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a b s t r a c t

In this paper, global differential G-invariants of paths in the two-dimensional Euclidean
space E2 for the similarity group G = Sim(E2) and the orientation-preserving similarity
group G = Sim+(E2) are investigated. A general form of a path in terms of its global
G-invariants is obtained. For given two paths ξ (t) and η(t) with the common differential
G-invariants, general forms of all transformations g ∈ G, carrying ξ (t) to η(t), are found.
Similar results are given for curves. Moreover, analogous of the similarity groups in the
three-dimensional space–time and in the four-dimensional space–time-mass are defined.
Finally, applications to Newtonian mechanics of the above results are given.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let Sim(E2) be the group of all similarities of E2 (see [4, p. 183]), Sim+(E2) be the group of all orientation-preserving sim-
ilarities of E2, LSim(E2) be the group of all linear similarities of E2 and LSim+(E2) be the group of all orientation-preserving
linear similarities of E2. Similarity is important in many areas of mathematics, mechanics, physics, etc.

Definition of similarity of two flows is given in [9, p. 35–36]. The idea of the similarity of flows is used in the design of
experimental models (see [24, p. 175], [33, p. 254]). Moreover, in [9, p. 36], [33, p. 252–254], [23, p. 423–425], definitions
of ‘‘Geometric similarity’’, ‘‘Kinematic similarity’’ and ‘‘Dynamic similarity’’ are given.

The idea of ‘‘dynamic similarity’’ is commonly defined for fluid motions as follows (see [5, p. 99]):
‘‘Two fluid motions u and v are called dynamically similar if they can be described by Newtonian coordinate systems

which are related by transformation of space–time-mass, of the form

x′

i = αxi, t ′ = βt, m′
= γm, (1)

where α, β , γ ∈ R+’’.
Moreover, in [5, p. 101], Galilei–Newton group is defined and the importance of this group is given as follows:
‘‘Theoretical Newtonian mechanics is invariant under this group, as well as under the group of transformations (1)

of dynamic similitude. Experimentally, this principle has been verified in many different ways with very great precision,
except at speeds comparable with that of light’’.

This principle will be called the principle of invariances of Newtonian mechanics.
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Let En × R × R+ be the n-dimensional space–time-mass, where En is the n-dimensional Euclidean space, elements of
R are times and elements of R+ are masses. Denote by Mech(n) the group of transformations of En × R × R+ generated
by Galilei–Newton group and transformations of the form (1), where α, β, γ ∈ R+.

According to the principle of invariances of Newtonian mechanics, problems of an investigation of invariants of
mechanical systems with respect to the groups Mech(n), Galilei–Newton group and some subgroups of the group Mech(n)
appear.

We denote by Sim(Gal, 2) the subgroup of the group Mech(n) generated by the group Sim(E2) and the Galilean
transformation of the space–time E2 × R, by Sim+(Gal, 2) if Sim(E2) is replaced by Sim+(E2).

Also, denote by Sim(Gal,m, 2) the subgroup of the group Mech(n) generated by the group Sim(E2), the Galilean
transformation of the space–time E2 × R and the following transformation of a mass: m′

= γm, where γ ∈ R+, by
Sim+(Gal,m, 2) if Sim(E2) is replaced by Sim+(E2).

In present paper, we investigate G-invariants of paths and curves in the space E2 with respect to groups G = Sim(E2),
Sim+(E2), in space–time E2 ×R with respect to groups Sim(Gal, 2), Sim+(Gal, 2) and in space–time-mass E2 ×R×R+ with
respect to groups Sim(Gal,m, 2), Sim+(Gal,m, 2).

Furthermore, to identify similar objects in the field of pattern recognition and computer graphics, similarity of two
plane curves and space curves are investigated. (See in some references [1,2,16,17,25,29,31,32]).

An algorithm and a method for determining similarity of two rational plane curves are presented in [1].
In the present paper, by a different method from [1], theorems for detecting whether two curves are similar with a

similarity transformation are given.
Beside, the local differential invariants of curves for the group Sim(E2) is introduced in [6]. In [15], differential invariants

of a regular curve with respect to the group of orientation preserving similarities of the n-dimensional Euclidean space
En are obtained. Moreover, the uniqueness and existence theorems for a curve obtained only for the group Sim+(n). Thus
invariant theory of curves in the similarity geometry in En was investigated only for the group Sim+(En). The method of
the moving frame in the similarity geometry gives only local conditions of Sim+(En)-similarity of curves. This theory for
similarity of curves in the n-dimensional Minkowski space is investigated in [26].

As it is well known, global differential invariants are an important tool for many areas in sciences.
In the n-dimensional Euclidean space and the n-dimensional pseudo-Euclidean space of index p, invariant differential

functions of paths and curves for the Euclidean motion groups G = M(n),M+(n) and for the pseudo-Euclidean motion
groups G = M(n, p),M+(n, p) are obtained in papers [3,18,19,27]. These functions are called global differential invariants
of paths and curves. In same papers, invariant parametrizations of non-degenerate curves are defined. By using this
definition, conditions of global G-congruence(equivalence) of non-degenerate curves and non-degenerate paths are given.

The solutions of problems of global G-congruence of all Bézier curves without using global differential invariants of a
Bézier curve for the groups G = M+(n),M(n) are given in [25].

Methods and results used in this paper are different from the results of above mentioned papers, books and the
references therein.

Let G = Sim(E2) or G = Sim+(E2). In order to make this paper more self-contained from a mathematical point of
view, the structure of the present paper is the following. In Section 2, definitions of similarity groups in terms of complex
numbers and global differential G-invariants of a regular plane path are introduced. In Section 3, definitions of completely
degenerate and non-degenerate plane paths are expressed. The global G-similarity conditions of plane paths are obtained.
For given two plane paths ξ and η with the common G-invariants, general forms of all transformations g ∈ G, carrying ξ
to η, are found. In Section 4, the existence and rigidity theorems of paths are obtained. In Section 5, a short introduction
to non-degenerate curves and type of curve as global invariant of non-degenerate curves are explained. We give the
global G-similarity conditions of non-degenerate curves in terms of the type of curve for the group Sim(E2). In Section 6,
applications to Newtonian mechanics of obtained results in other sections are introduced.

2. Preliminaries

Let C be the field of complex numbers. The product of two complex numbers u and v has the form

uv = (u1 + iu2)(v1 + iv2) = (u1v1 − u2v2) + i(u1v2 + u2v1)

Consider the complex number u = u1 + iu2 in the matrix form u =

(
u1
u2

)
. Then, the complex number uv has the form

uv =

(
u1v1 − u2v2
u1v2 + u2v1

)
=

(
u1 −u2
u2 u1

)(
v1
v2

)
. (2)

Denote by Mu the matrix
(
u1 −u2
u2 u1

)
. Then Mu : C → C is a transformation and the equality (2) has the form

uv = Muv. (3)

for all u, v ∈ C.
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The field C can be used to represent E2 with the scalar product ⟨u, v⟩ = u1v1+u2v2 for all u = u1+iu2, v = v1+iv2 ∈ C.
Here, the quadratic form on E2 is ⟨u, u⟩ = |u|2 for all u ∈ C. The conjugate of u, denoted by u, is defined as u = u1 − iu2.
Clearly, from definition we have u + u = 2u1, uu = |u|2, |u| = |u| and ⟨u, v⟩ = ⟨u, v⟩. For |u| ̸= 0, the inverse of u is

defined as 1
u =

u
|u|2

. Moreover, let Λ =

(
1 0
0 −1

)
. Then we have u = Λu.

For complex numbers u = u1 + iu2, v = v1 + iv2, the matrix
(
u1 v1
u2 v2

)
will be denoted by ∥u v∥. Denote by det(∥u v∥)

the determinant of ∥u v∥.
The following proposition is given in [20, Proposition 14].

Proposition 1. Let u, v ∈ C. Assume that |u| ̸= 0. Then the element v
u exists, the following equalities hold:

v

u
=

⟨u, v⟩
|u|2

+ i
det(∥u v∥)

|u|2

and

M v
u

=

⎛⎝ ⟨u,v⟩
|u|2

−
det(∥u v∥)

|u|2

det(∥u v∥)
|u|2

⟨u,v⟩
|u|2

⎞⎠ . (4)

Let LSim+(E2) and LSim−(E2) be sets generated by all orientation-preserving and orientation-reserving linear similarities
of E2, respectively. Clearly, LSim+(E2) ∩ LSim−(E2) = ∅. The set LSim(E2) of all linear similarities of E2 can be written in
the form LSim(E2) = LSim+(E2) ∪ LSim−(E2).

Denote C∗
= C − {0}. The following theorem is known from [4, p. 229].

Theorem 1.

(i) LSim+(E2) = {Mu|u ∈ C∗}.
(ii) LSim−(E2) = LSim+(E2)Λ = {MuΛ|u ∈ C∗}.
(iii) LSim(E2) = LSim+(E2) ∪ LSim−(E2).
(iv) Sim+(E2) = {F : E2 → E2|F (v) = Muv + b, u ∈ C∗,∀v ∈ E2, b ∈ E2}.
(v) Sim−(E2) = {F : E2 → E2|F (v) = (MuΛ)v + b, u ∈ C∗,∀v ∈ E2, b ∈ E2}.
(vi) Sim(E2) = Sim+(E2) ∪ Sim−(E2).

Let I = (a, b) ⊆ R. Throughout Sections 2–5, we consider the following path ξ (t) = (ξ1(t), ξ2(t)) such that

ξ : I → E2 (5)

is a C2-mapping. Here, a C2-mapping ξ is called to be an I-path in E2. The components ξ1(t), ξ2(t) of ξ (t) are real
C2-functions on I , and they are defined for all values of t in I . For shortly, in the expression ξ (t) we will use ξ instead
of ξ (t).

Denote the first and the second derivatives of ξ by ξ ′
= (ξ ′

1, ξ
′

2) and ξ
′′

= (ξ ′′

1 , ξ
′′

2 ), respectively.

Definition 1. A C2-mapping ξ : I → E2 is called S-regular I-path if ξ ′(t) ̸= 0 for all t ∈ I .

For example, consider an R-path ξ (t) = (t, t2). Then, ξ ′(t) = (1, 2t) ̸= 0 for all t ∈ R. Hence, ξ (t) is an S-regular
R-path.

Let G = Sim(E2) or G = Sim+(E2).

Definition 2. Two paths ξ, η : I → E2 are called G-similar if there exists F ∈ G such that η(t) = Fξ (t) for all t ∈ I .

Proposition 2. Let ξ and η be two I-paths. Then,

(i) ξ and η are Sim+(E2)-similar if and only if ξ ′ and η′ are LSim+(E2)-similar.
(ii) ξ and η are Sim(E2)-similar if and only if ξ ′ and η′ are LSim(E2)-similar.

Proof.

(i) ⇒: Let ξ and η be Sim+(E2)-similar. Then, by Theorem 1(iv), there is an orientation-preserving similarity trans-
formation F such that η(t) = Fξ (t) = Muξ (t) + b for some orientation-preserving linear similarity transformation
Mu of E2, the constant b in E2 and all t ∈ I . This equality implies η′

= Muξ
′. Then, we obtain that ξ ′ and η′ are

LSim+(E2)-similar.
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⇐: Let ξ ′ and η′ be LSim+(E2)-similar. Then, by Theorem 1(i), there is orientation-preserving linear similarity
transformation F such that η′(t) = Fξ ′(t) = Muξ

′(t) for some u ∈ C∗ and all t ∈ I . Since η′
= Muξ

′, there
exists a constant b ∈ C such that η = Muξ + b. That is, ξ and η are Sim+(E2)-similar.

(ii) The proof is exactly the same as (i).

Let ζ1, ζ2, . . . , ζn : I → E2 are paths defined on the same interval.

Definition 3. A function ψ(ζ1, ζ2, . . . , ζn) is called G-invariant if ψ(Fζ1, Fζ2, . . . , Fζn) = ψ(ζ1, ζ2, . . . , ζn) for all F ∈ G
and for all t ∈ I .

For the derivatives ξ ′, ξ ′′ of ξ in (5), the determinant of the matrix ∥ξ ′ ξ ′′
∥ =

(
ξ ′

1 ξ ′′

1
ξ ′

2 ξ ′′

2

)
will be denoted by det(∥ξ ′ ξ ′′

∥).

Let ξ (t) be an S-regular I-path. For shortness, we put fξ (t) =
⟨ξ ′,ξ ′′

⟩

|ξ ′|
2 , gξ (t) =

⟨ξ ′′,ξ ′′
⟩

|ξ ′|
2 , hξ (t) =

det(∥ξ ′ ξ ′′
∥)2

|ξ ′|
4 and

kξ (t) =
det(∥ξ ′ ξ ′′

∥)
|ξ ′|

2 .

Proposition 3.

(i) The functions fξ (t), gξ (t) and hξ (t) are Sim(E2)-invariant.
(ii) The function kξ (t) is Sim+(E2)-invariant.

Proof. It is easy and similar to the proof of Proposition 13 in [20].

These functions are called global invariant functions of the groups Sim(E2) and Sim+(E2).

3. Similarity of paths for the groups Sim(E2) and Sim+(E2)

Theorem 2. Let ξ, η : I → E2 are S-regular paths. Then ξ and η are Sim+(E2)-similar if and only if{
fξ (t) = fη(t)
kξ (t) = kη(t)

(6)

for all t ∈ I .
Furthermore, there is the unique orientation-preserving similarity transformation F of E2 such that η = Fξ = Nξ+b, where

the orientation-preserving linear similarity transformation N of E2 and the constant b in E2 can be written as

N =

⎛⎝ ⟨ξ ′,η′
⟩

|ξ ′|
2 −

det(∥ξ ′ η′
∥)

|ξ ′|
2

det(∥ξ ′ η′
∥)

|ξ ′|
2

⟨ξ ′,η′
⟩

|ξ ′|
2

⎞⎠ (7)

and

b = η − Nξ (8)

for all t ∈ I , resp. Here, N and b are independent of the choice of t in I.

Proof. ⇒: Let two S-regular I-paths ξ and η be Sim+(E2)-similar. Then, by Theorem 1(iv), there is an orientation-
preserving similarity transformation F of E2 such that η = Fξ = Mzξ + b, where Mz is an orientation-preserving linear
similarity transformation of E2 and b is a constant in E2. Using (3), we obtain η = zξ + b. This implies that η′

= zξ ′. Since
ξ and η are S-regular, we have |ξ ′

| ̸= 0 and |η′
| ̸= 0 for all t ∈ I . Then, 1

ξ ′ and 1
η′ exist for all t ∈ I . In Proposition 1, we

consider u = η′, v = η′′. Then we have

η′′

η′
=

⟨η′, η′′
⟩ + idet(∥η′ η′′

∥)
|η′|

2 . (9)

and
ξ ′′

ξ ′
=

⟨ξ ′, ξ ′′
⟩ + idet(∥ξ ′ ξ ′′

∥)
|ξ ′|

2 . (10)

The equalities η′
= zξ ′ and η′′

= zξ ′′ imply η′′

η′ =
ξ ′′

ξ ′ . From this equality with (9) and (10), we have (6).
⇐: Let the equalities (6) be hold. From (9), (10) and (6) we have

η′′

η′
=
ξ ′′

ξ ′
(11)
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for all t ∈ I . By taking derivative we have

d
dt

(
η′

ξ ′

)
=
η′′

ξ ′
−
η′ξ ′′

(ξ ′)2
=
η′

ξ ′

(
η′′

η′
−
ξ ′′

ξ ′

)
. (12)

Using the equalities (11) and (12) we get d
dt

(
η′

ξ ′

)
= 0 for all t ∈ I . Hence the function η′

ξ ′ is constant on I . Put g =
η′

ξ ′ .
Since |ξ ′

| ̸= 0 and |η′
| ̸= 0 for all t ∈ I , we obtain g ̸= 0.

Moreover η′
=

η′

ξ ′ ξ
′
= gξ ′.

Using the equality (3), we have η′
= gξ ′

= Mgξ
′. By g =

η′

ξ ′ =
⟨ξ ′,η′

⟩

|ξ ′|
2 + i det(∥ξ

′ η′
∥)

|ξ ′|
2 and Proposition 1, Mg has the form

(7) and Mg = N . Since g is a constant, N is independent of the choice of t in I Then η′
= Nξ ′

= Mgξ
′. By Theorem 1(i),

N ∈ LSim+(E2). Hence ξ ′ and η′ are LSim+(E2)-similar. From the equality η′
= Mgξ

′
= Nξ ′, we have (η− Nξ )′ = 0. Hence

η − Nξ is independent of the choice of t in I . Put b = η − Nξ . Then b ∈ E2 and η = Nξ + b.
For uniqueness, assume that H ∈ LSim+(E2) and c ∈ E2 exist such that η = Hξ + c. Then, by this equality we have

η′
= Hξ ′. Then, by the equality (3), Proposition 1 and Theorem 1(i), there exists the unique h ∈ C∗ such that H = Mh.

Hence we obtain η′
= Mhξ

′. By the equality (3), we have η′
= hξ ′. Since |ξ ′

| ̸= 0, η′
= hξ ′ implies that h =

η′

ξ ′ = g . Hence
H = Mh = Mg = N .

Consider b = η − Nξ . Then, by the uniqueness of N , we have b = η − Nξ = c. Hence the uniqueness of b and the
uniqueness of F are proved.

Now, let us consider an example of detecting similarities between two S-regular paths under the orientation-preserving
transformation.

Example 1. Suppose that the two R-paths are given as follows: ξ (t) = (t2, et ) and η(t) = (2t2 − 3et + 1, 3t2 + 2et + 2).
Clearly, they are S-regular and (6) hold. Then, using Theorem 2(ii), ξ (t) and η(t) are Sim+(E2)-similar. Further, using

Theorem 2, we have N =

(
2 −3
3 2

)
and b = 1 + 2i.

Definition 4.

(i) A completely S-degenerate I-path is a C2-mapping ξ : I → E2 such that det(∥ξ ′(t) ξ ′′(t)∥) = 0 for all t ∈ I .
(ii) An S-non-degenerate I-path is a C2-mapping ξ : I → E2 such that det(∥ξ ′(t) ξ ′′(t)∥) ̸= 0 for all t ∈ I .

Let G = Sim+(E2) or G = Sim(E2).

Theorem 3. Let ξ and η be two completely S-degenerate S-regular I-paths. Then ξ and η are Sim(E2) -similar if and only if

fξ (t) = fη(t) (13)

for all t ∈ I .
Furthermore, there are only two similarity transformations F = F1, F2 of E2 such that η = F1ξ = N1ξ + b1 or

η = F2ξ = N2Λξ + b2. Then

(i) in the case η = F1ξ = N1ξ + b1, the orientation-preserving linear similarity transformation N1 of E2 and the constant
b1 in E2 can be written as (7) and

b1 = η − N1ξ, (14)

resp.
(ii) in the case η = F2ξ = N2Λξ + b2, the orientation-preserving linear similarity transformation N2 of E2 and the constant

b2 in E2 can be written as

N2 =

⎛⎝ ⟨Λξ ′,η′
⟩

|ξ ′|
2 −

det(∥Λξ ′ η′
∥)

|ξ ′|
2

det(∥Λξ ′ η′
∥)

|ξ ′|
2

⟨Λξ ′,η′
⟩

|ξ ′|
2

⎞⎠ . (15)

and

b2 = η − N2Λξ (16)

for all t ∈ I , resp. Here N1, N2, b1 and b2 are independent of the choice of t in I.

Proof. ⇒: Let two completely S-degenerate S-regular I-paths ξ and η be Sim(E2)-similar. Since fξ (t) and fη(t) are
Sim(E2)-invariant, we obtain (13).

⇐: Let fξ (t) = fη(t) for all t ∈ I . For ξ and η, we have

det(∥ξ ′ ξ ′′
∥) = det(∥η′ η′′

∥) = 0. (17)
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From (13) and (17), we have (6). Then, using Theorem 2, there is the unique orientation-preserving similarity transforma-
tion F of E2 such that η(t) = Fξ = N1ξ + b1, where N1 is an orientation-preserving linear similarity transformation of E2
and b1 is a constant in E2. Clearly, N1 and b1 have the forms (7) and (14), resp. By Theorem 2, N1 and b1 are independent
of the choice of t in I .

Now we consider completely S-degenerate S-regular I-paths Λξ (t) and η(t). Since the scalar products ⟨ξ ′, ξ ′
⟩ and

⟨ξ ′, ξ ′′
⟩ are Λ-invariant, we have ⟨Λξ ′,Λξ ′

⟩ = ⟨ξ ′, ξ ′
⟩, ⟨Λξ ′,Λξ ′′

⟩ = ⟨ξ ′, ξ ′′
⟩, ⟨Λη′,Λη′

⟩ = ⟨η′, η′
⟩ and ⟨Λη′,Λη′′

⟩ =

⟨η′, η′′
⟩ for all t ∈ I . By (17) for all t ∈ I , we have

det(∥Λξ ′ Λξ ′′
∥) = (detW )det(∥ξ ′ ξ ′′

∥)
= −det(∥ξ ′ ξ ′′

∥) = −det(∥η′ η′′
∥) = 0.

Using ⟨Λξ ′,Λξ ′
⟩ = ⟨ξ ′, ξ ′

⟩, ⟨Λξ ′,Λξ ′′
⟩ = ⟨ξ ′, ξ ′′

⟩, det(∥Λξ ′ Λξ ′′
∥) = det(∥η′ η′′

∥), by (13) and (17), we obtain the
equalities:{

fΛξ (t) = fη(t),
kΛξ (t) = kη(t).

for all t ∈ I . Then, from Theorem 2, there is the unique orientation-preserving similarity transformation F of E2 such
that η = F (Λξ ) = (N2Λ)ξ + b2, where N2 is an orientation-preserving linear similarity transformation of E2 and b2 is a
constant in E2. Here N2 and b2 have the forms (15) and (16), resp. As in Theorem 2, N2 and b2 are independent of the
choice of t in I . Now assume that there is similarity transformation F of E2 mapping ξ into η. Prove that Fξ = N1ξ + b1
or Fξ = (N2Λ)ξ + b2, where N1,N2 are two orientation-preserving linear similarity transformations of E2 and b1, b2 are
two constants in E2. Let η = Fξ = Aξ + b3 for some A ∈ LSim(E2), b3 ∈ E2. Then A ∈ LSim+(E2) or A ∈ LSim−(E2). First
assume that A ∈ LSim+(E2). Using of the uniqueness in Theorem 2, A = N1 and b1 = b3 = η − N1ξ . Let A ∈ LSim−(E2).
Then A and b3 have the forms A = BΛ and b3 = η − BΛξ , where B ∈ LSim+(E2). We have η = (BΛ)ξ + b3 = B(Λξ ) + b3.
Hence η and Λξ are Sim+(E2)-similar. By the uniqueness in Theorem 2, B = N2 and b2 = b3 = η − (N2Λ)ξ for all t ∈ I .

Theorem 4. Let ξ and η be two S-non-degenerate I-paths in E2. Assume that ξ and η are Sim(E2)-similar. Then equalities{
fξ (t) = fη(t)
hξ (t) = hη(t)

(18)

hold for all t ∈ I .
Conversely, assume that ξ and η such that equalities (18) hold for all t ∈ I . Then ξ and η are Sim(E2)-similar. Furthermore,

there is the unique similarity transformation F of E2 such that η = Fξ . Only the following cases exist:

(i1) det(∥ξ ′ ξ ′′
∥) > 0 and det(∥η′ η′′

∥) > 0 for all t ∈ I .
(i2) det(∥ξ ′ ξ ′′

∥) < 0 and det(∥η′ η′′
∥) < 0 for all t ∈ I .

(ii1) det(∥ξ ′ ξ ′′
∥) > 0 and det(∥η′ η′′

∥) < 0 for all t ∈ I .
(ii2) det(∥ξ ′ ξ ′′

∥) < 0 and det(∥η′ η′′
∥) > 0 for all t ∈ I .

In the cases (i1) and (i2), F has the form Fξ = N1ξ + b1, where the orientation-preserving linear similarity transformation
N1 of E2 and the constant b1 in E2 can be written as (7) and (14), resp.

In the cases (ii1) and (ii2), F has the form Fξ = N2Λξ+b2, where the orientation-preserving linear similarity transformation
N2 of E2 and the constant b2 in E2 can be written as (15) and (16), resp.

Here N1, N2, b1 and b2 are independent of the choice of t in I.

Proof. ⇒: Let ξ and η be Sim(E2)-similar. Since fξ (t) and hξ (t) are Sim(E2)-invariant, we obtain (18).
⇐: Let fξ (t) = fη(t), hξ (t) = hη(t) for all t ∈ I . For ξ and η, from Definition 4, we have det(∥ξ ′ ξ ′′

∥) ̸= 0 and
det(∥η′ η′′

∥) ̸= 0. Then the conditions (i1), (i2), (ii1), (ii2) in theorem exist.
Using the conditions (i1), (i2) and the equality hξ (t) = hη(t) in (18), we obtain

kξ (t) = kη(t). (19)

Then, (18) and (19) imply (6). Then, by Theorem 2, we obtain that there is the unique similarity transformation F of
E2 such that η(t) = Fξ = N1ξ + b1, where N1 is an orientation-preserving linear similarity transformation of E2 and
b1 = η − N1ξ is a constant in E2. Here, N1 has the form (7).

Using the conditions (ii1), (ii2) and the equality hξ (t) = hη(t) in (18), we obtain

kξ (t) = −kη(t). (20)

Using (20), |(Λξ )′| = |ξ ′
|, |ξ ′

|
2
> 0 and |η′

|
2
> 0, we have

det(∥Λξ ′ Λξ ′′
∥)

|(Λξ )′|2
=

det(∥η′ η′′
∥)

|η′|
2 (21)
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for all t ∈ I . From (21) and ⟨Λξ ′,Λξ ′′
⟩

|(Λξ )′|2
=

⟨ξ ′,ξ ′′
⟩

|ξ ′|
2 =

⟨η′,η′′
⟩

|η′|
2 imply the equalities (6) for the paths Λξ ′ and η. By Theorem 2,

there exists the unique similarity transformation F of E2 such that Fξ = N2Λξ+b2, where N2 is an orientation-preserving
linear similarity transformation of E2 and b2 = η − N2Λξ is a constant in E2. Here, N2 has the form (15). By Theorem 2,
N2 and b2 are independent of the choice of t in I

Let the similarity transformation F such that η = Fξ . As in the proof of Theorem 3, we obtain that Fξ = N1ξ + b1
or Fξ = (N2Λ)ξ + b2, where N1,N2 are two orientation-preserving linear similarity transformations of E2 and b1, b2 are
constants in E2.

Now, we consider an example of detecting similarities between two S-non-degenerate paths under the similarity
transformation.

Example 2. Suppose two S-non-degenerate R-paths are given as follows:ξ = (t, et ) and η = (t + 3et ,−3t + et + 2). It
is easy to see that the equalities in (18) hold for ξ and η. Then, by Theorem 4(ii), ξ and η are Sim(E2)-similar. Moreover,

by Theorem 4(ii), we obtain that N1 =

(
1 3

−3 1

)
and b = 2i.

The following lemma is known in [19, Lemma 13].

Lemma 1. Let z1, z2, w1, w2 be vectors in E2. Then det(∥z1 z2∥)det(∥w1 w2∥) = ⟨z1, w1⟩⟨z2, w2⟩ − ⟨z1, w2⟩⟨z2, w1⟩.

Theorem 5. Let ξ and η be two S-non-degenerate I-paths in E2. Assume that ξ and η are Sim(E2)-similar. Then equalities{
fξ (t) = fη(t)
gξ (t) = gη(t)

(22)

hold for all t ∈ I .
Conversely, assume that ξ and η such that equalities (22) hold for all t ∈ I . Then ξ and η are Sim(E2)-similar. Furthermore,

there is the unique similarity transformation F of E2 such that η = Fξ . Then,

(i) In the cases (i1) and (i2) in Theorem 4, F has the form Fξ = N1ξ + b1, where the orientation-preserving linear similarity
transformation N1 of E2 and the constant b1 in E2 have the forms (7) and (14), resp.

(ii) In the cases (ii1) and (ii2) in Theorem 4, F has the form Fξ = N2Λξ + b2, where the orientation-preserving linear
similarity transformation N2 of E2 and the constant b2 in E2 have the forms (15) and (16), resp.

Here N1, N2, b1 and b2 are independent of the choice of t in I.

Proof. ⇒: Let two S-non-degenerate I-paths ξ and η be Sim(E2)-similar.
In Lemma 1, put z1 = w1 = ξ ′, z2 = w2 = ξ ′′, we obtain

det(∥ξ ′ ξ ′′
∥)2 = ⟨ξ ′, ξ ′

⟩⟨ξ ′′, ξ ′′
⟩ − ⟨ξ ′, ξ ′′

⟩
2. (23)

Using (23) and |ξ ′
|
2

= ⟨ξ ′, ξ ′
⟩, we obtain

det(∥ξ ′ ξ ′′
∥)2

|ξ ′|
4 =

⟨ξ ′′, ξ ′′
⟩

|ξ ′|
2 −

⟨ξ ′, ξ ′′
⟩
2

|ξ ′|
4 . (24)

From (24), we have

⟨ξ ′′, ξ ′′
⟩

|ξ ′|
2 =

⟨ξ ′, ξ ′′
⟩
2

|ξ ′|
4 +

det(∥ξ ′ ξ ′′
∥)2

|ξ ′|
4 . (25)

From Proposition 3 and (25), we obtain gξ (t) is Sim(E2)-invariant. Since f 2ξ (t) and gξ (t) are Sim(E2)-invariants, for all
t ∈ I , fξ (t) = fη(t) and gξ (t) = gη(t).

⇐: Let fξ (t) = fη(t) and gξ (t) = gη(t) for all t ∈ I . Using (22) and (24), we obtain (18). Hence the proof follows from
Theorem 4.

4. Existence theorems of paths for the groups Sim(E2) and Sim+(E2)

Theorem 6. Let a1(t) and a2(t) be arbitrary real continuous functions on I. Assume that an S-regular I-path ξ such that the
following equalities{

fξ (t) = a1(t),
kξ (t) = a2(t)

(26)
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hold for all t ∈ I . Then it has the following form

ξ (t) = c1

∫ t

t0

e
∫ r
r0

(a1(u)+ia2(u))dudr + c2, (27)

where c1 is an arbitrary element of C∗, c2 is an arbitrary element of C and t0, r0 ∈ I .
Conversely, every I-path in the form (27), where c1 is an arbitrary element of C∗, c2 is an arbitrary element of C, t0, r0 ∈ I ,

a1(t) and a2(t) are arbitrary real continuous functions on I, is an S-regular I-path and satisfies the equalities (26) for all t ∈ I .

Proof. ⇒: Assume that an S-regular I-path ξ satisfies the equalities (26). From v
u =

⟨u,v⟩
|u|2

+ i det(∥u v∥)
|u|2

in Proposition 1, we
have for the path ξ :

ξ ′′

ξ ′
=

⟨ξ ′, ξ ′′
⟩

|ξ ′|
2 + i

det(∥ξ ′ ξ ′′
∥)

|ξ ′|
2 . (28)

Then a1(t) =
⟨ξ ′,ξ ′′

⟩

|ξ ′|
2 , a2(t) =

det(∥ξ ′ ξ ′′
∥)

|ξ ′|
2 and (28) imply the following equality for ξ in C:

ξ ′′
= (a1(t) + ia2(t))ξ ′.

General solution of this equation is

ξ (t) = c1

∫ t

t0

e
∫ r
r0

(a1(t)+ia2(t))dudr + c2,

where c1, c2 ∈ C and t0, r0 ∈ I . Since ξ ′(t) ̸= 0 for all t ∈ I , we have c1 ̸= 0.
⇐: Let an I-path ξ has the form (27). Then, by simple calculations, we have ⟨ξ ′,ξ ′′

⟩

|ξ ′|
2 = a1(t) and det(∥ξ ′ ξ ′′

∥)
|ξ ′|

2 = a2(t). Here,
it is easy to see that ξ is an S-regular I-path.

Example 3. Suppose two real continuous functions on R are given as follows: a1(t) =
4t

4t2+1
and a2(t) =

2
4t2+1

. Then the
general solution of the equalities ⟨ξ ′,ξ ′′

⟩

|ξ ′|
2 =

4t
4t2+1

and det(∥ξ ′ ξ ′′
∥)

|ξ ′|
2 =

2
4t2+1

has the form:

ξ (t) = c1

∫ t

0
e
∫ r
0 (a1(u)+ia2(u))dudr + c2

= c1

∫ t

0
e
∫ r
0 a1(u)du

[
cos(

∫ r

0
a2(u)du) + isin(

∫ r

0
a2(u)du)

]
dr + c2

= c1

∫ t

0

√
4r2 + 1 [cos(arctan2r) + isin(arctan2r)] dv + c2

= c1

∫ t

0

√
4r2 + 1

[
1

√
4r2 + 1

+ i
2r

√
4r2 + 1

]
dr + c2

= c1(t + it2) + c2,

∀c1 ∈ C∗,∀c2 ∈ C and t0 = 0 = r0 ∈ R. Since ξ ′(t) = c1(1 + 2it) ̸= 0,∀t ∈ R, ξ (t) is an S-regular R-path.

Corollary 1. Let a(t) be arbitrary real continuous function on I. Assume that a completely S-degenerate S-regular I-path ξ
such that the following equality

fξ (t) = a(t) (29)

holds for all t ∈ I . Then it has the following form

ξ (t) = c1

∫ t

t0

e
∫ r
r0

a(u)dudr + c2, (30)

where c1 is an arbitrary element of C∗, c2 is an arbitrary element of C and t0, r0 ∈ I .
Conversely, every I-path in the form (30), where c1 is an arbitrary element of C∗, c2 is an arbitrary element of C, t0, r0 ∈ I ,

a1(t) and a2(t) are arbitrary real continuous functions on I, is an S-regular I-path and satisfies the equality (29) for all t ∈ I
and it is a completely S-degenerate S-regular I-path.

Proof. The proof is given as a particular case of the proof of Theorem 6.

Assume that ξ (t) is an S-non-degenerate I-path. Then det(∥ξ ′ ξ ′′
∥) > 0 for all t ∈ I or det(∥ξ ′ ξ ′′

∥) < 0 for all t ∈ I
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Corollary 2. Let a1(t) and a2(t) be arbitrary real continuous functions on I. Assume that an S-non-degenerate I-path ξ such
that the following equalities{

fξ (t) = a1(t),

(kξ (t))2 = a2(t)
(31)

hold for all t ∈ I . Then

(i) a2(t) > 0 for all t ∈ I
(ii) In the case det(∥ξ ′ ξ ′′

∥) > 0 for all t ∈ I , ξ can be written as

ξ (t) = c1

∫ t

t0

e
∫ r
r0(a1(u)+i

√
a2(u))dudr + c2, (32)

where ∀c1 ∈ C∗,∀c2 ∈ C and t0, r0 ∈ I .
(iii) In the case det(∥ξ ′ ξ ′′

∥) < 0 for all t ∈ I , ξ can be written as

ξ (t) = c1

∫ t

t0

e
∫ r
r0(a1(u)−i

√
a2(u))dudr + c2, (33)

where ∀c1 ∈ C∗,∀c2 ∈ C and t0, r0 ∈ I .

Conversely, in the case a2(t) > 0 for all t ∈ I , every path ξ of the forms (32) and (33) is an S-non-degenerate I-path satisfying
equalities (31).

Proof. Let ξ be an S-non-degenerate I-path. Then, by Definition 4, we have det(∥ξ ′ ξ ′′
∥) ̸= 0 for all t ∈ I . This inequality

and equalities (31) imply a2(t) > 0 for all t ∈ I . Moreover, since ξ is an S-non-degenerate I-path, we have det(∥ξ ′ ξ ′′
∥) > 0

or det(∥ξ ′ ξ ′′
∥) < 0 for all t ∈ I .

Explicitly, for det(∥ξ ′ ξ ′′
∥) > 0,

det(∥ξ ′ ξ ′′
∥)2

|ξ ′|
4 = a2(t) (34)

implies

det(∥ξ ′ ξ ′′
∥)

|ξ ′|
2 =

√
a2(t). (35)

Then, we obtain the following system⎧⎪⎪⎨⎪⎪⎩
⟨ξ ′, ξ ′′

⟩

|ξ ′|
2 = a1(t),

det(∥ξ ′ ξ ′′
∥)

|ξ ′|
2 =

√
a2(t).

(36)

By Theorem 6, a general solution of (36) has the form (32).
Similarly, for det(∥ξ ′ ξ ′′

∥) < 0, (34) implies

det(∥ξ ′ ξ ′′
∥)

|ξ ′|
2 = −

√
a2(t).

Then, we obtain the following system⎧⎪⎪⎨⎪⎪⎩
⟨ξ ′, ξ ′′

⟩

|ξ ′|
2 = a1(t),

det(∥ξ ′ ξ ′′
∥)

|ξ ′|
2 = −

√
a2(t).

(37)

By Theorem 6, a general solution of (37) has the form (33).
Conversely, let an I-path ξ have the forms (32) or (33). Then, by simple calculations, we obtain equalities (31). Here,

since a2(t) ̸= 0 for all t ∈ I , it is easy to see that ξ is an S-non-degenerate I-path.

Corollary 3. Let a1(t) and a2(t) be arbitrary real continuous functions on I. Assume that an S-non-degenerate I-path ξ such
that the following equalities{

fξ (t) = a1(t),
gξ (t) = a2(t)

(38)

hold for all t ∈ I . Then
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(i) a2(t) − a21(t) > 0 for all t ∈ I
(ii) In the case det(∥ξ ′ ξ ′′

∥) > 0 for all t ∈ I , ξ can be written as

ξ (t) = c1

∫ t

t0

e
∫ r
r0

(
a1(u)+i

√
a2(u)−a21(u)

)
du
dr + c2, (39)

where ∀c1 ∈ C∗,∀c2 ∈ C and t0, r0 ∈ I .
(iii) In the case det(∥ξ ′ ξ ′′

∥) < 0 for all t ∈ I , ξ can be written as

ξ (t) = c1

∫ t

t0

e
∫ r
r0

(
a1(u)−i

√
a2(u)−a21(u)

)
du
dr + c2, (40)

where ∀c1 ∈ C∗,∀c2 ∈ C and t0, r0 ∈ I .

Conversely, in the case a2(t) − a21(t) > 0 for all t ∈ I , every path ξ of the forms (39) and (40) is an S-non-degenerate I-path
satisfying equalities (38).

Proof. It is obvious from Theorem 5 and Corollary 2.

5. G-Similarity of S-non-degenerate curves for the groups G = Sim(E2) and G = Sim+(E2)

Definition 5 (see [3]). An I1-path ξ (t), t ∈ I1 = (a, b) is equivalent to an I2-path η(r), I2 = (c, d), if a C2-diffeomorphism
ψ : I2 → I1 exists such that ψ ′(r) > 0 and η(r) = ξ (ψ(r)) for all r ∈ I2. We define a curve Φ to be an equivalence class
of these paths. A path ξ ∈ Φ is called a parametrization of Φ .

Let G = Sim(E2), Sim+(E2) and Φ = {ντ , τ ∈ Π} be a curve, where ντ is a parametrization of Φ . Then FΦ = {Fντ , τ ∈

Π} is a curve for all F in G.

Definition 6. Two curves Φ and Ψ are G -similar provided there exists some F ∈ G such that Ψ = FΦ .

Definition 7. A curve Φ is an S-non-degenerate curve provided Φ contains an S-non-degenerate path.

Proposition 4. Let Φ be an S-non-degenerate curve. Then every ξ ∈ Φ is an S-non-degenerate path.

Proof. It is obvious from Proposition 37 in [20].

Remark 1. Throughout this section, we consider paths and curves which are S-non-degenerate.

We define the arc length of the I-path ξ from t = c to t = d to be the number
∫ d
c

|det(∥ξ ′(t) ξ ′′(t)∥)|
|ξ ′(t)|2

dt , for c, d ∈

I = (a, b) ⊆ R and c < d. This number is denoted by ℓξ (c, d). Then, there exist the limits limc→a ℓξ (c, d) ≤ +∞ and
limd→b ℓξ (c, d) ≤ +∞. They are denoted by ℓξ (a, d) and ℓξ (c, b), respectively.

Now we define the type of I-path ξ for the group Sim(E2). This type is denoted by Lξ . Firstly, we put l = ℓξ (a, d) +

ℓξ (c, b) − ℓξ (c, d), where 0 ≤ l ≤ +∞. Clearly, l is independent of the choice of c, d in I . Moreover, if 0 < ℓξ (a, d) <
+∞, 0 < ℓξ (c, b) < +∞ or 0 < ℓξ (a, d) < +∞, ℓξ (c, b) = +∞, then Lξ = (0, l). If 0 < ℓξ (a, d) = +∞, 0 < ℓξ (c, b) <
+∞ or 0 < ℓξ (a, d) = +∞, ℓξ (c, b) = +∞, then Lξ = (−∞, 0) or Lξ = (−∞,+∞), respectively. So the type of I-path ξ
for the group Sim(E2) are (0,+∞), (−∞, 0) , (−∞,+∞) and (0, l), where l < +∞.

We omit the easy proofs of the following Propositions.

Proposition 5.

(i) If ξ and η are Sim(E2)-similar, then Lξ = Lη .
(ii) If ξ, η ∈ Φ , then Lξ = Lη .

According to the group Sim(E2), the type of a path ξ ∈ Φ is called the type of the curve Φ and denoted by LΦ .

Proposition 6. If two curves Φ and Ψ are Sim(E2)-similar, then LΦ = LΨ .

For all types of the group Sim(E2), we define the function sξ (t) for an I-path ξ , where I = (a, b), as follows:

(i) sξ (t) = ℓξ (a, t) for Lξ = (0, l), where l ≤ +∞.
(ii) sξ (t) = −ℓξ (t, b) for Lξ = (−∞, 0).
(iii) In each interval I = (a, b) of the line R, we choose a fixed point and denote it by xI . In the case I = (−∞,+∞), we

choose xI = 0. We put sξ (t) = ℓξ (xI , t) for the interval I .
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Since ξ is a S-non-degenerate path,
dsξ
dt

> 0. By a standard theorem of calculus, the function sξ (t) has an inverse function

tξ (s). Clearly, the domain of tξ (s) is Lξ .
We omit the easy proofs of the following Propositions 7, 8, 9, 10.(see [3]).

Proposition 7. Let I = (a1, b1) and J = (a2, b2). For I-path ξ and for all F ∈ Sim(E2), the following statements hold:

(i) sFξ (t) = sξ (t) and tFξ (s) = tξ (s) for all t ∈ I , for all s ∈ Lξ and all F ∈ Sim(E2).
(ii) for any C2-diffeomorphism with ψ ′(r) > 0 for all r ∈ I , the following equalities hold: sξ (ψ)(r) = sξ (ψ(r)) + a0,∀r ∈ I ,

and ψ(tξ (ψ)(s + a0)) = tξ (s),∀s ∈ Lξ . Here, a0 = 0 for Lξ ̸= (−∞,+∞) and a0 = ℓξ (ψ(aJ ), aI ) for Lξ = (−∞,+∞).

According to Proposition 7, we have ξ (tξ (s)) ∈ Φ .

Definition 8 (see [3]). ξ (tξ (s)) ∈ Φ is called an invariant parametrization of Φ .

Denote PΦ by the set of all invariant parametrizations of Φ .

Proposition 8. Let ξ ∈ Φ and ξ be a I-path, where I = LΦ . Then the followings are equivalent:

(i) ξ ∈ Φ is an invariant parametrization.
(ii) |det(∥ξ ′(s) ξ ′′(s)∥)|

|ξ ′(s)|2
= 1, ∀s ∈ LΦ .

(iii) sξ (s) = s, ∀s ∈ LΦ .

In the case sξ (s) = s,∀s ∈ LΦ , s will be called an invariant parameter of Φ .
Suppose I is one of the intervals (0, l), l < +∞; (0,+∞), (−∞, 0) or (−∞,+∞).

Theorem 7. Let ξ (s) ∈ PΦ . Then ξ (s) can be written in the form

ξ (s) = c1

∫ s

s0

e
∫ r
r0

(a(u)+i)dudr + c2, (41)

or in the form

ξ (s) = c1

∫ s

s0

e
∫ r
r0

(a(u)−i)dudr + c2, (42)

where c1 ∈ C∗, c2 ∈ C and s0, r0 ∈ I and a(t) is a real continuous function on I.
Conversely, paths ξ (s) of the forms (41) and (42) are invariant parametrizations of Φ for ∀c1 ∈ C∗,∀c2 ∈ C, ∀s0, r0 ∈ I

and arbitrary a(t) real continuous functions on I.

Proof. ⇒: Let ξ (s) ∈ PΦ . Then, by Proposition 8(ii) and Theorem 6, we obtain that ξ (s) has the form (41) or the form (42).
⇐: Let ξ (s) has the form (41) or the form (41), where c1 is an arbitrary element of C∗, c2 is an arbitrary element of C,

s0, r0 are arbitrary elements of ∈ I and a(t) is an arbitrary real continuous functions on I . Then, in Theorem 6, we have
|a2(s)| = 1,∀s ∈ I . Hence, by Theorem 6 and Proposition 8(ii), ξ (s) is an invariant parametrization of Φ .

Proposition 9. For the type LΦ ̸= (−∞,+∞), there exists the unique invariant parametrization of Φ .

Remark 2. For LΦ = (−∞,+∞), PΦ is infinite and uncountable. Moreover, if ξ (t) is a periodic path then Lξ =

(−∞,+∞).

Proposition 10. Let ξ ∈ PΦ and LΦ = (−∞,+∞). Then PΦ = {η : η(s) = ξ (s + u), u ∈ (−∞,+∞)}.

Example 4. Suppose the S-nondegenerate R-path is given as follows: ξ (t) = (cost, sint) in E2. Let ξ (t) ∈ Φ . By Definition 7,
Φ is an S-non-degenerate curve and LΦ = (−∞,+∞). Using Proposition 8, we have ξ (t) ∈ PΦ . Consider the R-path
η(t) = ξ (t + k), where k ∈ R. The mapping ψ : R → R, where ψ(t) = t + k for all t ∈ R, is a homeomorphism such
that ψ ′(t) > 0 for all t ∈ R. Hence, ξ (t) and η(t) are equivalent. So η(t) = ξ (t + k) ∈ Φ for all k ∈ R. By Proposition 10,
ξ (t + k) ∈ PΦ for k ∈ R.

Let G = Sim(E2) or G = Sim+(E2). The proof of the following theorem is similar to the proof of [3, Theorem 1] for the
group G.

Theorem 8. Let Φ and Ψ are S-non-degenerate curves and ξ ∈ PΦ , η ∈ PΨ are invariant parametrizations.

(i) In the case LΦ = LΨ ̸= (−∞,+∞), Φ and Ψ are G-similar if and only if ξ and η are G-similar.
(ii) In the case LΦ = LΨ = (−∞,+∞), Φ and Ψ are G-similar if and only if ξ and η(ψx) are G-similar for some

x ∈ (−∞,+∞), where ψx(s) = s + x.
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The importance of Theorem 8 is that it reduces the problem of G-similarity of the curves for the group G to that of
paths for LΦ = LΨ ̸= (−∞,+∞).

Definition 9. R-paths ξ and η are [G, (−∞,+∞)]-similar provided there exist g ∈ G and d ∈ R such that η = gξ (t + d)
for all t ∈ R.

Let Φ and Ψ be two curves, where LΦ = LΨ = (−∞,+∞). Then, Theorem 8 reduces the G-similarity of these curves
to [G, (−∞,+∞)]-similarity of paths.

Now, we will give the conditions of the global G-similarity of S-non-degenerate curves in terms of the type and global
differential G-invariants of an S-non-degenerate curve for the groups G = Sim(E2), Sim+(E2).

By Theorem 8, G-similarity and uniqueness problems for curves are reduced to the same problems for invariant
parametrizations of curves only for the case LΦ = LΨ ̸= (−∞,+∞). Below we use this reduction.

Let Φ be S-non-degenerate curves and ξ ∈ PΦ be an invariant parametrization.
Then we denote the function sgn(det(∥ξ ′ ξ ′′

∥)) by ρξ (s). We consider, for all s ∈ LΦ , the functions fξ (s), gξ (s), hξ (s) and
kξ (s) in Proposition 3.

Theorem 9. Let Φ and Ψ are S-non-degenerate curves such that LΦ ̸= (−∞,+∞), LΨ ̸= (−∞,+∞) and ξ ∈ PΦ , η ∈ PΨ
are invariant parametrizations. Then Φ and Ψ are Sim+(E2)-similar if and only if⎧⎨⎩

LΦ = LΨ
fξ (s) = fη(s)
ρξ (s) = ρη(s)

(43)

for all s ∈ LΦ .
Furthermore, there is the unique orientation-preserving similarity transformation F such that Ψ = FΦ = N1Φ+b, where the

orientation-preserving linear similarity transformation N1 of E2 and the constant b in E2 have the forms (7) and (8), respectively.
Here, N1 and b are independent of the choice of s ∈ LΦ .

Proof. ⇒: Let Φ and Ψ be Sim+(E2)-similar. Using Proposition 6, we have LΦ = LΨ . Hence, by LΦ = LΨ and Theorem 8(i),
we have ξ and η are Sim+(E2)-similar. By Theorem 2, for all s ∈ LΦ , we obtain fξ (s) = fη(s) and kξ (s) = kη(s).

Since ξ and η are S-non-degenerate, with using kξ (s) = kη(s), we obtain ρξ (s) = ρη(s). So the equalities (43) hold.
⇐: Let LΦ = LΨ , fξ (s) = fη(s) and ρξ (s) = ρη(s) for all s ∈ LΦ . Since ξ ∈ PΦ , η ∈ PΨ , by Proposition 8(ii), we have

|det(∥ξ ′(s) ξ ′′(s)∥)|
|ξ ′(s)|2

=
|det(∥η′(s) η′′(s)∥)|

|η′(s)|2
= 1 for all s ∈ LΦ . Using this equality and ρξ (s) = ρη(s), we have kξ (s) = kη(s) for

all s ∈ LΦ . From kξ (s) = kη(s) and (43), we have (6). By Theorem 2, we obtain that ξ and η are Sim+(E2)-similar. Then,
there exists the unique orientation-preserving similarity transformation F such that η = Fξ = N1ξ + b, where N1 is an
orientation-preserving linear similarity transformation of E2 and b is a constant in E2. Then N1 and b have the forms (7)
and (8), respectively. Here N1 and b are independent of the choice of s in LΦ . From ξ ∈ PΦ , η ∈ PΨ , Theorem 8(i) and
η = Fξ , we have Ψ = FΦ .

Theorem 10. Let Φ and Ψ are S-non-degenerate curves such that LΦ = LΨ = (−∞,+∞) and ξ ∈ PΦ , η ∈ PΨ are invariant
parametrizations. Then Φ and Ψ are Sim+(E2)-similar if and only if there exists s1 ∈ LΦ such that the following equalities{

fξ (s + s1) = fη(s)
ρξ (s) = ρη(s)

(44)

hold for all s ∈ LΦ .
Furthermore, there is the unique orientation-preserving similarity transformation F such that Ψ = FΦ = M1Φ + b, where

the orientation-preserving linear similarity transformation M1 of E2 and the constant b in E2 have the forms

M1 =

⎛⎜⎝ ⟨ξ ′(s+s1),η′(s)⟩
|ξ ′(s+s1)|

2 −
det(∥ξ ′(s+s1) η′(s)∥)

|ξ ′(s+s1)|
2

det(∥ξ ′(s+s1) η′(s)∥)
|ξ ′(s+s1)|

2
⟨ξ ′(s+s1),η′(s)⟩

|ξ ′(s+s1)|
2

⎞⎟⎠ (45)

and

b = η − M1ξ, (46)

respectively. Here M1 and b are independent of the choice of s in LΦ .

Proof. ⇒: Let Φ and Ψ be Sim+(E2)-similar. Using Proposition 6, we have LΦ = LΨ . Hence, by LΦ = LΨ and Theorem 8(ii),
there exists s1 ∈ (−∞,+∞) such that ξ (s + s1) and η(s) are Sim+(E2)-similar. By Theorem 2(i), for all s ∈ LΦ , we obtain
fξ (s + s1) = fη(s) and kξ (s + s1) = kη(s).

Since ξ and η are S-non-degenerate, with using kξ (s+s1) = kη(s), we obtain ρξ (s) = ρξ (s+s1) = ρη(s). So the equalities
(44) hold.
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⇐: Let LΦ = LΨ , fξ (s + s1) = fη(s) and ρξ (s + s1) = ρη(s) for all s ∈ LΦ and for some s1 ∈ LΦ . Since ξ ∈ PΦ , η ∈ PΨ , by

Proposition 8(ii), we have |det(∥ξ ′(s) ξ ′′(s)∥)|
|ξ ′(s)|2

=
|det(∥ξ ′(s+s1) ξ ′′(s+s1)∥)|

|ξ ′(s+s1)|
2 =

|det(∥η′(s) η′′(s)∥)|
|η′(s)|2

= 1 for all s ∈ LΦ . Using this equality
and ρξ (s) = ρη(s), we have kξ (s+s1) = kη(s) for all s ∈ LΦ . From kξ (s+s1) = kη(s) and (44), we have (6). By Theorem 2, we
obtain that ξ and η are Sim+(E2)-similar. Then, there exists the unique orientation-preserving similarity transformation
F such that η(s) = Fξ (s + s1) = M1ξ (s + s1) + b, where M1 is an orientation-preserving linear similarity transformation
of E2 and b is a constant in E2. Then M1 and b have the forms (45) and (46), respectively. Here M1 and b are independent
of the choice of s ∈ LΦ . From ξ ∈ PΦ , η ∈ PΨ , Theorem 8(ii) and η(s) = Fξ (s + s1), we have Ψ = FΦ .

By Theorems 5, 8(i) and 9, we omit the easy proof of the following theorem.

Theorem 11. Let Φ and Ψ are S-non-degenerate curves such that LΦ ̸= (−∞,+∞), LΨ ̸= (−∞,+∞) and ξ ∈ PΦ , η ∈ PΨ
are invariant parametrizations. Then Φ and Ψ are Sim(E2)-similar if and only if{

LΦ = LΨ
fξ (s) = fη(s)

(47)

for all s ∈ LΦ .
Furthermore, if Φ and Ψ are Sim(E2)-similar, there is the unique similarity transformation F of E2 such that Ψ = FΦ , then

(i) in the case ρξ (s) = ρη(s), F has the form Fξ = M1ξ + b1, where the orientation-preserving linear similarity
transformation M1 and the constant b1 in E2 have the forms (7) and (14), resp.

(ii) in the case ρξ (s) = −ρη(s), F has the form Fξ = M2Λξ + b2, where the orientation-preserving linear similarity
transformation M2 and the constant b2 in E2 have the forms (15) and (16), resp.

Here M1, M2, b1 and b2 are independent of the choice of s ∈ LΦ .

By Theorems 5, 8(ii) and 10, we omit the easy proof of the following theorem.

Theorem 12. Let Φ and Ψ are S-non-degenerate curves such that LΦ = LΨ = (−∞,+∞) and ξ ∈ PΦ , η ∈ PΨ are invariant
parametrizations. Then Φ and Ψ are Sim(E2)-similar if and only if there exists s1 ∈ LΦ such that the following equalities

fξ (s + s1) = fη(s) (48)

holds for all s ∈ LΦ .
Furthermore, if Φ and Ψ are Sim(E2)-similar, there is the unique similarity transformation F of E2 such that Ψ = FΦ , then

(i) in the case ρξ (s + s1) = ρη(s), F has the form Fξ = M1ξ + b1, where the orientation-preserving linear similarity
transformation M1 and the constant b1 in E2 have the forms (45) and η(s) − M1ξ (s), resp.

(ii) in the case ρξ (s + s1) = −ρη(s), F has the form Fξ = M2Λξ + b2, where the orientation-preserving linear similarity
transformation M2 and the constant b2 in E2 have the forms

M2 =

⎛⎝ ⟨Λξ ′(s+s1),η′(s)⟩
|ξ ′(s+s1)|

2 −
det(∥Λξ ′(s+s1) η′(s)∥)

|ξ ′(s+s1)|
2

det(∥Λξ ′(s+s1) η′(s)∥)
|ξ ′(s+s1)|

2
⟨Λξ ′(s+s1),η′(s)⟩

|ξ ′(s+s1)|
2

⎞⎠
and b2 = η(s) − M2Λξ (s), resp.
Here M1, M2, b1 and b2 are independent of the choice of s ∈ LΦ .

6. Some applications to mechanics

6.1. Detecting G-similarity between two paths for groups Sim(Gal, 2) and Sim+(Gal, 2)

Let E2 be the 2-dimensional Euclidean space and E2 × R be the Newton space–time.
In the Introduction, we have defined the following groups:
Sim(Gal, 2) = {F : E2 × R → E2 × R | F (x, t) = (gx + bt, t), g ∈ Sim(E2), b ∈ E2, t ∈ R}.
Sim+(Gal, 2) = {F : E2 × R → E2 × R | F (x, t) = (gx + bt, t), g ∈ Sim+(E2), b ∈ E2, t ∈ R}.
Let I = (a, b) ⊆ R. We consider the I-path ξ (t) = (ξ1(t), ξ2(t)) such that

ξ : I → E2 (49)

is a C3-mapping. The components ξ1(t), ξ2(t) of ξ (t) are real C3-functions on I , and they are defined for all t in I .

Definition 10. Two paths ξ, η : I → E2 are Sim(Gal, 2)-similar provided there exists F ∈ Sim(Gal, 2), where F (ξ, t) =

(H(ξ ) + bt, t),H ∈ Sim(E2), b ∈ E2,∀ξ ∈ E2,∀t ∈ I , such that η(t) = Hξ (t) + bt,∀t ∈ I .
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Definition 11. Two paths ξ, η : I → E2 are Sim+(Gal, 2)-similar provided there exists F ∈ Sim+(Gal, 2), where
F (ξ, t) = (H(ξ ) + bt, t),H ∈ Sim+(E2), b ∈ E2,∀ξ ∈ E2,∀t ∈ I , such that η(t) = Hξ (t) + bt,∀t ∈ I .

Proposition 11. Let ξ and η be two I-paths. Then, ξ and η are Sim+(Gal, 2)-similar if and only if ξ ′ and η′ are Sim+(E2)-similar.

Proof. ⇒: Let ξ and η be Sim+(Gal, 2)-similar. Then there exists F ∈ Sim+(Gal, 2) such that η = Hξ+bt,H ∈ Sim+(E2), b ∈

E2,∀t ∈ I . From this equality, we obtain η′
= Hξ ′

+ b,H ∈ Sim+(E2), b ∈ E2,∀t ∈ I . That is, ξ ′ and η′ are Sim+(E2)-similar.
⇐: Let ξ ′ and η′ be Sim+(E2)-similar. Then there exists H ∈ Sim+(E2) such that η′

= Hξ ′
= Kξ ′

+ b, K ∈

LSim+(E2), b ∈ E2,∀t ∈ I . From this equality, we have (η − Kξ )′ = b,∀t ∈ I . Then there exist c ∈ E2 such that
η = (Kξ + c) + bt, K ∈ LSim+(E2),∀t ∈ I . This means that ξ and η are Sim+(Gal, 2)-similar.

The following proposition is similar to Proposition 11.

Proposition 12. Let ξ and η be two I-paths. Then ξ and η are Sim(Gal, 2)-similar if and only if ξ ′ and η′ are Sim(E2)-similar.

Remark 3. Propositions 11 and 12 reduce the conditions of Sim(Gal, 2)-similarity and Sim+(Gal, 2)-similarity of I-paths
to the conditions of Sim(E2)-similarity and Sim+(E2)-similarity of I-paths, respectively.

In this case, we can be give the following definitions.
Using the results of this article, the similarity conditions of motions of two fluid particles can be given. For example:

Definition 12. A C3-regular I-path ξ followed by a fluid particle in E2 is a C3-mapping ξ : I → E2 such that ξ ′′(t) ̸= 0
for all t ∈ I .

The following theorem is similar to Theorem 2.

Theorem 13. ξ, η : I → E2 are C3-regular I-paths followed by two fluid particles. Then ξ and η are Sim+(Gal, 2)-similar if
and only if⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨ξ (2), ξ (3)⟩

|ξ (2)|
2 =

⟨η(2), η(3)⟩

|η(2)|
2 ,

det(∥ξ (2) ξ (3)∥)

|ξ (2)|
2 =

det(∥η(2) η(3)∥)

|η(2)|
2 .

(50)

for all t ∈ I .
Furthermore, if ξ and η are Sim+(Gal, 2)-similar, there exists the unique F ∈ Sim+(Gal, 2) such that η = Fξ = Rξ + bt + c,

where R ∈ LSim+(E2) has the form

R =

⎛⎜⎝ ⟨ξ (2),η(2)⟩

|ξ (2)|
2 −

det(∥ξ (2) η(2)∥)
|ξ (2)|

2

det(∥ξ (2) η(2)∥)
|ξ (2)|

2
⟨ξ (2),η(2)⟩

|ξ (2)|
2

⎞⎟⎠ , (51)

and b, c ∈ E2 have the forms

b = η′
− Rξ ′, c = η − Rξ − (η′

− Rξ ′)t (52)

for all t ∈ I .
Here, R, b and c are independent of the choice of t in I.

Definition 13.

(i) A completely C3-degenerate path followed by a fluid particle is a C3-mapping ξ : I → E2 such that det
(∥ξ (2)(t) ξ (3)(t)∥) = 0 for all t ∈ I .

(ii) A C3-non-degenerate path followed by a fluid particle is a C3-mapping ξ : I → E2 such that det(∥ξ (2)(t) ξ (3)(t)∥) ̸= 0
for all t ∈ I .

The following theorems are similar to Theorems 3, 4 and 6, respectively.

Theorem 14. Let ξ and η be two completely C3-degenerate C3-regular I-paths in E2 followed by two fluid particles. Then ξ
and η are Sim(Gal, 2)-similar if and only if{

⟨ξ (2), ξ (3)⟩

|ξ (2)|
2 =

⟨η(2), η(3)⟩

|η(2)|
2 (53)

for all t ∈ I .



İ. Őren, D. Khadjiev and Ö. Pekşen / Journal of Geometry and Physics 151 (2020) 103619 15

Furthermore, if ξ and η are Sim(Gal, 2)-similar, there exists only two elements F = F1, F2 ∈ Sim(Gal, 2) such that
η = F1ξ = R1ξ +b1t + c1 and η = F2ξ = (R2Λ)ξ +b2t + c2, where the orientation-preserving linear similarity transformation
R1 of E2 has the form (51) and the orientation-preserving linear similarity transformation R2 of E2 has the form

R2 =

⎛⎜⎝ ⟨Λξ (2),η(2)⟩

|Λξ (2)|
2 −

det(∥Λξ (2) η(2)∥)
|Λξ (2)|

2

det(∥Λξ (2) η(2)∥)
|Λξ (2)|

2
⟨Λξ (2),η′

⟩

|Λξ (2)|
2

⎞⎟⎠ . (54)

Here b1, b2, c1, c2 ∈ E2 have the forms b1 = η′
−R1ξ

′, b2 = η′
−R2ξ

′, c1 = η−R1ξ − (η′
−R1ξ

′)t, c2 = η−R2ξ − (η′
−R2ξ

′)t
for all t ∈ I , respectively.

Here R1, R2, b1, b2, c1, c2 are independent of the choice of t in I.

Theorem 15. Let ξ and η be two S-non-degenerate C3-regular I-paths in E2 followed by two fluid particles. Then ξ and η
are Sim(Gal, 2)-similar if and only if⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨ξ (2), ξ (3)(t)⟩

|ξ (2)|
2 =

⟨η(2), η(3)⟩

|η(2)|
2 ,

det(∥ξ (2)ξ (3)∥)2

|ξ (2)|
4 =

det(∥η(2)η(3)∥)2

|η(2)|
4 .

(55)

for all t ∈ I .
Furthermore, if ξ and η are Sim(Gal, 2)-similar, there exists the unique F ∈ Sim(Gal, 2) such that η = Fξ . Then, Only the

following cases exist:

(i1) det(∥ξ (2) ξ (3)∥) > 0 and det(∥η(2) η(3)∥) > 0 for all t ∈ I .
(i2) det(∥ξ (2) ξ (3)∥) < 0 and det(∥η(2) η(3)∥) < 0 for all t ∈ I .
(ii1) det(∥ξ (2) ξ (3)∥) > 0 and det(∥η(2) η(3)∥) < 0 for all t ∈ I .
(ii2) det(∥ξ (2) ξ (3)∥) < 0 and det(∥η(2) η(3)∥) > 0 for all t ∈ I .

(i) In the cases (i1) and (i2), F has the form Fξ = R1ξ + b1t + c1, where the orientation-preserving linear similarity
transformation R1 of E2 has the form (51) and b1, c1 ∈ E2 have the forms b1 = η′

− R1ξ
′, c1 = η − R1ξ − (η′

− R1ξ
′)t

for all t ∈ I , respectively.
(ii) In the cases (ii1) and (ii2), F has the form Fξ = R2Λξ + b2, where the orientation-preserving linear similarity

transformation R2 of E2 has the form (54) and b2, c2 ∈ E2 have the forms b2 = η′
−R2Λξ

′, c2 = η−R2Λξ−(η′
−R2Λξ

′)t
for all t ∈ I , respectively.

Here R1, R2, b1, b2, c1 and c2 are independent of the choice of t in I.

Theorem 16. Let a1(t) and a2(t) be arbitrary real continuous functions on I. Assume that a C3-regular I-path ξ (t) in E2
followed by a fluid particle such that the following equalities⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨ξ (2), ξ (3)⟩

|ξ (2)|
2 = a1(t),

det(∥ξ (2) ξ (3)∥)

|ξ (2)|
2 = a2(t)

(56)

hold for all t ∈ I . Then it has the following form

ξ (t) = c1

∫ t

t0

e
∫ r
r0

(a1(z)+ia2(z))dzdr + c2t + c3, (57)

where c1 is an arbitrary element of C∗, c2 and c3 are arbitrary elements of C and t0, r0 ∈ I .
Conversely, every I-path in the form (57), where c1 is an arbitrary element of C∗, c2, c3 are arbitrary elements of C, t0, r0 ∈ I ,

a1(t) and a2(t) are arbitrary real continuous functions on I, is a C3-regular I-path ξ (t) in E2 followed by a fluid particle and
satisfies the equalities (56) for all t ∈ I .

6.2. Detecting G-similarity between two paths for groups Sim(Gal,m, 2) and Sim+(Gal,m, 2)

In the Introduction, we have defined the following groups transformations of space–time-mass E2 × R × R+:
Sim(Gal,m, 2) = {F : E2 × R × R+

→ E2 × R × R+
| F (x, t,m) = (gx + bt, t, γm), g ∈ Sim(E2), b ∈ E2, t ∈ R, γ ∈ R+

}.
Sim+(Gal,m, 2) = {F : E2 ×R×R+

→ E2 ×R×R+
| F (x, t,m) = (gx+bt, t, γm), g ∈ Sim+(E2), b ∈ E2, t ∈ R, γ ∈ R+

}.
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Let I = (a, b) ⊆ R. We consider the I-path (ξ (t),m(t)) = (ξ1(t), ξ2(t),m(t)) in space-mass E2 × R+ such that

x : I → E2 (58)

is a C3-mapping and m : I → R+ is a C (1)-function. The components ξ1(t), ξ2(t) of ξ (t) are real C3-functions on I .

Definition 14. Two paths (ξ (t),m1(t)) and (η(t),m2(t)) in the space-mass E2 × R+ are Sim(Gal,m, 2)-similar provided
there exists F ∈ Sim(Gal,m, 2), where F (ξ, t,m) = (Hξ (t) + bt, t, γm),H ∈ Sim(E2), b ∈ E2, γ ∈ R+,∀ξ (t) ∈ E2,∀t ∈ I ,
such that η(t) = Hξ (t) + bt and m2(t) = γm1(t), ∀t ∈ I .

Definition 15. Two paths (ξ (t),m1(t)) and (η(t),m2(t)) in the space-mass E2 × R+ are Sim+(Gal,m, 2)-similar provided
there exists F ∈ Sim+(Gal,m, 2), where F (ξ, t,m) = (Hξ (t) + bt, t, γm),H ∈ Sim+(E2),
b ∈ E2, γ ∈ R+,∀ξ (t) ∈ E2,∀t ∈ I , such that η(t) = Hξ (t) + bt and m2(t) = γm1(t), ∀t ∈ I .

Definition 16. An I-path (ξ (t),m(t)) in the space-mass E2 × R+ is called C3-regular if ξ (t) is C3-mapping such that
ξ (2)(t) ̸= 0 for all t ∈ I and m(t) ̸= 0 for all t ∈ I .

The proofs of the following theorems are similar to the proofs of Theorems 13 and 16, respectively.

Theorem 17. Let (ξ (t),m1(t)) and (ξ (t),m2(t)) be C3-regular I-paths in the space-mass E2 × R+. Then (ξ (t),m1(t)) and
(ξ (t),m2(t)) are Sim+(Gal, 2)-similar if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨ξ (2), ξ (3)⟩

|ξ (2)|
2 =

⟨η(2), η(3)⟩

|η(2)|
2 ,

det(∥ξ (2) ξ (3)∥)

|ξ (2)|
2 =

det(∥η(2) η(3)∥)

|η(2)|
2 ,

m(1)
1 (t)

m1(t)
=

m(1)
2 (t)

m2(t)

(59)

for all t ∈ I .
Furthermore, if (ξ (t),m1(t)) and (ξ (t),m2(t)) are Sim+(Gal, 2)-similar, there exist the unique F ∈ Sim+(Gal, 2) and the

unique γ ∈ R+ such that η(t) = Fξ (t),m2(t) = γm1(t) for all t ∈ I , where Fξ (t) = Rξ (t) + bt + c. In this case, the
orientation-preserving linear similarity transformation R of E2, b, c ∈ E2 and γ have the forms (51), b = η′

− Rξ ′, c =

η − Rξ − (η′
− Rξ ′)t ∈ E2 and γ =

m2(t)
m1(t)

for all t ∈ I .
Here, R, b, c and γ do not depend on t ∈ I .

Theorem 18. Let a1(t), a2(t) and a3(t) be arbitrary real continuous functions on I. Assume that a C3-regular I-path ξ (t) in
E2 followed by a fluid particle such that the following equalities⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨ξ (2), ξ (3)⟩

|ξ (2)|
2 = a1(t),

det(∥ξ (2) ξ (3)∥)

|ξ (2)|
2 = a2(t),

m(1)(t)
m(t)

= a3(t)

(60)

hold for all t ∈ I . Then it has the following form⎧⎪⎨⎪⎩
ξ (t) = c1

∫ t

t0

e
∫ r
r0

(a1(z)+ia2(z))dzdr + c2t + c3,

m(t) = ke
∫ t
p (a3(z))dz,

(61)

where c1 and k are arbitrary elements of C∗, c2 and c3 are arbitrary elements of C and t0, r0, p ∈ I .
Conversely, every I-path in the form (61), where c1 and k are arbitrary elements of C∗, c2, c3 are arbitrary elements of C,

t0, r0, p ∈ I , a1(t), a2(t) and a3(t) are arbitrary real continuous functions on I, is a C3-regular I-path ξ (t) in E2 followed by a
fluid particle and satisfies the equalities (60) for all t ∈ I .

Remark 4. Obtained other results in this paper can be given for the groups Sim(Gal,m, 2), Sim+(Gal,m, 2), Sim(Gal, 2)
and Sim+(Gal, 2).
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7. Conclusion

The results of this paper may be useful in many areas of pure and applied mathematics, physics, similarity and
dimensional methods in mechanics. The complete systems of invariants of mechanical systems for the group Mech(n)
are important in mechanics. (see references [1,2,8,10–13,15–17,21,22,26,28–30] and the references therein). Since the
automatic identification of similar objects and two-dimensional similarity detection in the field of pattern recognition,
computer vision and vision-based applications are one of the most important problems, results in the present paper may
be used in mentioned fields. Moreover, similarity and fluids are also important in cosmology (see [7,14,34]). Methods,
developed in the present paper, might be useful in the theory of fluids and relativistic fluids.
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