) =

3∑
n=0

φ(n)e−2π imn/4
= e−2π im1/4

+ e−2π im2/4
= e−2π im/4

+ e−4π im/4
̸= 0.

This gives∑
a∈U(4)

|̂φ(a.m)|2 = |̂φ(m)|2 +

∑
a∈U(4)\{1}

|̂φ(a.m)|2 > 0 for allm ∈ I4.

Thus, there exist positive scalars A, B such that

A < |̂φ(m)|2 +

∑
a∈U(4)\{1}

|̂φ(a.m)|2 < B for all m ∈ I4.

Therefore, condition (3.1) in Theorem 3.2 is satisfied.
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But {DaTkφ}a∈U(4),k∈I4 = {(0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1), (1, 1, 0, 0)} is not a DWF for C4. Indeed, let {DaTkφ}a∈U(4),k∈I4
be a frame for C4. Then, by using the fact that a spanning set of CN with exactly N elements is linearly independent, the
family of vectors {DaTkφ}a∈U(4),k∈I4 is linearly independent, which is a contradiction. Hence {DaTkφ}a∈U(4),k∈I4 is not a DWF
for C4.

The following example gives an application of Theorem 3.2.

Example 3.5. Suppose N ≥ 3 is odd. Choose φ = (1,−1, 1,−1, . . . ,−2, 1) ∈ CN .
We compute

φ̂(0) =

N−1∑
n=0

φ(n)e−2π i0n/N

=

N−1∑
n=0

φ(n)

= 1 + (−1) + 1 + (−1) + · · · + (−2) + 1

=
(N + 1)

2
−

(N + 1)
2

= 0.

Therefore, form = 0, we have

|̂φ(m)|2 +

∑
a∈U(N)\{1}

|̂φ(a.m)|2 =

∑
a∈U(N)

|̂φ(a.0)|2 =

∑
a∈U(N)

|̂φ(0)|2 = 0.

Hence there is no positive real number A such that

A ≤ |̂φ(m)|2 +

∑
a∈U(N)\{1}

|̂φ(a.m)|2 for allm ∈ IN .

Therefore, condition (3.1) in Theorem 3.2 is not satisfied. Thus, {DaTkφ}a∈U(N),k∈IN is not a DWF for CN .

Next theorem provides a sufficient condition for DWF in CN . A similar result for affine frames can be found in [2].

Theorem 3.6. Let φ ∈ CN . Assume that

A = inf
n∈IN

⎡⎣ ∑
a∈U(N)

⏐⏐̂φ(a.n)⏐⏐2 −

∑
k∈IN\{0}

⏐⏐̂φ(n)̂φ(n − k)
⏐⏐⎤⎦ > 0. (3.4)

Then, {DaTkφ}a∈U(N),k∈IN is a DWF for CN with frame bounds A and NΦ(N)∥φ∥
2.

Proof. For any x ∈ CN , by using Theorem 2.1, we compute∑
a∈U(N)

∑
k∈IN

|⟨DaTkφ, x⟩|2

=
1
N2

∑
a∈U(N)

∑
k∈IN

⏐⏐⟨Da−1M−kφ̂, x̂
⟩⏐⏐2

=
1
N2

∑
a∈U(N)

∑
k∈IN

⏐⏐⏐⏐⏐
N−1∑
n=0

φ̂(a−1. n)e−2π ia−1. nk/N x̂(n)

⏐⏐⏐⏐⏐
2

=
1
N2

∑
a∈U(N)

∑
k∈IN

⏐⏐⏐⏐⏐
N−1∑
n=0

φ̂(n)e−2π ink/N x̂(a.n)

⏐⏐⏐⏐⏐
2

=
1
N

∑
a∈U(N)

∑
k∈IN

⏐⏐⏐⏐⟨φ̂ Dâx,
1

√
N
e2π i(•)k/N

⟩⏐⏐⏐⏐2
=

1
N

∑
a∈U(N)

∥φ̂ Dâx∥2

=
1
N

∑
a∈U(N)

∑
n∈IN

⏐⏐̂φ(n)̂x(a.n)⏐⏐2
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≥
1
N

∑
a∈U(N)

∑
n∈IN

⏐⏐̂φ(a−1.n)
⏐⏐2 |̂x(n)|2 −

1
N

∑
n∈IN

∑
k∈IN\{0}

|̂x(n)|2
⏐⏐̂φ(n − k)̂φ(n)

⏐⏐
=

1
N

∑
n∈IN

|̂x(n)|2

⎛⎝ ∑
a∈U(N)

⏐⏐̂φ(a−1.n)
⏐⏐2 −

∑
k∈IN\{0}

⏐⏐̂φ(n − k)̂φ(n)
⏐⏐⎞⎠

=
1
N

∑
n∈IN

|̂x(n)|2

⎛⎝ ∑
a∈U(N)

⏐⏐̂φ(a.n)⏐⏐2 −

∑
k∈IN\{0}

⏐⏐̂φ(n − k)̂φ(n)
⏐⏐⎞⎠

≥
A
N

∑
n∈IN

|̂x(n)|2

=
A
N

∥̂x∥2

= A∥x∥2.

This gives a lower frame bound for {DaTkφ}a∈U(N),k∈IN .
For the upper frame inequality, by using Cauchy–Schwarz inequality we have∑

a∈U(N)

∑
k∈IN

|⟨DaTkφ, x⟩|2 ≤

∑
a∈U(N)

∑
k∈IN

∥DaTkφ∥
2
∥x∥2

= ∥x∥2
∑

a∈U(N)

∑
k∈IN

∥DaTkφ∥
2

=
[
NΦ(N)∥φ∥

2]
∥x∥2 for all x ∈ CN .

Hence {DaTkφ}a∈U(N),k∈IN is a DWF for CN with desired frame bounds. □

Remark 3.7. One may observe that condition (3.4) given in Theorem 3.6 reduces to |̂φ(0)|2 > 0 in case of C. That is, (3.4) is
both a necessary and sufficient condition for DWF for C.

The following example shows that condition (3.4) given in Theorem 3.6 is not necessary for N ≥ 2.

Example 3.8. Chooseφ = (1, 0, 0, . . . , 0)T ∈ CN , whereN ≥ 2. Then, {DaTkφ}a∈U(N),k∈IN is aDWF forCN . Indeed, the family of
N vectors {(1, 0, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T , . . . , (0, 0, 0, . . . , 1)T } ⊆ {DaTkφ}a∈U(N),k∈IN and span

{
(0, 0, 0, ., 1

ithplace

, ., 0)T :

1 ≤ i ≤ N
}

= CN . Therefore, by Theorem 2.3, {DaTkφ}a∈U(N),k∈IN is a DWF for CN .
Next we show that condition (3.4) in Theorem 3.6 is not satisfied. By definition of the Fourier transform, we have

φ̂ = WNφ = WN (1, 0, 0, . . . , 0)T = (1, 1, . . . , 1)T .

Using this we compute

A = inf
n∈IN

⎛⎝ ∑
a∈U(N)

⏐⏐̂φ(a.n)⏐⏐2 −

∑
k∈IN\{0}

⏐⏐̂φ(n − k)̂φ(n)
⏐⏐⎞⎠

= inf
{
Φ(N) −

∑
k∈IN\{0}

|̂φ(0 − k)̂φ(0)|, Φ(N) −

∑
k∈IN\{0}

|̂φ(1 − k)̂φ(1)|, . . . ,

Φ(N) −

∑
k∈IN\{0}

|̂φ((N − 1) − k)̂φ(N − 1)|
}

= Φ(N) − (N − 1) ≤ 0
(
asΦ(N) ≤ N − 1 for N ≥ 2

)
.

Hence condition (3.4) in Theorem 3.6 is not satisfied.

Application of Theorem 3.6. Choose φ ∈ C3 such that φ̂ = (4, 1, 5)T .
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We compute

A = inf
m∈I3

[ ∑
a∈U(3)

|̂φ(a.m)|2 −

∑
k∈I3\{0}

|̂φ(m − k)̂φ(m)|
]

= inf
{ ∑
a∈U(3)

|̂φ(a.0)|2 −

∑
k∈I3\{0}

|̂φ(0 − k)̂φ(0)| ,
∑

a∈U(3)

|̂φ(a.1)|2 −

∑
k∈I3\{0}

|̂φ(1 − k)̂φ(1)|,

∑
a∈U(3)

|̂φ(a.2)|2 −

∑
k∈I3\{0}

|̂φ(2 − k)̂φ(2)|
}

= inf
{
2|̂φ(0)|2 − |̂φ(2)̂φ(0)|−|̂φ(1)̂φ(0)|, |̂φ(1)|2 + |̂φ(2)|2 − |̂φ(0)̂φ(1)|−|̂φ(2)̂φ(1)|,

|̂φ(2)|2 + |̂φ(1)|2 − |̂φ(0)̂φ(2)|−|̂φ(1)̂φ(2)|
}

= inf {8 , 17 , 1}
= 1 > 0.

By Theorem 3.6, the family {DaTkφ}a∈U(3),k∈I3 is a DWF for C3.

The following theorem gives a sufficient condition for a window function associated with a DWF for CN in terms of the
Fourier transform. One may observe that the lower frame bound given in the following theorem is different from the lower
frame bound given in Theorem 3.6.

Theorem 3.9. Let φ ∈ CN . Assume that

A = inf
n∈IN

⏐⏐̂φ(n)⏐⏐2 > 0.

Then, {DaTkφ}a∈U(N),k∈IN is a DWF for CN with frame boundsΦ(N)A and NΦ(N)∥φ∥
2.

Proof. Similar to the proof of Theorem 3.6. □

To conclude the paper, we discuss the canonical dual of a discrete wavelet frame for CN . First we recall that the dual of a
frame F = {φk}

M
k=1 for CN is a frame G = {ψk}

M
k=1 for CN satisfying

x =

M∑
k=1

⟨x, ψk⟩φk for all x ∈ CN .

Let S be the frame operator associatedwith the frameF . Then, there exists at least one dual frame {S−1φk}
M
k=1 which is called

the canonical dual of F . If F is a tight frame, then F has a dual of the form ψk = Cφk for some constant C > 0. If F is a tight
frame with frame bounds A = B = 1, then we can take ψk = φk and elements of CN have representation of the form

x =

M∑
k=1

⟨x, φk⟩φk for all x ∈ CN .

Thus, each vector in the space has (possibly, infinitely many) representations with respect to the frame but it also has one
natural representation given by the frame coefficients. For more details about dual of a frame and its applications, we refer
to [10,21]. It is well known that the canonical dual frame of a wavelet frame for L2(R) need not be of the same wavelet
structure, see [8] (also see, Example 12.1.1 of [20]). But the situation regarding the canonical dual of discrete wavelet frames
for CN is different, which is given in the following theorem.

Theorem 3.10. Let {DaTkφ}a∈U(N),k∈IN be a DWF for CN with frame operator S. Then, the family {DaTkS−1φ}a∈U(N),k∈IN is the
canonical dual DWF of {DaTkφ}a∈U(N),k∈IN . That is, the canonical dual of a discrete wavelet frame for CN has the same structure.

Proof. Firstwe show that the frame operator S commuteswith composition of dilation and translation operators. Let φ̃ ∈ CN ,
ã ∈ U(N), k̃ ∈ IN be arbitrary. We compute

SD̃aT̃kφ̃(n) =

∑
a∈U(N)

∑
k∈IN

⟨D̃aT̃kφ̃,DaTkφ⟩DaTkφ(n)

=

∑
a∈U(N)

∑
k∈IN

∑
ñ∈IN

φ̃ (̃ãn − k̃)φ(ãn − k)φ(an − k)

=

∑
a∈U(N)

∑
k∈IN

∑
ñ∈IN

φ̃ (̃n)φ(a(̃a−1 (̃n + k̃)) − k)φ(an − k)



Deepshikha, L.K. Vashisht / Journal of Geometry and Physics 117 (2017) 134–143 143

=

∑
a∈U(N)

∑
k∈IN

∑
ñ∈IN

φ̃ (̃n)φ(ãa−1̃n + ãa−1̃k − k)φ(an − k)

=

∑
a∈U(N)

∑
k∈IN

∑
ñ∈IN

φ̃ (̃n)φ(ãn + ãk − k)φ(ãan − k)

=

∑
a∈U(N)

∑
k∈IN

∑
ñ∈IN

φ̃ (̃n)φ(ãn − k)φ(ãan − ãk − k)

=

∑
a∈U(N)

∑
k∈IN

∑
ñ∈IN

φ̃ (̃n)φ(ãn − k)φ
(
a(̃an − k̃) − k

)
=

∑
a∈U(N)

∑
k∈IN

⟨̃φ,DaTkφ⟩D̃aT̃kDaTkφ(n)

= D̃aT̃k
∑

a∈U(N)

∑
k∈IN

⟨̃φ,DaTkφ⟩DaTkφ(n)

= D̃aT̃kSφ̃(n), n ∈ IN .

This gives S−1DaTkφ = DaTkS−1φ for all a ∈ U(N), k ∈ IN . Hence the canonical dual frame of {DaTkφ}a∈U(N),k∈IN is given by
{S−1DaTkφ}a∈U(N),k∈IN = {DaTkS−1φ}a∈U(N),k∈IN . The result is proved. □
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