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a b s t r a c t

A variational formulation for nonequilibrium thermodynamics was recently proposed in
Gay-Balmaz and Yoshimura (2017a, 2017b) for both discrete and continuum systems.
This formulation extends the Hamilton principle of classical mechanics to include
irreversible processes. In this paper, we show that this variational formulation yields
a constructive and systematic way to derive, from a unified perspective, several bracket
formulations for nonequilibrium thermodynamics proposed earlier in the literature,
such as the single generator bracket and the double generator bracket. In the case of
a linear relation between the thermodynamic fluxes and the thermodynamic forces,
the metriplectic or GENERIC bracket is recovered. We also show how the processes of
reduction by symmetry can be applied to these brackets. In the reduced setting, we also
consider the case in which the coadjoint orbits are preserved and explain the link with
double bracket dissipation. A similar development has been presented for continuum
systems in Eldred and Gay-Balmaz (2020) and applied to multicomponent fluids.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A Lagrangian variational formulation for nonequilibrium thermodynamic has been proposed in the papers [10,11] for
finite dimensional and continuum closed systems and for open systems in [13], see [14] for a review. This variational
formulation extends the Hamilton principle of classical mechanics to include irreversible processes such as friction, heat
or mass transfer in the equations of motion. It is a type of Lagrange–d’Alembert principle with nonlinear constraints and
it follows a very systematic construction from the given thermodynamic fluxes and forces of the irreversible processes.
This formulation is based on the concept of thermodynamic displacements which are defined as the primitive in time of
he thermodynamic forces. This variational formulation has a naturally associated geometric description given in terms
f Dirac structures, as shown in [12].
Historically, the proposed general formalisms for nonequilibrium thermodynamics have been mainly constructed

ia appropriate modifications of Poisson brackets, as initiated by Kaufman [19], Morrison [22] and Grmela [15]. Since
hen, this approach has been developed for a large list of systems, see, e.g. [16]. Other classes of brackets have been
roposed, e.g. [1,4,5]. Unlike the variational formalism, most of these bracket formalisms do not follow from a systematic
onstruction but have often been derived via a case-by-case approach, with slightly different axioms used in different
ituations.
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In this paper, we show that the variational formulation proposed in [10,11] systematically yields the two main bracket
ormalisms, namely, the single and double generator brackets. Moreover, in the case of a linear relation between the
hermodynamic fluxes and the thermodynamic forces, the metriplectic [23] or GENERIC [16,25] bracket is recovered.
pecifically, we focus on the case of simple thermodynamic systems, in which only one entropy variable is needed, but
llowing for internal mass transfer. The general case will be studied elsewhere. We also consider the reduced versions
f these brackets for systems on Lie groups, by using the reduction by symmetry of the variational formulation of
hermodynamics developed in [3].

The derivation of such brackets from the variational formulation for continuum system has been illustrated in [6] in
he context of multicomponent fluids.

. Variational formulation of nonequilibrium thermodynamics

In this section we review from [10] the variational formulation for the thermodynamics of adiabatically closed and
imple systems. We start with the simplest case of mechanical systems with friction and then extend it to the case with
nternal mass transfer.

.1. Variational formulation for mechanical systems with friction

Consider a thermodynamic system described only by a mechanical variable q ∈ Q and an entropy variable S ∈ R. The
Lagrangian of this thermodynamic system is a function

L : TQ × R → R, (q, v, S) ↦→ L(q, v, S),

where TQ denotes the tangent bundle of the mechanical configuration manifold Q with local coordinates (q, v). We assume
that the system involves external and friction forces given by fiber-preserving maps F ext, F fr

: TQ × R → T ∗Q , i.e., such
that F fr(q, v, S) ∈ T ∗

q Q , similarly for F ext. As stated in [10], the variational formulation for this system is given as follows:

Find the curves q(t), S(t) which are critical for the variational condition

δ

∫ t2

t1

L(q, q̇, S)dt +

∫ t2

t1

⟨
F ext(q, q̇, S), δq

⟩
dt = 0 , (1)

subject to the phenomenological constraint
∂L
∂S

(q, q̇, S)Ṡ =
⟨
F fr(q, q̇, S), q̇

⟩
, (2)

and for variations subject to the variational constraint
∂L
∂S

(q, q̇, S)δS =
⟨
F fr(q, q̇, S), δq

⟩
, (3)

with δq(t1) = δq(t2) = 0.

This variational formulation yields the system of equations

d
dt

∂L
∂ q̇

−
∂L
∂q

= F fr(q, q̇, S),
∂L
∂S

Ṡ = ⟨F fr(q, q̇, S), q̇⟩.

he first equation is the Lagrange-d’Alembert equation, giving the balance of mechanical momentum, while the second
ne gives the rate of entropy production of the system

Ṡ = −
1
T

⟨
F fr(q, q̇, S), q̇

⟩
,

with T = −
∂L
∂S (q, q̇, S) the temperature of the system. From the second law the friction force F fr must satisfy⟨

F fr(q, q̇, S), q̇
⟩
≤ 0, for all (q, q̇, S). (4)

For instance, for a friction force linear in velocities, we have

F fr
i = −λijq̇j,

where λij, i, j = 1, . . . , n are functions of the state variables with the symmetric part of the matrix λij positive
semi-definite.
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2.2. Variational formulation for systems with internal mass transfer

The previous variational formulation can be extended to systems experiencing internal diffusion processes. Diffusion is
particularly important in biology, where many processes depend on the transport of chemical species through bodies, see
Oster et al. [24]. Consider a thermodynamic system consisting of K compartments that can exchange matter by diffusion
across walls (or membranes) on their common boundaries. We assume that the system has a single species and denote by
Nk the number of moles of the species in the kth compartment, k = 1, . . . , K . We assume that the thermodynamic system
is simple; i.e., a uniform entropy S, the entropy of the system, is attributed to all the compartments. The Lagrangian of
this thermodynamic system is thus a function

L : TQ × RK+1
→ R, (q, v, S,N1, . . . ,NK ) ↦→ L(q, v, S,N1, . . . ,NK ). (5)

We denote by J ℓ→k
= −J k→ℓ the molar flow rate from compartment ℓ to compartment k due to diffusion of the species.

In general, we have the dependence

J ℓ→k
= J ℓ→k

(
S,Nk,Nℓ,

∂L
∂Nk

,
∂L
∂Nℓ

)
. (6)

The variational formulation involves the new variables W k, k = 1, . . . , K , which are examples of thermodynamic
isplacements and play a central role in our formulation. In general, we define the thermodynamic displacement associated to
n irreversible process as the primitive in time of the thermodynamic force (or affinity) of the process. This force (or affinity)
hus becomes the rate of change of the thermodynamic displacement. In the case of matter transfer, Ẇ k corresponds to
he chemical potential of Nk. The variational formulation for a simple system with internal diffusion process is stated as
ollows.

Find the curves q(t), S(t), W k(t), Nk(t) which are critical for the variational condition

δ

∫ t2

t1

[
L (q, q̇, S,N1, . . . ,NK ) + Ẇ kNk

]
dt +

∫ t2

t1

⟨
F ext, δq

⟩
dt = 0, (7)

subject to the phenomenological constraint

∂L
∂S

Ṡ =
⟨
F fr, q̇

⟩
+

K∑
k,ℓ=1

J ℓ→kẆ k, (8)

and for variations subject to the variational constraint

∂L
∂S

δS =
⟨
F fr, δq

⟩
+

K∑
k,ℓ=1

J ℓ→kδW k, (9)

with δq(t1) = δq(t2) = 0 and δW k(t1) = δW k(t2) = 0, k = 1, . . . , K .

These conditions, combined with the phenomenological constraint (8), yield the following system of evolution
equations for the curves q(t), S(t), and Nk(t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∂L
∂ q̇

−
∂L
∂q

= F fr
+ F ext,

d
dt

Nk =

K∑
ℓ=1

J ℓ→k, k = 1, . . . , K ,

∂L
∂S

Ṡ =
⟨
F fr, q̇

⟩
−

∑
k<ℓ

J ℓ→k
(

∂L
∂Nk

−
∂L
∂Nℓ

)
.

(10)

The last equation in (10) yields the rate of entropy production of the system as

Ṡ = −
1
T

⟨
F fr, q̇

⟩
−

1
T

∑
k<ℓ

J ℓ→k(µk
− µℓ), (11)

ith µk
:= Ẇ k

= −
∂L

∂Nk
the chemical potentials. The two terms in the right-hand side of (11) correspond, respectively, to

he rate of entropy production due to mechanical friction and that due to matter transfer. From the second law, F fr and
J k→ℓ must satisfy⟨

F fr, q̇
⟩
≤ 0 and J ℓ→k(µk

− µℓ) ≤ 0. (12)
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When a linear relation is assumed between the forces and fluxes, we have relations

F fr
i = −λijq̇j and J ℓ→k

= −Gkℓ(µk
− µℓ), (13)

here λij, i, j = 1, . . . , n and Gkℓ, k, ℓ = 1, . . . , K are functions of the state variables, with the symmetric part of the
atrix λij positive semi-definite and with Gkℓ

≥ 0, for all k, ℓ.
Note that in both variational formulations (1)–(3) and (7)–(9), the two constraints are related in a very systematic way,

uggested by the relation∑
α

JαΛ̇α ⇝
∑

α

JαδΛα,

ith Jα the thermodynamic flux and Λα the thermodynamic displacement of the process α. This systematic correspon-
ence holds for finite dimensional and continuum closed systems, and is at the core of the formulation in terms of Dirac
tructures, Gay-Balmaz and Yoshimura [10,11,12].
For simplicity, from now on we set the external forces F ext to zero. They can be easily included in our developments

elow, and yield an additional term in the various bracket formalisms.

. Single and double generator brackets

In this section we shall show that the variational formulation has the property to systematically induce and unify
everal bracket formulations for nonequilibrium thermodynamics proposed earlier in the literature, such as the single
enerator bracket, the double generator bracket, and the metriplectic (or GENERIC) bracket.

.1. Bracket formulations in nonequilibrium thermodynamics

There are two main approaches to the bracket formulation for irreversible processes in the literature: the single
generator and double generator formulations. In this paragraph we quickly review the structure of these two brackets.
et M be a Poisson manifold, with Poisson bracket { , }. We denote by H ∈ C∞(M) the Hamiltonian and by S ∈ C∞(M)
he entropy. We assume that {H, S} = 0.

In the single generator formalism, Beris and Edwards [1] and Edwards and Beris [4,5], the evolution of an arbitrary
unctional F ∈ C∞(M) is governed by

d
dt

F = {F ,H} + [F ,H], (14)

here the dissipation bracket [F ,H] is linear and a derivation in F , it can be nonlinear in H , and satisfies [H,H] = 0
nd [S,H] ≥ 0. These last two requirements are the first and second laws of thermodynamics, respectively. Since both
he reversible (Poisson) and dissipation brackets use the same generator H , this is referred to as the single generator
ormalism. The bracket formulation (14) yields the dynamical system ṁ(t) = XH (m(t))+DH (m(t)), where XH = JdH is the
amiltonian vector field associated to H , with J : T ∗M → TM the Poisson tensor, and the vector field DH is determined
rom [F ,H] = dF · DH , for all F , which follows since F ↦→ [F ,H] is a derivation.

In the double generator formalism, the evolution of an arbitrary functional F ∈ C∞(M) is governed by
d
dt

F = {F ,H} + (F , S), (15)

where the dissipation bracket (F ,G) is symmetric, bilinear and satisfies the Leibniz rule, as well as (H, S) = 0 and
(S, S) ≥ 0. These are precisely the axioms given in [19]. Since the Poisson and dissipation brackets use different generators
(H for Poisson and S for dissipation), this is referred to as the double generator formalism. The bracket formulation (15)
ields the dynamical system ṁ(t) = JdH(m(t)) + KdS(m(t)), where as before JdH = XH is the Hamiltonian vector field
ssociated to H , and the symmetric vector bundle linear map K : T ∗M → TM , K ∗

= K , is such that (F ,G) = ⟨dF , KdG⟩,
hich follows from the fact that (F ,G) is symmetric and a derivation in each factor, and where K ∗

: T ∗M → TM is the
dual map of K , given by ⟨K ∗α, β⟩ = ⟨α, Kβ⟩, for all α, β ∈ T ∗M .

Sometimes, the stronger requirements that {G, S} = 0, (H,G) = 0, (G,G) ≥ 0, for arbitrary G ∈ C∞(M) are imposed,
in which case the system (15) is termed metriplectic, Morrison [23]. For example, this is what is used in the GENERIC
formalism, see [16,25]. When considering macroscopic systems, typically only bilinearity, (H, S) = 0, and (S, S) ≥ 0 seem
to be required on physical grounds.

3.2. Derivation of the single generator bracket

Consider the system (10), assume that the Lagrangian L in (5) is hyperregular with respect to the mechanical part and
define the associated Hamiltonian H : T ∗Q × RK+1

→ R by

H(q, p, S,N , . . . ,N ) = ⟨p, v⟩ − L(q, v, S,N , . . . ,N ),
1 K 1 K
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where v is such that ∂L
∂v

= p. In terms of H , system (10) can be equivalently written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q̇ =

∂H
∂p

, ṗ = −
∂H
∂q

+ F fr,
d
dt

Nk =

K∑
ℓ=1

J ℓ→k,

−
∂H
∂S

Ṡ =

⟨
F fr,

∂H
∂p

⟩
+

∑
k<ℓ

J ℓ→k
( ∂H

∂Nk
−

∂H
∂Nℓ

)
.

(16)

In this system, the dependence of the fluxes in (6) is written in terms of the Hamiltonian H as

F fr
= F fr

(
q,

∂H
∂p

, S
)
,

J ℓ→k
= J ℓ→k

(
S,Nk,Nℓ,

∂H
∂Nk

,
∂H
∂Nℓ

)
.

(17)

For a given function F ∈ C∞(T ∗Q × RK+1), by computing its time derivative

d
dt

F =

⟨∂F
∂q

, q̇
⟩
+

⟨∂F
∂p

, ṗ
⟩
+

∂F
∂S

Ṡ +

K∑
k=1

∂F
∂Nk

Ṅk,

along a solution curve of (16), we directly deduce the form (14), with { , } the direct sum of the canonical Poisson bracket
on T ∗Q and the zero bracket on RK+1, where the dissipation bracket is computed as

[F ,H] =

⟨
F fr,

∂F
∂p

⟩
+

∑
k<ℓ

J ℓ→k
( ∂F

∂Nk
−

∂F
∂Nℓ

)
−

∂F
∂S
∂H
∂S

[⟨
F fr,

∂H
∂p

⟩
+

∑
k<ℓ

J ℓ→k
( ∂H

∂Nk
−

∂H
∂Nℓ

)]
. (18)

In this expression we recall that both F fr and J ℓ→k may depend on H via (17). One directly checks that the conditions
{H, S} = 0, [H,H] = 0 are satisfied. The condition [S,H] ≥ 0 is satisfied if and only if (12) holds.

We have thus recovered the single generator formalism from the variational approach. This formulation does not
impose a specific dependence (such as a linear dependence) of the thermodynamic fluxes1 F fr and J ℓ→k on the
hermodynamic forces.

.3. Derivation of the double generator bracket

Starting again from the system (10) obtained from the variational formulation, we compute as before the time
erivative of an arbitrary function F ∈ C∞(T ∗Q × RK+1) along a solution of (16). The expression (18) has now to be
nterpreted as the bracket (F , S). Hence it suffices to multiply this expression by 1 =

∂S
∂S , to symmetrize in F and S the

resulting expression, and finally to replace S by an arbitrary function G to finally get the symmetric bracket

(F ,G) =

⟨
F fr,

∂F
∂p

⟩∂G
∂S

+

⟨
F fr,

∂G
∂p

⟩∂F
∂S

+

∑
k<ℓ

J ℓ→k
( ∂F

∂Nk
−

∂F
∂Nℓ

)∂G
∂S

+

∑
k<ℓ

J ℓ→k
( ∂G

∂Nk
−

∂G
∂Nℓ

)∂F
∂S

−
1
∂H
∂S

[⟨
F fr,

∂H
∂p

⟩
+

∑
k<ℓ

J ℓ→k
( ∂H

∂Nk
−

∂H
∂Nℓ

)]∂F
∂S

∂G
∂S

.

(19)

One directly checks that the bracket (F ,G) is symmetric, bilinear and satisfies the Leibniz rule, as well as (H, S) = 0. The
condition (S, S) ≥ 0 is satisfied if and only if (12) holds.

In a similar way with the single generator bracket above, this formulation does not impose a specific dependence
(such as a linear dependence) of the thermodynamic fluxes F fr and J ℓ→k on the thermodynamic forces. Note that the
bracket (19) takes a somehow complicated form. However, as we show below, in the case of a linear relation between
the thermodynamic forces and the thermodynamic fluxes, the expression of this bracket is useful to systematically derive
a metriplectic bracket.

3.4. Derivation of the metriplectic bracket

The bracket (19) is not metriplectic since one has

(F ,H) =

⟨
F fr,

∂F
∂p

⟩∂H
∂S

+

∑
k<ℓ

J ℓ→k
( ∂F

∂Nk
−

∂F
∂Nℓ

)∂H
∂S

̸= 0, (20)

1 In the terminology of thermodynamics, the friction force F fr in mechanics may be regarded as thermodynamic flux (not ‘thermodynamic’ force
nor affinity) by convention.



6 F. Gay-Balmaz and H. Yoshimura / Journal of Geometry and Physics 158 (2020) 103812

A

in general for an arbitrary function F . Let us assume as in (13) that the thermodynamic fluxes F fr and J ℓ→k depend linearly
on their corresponding thermodynamic forces as

F fr
(
q,

∂H
∂p

, S,N
)

= −λ ·
∂H
∂p

,

J ℓ→k
(
S,Nk,

∂H
∂Nk

,Nℓ,
∂H
∂Nℓ

)
= −Gkℓ

( ∂H
∂Nk

−
∂H
∂Nℓ

)
,

where λ = λ(q, S) : TqQ → T ∗
q Q is symmetric positive semi-definite and where Gkℓ

= Gkℓ(S,Nk,Nl) ≥ 0 for all k, ℓ. Using
these relations in the expression (20) by writing them in terms of an arbitrary function G, and subtracting it from (F ,G),
we get the symmetric bracket

(F ,G)met = (F ,G) +

⟨
λ ·

∂G
∂p

,
∂F
∂p

⟩∂H
∂S

+

∑
k<ℓ

Gkℓ
( ∂G

∂Nk
−

∂G
∂Nℓ

)( ∂F
∂Nk

−
∂F
∂Nℓ

)∂H
∂S

.

direct computation using (19) and rearranging the terms finally yields the expression

(F ,G)met =
1
∂H
∂S

⟨
∂F
∂p

∂H
∂S

−
∂H
∂p

∂F
∂S

, λ ·

(
∂G
∂p

∂H
∂S

−
∂H
∂p

∂G
∂S

)⟩
+

1
∂H
∂S

∑
k<ℓ

Gkl
[( ∂F

∂Nk
−

∂F
∂Nℓ

)∂H
∂S

−

( ∂H
∂Nk

−
∂H
∂Nℓ

)∂F
∂S

]
×

[( ∂G
∂Nk

−
∂G
∂Nℓ

)∂H
∂S

−

( ∂H
∂Nk

−
∂H
∂Nℓ

)∂G
∂S

]
.

From this, one directly checks that (H,G)met = 0, and (G,G)met ≥ 0, for arbitrary G ∈ C∞(T ∗Q × RK+1) by (13), therefore
(F ,G)met is a metriplectic (or GENERIC) bracket. We note that Ṡ = (S, S) = (S, S)met. The structure of the first line of
the bracket ( , )met above is a finite dimensional analogue of that of the metriplectic bracket for viscous heat conducting
fluid presented in [21]. We refer to Eldred and Gay-Balmaz [6] for a similar derivation of the metriplectic bracket for
multicomponent fluids, via the variational formulation.

When comparing the derivation of the single and double generator brackets from the variational formulation, it is
obvious that the derivation of the single generator bracket is more direct, and does not need any specific transformations
from the expression deduced from (16). One also notes that the bracket [ , ] does not depend on the Hamiltonian of the
system. In other words, the expression [F ,G] only depends on the functions F and G, and not on the Hamiltonian H . A
nonlinear dependency of the thermodynamic flux on the thermodynamic forces is thus directly reflected in the way the
single generator bracket depends on its second argument. This is in contrast with the expression (F ,G) of the double
generator bracket, which intrinsically depends on a given Hamiltonian H . In this case, a nonlinear dependency on the
thermodynamic forces does not appear explicitly in the dependence of (F ,G) on F and G.

4. Systems on Lie groups and reduction by symmetries

We now consider the case where the mechanical configuration space is a Lie group and where both the Lagrangian and
the friction force have a symmetry with respect to a subgroup of G. We first recall below from [3] how the variational
formulation (1)–(3) can be reduced by extending the Euler–Poincaré reduction to the case of thermodynamics. From
this, the reduced versions of the single and double generator brackets can be derived similarly as above, as well as the
metriplectic (or GENERIC) bracket in the case of a linear relation between the forces and the fluxes. We also establish the
relations with the double bracket dissipation developed in [2]. For simplicity, we do not consider the transfer of matter
in this section. We refer to Marsden and Ratiu [20] and Holm [17] for background on Euler–Poincaré reduction.

4.1. Variational formulation for thermodynamic systems with symmetries on Lie groups

Let us assume that Q = G is a Lie group and that the Lagrangian L : TG×R → R is left H-invariant, where H ⊂ G is a
subgroup. We also assume that the friction force F fr

: TG × R → T ∗G is left H-equivariant. In local notations, this means

L(hg, hv, S) = L(g, v, S), F fr(hg, hv, S) = hF fr(g, v, S),

for all h ∈ H . We denote by

N = G/H ∋ n = gH

the quotient space. It is naturally acted on by G from the left. For ξ ∈ g, the Lie algebra of G, we denote by ξN (n) ∈ TnN
the infinitesimal generator of the left action of G on N . From the above H-invariance, the Lagrangian and the friction force
induce their reduced versions

ℓ : g × N × R → R, f fr : g × N × R → g∗
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L(g, v, S) = ℓ(ξ, n, S), F fr(g, v, S) = gf fr(ξ, n, S),

where ξ = g−1v ∈ g, n = g−1H ∈ N .
When such symmetries are assumed, the variational formulation (1)–(3) can be equivalently formulated at the reduced

level as follows, see [3].

Find the curves ξ (t), n(t), and S(t) which are critical for the variational condition

δ

∫ t2

t1

ℓ(ξ, n, S)dt +

∫ t2

t1

⟨
f fr(ξ, n, S), η

⟩
dt = 0,

subject to the phenomenological constraint
∂ℓ

∂S
(ξ, n, S)Ṡ =

⟨
f fr(ξ, n, S), ξ

⟩
,

and for variations subject to the variational constraint
∂ℓ

∂S
(ξ, n, S)δS =

⟨
f ext(ξ, n, S), η

⟩
,

and the Euler–Poincaré constraints

δξ = η̇ + [η, ξ ], δn + ηN (n) = 0.

This principle yields the following system of evolution equations for the curves ξ (t) ∈ g, n(t) ∈ N , S(t) ∈ R:⎧⎪⎨⎪⎩
d
dt

∂ℓ

∂ξ
= ad∗

ξ

∂ℓ

∂ξ
− J

( ∂ℓ

∂n

)
+ f fr + f ext,

∂ℓ

∂S
Ṡ = ⟨f fr, ξ⟩, ṅ + ξN (n) = 0,

(21)

where the last equation is deduced from the definition n(t) = g(t)H ∈ N and where J : T ∗N → g∗ is the momentum map,
given by ⟨J(αn), ξ⟩ = ⟨αn, ξN⟩ for all n ∈ N, αn ∈ T ∗N and ξ ∈ g. From now on, we set f ext = 0, for simplicity. In absence
f thermodynamic effects, this reduction process recovers the Euler–Poincaré reduction, see [9,18].

.2. Derivation of the reduced single generator bracket

Consider the system (21), assume that the Lagrangian ℓ is hyperregular and define the associated Hamiltonian h :
∗
× N × R → R by

h(µ, n, S) = ⟨µ, ξ⟩ − ℓ(ξ, n, S),

here ξ is such that ∂ℓ
∂ξ

= µ. In terms of h, system (10) can be equivalently written as⎧⎪⎪⎨⎪⎪⎩
µ̇ = ad∗

∂h
∂µ

µ + J
(∂h

∂n

)
+ f fr,

−
∂h
∂S

Ṡ =

⟨
f fr,

∂h
∂µ

⟩
, ṅ +

( ∂h
∂µ

)
N
(n) = 0,

(22)

where the dependence of f fr is written in terms of h as

f fr = f fr
( ∂h

∂µ
, n, S

)
.

For a given function f ∈ C∞(g∗
× N × R), by computing its time derivative

d
dt

f =

⟨ ∂ f
∂µ

, µ̇

⟩
+

⟨ ∂ f
∂n

, ṅ
⟩
+

∂ f
∂S

Ṡ,

long a solution curve of (22), we directly deduce the single generator form (14), with { , } the Poisson bracket on g∗
×N×R

given by

{f , h}red(µ, n, S) = −

⟨
µ,

[ ∂ f
,

∂h ]⟩
+

⟨ ∂ f
, J

(∂h)⟩
−

⟨ ∂h
, J

( ∂ f )⟩

∂µ ∂µ ∂µ ∂n ∂µ ∂n
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(

4

f

F

O
t

4

and where the dissipation bracket is computed as

[f , h]red(µ, n, S) =

⟨
f fr,

∂ f
∂µ

⟩
−

∂ f
∂S
∂h
∂S

⟨
f fr,

∂h
∂µ

⟩
. (23)

One directly checks that the conditions {h, s}red = 0, [h, h]red = 0 are satisfied. The condition [s, h]red ≥ 0 is satisfied if
and only if (4) holds.

This is the reduced version of the bracket [ , ] given in (18), in absence of matter transfer.

4.3. Derivation of the reduced double generator bracket

Starting again with (22) and proceeding exactly as in Section 3.3 we get the reduced symmetric bracket

(f , g)red(µ, n, S) =

⟨
f fr,

∂ f
∂µ

⟩∂g
∂S

+

⟨
f fr,

∂g
∂µ

⟩ ∂ f
∂S

−
1
∂h
∂S

⟨
f fr,

∂h
∂µ

⟩ ∂ f
∂S

∂g
∂S

. (24)

One directly checks that the reduced bracket (f , g)red is symmetric, bilinear and satisfies the Leibniz rule, as well as
h, S)red = 0. The condition (S, S) ≥ 0 is satisfied if and only if (4) holds.

This is the reduced version of the bracket ( , ) given in (19), in absence of matter transfer.

.4. Derivation of the reduced metriplectic bracket

Like its unreduced version (19), the bracket (24) is not metriplectic, since (f , h)red ̸= 0 in general for an arbitrary
unction f . Let us assume as in (13) that the friction force F fr depends linearly on the velocity. Its reduced version is

f fr
( ∂h

∂µ
, n, S

)
= −γ (n, S) ·

∂h
∂µ

,

where for each n ∈ N and S ∈ R, γ (n, S) : g → g∗ is the symmetric positive semi-definite linear map defined from
λ(g, S) : TgG → T ∗

g G as

γ (n, S) · ξ = g−1(λ(g, S) · v
)

with ξ = g−1v ∈ g, n = g−1H ∈ N .
Proceeding exactly as in Section 3.4, we define the reduced metriplectic bracket from the reduced double generator

bracket as

(f , g)redmet(µ, n, S) = (f , g)red +

⟨
γ ·

∂g
∂µ

,
∂ f
∂µ

⟩∂h
∂S

.

rom this, a direct computation using (24) and rearranging the terms finally yields the expression

(f , g)redmet(µ, n, S) =
1
∂h
∂S

⟨
∂ f
∂µ

∂h
∂S

−
∂h
∂µ

∂ f
∂S

, γ ·

(
∂g
∂µ

∂h
∂S

−
∂h
∂µ

∂g
∂S

)⟩
.

ne directly checks that (h, g)redmet = 0, and (g, g)redmet ≥ 0, for arbitrary g ∈ C∞(g∗
×N×R) since γ is positive semi-definite,

herefore (f , g)redmet is a metriplectic (or GENERIC) bracket. We note that ṡ = (s, s)red = (s, s)redmet.

.5. Coadjoint orbits and double bracket dissipation

Let us assume that H = G, so that system (22) reduces to

µ̇ = ad∗
∂h
∂µ

µ + f fr, −
∂h
∂S

Ṡ =

⟨
f fr,

∂h
∂µ

⟩
(25)

and the variable n is absent. We note that in general the solutions of this system do not preserve the coadjoint orbits
O = {Ad∗ µ | g ∈ G} of g∗, which are well-known to be preserved in absence of irreversible processes, Marsden and
µ0 g 0
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Ratiu [20]. Indeed, in this case f fr = 0 so the first equation in (25) reduces to the Lie–Poisson equations

µ̇ = ad∗
∂h
∂µ

µ

on g∗, while the second gives S = cst .
It is however possible to choose the friction force in (25) in such a way that the coadjoint orbits are preserved. For

the development below it is convenient to write the friction force directly in terms of the momentum µ as ffr(µ, S) :=

f fr( ∂h
∂µ

, S). Recall that the tangent space to a coadjoint orbit at µ ∈ Oµ0 is TµOµ0 = {ad∗

ξ µ | ξ ∈ g}, Marsden and Ratiu
[20]. From this expression of the tangent space and from Eq. (25) it is clear that the coadjoint orbits are preserved if and
only if the friction force is of the form ffr(µ, S) = ad∗

ζ (µ,S) µ, for some function ζ ∈ C∞(g∗
× R). From the second law and

the second equation in (25), the friction force must be dissipative. Since⟨
ffr(µ, S),

∂h
∂µ

⟩
=

⟨
ad∗

ζ (µ,S) µ,
∂h
∂µ

⟩
= −

⟨
ad∗

∂h
∂µ

µ, ζ (µ, S)
⟩
,

he choice ζ (µ, S) =
[
ad∗

∂h
∂µ

µ
]♯, where ♯ : g∗

→ g is the sharp operator associated to an inner product γ : g × g → R on

g, yields the dissipative force

ffr(µ, S) = ad∗[
ad∗

∂h
∂µ

µ

]♯ µ. (26)

In absence of the entropy variable, (26) recovers the expression of the dissipative external force obtained by double
bracket dissipation in [2]. In our setting, it is interpreted as an internal friction force describing an irreversible process
occurring in the system, and leading to an increase of the entropy.

For the choice (26), the reduced single generator bracket (23) becomes

[f , h]red(µ, S) = −γ

(
ad∗

∂ f
∂µ

µ, ad∗
∂h
∂µ

µ

)
+

∂ f
∂S
∂h
∂S

γ

(
ad∗

∂h
∂µ

µ, ad∗
∂h
∂µ

µ

)
.

while the reduced double generator bracket (24) becomes

(f , g)red(µ, S) = −γ

(
ad∗

∂ f
∂µ

µ, ad∗
∂h
∂µ

µ

)∂g
∂S

− γ

(
ad∗

∂g
∂µ

µ, ad∗
∂h
∂µ

µ

) ∂ f
∂S

+
1
∂h
∂S

γ

(
ad∗

∂h
∂µ

µ, ad∗
∂h
∂µ

µ

) ∂ f
∂S

∂g
∂S

.

In order to derive the metriplectic bracket, we shall select a coadjoint orbit Oµ0 and consider the system (25) as
restricted to Oµ0 × R, which is possible with the choice of friction force given in (26).

As explained in [2] in absence of entropy variable, when restricted to a given coadjoint orbit Oµ0 , the force (26) is
minus the gradient of the Hamiltonian restricted to Oµ0 , with the gradient computed with the respect to the normal
metric γOµ0

induced on Oµ0 by the inner product γ on g. In our case, including the entropy variable, we have

ffr(µ, S) = ad∗[
ad∗

∂h
∂µ

µ

]♯ µ = −∇µh(µ, S) ∈ TµOµ0 , (27)

here, for each fixed S, the partial gradient ∇µh(µ, S) ∈ TµOµ0 of h|Oµ0
with respect to µ is defined by

γOµ0

(
∇µh(µ, S), δµ

)
= dµ(h|Oµ0

) · δµ, ∀ δµ ∈ TµOµ0 .

Here dµ(h|Oµ0
) ∈ T ∗

µOµ0 denotes the differential of the Hamiltonian h restricted to Oµ0 , the variable S being fixed.
Now using the expression of the friction force given in (27) and proceeding similarly as in Sections 3.4 and 4.4, we get

the metriplectic bracket on the manifold Oµ0 × R as

{f , g}
Oµ0 + (f , g)

Oµ0
met ,

where {f , g}
Oµ0 is the Poisson bracket associated to the orbit (Kirillov–Kostant–Souriau) symplectic form onOµ0 (e.g., [20])

and where (f , g)
Oµ0
met is given by

(f , g)
Oµ0
met (µ, S) =

1
∂h
∂S

γOµ0

(
∇µf

∂h
∂S

− ∇µh
∂ f
∂S

, ∇µg
∂h
∂S

− ∇µh
∂g
∂S

)
.

ne directly checks that (h, g)
Oµ0
met (µ, S) = 0, and that (g, g)

Oµ0
met (µ, S) ≥ 0, for arbitrary g ∈ C∞(Oµ0 × R), therefore

(f , g)
Oµ0
met (µ, S) is a metriplectic (or GENERIC) bracket.

To summarize this paragraph, system (25) with the friction force chosen as in (26) preserves the coadjoint orbits and
is a thermodynamic extension of the double bracket dissipation equations for Euler–Poincaré systems introduced in [2].
Moreover, we have shown that this system can be written by using either the single or the double generator bracket
formalism, as well as the metriplectic formalism, when restricted to a coadjoint orbit.
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5. Conclusions

In this paper we have shown that the variational formulation of nonequilibrium thermodynamics introduced in [10,11]
yields a direct and systematic way to derive the main classes of bracket formalisms that have been proposed earlier in
the literature. We have illustrated this for the case of a simple system involving a mechanical component together with
internal mass transfer and concretely explained how to derive the bracket formalisms in this case. The brackets derived
for this case do not seem to have appeared earlier in the literature. We have also shown that reduction by symmetry
can be implemented on these bracket formalisms by using an existing reduction process with irreversible process on the
Lagrangian side. From this, we have obtained the symmetry-reduced versions of the single and double generator brackets,
as well as of the metriplectic (or GENERIC) bracket in the case of a linear relation between the forces and the fluxes. We
also have established the relations with the double bracket dissipation.

While we have considered simple adiabatically closed systems, our approach can be extended to a larger class of
systems, such as nonsimple or open systems, following the variational formulation in [13]. We project to explore this
issue in a future work, as well as possible relations with the bracket formalism for selective decay developed in [7,8].
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