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Abstract

We degenerate the finite gap solutions of the KdV equation from the
general formulation given in terms of abelian functions when the gaps
tends to points, to get solutions to the KdV equation given in terms of
Fredholm determinants and wronskians. For this we establish a link be-
tween Riemann theta functions, Fredholm determinants and wronskians.
This gives the bridge between the algebro-geometric approach and the
Darboux dressing method.

We construct also multi-parametric degenerate rational solutions of this
equation.

1 Introduction
We consider the KdV equation in the following normalization
Uy = 6UUy — Uggs, (1)

where the subscripts  and ¢ as usual denote partial derivatives.

This equation (1) was introduced for the first time in 1895 by Korteweg and
de Vries [15]. This equation appears in a wide range of physical problems and
describes the propagation of waves with weak dispersion in various nonlinear
media.

A method of resolution was given in 1967 by Gardner et al. [11]. It was proven
that this equation is a complete integrable system by Zakharov and Faddeev in
1971 [35].

Solutions were constructed by Hirota in 1971 by using the bilinear method [12].
Its and Matveev present solutions in terms of Riemann theta functions [13] in
1975. Lax gives in the same year the expressions of periodic and almost periodic
solutions [18]. A lot of works have been realized in the following years. We can
mention for example Airault et al. in 1977 [3], Adler and Moser in 1978 [2],



Ablowitz and Cornille in 1979 [1], Freeman and Nimmo in 1984 [5], Matveev in
1992 [23], Ma in 2004 [19], Kovalyov in 2005 [17] and more recently Ma in 2015
[20].

In the following, we are interested in the algebro-geometric approach given by
Its and Matveev in 1975. We degenerate the solutions to the KdV equation
given in terms of Riemann theta functions to get solutions in terms of Fredholm
determinants. Then we give a representation in terms of wronskians. This gives
the correspondence between the algebro-geometric approach and the Darboux
dressing method.

Then we construct rational solutions in performing a passage to the limit. We
obtain multi-parametric rational solutions to the KdV equation depending on
3N parameters at order N. We give explicit solutions in the simplest cases
where N =1, 2, 3.

2 The KdV equation and its solutions in terms
of theta functions

We consider the Riemann surface I' of the algebraic curve defined by

2g+1

w? = H(szj),

j=1

with Ej # Ej, j # k. Let D be some divisor D = 329 | Pj, P; € T. The
so-called finite gap solution of the KdV equation

U = 6UUL — Ugpy (2)
can be expressed in the form [13]
u(z,t) = =202 [Ind(xg +tv+1)] + C. (3)
We recall briefly, the notations. In (3), 6 is the Riemann function defined by
0(z) = > exp{mi(Bk|k) + 2mi(k|2)}, (4)
kezZ9

constructed from the matrix of the B-periods of the surface I', and the vectors
g, v, | are defined by

gj = 2icj1, (5)
e 2g+1

v = 8i(%1 > Bi+cjo), (6)
k=1

Py _] 1 g
lj:—Z/ de+§—§ZBkj, (7)
o0 k=1

k=1



2g+1

g
O:ZEk—2Z/ zdUy, (8)
k=1 k=1" %

the coefficients c;; being relating with abelian differential dU; by

g B g—k
au; = =g, (9)

2g+1
kgzl (z — Ex)
and coeflicients c;;, can be obtained by solving the system of linear equations

/dU]‘ij, 1<j<g, 1<k<yg.
ay

3 Degeneracy of solutions

We suppose that E; are real, E,, < E; if m < j and try to evaluate the limits
of all objects in formula (3) when Es,,, Fopmi1 tends to —a,,, —am, = —k2,,

km > 0, for 1 < m < g, and E; tends to 0 (these ideas were first presented by
A. Tts and V.B. Matveev, exposed for example in [4]).

3.1 Degeneracy of the components of the solution

3.1.1 Limit of P(z) = [[7%{'(z — E))

The limit of P(z) = H?g:"lrl(z—Ej) is evidently equal to P(z) = 2 [[7_, (2 +a;)?

9 g—k
3.1.2 Limit of dU, — k=t Cmk?’ T

2 1

(2 - Ex)

The limit of dU,, is equal to dU,, = #m(2) dz, where ¢,,(2) =

- VeIl (et ay)

Py Gmiz?97F. The normalization condition takes the form in the limit

2mip;(—ax)
au; — — J = 0kj, 10
/ak J —1KE Hm;élc(_ak + am) kj ( )

which proves that the numbers —a,,,, m # k are the zeros of the polynomials
vr(z), and so @i (z) can be written as ¢ (z) = éx1 Hm#k(z + am). By (10), we
get in the limit

- Rk
Cp1 = ——.
M o
So B Ko
. —,
F 2min/z2(z + o) ®



3.1.3 Limit of vy and g

By identification of the powers of 2972 in (11)

Or(z) = cia H(z +aop) = chjzg_j, (11)

I#k j=1

we get in the limit
g
1 Y oy = Gra.
1=1

So we have the limit values of v, and gy :

.3
i 4iky,
Vp = —
T
and )
—iK
~ k
gk =
T

3.1.4 Limit of Uy(P) and By

_ _ 2
For Ay = —apm = —KZ,,

1 -
I = ffo du,, — §Bmk' The integral I can be easily

evaluate along the real axis on the upper sheet of surface I' and we get

Km + Rk
Rm — Kk

I — L In
2

So we have the limit values of matrix B :

K + Kk
RKm — Kk

Bmk =—1In
s

Therefore i By, tends to —oo. As previously, we have

P y Pp—
/ dU; — ——=In |2 VZP

— . 12
27T Kj—F\/Zp ( )

o0

3.1.5 Limit of argument of exponential in 6(p)

Let us denote Ag the argument of exponential in 8(p) = >, ., exp{mi(Bk|k)+
2mi(klp)}.

Ag can be rewritten in the form
g g
AQ = ’/TZZ Bjj]{j(k'j — 1) + 271 Z ijk?mkj + 27”;(219-7 + Bjj)kj. (13)
j=1 j>m j=1

Using the inequality k;(k; — 1) > 0 for all k € Z9 and the fact that iByy, tends
to —oo, we can reduce the limit 6 of #(p) to a finite sum taken over vectors



k € Z9 such that each k; must be equal to 0 or 1.
So, if we denote A the argument of 6(xg + tv + 1), it can be written in the form

fmZBjjk: 1)+2mZBm]k k; +Zkz [27mi(gjx + v;t)

j>m j=1

g Py
—mi(—j + 22/ dU; + Y Bij)]
k=1v°

m#j

In other words

g g
A= Wiszjkj(k'j - 1) + 2ms Z ijkmk‘j + Zk?ij,
j=1

j>m =1l
with
Qj = 2mi(g;z +v;t) + B;
and
g Py
B; = —mi(—j + 22/ dUj + > Bmj).
k=1"7°° m#j

The quantity §8; has a finite limit value Bj independent from x and ¢.

3.1.6 Limit of 6(zg + vt +1)

By means of the inequality k;(k; — 1) > 0 for all & € Z& and the previous
relation i By, tends to —oco, it turns out that the limit 6 of O(xg+tv+1) reduce
to a finite sum taken over vectors k € Z# with the property that each k; must
be equal to 0 or 1.

6= Z exp{z 21n

k€Z9,kj=00r1 m>j

with
= o | VEE iRy
e
QnJ Pt \/>+m]

It can be rewritten as

i= 3 Tew Tl

JC{1,....gY jeJ jEJ keJ

g ¥ Fok expz 2(kjw — 4k5t + Kjay).  (14)
JjeJ

Rj — K

kmk;+ ZQn]x 8K t+2ﬁjl‘j+ﬂ'jl+z In
Jj=1 m#j




3.1.7 Limit of the coefficient '
The coefficient C' is defined in (8) by
2g+1

C = ZEk—2Z/ 2dUy, = Cy + Cs,

can be evaluated as follows.

o __2i/ dU 22/ —Krzdz an/ fdz
2= Pt k= 27T\fz+ozk) (z+ ag)

g

- i ?’Cgm(fmk) = Z 2K% = Ziak

k=1 k=1 k=1

=

Thus when the gaps tends to points,, the coefficient C' tends to C' equal to

3.2 Degenerate solution to the KdV equation

Therefore, we have the following representation of the degenerate solution to
the KdV equation

Theorem 3.1 The fonction u defined by

i,y =—202m | S [ ]

JC{1,....g} j€J jeJ k¢J

Kj + K

| exp ZQ(Hjac—ALH?t—i—mjxj) , (15)
g k

jeJ

with Kk, and x; arbitrary real parameters, is a solution to the KdV equation (1).

4 From theta function to Fredholm determinant

4.1 The link between the degenerate solution and the
Fredholm determinant

In a recent paper, Kirillov and Van Diejen [31] have given formulas in terms
of determinants for zonal spherical functions on hyperboloids. In particular,
they compute det(I + A), where I is the unit matrix and A = (a;jx)1<j k<m the
matrix defined as :

2€j/€j

Ky + K
Kj + K

16
el (16)

exp(—2k;x) H

I#]

Al =




where €; € {—1;+1} and k; > 0 for 1 < j < N.
Then det( + A) has the following form

det(T+A)= > exp|—20> w; | [[e; ]

Jc{l,...,N} jed jed  jeJkgJ

Kj + K

Kj — KE

. an

Using the same strategy, we can compute det(I + A) where A = (a;k)1<jr<m
is the matrix defined as :

(=1)72r;
Kj + K

Ry + Kj
Ki— k|

exp [2(kjz — 4,‘-@?75 + Kjz;)] H
I#j

Qi =

x; being an arbitrary parameter.
Then det(I + A) has the following form

det(I+ A) = Z exp 22(@-96 - 4m?t + K;x5) H(—l)j H

K
Jc{1,...,N} jeJ jed jeT keJ

By the previous section,

o= > 1w 11

JC{1,....g}j€J jeJ keJ

Kj + K
Rj — K

exp Z(?(fijx—4l€?t+ﬁj$j) . (19)
JjeJ

If we compare the expression (18) to (19), we have clearly the equality with
g=N

0 = det(I + A). (20)

4.2 Solution to the KdV equation in terms of Fredholm
determinant

So we have the following representation of the solutions to the KdV equation

Theorem 4.1 The fonction u defined by
u(z,t) = =202 In(det(I + A)), (21)
with A the matriz defined by A = (ajr)1<j k<N

1) 2k
ajr = ()7% exp [Q(ij — 4/4;;-’t+ Kljx]')} H

7'7 29
Kj + K (22)

and kj, x; arbitrary real parameters, is a solution to the KdV equation (1).



If we consider the matrix B defined by

Ky + Kj

bjr = (—1)7 exp [2(kjx — 4/{?15 + Kja;)] H P

1#k

)

it is easy to verify that det(I + A) = det(I + B), and so we can give another
representation of the solutions to the KdV equation. We get the following
statement :

Theorem 4.2 The fonction u defined by
u(z,t) = =202 In(det(I + B)), (23)
with B the matriz defined by B = (bjk)1<j.k<m

Ki + Kj

24
- (24)

bjk = (_1)j exp [Q(Iijl‘ — 4H?t + /{jzz:j)] H
I#k

and kj, ©; arbitrary real parameters, is a solution to the KdV equation (1).

We can also consider the matrix C' defined by

T, 2 50 + 55

cjk = (—1)7 exp [2(I€jl‘ — 4&?15 + hjlj)} [z, ot — 7] .
I#j J

It is easy to check that det(I + A) = det(I + '), and so we can give a third
representation of the solutions to the KdV equation :
Theorem 4.3 The fonction u defined by

u(z,t) = =202 In(det(I + O)), (25)
with C the matriz defined by C = (¢jr)1<j k<m

ILier 15+ 55

ik = (—1)7 exp [2(r0 — 465t + kjz;)] [Tizj lF0 = 507
j J

(26)

and K;, x; arbitrary real parameters, is a solution to the KdV equation (1).

Another possibility is to choose the matrix D defined by

Kl + KE
Rl — Ry

djk = (—1)7 exp [2(r;z — 4/1?15 + Kjz;)] H
[y

It is also easy to check that det(f +A) = det(I + D), and so we can give another
representation of the solutions to the KdV equation :



Theorem 4.4 The fonction u defined by
u(z,t) = =202 In(det(I + D)), (27)
with C the matriz defined by D = (dji)1<jk<m

K|+ K

djk = (—1)-7 exp [Q(Hj.’L' — 4l€?t + K)j.’Ej)] H [
J

I#]

: (28)

and K;, x; arbitrary real parameters, is a solution to the KdV equation (1).

It remains to find the link between this Fredholm determinant and a certain
wronskian.

5 From Fredholm determinants to wronskians

5.1 Link between Fredholm determinants and wronskians

In this section, we consider the following functions
¢;(x) = sinh(rk;z — 465t + rj25), (29)

where 1 ; are real numbers such that k; < ... < Ky, and x; an arbitrary constant
independent of z.

We use the following notations :

(9j = (le'—4l<6§t+/ﬁ)jl'j). A

W =W (¢j,...,¢n) is the classical Wronskian W = dct[(@%_lqﬁi)i_’je[l ,,,,, Nl

We consider the matrix A = (aj);, kef1....,n] defined by
. K+ K
aj, = (—1) exp [Z(f{jx - 4/13-75 + ﬁjwj)] H u . (30)
14 Rl — Rj
Then we have the following statement
Theorem 5.1
21\"(71)% exp(XN, 6))
det(I + A) = 219 W(¢1,...,én) (31)

N —1
Hj:Q [LZ (kj — ki)
Proof: We start to remove the factor 27 'e% in each row j in the Wronskian

Wfor1 <j;<N.
Then

N
W= ]]e%27" xwn, (32)
j=1



with

(1—e200)  g(1+e 200 0 (k)N 71+ (=1)Ne i)
_ (1—e202)  pgo(l+e7202) .. (k)N L1 4 (—1)Ne2%2)
(1- e._29N) k(1 _|_.€—29N) (KN)N_l(l —0—.(—1)Ne_29N)

The determinant W; can be written as

Wy = det(ajkej + 53']9),

where aj = (=1)%(x;)k1, e; = e 2% and B = (k;)F 1.
Denoting U = (aij)i, jeq,...ns V' = (Bij)i, je[1,...,n], the determinant of U is
clearly equal to

N(N+1)

det(U) = (-1)" =[] (s~ rm). (33)

N>I>m>1
Then we use the following Lemma

Lemma 5.1 Let A = (aij)i jen,..., N1, B = (bij)i.jen,....N]»

(Hij)i, jen,...,n), the matriz formed by replacing the jth row of A by the ith row
of B

Then

det(aijxi + b”) = det(aij) X det ((Sijll/’i + det(a,;)) (34)

Proof: For A = (@ij)i, jeq,...,n] the matrix of cofactors of A, we have the well
known formula 4 x* A = det A x I.

So it is clear that det(A) = (det(A))N~1.

The general term of the product (¢;;); jen,..,.n) = (aijTs + bij)i,je[l,..,N] X(@ij)ijen,..,N]
can be written as

Cij = Toal (@i + bis) X s

= Zivzl Qisljs + Zivzl bisls

= (Sij det(A):c, + det(Hij).

We get
det(H;,;
det(ci;) = det(as;a: + biy) (det(A))N71 — (det(A))N x det(d;5z; + ﬁ).
det(H;;)
Thus det(a;jz; + bij) = det(A) x det(d;52; + F(AJ))

O
Using the previous lemma (34), we get :

det(Hij)

det(ovije; + Bij) = det(ay;) x det(d;5€; + det(ay)

),

10



where (Hij); jep,...,n] is the matrix formed by replacing the j-th row of U by
the i-th row of V' defined previously.
We compute det(H;;) and we get

det(Hy;) = (—1) "z 2+ 1T (k1 = fim) [ [ (—#n — 50) [ [ (s + 1) (35)

N2>I>m>1,l#j, m#j 1<j 1>j
det(H;;
We can simplify the quotient ¢ = M :
det(oeij)
(=1) Hl;éj k1 + kil
q =
Hl;éj K1 — Ky
det(H;
So det(d;re; + deet((aj:))) can be expressed as
det(H ) N Yy K+ K ,
det(dpe; + ——272) = 265 det(d; 1)’ R €20,
e(]kej+det(ajk)) He et(dj + (- )th—/ﬁj )
j=1 I#]
and therefore
N
d t
det(8;pe; + — =] e 2" det(1 + A).
j=1
The wronskian can be written as
N woway il N
W(pr,....on) = [[e?27 V(=1 = [T 1 —r) [ e det(1 + A)
j=1 j=2i=1 j=1
It follows that
SN 0 (o\N N(V+D)
e~i=1"7(2)" (=1 2
det(I + A) = @) ( ) W(é1,...,¢N) (36)

Lo T (s — w2)

O

5.2 Solutions to the KdV equation in terms of wronskians

From the previous subsection, we can give the following wronskian representa-
tion of the solutions to the KAV equation.

Theorem 5.2 The function u defined by
ula,t) = =202 (I [W(Br, .., o)), (37)

where = W (¢1,...,on) = det[(8271¢;);. jE ,,,,, ~] s the wronskian of the func-
tions ¢ defined by ¢;(x,t) = sinh(k;z — 4k3 St+kjTs), Ky, x5 being real numbers,
is a solution to the KdV equation (1).

11



Proof : From the result of the previous subsection, the solution to the KdV
equation u can be written as u(z,t) = —20%(det(I + A)). From (31), we have

N(N+1)

2B ()N (1)
H;‘VZQ TT/=1 (k5 — 2)

We can conclude that u can be rewritten as

det(I + A) = & W(or,...,on).

N(N+1)

2= 03 (2)V(=1)
TS TEZ] (5 — 54)

u(z,t) = —285 In ( W(é1,-.., ¢N)> = —2&3 (In(W(p1,...,0n))) -

O

It is relevant to note that we recover the result given by the Darboux dressing
[23].

This realize the connection between the algebro-geometric approach and the
Darboux dressing method.

Remark 5.1 The choices of functions ¢; are not unique. For example, we can
choose :

¢j(x) = cosh(rjz — 4rdt + Kjz;), or ¢j(x) = explrjw — 4kjt + Kjx;), or
¢j(x) = exp(—(kjx — 4K3t + Kjx;)) or any combinations of these different last
functions.

We can also choose the following functions :

¢j(x) = sin(kjz + 4k3t + kjx;), or ¢j(x) = cos(kja + 43t + Kjz;), or ¢j(x) =
exp(i(kjx + 4k3t + Kjx;)), or ¢j(x) = exp(—ilma + K3t + Kjx;)) or any com-
binations of these different last functions.

6 Another approach and degenerate multi-parametric
rational solutions to the KdV equation

6.1 Solutions to the KdV equation in terms of elementary
exponentials

We consider the KdV equation (1)
Uy = 6UUy — Uppy-
We consider the following elementary functions :

fij(z,t) = (aje)i*1 exp(ajer — 4(aje)3t + cjeQN*I) — (aLje)i*1 exp(—ajex + 4(aje)3t + djezjvfl)7
for 1 <i < N (38)

Then, we have the following statement :

12



Theorem 6.1 The function v defined by

v(z, t) = —203 In(det(fij)(i,jye,n]) (39)

is a solution to the KdV equation (1) with e, aj, ¢; and d;, 1 < j < N arbitrar-
ily real parameters.

Proof : The corresponding Lax pair to the KAV equation (1) is

— Gz + up = A\, (40)
¢t = —4Pgas + Oudy + 3ugd.
This system is covariant by the Darboux transformation. If ¢1,...,¢n are
solutions of the system (40), then ¢[N] defined by @[N] = (,¢1’ N, )
W(d1,...,én)
is another solution of this system (40) where u is replaced by u[N] = u —

202(InW (1, ..., 0n) [24].
We choose u = 0. Then the functions ¢; = f1; verify the following system

(o, il

Then the solution of (1) can be written as v(z, t) = —20%(In W (¢, . . ., ¢ )which
is nothing else that (39) v(z,t) = =202 In(det(fi;) (i jyep,n)-
O

6.2 Multi-parametric rational solutions to the KdV equa-
tion

To obtain rational solutions to the KdV equation, we are going to perform a
limit when the parameter e tends to 0.
6.2.1 Rational solutions as a limit case
We get the following result :
Theorem 6.2 The function v defined by

v(@, t) = lim —207 In(det(fi;) i )e1.n) (42)
is a rational solution to the KdV equation (1) depending on 3N parameters a;,

cjanddj, 1 <j<N.

Proof : Performing a passage to the limit when e tends to 0, it is an obvious
consequence of the previous result.
O

13



6.2.2 Degenerate rational solutions

If we want a formulation without a limit, we consider the following functions
gi; and h;; defined by

gij(z,t,e) = (aje) "t exp(ajex — 4(aje)®t + cje*N 1) — (aje)' " exp(—ajex + 4(aje)3t — d;je2N 1),
82j71fij(x7t70) .
h”:W’f‘OTISZSN

Then get the following result :
Theorem 6.3 The function v defined by

U(.T,t) = 728§ ln(det(hij>(i7j)g[1,]\/]~ (43)

is a rational solution to the KdV equation (1).

Proof : It is sufficient to combine the columns of the determinant and to take
a passage to the limit when e tends to 0 for each column different from the first
one.

O

So we obtain an infinite hierarchy of rational solutions to the KdV equation
depending on the integer V.

In the following we give some examples of rational solutions.

These results are consequences of the previous result (43).

6.3 First order rational solutions
We have the following result at order NV =1 :
Proposition 6.1 The function v defined by

80,12
20,193 +c1 — d1)27

vz, t) = ( (44)

is a solution to the KdV equation (1) with a1, c1, di arbitrarily real parameters.

Remark 6.1 This solution independent of t does not present any interest.

6.4 Second order rational solutions
Proposition 6.2 The function v defined by

n(zx,t)

vz, t) = -2 R

(45)

with
n(z,t) = 12a2a1(—3 as>+a1%)(3 a2’ a1 —a1a2)x* +12 azar (=3 as®+a1?) (=72 az>ta; +

14



24 a13ta2 +9coa1 +3dias — 9daar — SClaz)I
d(z,t) = (=6 as®a1 +2a1%a2)x® — 72 ax3tas +24 a13tas +9 caa1 +3 diaz —9 dzar — 3 cras

is a rational solution to the KAV equation (1), quotient of two polynomials with
numerator of degree 4 in x, 1 in t, and denominator of degree 6 in x, 2 in t.

In the case where all the parameters c; and d; are equal to 0 and the parameters
a; are equal to 1, the solution can be expressed as

T (24t — 333)

u(z,t) = —6 .
(@) (23 4+ 121)°

6.5 Rational solutions of order three

We get the following rational solutions given by :

Proposition 6.3 The function v defined by

(46)

with

n(z,t) = (=7200 a1ta2%as® 4+ 14400 a1 aztas'® — 4320 a1%asas® — 5400 a12az'as® —

216 a1%as2a3®+2160 a1%a2%a3%—2400 a1%a22as®+1440 a1 % az2as®—21600 a1 2as2%as 0+

21600 a12a28a33)x% + (72900 a1a25a3%d1 +243000 a1 *a2as®cs — 243000 a1 *a2%as3ds —

72900 a1a2%a3%c1 + 729000 a12az®as®ds — 729000 a12as®as’cs + 243000 a1*azas®es —

243000 a1%aza38d2—72900 a1%azas’ca—48600 a18asas®cs+48600 a1®as?as®ds—145800 a1 baztas’ds+
72900 a1%a2a3®ds + 145800 a1%astas®cs — 364500 a12as’as®ds + 48600 a13as’as®dy +

162000 a1%az2as®cs — 162000 a1®as?as’ds — 48600 aiaz?as®er — 14580 a1’ ax?as®dy +

14580 a1°az2as®ci — 729000 a1 2as3as®ca — 972000 a1 tasas®cs + 972000 a1taztas’ds —

1458000 a12a2%as®ds+729000 a1 2as2®as®da+1458000 a12a2’as®cs+364500 a12az®asber—

145800 a1 a2*a3®d1 4145800 ayas* az®er )2® + (116640000 a1 2 a25t%az® —29160000 a1 a2 °t% a3 —
12960000 a1 t2a22a3®—1166400 a; *°t%as?as® —38880000 a1 *a2®t%a3®—23328000 a1 astas®t>+
11664000 a1%a2®t2a3® 477760000 a1 * as* a3 '*t2+7776000 a15t* a2 a3® 116640000 a1%as® az'Ot?)z* +
(62208000 a1®a2?a3®t* 103680000 a1®as?as*t®—233280000 a1?a2'%as®t*—933120000 a12a2%as ' t3 +
622080000 a1 *az*as®t3 493312000 a1z’ a3t +933120000 a1 2a28as®t—9331200 a; as?as®t® —
311040000 a1* a2’ a3®t® —186624000 a1°as*as®t*) 24364500 craz* az®a1dz —182250 crazaz®arda—
364500 c1aztasa1c3+1822500 a1 2dsasdaas® —1822500 a1 2dsas®csas® —182250 dyazas®ayco—
121500 d1as?as®a1®c3+121500 dias?as®ar2ds—364500 diaz*as® a1 ds+182250 a1 czaseraz—
1822500 a12caas®dsas®+1822500 a1 caas®csas®+121500 a1 3csaz’c1as>+607500 a1t csasdaas® —
121500 a13d3a2201a33 — 607500 a14d3a2d2a33 — 455625 a12622a36 — 1822500 a12032a26 +

182250 dyasas®a1da+364500 dias*as®a1cs—607500 a1 *caas®c3az+607500 a1t coas®dsas—

1822500 a12ds2a2®—18225 d12az2as®+1215000 a1 4dsaz*—202500 a1 8 ds?as?+36450 dyazasbei +
911250 a12¢2a3%ds + 405000 a18csaz?ds — 2430000 a1 csas*ds + 3645000 a12dsas’es —

18225 ¢12a22as® — 455625 a12da2as® + 1215000 a1tesaz? — 202500 a1 %cs2as?

d(z,t) = (—6a1”asas’® —60araz’as® +20 a1®a2a3® 430 a1a2° az®) 2% + (1200 a1 *tazas® —

3600 a1a23tas” — 360 ai®tasz®az + 1800 ayaz®taz®)z® + (=675 a1dz2a3® 4+ 135 dyazas® +
675 a1ceas® +450 a1®czas — 450 a1®dsas — 135 craza3® — 1350 a1 czaz® +1350 a1dzas®)x —
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14400 a1 *t?azas® + 43200 a1a2’t?as® + 4320 a1 °t?asas — 21600 a1as®t?as’®

is a rational solution to the KdV equation (1), quotient of two polynomials with the
numerator of order 10 in x, 3 in t, the denominator of degree 12 in x, 4 in t.

In the case where all the parameters ¢; and d; are equal to 0, and the parameters
a; equal to 1 the solution can be expressed as

(2 + 432003 + 5400 £22)
(—xb — 60tx3 + 72012)2

u(z,t) =12

6.6 Further orders

We can go on, and calculate different solutions of the hierarchy. The solutions
becoming very complexes. In the case of order 4, the numerator contains 1658
terms, the denominator 2396 terms; for order 5, the numerator contain 22200
terms and the denominator 31260 terms. So, we give only the solutions with
the parameters ¢; and d; equal to 0, and the parameters a; equal to 1, at order
4 and 5 to shorten the paper.

Proposition 6.4 The solution v of order 4 can be expressed as

20 28 4 2880 tz'® + 453600 t2212 — 42336000 t32° — 3048192000 t*2° + 182891520000 ¢°

t) =
vz, ?) (10 + 180 L7 + 302400 t3x)2

v is a rational solution to the KAV equation (1), quotient of two polynomials
with numerator of degree 18 in x, 6 in t, and denominator of degree 20 in x, 6
mn t.

Proposition 6.5 The solution v of order 5 is given by
v(z,t) = 5 (47)

with

n(z,t) = 30 2%%4+15120 t22° +3628800 2222 443436736000 t*2'°415362887680000 t° 213+

530019624960000 t52'°+5530639564800000 ¢” 7 +580717154304000000 t5z* —4645737234432000000 t°

d(z,t) = —x'® —420 tz'? — 25200 £*2° — 2116800 t° + 254016000 t*2* 4 1524096000 t°

v is a rational solution to the KdV equation (1), quotient of two polynomials

with numerator of degree 28 in x, 9 in t, and denominator of degree 30 in x, 10

int.

7 Conclusion

In this paper, we succeed to construct different types of representations of the
solutions to the KAV equation. First, it was essential to express the degenerate
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# function into an explicit Fredholm determinant. The second step was to get
the transformation of the Fredholm determinant into a wronskian.

I have to mention a paper of Whitham [33] in connection with this work, and
I would like to thank the referee about this information. The article [33] deals
with equations as the KdV equation and the representation of solutions as sum
of solitons, and also the relation of these solutions with Riemann theta functions
in particular. It can be compared with the solutions given in the present work
expressed in terms of Fredholm determinant and wronskians.

In another approach, we have given solutions to the KdV equation in terms
of elementary exponential functions. In particular, performing a passage to the
limit when one parameter goes to 0 we get rational solutions to the KdV equa-
tion. So we obtain an infinite hierarchy of multi-parametric families of rational
solutions to the KdV equation as a quotient of a polynomials depending on 3N
real parameters.

But, unlike other equations such as the NLS equation [6, 7, 8, 9, 10] there are
no specific structures that emerge as depending on parameters.
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