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Abstract

Using Fedosov’s approach we give a geometric construction of a formal symplectic groupoid over
any Poisson manifold endowed with a torsion-free Poisson contravariant connection. In the case of
Kähler–Poisson manifolds this construction provides, in particular, the formal symplectic groupoids with
separation of variables. We show that the dual of a semisimple Lie algebra does not admit torsion-free
Poisson contravariant connections.
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1. Introduction

A symplectic groupoid over a Poisson manifold M is a symplectic manifold Σ endowed with
a partially defined multiplication and the source, target, inverse, and unit mappings satisfying
several axioms. In particular, the source and the target mappings are a Poisson and an anti-
Poisson mapping from Σ to M , respectively. Symplectic groupoids play the rôle of semiclassical
counterparts of associative algebras treated as quantum objects. Symplectic groupoids were
introduced independently by Karasëv [11], Weinstein [14,3], and Zakrzewski [16]. There is a
corresponding notion of a formal symplectic groupoid on the formal neighborhood (Σ ,Λ) of a
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Lagrangian submanifold Λ of a symplectic manifold Σ whose principal example is the formal
neighborhood (Σ ,Λ) of the Lagrangian unit space Λ of a symplectic groupoid on a symplectic
manifold Σ (see [10]). Formal symplectic groupoids were first introduced in [2] in terms of
formal generating functions of their (formal) Lagrangian product spaces. It was shown in [10]
that to each natural deformation quantization on a Poisson manifold M there corresponds a
canonical formal symplectic groupoid on (T ∗M, Z), where Z is the zero section of T ∗M . The
main result of [2] is the description of the formal symplectic groupoid of Kontsevich deformation
quantization. The formal symplectic groupoid of Fedosov’s star-product was described in [9].
This paper is motivated by the following observation. On the one hand, it is known that
deformation quantizations with separation of variables (also known as deformation quantizations
of the Wick type, see [7] and [1]) are a particular case of Fedosov’s deformation quantizations
(see [12]). On the other hand, it was shown in [10] that the corresponding formal symplectic
groupoids “with separation of variables” can be naturally extended from Kähler manifolds to
Kähler–Poisson manifolds, while it is impossible to extend the star-products with separation of
variables to the Kähler–Poisson manifolds in a naive direct way (see [8]). In this paper we show
that the construction of the formal symplectic groupoids of Fedosov’s deformation quantizations
from [9] can be naturally extended to the Poisson manifolds endowed with a torsion-free Poisson
contravariant connection. We call the formal symplectic groupoids obtained via this construction
Fedosov’s formal symplectic groupoids.

On a Kähler–Poisson manifold, there is a natural torsion-free Poisson contravariant
connection which we call the Kähler–Poisson contravariant connection. We show that Fedosov’s
formal symplectic groupoid constructed with the use of the Kähler–Poisson contravariant
connection is a formal symplectic groupoid with separation of variables.

Any symplectic manifold admits symplectic (torsion-free) connections and therefore Poisson
torsion-free contravariant connections. However, this is not the case for general Poisson
manifolds. We prove that the dual space of a semisimple Lie algebra does not admit a torsion-free
Poisson contravariant connection.

2. Linear contravariant connections

Contravariant derivatives were introduced by Vaisman in [13]. The corresponding notion of a
contravariant connection was extensively studied by Fernandes in [5].

Let M be a Poisson manifold endowed with the Poisson bivector field Π . Then the Poisson
bracket of functions f, g ∈ C∞(M) is given by

{ f, g} = Π (d f, dg).

Define a bundle map # : T ∗M → T M by the formula

〈β, #α〉 = Π (α, β),

where α, β ∈ Ω1(M) are 1-forms on M and 〈·, ·〉 is the natural pairing of T ∗M and T M . It is
known that on the space Ω1(M) of 1-forms on M there is a Lie bracket

[α, β] = L#αβ − L#βα − dΠ (α, β),

where α, β ∈ Ω1(M) and L denotes the Lie derivative. If α = d f and β = dg for
f, g ∈ C∞(M), then

[d f, dg] = d{ f, g}. (1)
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The mapping # induces a Lie algebra homomorphism from Ω1(M) to the Lie algebra of vector
fields on M , Vect(M), so that for α, β ∈ Ω1(M)

#[α, β] = [#α, #β]. (2)

A contravariant connection ∇
• on a vector bundle E on M is a bilinear mapping ∇

•
:

Γ (T ∗M)⊗ Γ (E) → Γ (E) satisfying the axioms

(i) ∇
f αs = f ∇

αs;
(ii) ∇

α( f s) = f ∇
αs + #α( f )s,

where f ∈ C∞(M), α ∈ Ω1(M), and s ∈ Γ (E).
A covariant connection ∇• on E induces a contravariant connection ∇

• as follows:

∇
α

= ∇#α. (3)

It is known that there exist contravariant connections that are not induced by a covariant
connection.

Let ∇
• be a contravariant connection on T ∗M . Its torsion T ∇ and curvature R∇ are defined

by the formulas

T ∇(α, β) = ∇
αβ − ∇

βα − [α, β]

and

R∇(α, β)γ = ∇
α
∇
βγ − ∇

β
∇
αγ − ∇

[α,β]γ,

where α, β, γ are 1-forms on M . The transposed contravariant connection t
∇

• of a contravariant
connection ∇

• is defined as follows:

t
∇
α β = ∇

βα + [α, β],

so that T ∇(α, β) = ∇
αβ −

t
∇
α β. The transposed connection of t

∇
• is ∇

•.
To any linear covariant connection ∇• on T M there corresponds a covariant connection on

T ∗M which will be denoted also by ∇•. In local coordinates {x i
}

∇∂i ∂ j = Γ k
i j∂k and ∇∂i dx j

= −Γ j
ikdxk,

where ∂i = ∂/∂x i and Γ k
i j are the Christoffel symbols of ∇•. Similarly, to any contravariant

connection ∇
• on T M there corresponds a contravariant connection on T ∗M which will be

denoted also by ∇
•. In local coordinates

∇
dx i
∂ j = Γ ik

j ∂k and ∇
dx i

dx j
= −Γ i j

k dxk,

where Γ i j
k are the Christoffel symbols of ∇

•. In particular, if a contravariant connection ∇
• is

induced by a covariant connection ∇• according to (3), then

Γ i j
k = π ilΓ j

lk,

where π i j is the Poisson tensor corresponding to Π .
To a given covariant connection ∇• on T M there corresponds the transposed connection t

∇•

on T M such that tΓ k
i j = Γ k

ji , where Γ k
i j and tΓ k

i j are the Christoffel symbols of ∇• and t
∇•,

respectively. For vector fields X, Y ∈ Vect(M)

t
∇X Y = ∇Y X + [X, Y ], (4)
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so that the torsion T∇(X, Y ) of ∇• is given by the formula

T∇(X, Y ) = ∇X Y −
t
∇X Y.

The transposed connection of t
∇• is ∇•. Given a covariant connection ∇•, one can construct a

pair of contravariant connections (∇•, Ď∇•) induced by ∇• and t
∇•, respectively, according to

(3). The connection Ď
∇

• is in general different from the transposed contravariant connection t
∇

•.
For 1-forms α, β ∈ Ω1(M) it follows from (2)–(4) that

Ď
∇
α #β − ∇

β#α − #[α, β] = 0. (5)

A pair (∇•, Ď∇•) of contravariant connections satisfying (5) is a natural counterpart of a single
covariant connection. We will call such connections associated. In general, one cannot recover
one of the associated connections ∇

•, Ď∇• from the other.

Lemma 1. Contravariant connections ∇
•, Ď∇• are associated if and only if in local coordinates

their Christoffel symbols Γ i j
k and ĎΓ i j

k , respectively, satisfy the following condition:

π ikΓ jl
k = π jk ĎΓ il

k . (6)

Proof. It is enough to check (5) for α = dx i and β = dx j . Using (1) and the Jacobi identity for
the Poisson tensor π i j we obtain that

Ď
∇

dx i
#dx j

− ∇
dx j

#dx i
− #[dx i , dx j

] =
Ď
∇

dx i
(π jk∂k)

− ∇
dx j
(π ik∂k)−

∂π i j

∂x s π
sk∂k = π is ∂π

jk

∂x s ∂k + π jk ĎΓ il
k ∂l

−π js ∂π
ik

∂x s ∂k − π ikΓ jl
k ∂l −

∂π i j

∂x s π
sk∂k =

(
π jk ĎΓ il

k −π ikΓ jl
k

)
∂l ,

whence the lemma follows. �

Lemma 2. A covariant connection ∇• respects the Poisson bivector field Π if and only if the
contravariant connection Ď

∇
• induced by t

∇• is torsion-free.

Proof. Denote by T
Ď
∇ the torsion of the connection Ď

∇
•. Taking into account that ĎΓ i j

k =

π is tΓ j
sk = π isΓ j

ks we get

T
Ď
∇(dx i , dx j ) =

(
−

ĎΓ i j
k +

ĎΓ j i
k −

∂π i j

∂xk

)
dxk

= −

(
∂π i j

∂xk + Γ i
ksπ

s j
+ Γ j

ksπ
is
)

dxk
= −

(
∇∂kπ

i j
)

dxk,

whence the claim follows. �

Thus a pair of associated contravariant connections (∇•, Ď∇•) such that Ď
∇

• is torsion-free
can be thought of as a natural counterpart of a covariant connection ∇• which respects the Poisson
bivector field Π .

Lemma 3. If contravariant connections (∇•, Ď∇•) are associated then for α, β, γ ∈ Ω1

(
∇
αΠ

)
(β, γ ) = −Π

(
α, T

Ď
∇(β, γ )

)
. (7)
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In particular, if Ď
∇

• is torsion-free then the contravariant connection ∇
• respects the Poisson

bivector field Π .

Proof. Using (6) we obtain (7) by the following calculation:

∇
dxm
π i j

= πmk ∂π
i j

∂xk + Γmi
k πk j

+ Γmj
k π ik

= −πmk
(

−
ĎΓ i j

k +
ĎΓ j i

k −
∂π i j

∂xk

)
. �

A contravariant connection ∇
• which respects the Poisson bivector field Π is called Poisson

in [5]. A connection ∇
• is Poisson if and only if it satisfies the condition

#∇
αβ = ∇

α#β (8)

for any α, β ∈ Ω1(M). It was shown in [5] that on any Poisson manifold there exist Poisson
contravariant connections.

Assume once again that a pair (∇•, Ď∇•) of contravariant connections is induced by a pair
(∇•,

t
∇•) of covariant connections. If ∇• is torsion-free, then ∇

•
=

Ď
∇

•. Thus a contravariant
connection ∇

• which satisfies the condition

∇
α#β − ∇

β#α − #[α, β] = 0 (9)

can be thought of as a natural counterpart of a torsion-free covariant connection.
If a contravariant connection ∇

• satisfies condition (9) and is torsion-free, it can be considered
as an analogue of a torsion-free covariant connection which respects Π .

Lemma 4. A torsion-free contravariant connection ∇
• respects the Poisson bivector field Π if

and only if it satisfies (9).

Proof. Assume that ∇
• respects Π and therefore satisfies (8). Then (9) immediately follows

from (8) applied to the condition that ∇
• is torsion-free. Conversely, if ∇

• is torsion-free and
satisfies (9) it follows from Lemma 3 that ∇

• respects Π .

It follows from Lemma 4 that if ∇
• is a torsion-free Poisson contravariant connection on M ,

then it is associated to itself and one can consider the pair (∇•,∇•) as an example of a pair
of associated connections (∇•, Ď∇•) such that Ď

∇
• is torsion-free. Conversely, if contravariant

connections (∇•, Ď∇•) on M are associated and Ď
∇

• is torsion-free then there exists a torsion-free
Poisson connection on M .

Proposition 1. If contravariant connections (∇•, Ď∇•) are associated and Ď
∇

• is torsion-free
then

∇̂
•

=
1
3

(
∇

•
+

t
∇

•
+

Ď
∇

•

)
is a torsion-free Poisson contravariant connection.

Proof. It is clear that ∇̂
• is torsion-free. Taking into account Lemmas 1, 3 and 4 we see that it

remains to show that the Christoffel symbols of the connection ∇̂
•,

Γ̂ i j
k =

1
3

(
Γ i j

k + Γ j i
k +

∂π j i

∂xk +
ĎΓ i j

k

)
,
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satisfy the condition

π ik Γ̂ jl
k = π jk Γ̂ il

k ,

which immediately follows from (6), (7), and the Jacobi identity for the Poisson tensor π i j . �

On a symplectic manifold there exist symplectic (torsion-free) covariant connections. A
symplectic covariant connection induces a torsion-free Poisson contravariant connection.

Another important example of torsion-free Poisson contravariant connections appears in the
context of Kähler–Poisson manifolds. We call a complex manifold M Kähler–Poisson if it is
endowed with a Poisson tensor gl̄k of type (1, 1)with respect to the complex structure. Here k and
l̄ are holomorphic and antiholomorphic indices, respectively, with respect to local holomorphic
coordinates {zk

} on M . The Jacobi identity for the Poisson tensor gl̄k takes the form

g t̄ s ∂gl̄k

∂zs = gl̄s ∂g t̄ k

∂zs and g t̄ s ∂gl̄k

∂ z̄t = g t̄ k ∂gl̄s

∂ z̄t .

One can introduce a torsion-free Poisson contravariant connection ∇
• on M with the following

Christoffel symbols:

Γ l̄k
m = −

∂gl̄k

∂zm , Γ kl̄
n̄ =

∂gl̄k

∂ z̄n (10)

(the symbols with the other types of indices are equal to zero). We call this contravariant
connection Kähler–Poisson. If gl̄k is nondegenerate, M becomes a Kähler manifold and the
contravariant connection ∇

• is induced by the Kähler connection.
We are going to show that the Poisson manifold which is the dual of a semisimple Lie algebra

does not admit torsion-free Poisson contravariant connections. First we need to prove a technical
lemma.

Lemma 5. On a semisimple Lie algebra g any linear mapping Q : g → g such that

[X, Q(Y )] = [Y, Q(X)] (11)

for all X, Y ∈ g vanishes.

Proof. Let Q : g → g be a linear mapping satisfying (11). The Killing form B(·, ·) on g is
a nondegenerate invariant symmetric bilinear form. Thus B([X, Y ], Z) = B(X, [Y, Z ]), which
implies that the function Θ(X, Y, Z) = B([X, Y ], Q(Z)) = B(X, [Y, Q(Z)]) is antisymmetric
in (X, Y ) and symmetric in (Y, Z). It can only happen if Θ = 0. Since B is nondegenerate and
for g semisimple [g, g] = g, we obtain that Q = 0. �

Let g be a real finite-dimensional Lie algebra with a fixed basis {X i
} and the structure

constants ci j
k so that

[X i , X j
] = ci j

k X k .

Denote by {x i
} the corresponding linear coordinates on the dual g∗ of the Lie algebra g. The

standard linear Poisson structure on g∗ is given by the formula

π i j
= ci j

k xk . (12)
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Assume that ∇
• is a torsion-free Poisson contravariant connection on g∗ with the Christoffel

symbols Γ i j
k . Thus

−Γ i j
k + Γ j i

k −
∂π i j

∂xk = 0 and π ikΓ jl
k = π jkΓ il

k . (13)

Formulas (12) and (13) imply that

−Γ i j
k (0)+ Γ j i

k (0)− ci j
k = 0 and cik

s Γ jl
k (0) = c jk

s Γ il
k (0). (14)

Introduce a bilinear mapping Γ : g ⊗ g → g such that

Γ (X i , X j ) = −Γ i j
k (0)X

k .

It follows from (14) that the mapping Γ (X, Y ) satisfies the following conditions:

Γ (X, Y )− Γ (Y, X)− [X, Y ] = 0 (15)

and

[X,Γ (Y, Z)] = [Y,Γ (X, Z)]. (16)

If g is a semisimple Lie algebra it follows from Lemma 5 and formula (16) that for any element
Z ∈ g the mapping g 3 X → Γ (X, Z) vanishes, which implies that Γ = 0. However, according
to (15) the skew-symmetric part of Γ (X, Y ) is 1

2 [X, Y ]. This contradiction shows that on the
dual of a semisimple Lie algebra endowed with the standard linear Poisson structure there are no
torsion-free Poisson contravariant connections. It is interesting to compare this statement with
the theorem by Gutt and Rawnsley that the dual of a semisimple Lie algebra does not admit a
tangential deformation quantization (see [6] and also [15]).

In the rest of the paper we will show that using Fedosov’s approach one can give a geometric
construction of a formal symplectic groupoid (see [10]) on an arbitrary Poisson manifold
endowed with a torsion-free Poisson contravariant connection.

3. Nonlinear contravariant connections

The formal neighborhood (X, Y ) of a submanifold Y of a manifold X is the ringed space on
Y whose ring of global sections is C∞(X)/∩

∞

k=1 I k
Y , where IY denotes the ideal of functions in

C∞(M) vanishing on Y (see the Appendix to [9]). Let p : E → M be a vector bundle with
a finite dimensional fibre. Denote by Vect(E, Z) the Lie algebra of formal vector fields on the
formal neighborhood (E, Z) of the zero section Z of E . If M is a Poisson manifold we call a
mapping D•

: Ω1(M) → Vect(E, Z) a contravariant connection on the formal neighborhood
(E, Z) if it satisfies the axioms

D f α
= p∗( f )Dα, [Dα, p∗ f ] = p∗((#α) f ),

where α ∈ Ω1(M) and f ∈ C∞(M).

Remark. If D• leaves invariant the space of fibrewise linear functions on (E, Z), then it is
induced by a linear connection on the dual bundle E∗

→ M . In general, this is not the case and
D• will be referred to as a nonlinear contravariant connection on (E, Z). This object is analogous
to an Ehresman connection.
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We will be interested in the nonlinear contravariant connections on the formal neighborhood
(T ∗M, Z).

If ∇
• is a linear contravariant connection on M with the Christoffel symbols Γ i j

k , it induces a
contravariant connection ∇̄

• on (T ∗M, Z) expressed locally as

∇̄
dx i

= π i j ∂

∂x j + Γ i j
k ξ j

∂

∂ξk
,

where {x i
} are local coordinates on M lifted to (T ∗M, Z) and {ξi } are the dual fibre coordinates.

For a global vector field v ∈ Vect(M) written locally as v = vi∂i denote by v̂ the
multiplication operator by the global function on C∞(T ∗M, Z) whose local expression is
vi (x)ξi . For a global 1-form α ∈ Ω1(M) written locally as α = αi dx i denote by α̂ the global
operator on C∞(T ∗M, Z) written locally as αi

∂
∂ξi

.

Define the torsion T D of a nonlinear contravariant connection D• on (T ∗M, Z) as the skew-
symmetric bilinear mapping from Ω1(M)⊗C∞(M) Ω1(M) to the space Vectvert(T ∗M, Z) of
vertical vector fields on the formal neighborhood (T ∗M, Z) given by the formula

T D(α, β) =

[
Dα, β̂

]
−
[
Dβ , α̂

]
− [̂α, β].

It is a morphism of C∞(M)-modules. A nonlinear contravariant connection D• on (T ∗M, Z)
can be written in local coordinates as follows:

Ddx i
= π is ∂

∂x s − Ai
s
∂

∂ξs
, (17)

where Ai
s = Ai

s(x, ξ) is a formal function (the fibre coordinates {ξi } are treated as formal
variables). Locally

T D(dx i , dx j ) =
∂Ai

s

∂ξ j

∂

∂ξs
−
∂A j

s

∂ξi

∂

∂ξs
−
∂π i j

∂x s

∂

∂ξs
. (18)

One can check that the torsion T ∇ of a contravariant connection ∇
• is related to the torsion T ∇̄

of the induced contravariant connection ∇̄
• on (T ∗M, Z) as follows:

T ∇̄(α, β) = ̂T ∇(α, β)

for any α, β ∈ Ω1(M).
A contravariant connection ∇

• respects the Poisson bivector field Π if and only if the induced
mapping ∇̄

• satisfies the equation[[
∇̄
γ , #̂α

]
, β̂
]

=
[[

∇̄
γ , α̂

]
, #̂β

]
for any α, β, γ ∈ Ω1(M). We will call a nonlinear contravariant connection D• Poisson if it
satisfies the condition[[

Dγ , #̂α
]
, β̂
]

=
[[

Dγ , α̂
]
, #̂β

]
(19)

for any α, β, γ ∈ Ω1(M).
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A simple calculation shows that D• written in local coordinates as in (17) satisfies (19) if and
only if

πms ∂π
i j

∂x s −
∂Am

s

∂ξi
π s j

−
∂Am

s

∂ξ j
π is

= 0. (20)

Linear contravariant connections (∇•, Ď∇•) are associated if and only if the mappings
∇̄

•, Ď∇̄•
: Ω1(M) → Vect(E, Z) satisfy the condition[

Ď
∇̄
α, #̂β

]
−
[
∇̄
β , #̂α

]
− #̂[α, β] = 0. (21)

We will say that nonlinear contravariant connections (D•, ĎD•) satisfying[
ĎDα, #̂β

]
−
[
Dβ , #̂α

]
− #̂[α, β] = 0 (22)

for any α, β ∈ Ω1(M) are associated. One can check that if, locally,

Ddx i
= π is ∂

∂x s − Ai
s
∂

∂ξs
and ĎDdx i

= π is ∂

∂x s − K i
s
∂

∂ξs
, (23)

then (22) is equivalent to the condition

π is A j
s = π js K i

s . (24)

Using formulas (18), (20) and (24) one can prove the following lemma.

Lemma 6. If nonlinear contravariant connections (D•, ĎD•) are associated and ĎD• is torsion-
free, then the nonlinear contravariant connection D• is Poisson.

The Poisson structure Π on M induces a fibrewise presymplectic form Ω on T ∗M given
locally by the formula

Ω =
1
2
π i j dξi ∧ dξ j .

Denote by HΩ the subspace of C∞(T ∗M, Z) of Hamiltonian functions of the fibrewise
presymplectic form Ω . Namely, F ∈ HΩ if there is a vertical formal vector field HF ∈

Vectvert(T ∗M, Z) such that

ι(HF )Ω = −dξ F,

where dξ is the fibrewise differential. The choice of HF is, in general, not unique. If locally
HF = ai

∂
∂ξi

, then

∂F

∂ξi
= −π j i a j = π i j a j . (25)

It follows from (25) that

π i j ∂a j

∂ξk
= πk j ∂a j

∂ξi
. (26)
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The space HΩ is a Poisson algebra with respect to the pointwise product and the bracket {·, ·}Ω
defined as follows:

{F,G}Ω = HF G = −HG F = ai
∂G

∂ξi
= π i j ai b j , (27)

where F,G ∈ HΩ and, locally, HF = ai
∂
∂ξi

and HG = bi
∂
∂ξi

.

Remark. For any formal function F ∈ C∞(T M, Z) its pullback F# with respect to the mapping
# belongs to HΩ . For F = F(x, y) we have F#(x, ξ) = F(x, ξiπ

i ·). Therefore

∂F#

∂ξi
= π i j

(
∂F

∂y j

)#

,

where {yi
} are the local fibre coordinates on T M dual to {ξi }.

Proposition 2. Given a Poisson nonlinear contravariant connection D•, the formal vector fields
Dα, α ∈ Ω1(M), are derivations of the Poisson algebra (HΩ , {·, ·}Ω ).

Proof. For F ∈ HΩ assume that locally HF = ai
∂
∂ξi

and formula (25) holds. In order to prove
the proposition we have to show that

bt
∂

∂ξt
:= [Ddx i

, HF ],

is a Hamiltonian vector field of the local Hamiltonian function Ddx i
F , i.e., that

∂

∂ξ j

(
Ddx i

F
)

= π j t bt . (28)

We have, using (25),

∂

∂ξ j

(
Ddx i

F
)

=
∂

∂ξ j

(
π is ∂F

∂x s − Ai
s
∂F

∂ξs

)
= π is ∂2 F

∂x s∂ξ j
−
∂Ai

s

∂ξ j

∂F

∂ξs

− Ai
s
∂2 F

∂ξs∂ξ j
= π is ∂

∂x s

(
π j t at

)
−
∂Ai

s

∂ξ j
π st at − Ai

sπ
j t ∂at

∂ξs

= π isπ j t ∂at

∂x s + π is ∂π
j t

∂x s at −
∂Ai

s

∂ξ j
π st at − Ai

sπ
j t ∂at

∂ξs
.

(29)

On the other hand we obtain that

bt
∂

∂ξt
=

[
π is ∂

∂x s − Ai
s
∂

∂ξs
, at

∂

∂ξt

]
(30)

= π is ∂at

∂x s

∂

∂ξt
− Ai

s
∂at

∂ξs

∂

∂ξt
+
∂Ai

t

∂ξk
ak

∂

∂ξt
.

Taking into account that D• is a Poisson connection we obtain formula (28) from (20), (29) and
(30), whence the proposition follows. �
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4. Lifting functions via formal nonlinear connections

There is a natural grading deg on the space C∞(T ∗M, Z) by the powers of the formal fibre
variables ξi . It induces a grading on the endomorphisms of C∞(T ∗M, Z). Thus deg(ξi ) = 1 and

deg
(
∂
∂ξi

)
= −1. For a linear contravariant connection ∇

• on M and a 1-form α ∈ Ω1(M) we

have deg
(
∇̄
α
)

= 0. A nonlinear contravariant connection D• can be expanded into a ξ -adically
convergent series

D•
= D•

−1 + D•

0 + · · · ,

where D•

d is the homogeneous component of D• of degree d. There is a unique contravariant
connection ∇

• such that D•

0 = ∇̄
•. For any d 6= 0 the component D•

d is a mapping from Ω1(M)
to Vectvert(T ∗M, Z). The mapping α 7→ Dα

−1 determines uniquely a linear endomorphism ψD
of the cotangent bundle T ∗M such that

Dα
−1 = ψ̂D(α)

for all α ∈ Ω1(M). We will call a nonlinear contravariant connection D• invertible if
ψD is invertible. We will give necessary and sufficient conditions on an invertible nonlinear
contravariant connection D• under which the system

D•F = 0 (31)

with the initial condition F |Z = p∗( f )|Z has a unique solution F ∈ C∞(T ∗M, Z) for an
arbitrary f ∈ C∞(M).

The curvature of a nonlinear contravariant connection D• is a skew-symmetric morphism of
C∞(M)-modules

RD
: Ω1(M)⊗C∞(M) Ω1(M) → Vectvert(T

∗M, Z)

such that for α, β ∈ Ω1(M)

RD(α, β) =
[
Dα, Dβ

]
− D[α,β].

If a nonlinear contravariant connection D• is written locally as in (17), then

RD(dx i , dx j ) =

[
Ddx i

, Ddx j
]

−
∂π i j

∂xk Ddxk
= Ri j

k
∂

∂ξk
, (32)

where

Ri j
k = −Ddx i

(
A j

k

)
+ Ddx j

(
Ai

k

)
+
∂π i j

∂x s As
k . (33)

System (31) written locally takes the form

π is ∂F

∂x s = Ai
s
∂F

∂ξs
. (34)

Since D• is invertible, the matrix
(

Ai
j

)
is formally invertible. Denote by

(
Bi

j

)
its inverse. System

(34) is equivalent to the following one:

∂F

∂ξi
= Bi

jπ
js ∂F

∂x s . (35)
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It is well known that system (35) has a unique formal solution F(x, ξ) with the initial condition
F(x, 0) = f (x) for an arbitrary smooth function f (x) if and only if the operators

Bi
j Ddx j

= Bi
jπ

js ∂

∂x s −
∂

∂ξi

pairwise commute. We have, taking into account the identity

Ddxk
B j

l = −B j
p Ddxk (

Ap
q
)

Bq
l

and formulas (32) and (33), that[
Bi

k Ddxk
, B j

l Ddx l
]

= Bi
k Ddxk

(
B j

l

)
Ddx l

− B j
k Ddxk

(
Bi

l

)
Ddx l

+ Bi
k B j

l

[
Ddxk

, Ddx l
]

= Bi
k B j

l

(
−Ddxk

(
Al

q

)
Bq

p Ddx p
+ Ddx l

(
Ak

q

)
Bq

p Ddx p
+

[
Ddxk

, Ddx l
])

= Bi
k B j

l

((
Rkl

q −
∂πkl

∂x s As
q

)
Bq

p Ddx p
+

[
Ddxk

, Ddx l
])

= Bi
k B j

l

(
Rkl

q Bq
p Ddx p

+ Rkl
q
∂

∂ξq

)
= Bi

k B j
l Rkl

q Bq
pπ

ps ∂

∂x s .

Since the matrix
(

Bi
j

)
is invertible, we obtain the following proposition.

Proposition 3. For an invertible nonlinear contravariant connection D• written locally as (17)
system (31) with the initial condition F(x, 0) = f (x) has a unique solution F = F(x, ξ) for an
arbitrary smooth function f (x) if and only if

Rkl
q Bq

pπ
ps

= 0, (36)

where Rkl
q are the coefficients of the curvature of the connection D• given by formula (33) and(

Bi
j

)
is the inverse of

(
Ai

j

)
.

Proposition 3 gives only a local necessary and sufficient condition of the existence and
uniqueness of solutions of system (31). To give a global criterion, we assume additionally that
the invertible connection D• has an associated invertible nonlinear contravariant connection ĎD•.
Suppose that D• and ĎD• are written locally as in (23). Since D• and ĎD• are invertible, there
exist the inverse matrices (Bi

j ) and (L i
j ) of (Ai

j ) and (K i
j ), respectively. It follows from (24) that

π is B j
s = π js L i

s . (37)

Then, if Rkl
q are the coefficients of the curvature RD , condition (36) is equivalent to the following

one:

Rkl
q π

qs L p
s = 0. (38)

Since (L i
j ) is invertible, we obtain that (38) is equivalent to the condition

Rkl
q π

qs
= 0

which means that the vertical formal vector field RD(dxk, dx l) annihilates the fibrewise
presymplectic form Ω . Thus we arrive at the following theorem.
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Theorem 1. Let (D•, ĎD•) be a pair of associated invertible nonlinear formal contravariant
connections. Then system (31) with the initial condition F |Z = p∗( f )|Z has a unique solution
F ∈ C∞(T ∗M, Z) for an arbitrary f ∈ C∞(M) if and only if for any α, β ∈ Ω1(M) the
vertical vector field RD(α, β) is in the kernel of the fibrewise presymplectic form Ω ,

ι
(

RD(α, β)
)
Ω = 0.

Another important property of such a pair of contravariant connections is given by the
following lemma.

Lemma 7. Let (D•, ĎD•) be a pair of associated invertible nonlinear formal contravariant
connections. Then the kernel of the connection D• is a subspace of HΩ .

Proof. Write the connections D• and ĎD• locally as in (23) and let (Bi
j ) and (L i

j ) be the inverse

matrices of (Ai
j ) and (K i

j ), respectively. If F ∈ C∞(T ∗M, Z) is a solution of system (31), then
F is also a solution of system (35). It follows from formula (37) that

∂F

∂ξi
= −π i j Ls

j
∂F

∂x s ,

which implies that F ∈ HΩ . �

In general, system (31) can have the same space of solutions for different nonlinear
contravariant connections D•. Given two pairs of associated invertible nonlinear contravariant
connections, (D•

1,
ĎD•

1) and (D•

2,
ĎD•

2), one can show that if for any α, β ∈ Ω1(M)[
Dα

1 , #̂β
]

=
[
Dα

2 , #̂β
]
,

then the kernels of the connections D•

1, D•

2 coincide.

5. The fundamental equation

In this section we will assume that (∇•, Ď∇•) are associated global contravariant connections
with Ď

∇
• torsion-free on a Poisson manifold (M,Π ). Starting with these connections, we are

going to construct a global Poisson morphism θ : (C∞(M), {·, ·}) → (HΩ , {·, ·}Ω ).
Consider local nonlinear contravariant connections

Ddx i
= π is ∂

∂x s + Γ i j
s ξ j

∂

∂ξs
− vi

s
∂

∂ξs
, (39)

ĎDdx i
= π is ∂

∂x s +
ĎΓ i j

s ξ j
∂

∂ξs
− wi

s
∂

∂ξs
, (40)

where Γ i j
k ,

ĎΓ i j
k are the Christoffel symbols of the connections ∇

•, Ď∇•, respectively, and
vi

k = vi
k(x, ξ), w

i
k = wi

k(x, ξ) are formal functions.

It follows from formulas (21) and (22) that connections D• and ĎD• are associated if and only
if

π isv
j
s = π jswi

s .
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Connection ĎD• is torsion-free if and only if

∂wi
k

∂ξ j
−
∂w

j
k

∂ξi
= 0,

or, equivalently, if there exists a formal function uk(x, ξ) such that

wi
k =

∂uk

∂ξi
.

Now assume that D• and ĎD• are associated and ĎD• is torsion-free. We will write

ĎDdx i
= π is ∂

∂x s +
ĎΓ i j

s ξ j
∂

∂ξs
−
∂us

∂ξi

∂

∂ξs
. (41)

The condition that D• and ĎD• are associated takes the form

π isv
j
s = π js ∂us

∂ξi
=
∂
(
π jsus

)
∂ξi

. (42)

It follows from (42) that π jsus is a local Hamiltonian function for the fibrewise presymplectic
structure defined by Ω .

The coefficients R̄i j
k of the curvature R∇̄ of the mapping ∇̄

• are given by the formula

R̄i j
k = π is ∂Γ

j p
k

∂x s ξp − π js ∂Γ
i p
k

∂x s ξp −
∂π i j

∂x s Γ sp
k ξp − Γ iq

k Γ j p
q ξp + Γ jq

k Γ i p
q ξp. (43)

Denote by E the fibrewise Euler vector field on T ∗M expressed locally as

E = ξk
∂

∂ξk

and introduce a skew-symmetric bilinear morphism of C∞(M)-modules

Q̄ : Ω1(M)⊗C∞(M) Ω1(M) → C∞(T ∗M)

as follows:

Q̄(α, β) =
1
2
Ω
(
E, R∇̄(α, β)

)
.

Introduce a function Q̄i j
= Q̄(dx i , dx j ). Then

Q̄i j
=

1
2
ξtπ

tk R̄i j
k . (44)

Using formulas (6), (7) and (44), and the Jacobi identity for the Poisson tensor π i j one can show
that

∂

∂ξp

(
π tk R̄i j

k

)
=

1
2
π isπ jk

(
∂

∂x s

(
ĎΓ tp

k +
ĎΓ pt

k

)
−

∂

∂xk

(
ĎΓ tp

s +
ĎΓ pt

s

))
+Γ i t

k π
klΓ j p

l + Γ i p
k π

klΓ j t
l . (45)
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The right-hand side of (45) is symmetric with respect to the permutation of the indices p and t .
It follows from (44) and (45) that

π tk R̄i j
k =

∂

∂ξt
Q̄i j . (46)

Formula (46) means that for any indices i, j the function Q̄i j is a local Hamiltonian function for
the presymplectic structure defined by Ω . This can be written globally as follows:

ι
(

R∇̄(α, β)
)
Ω = −dξ Q̄(α, β).

The coefficients Ri j
k of the curvature RD of the connection D• are expressed as

Ri j
k = R̄i j

k − π is ∂v
j
k

∂x s + π js ∂v
i
k

∂x s +
∂π i j

∂x s v
s
k − Γ i p

s ξp
∂v

j
k

∂ξs

+Γ j p
s ξp

∂vi
k

∂ξs
+ Γ i p

k v
j
p − Γ j p

k vi
p + vi

s
∂v

j
k

∂ξs
− v

j
s
∂vi

k

∂ξs
. (47)

We want to show that there is a function Qi j such that

π tk Ri j
k =

∂

∂ξt
Qi j . (48)

Taking into account Lemma 3 we get from (47) that

π tk Ri j
k = π tk R̄i j

k − π is
∂
(
π tkv

j
k

)
∂x s + π js ∂

(
π tkvi

k

)
∂x s +

∂π i j

∂x s π
tkvs

k

−Γ i p
s ξp

∂
(
π tkv

j
k

)
∂ξs

+ Γ j p
s ξp

∂
(
π tkvi

k

)
∂ξs

− Γ i t
s π

skv
j
k + Γ j t

s π
skvi

k

+ vi
sπ

tk ∂v
j
k

∂ξs
− v

j
s π

tk ∂v
i
k

∂ξs
.

(49)

Using formulas (26), (42) and (46) we obtain from (49) that

π tk Ri j
k =

∂

∂ξt

(
Q̄i j

− π is ∂
(
π jkuk

)
∂x s + π js ∂

(
π ikuk

)
∂x s +

∂π i j

∂x s π
skuk

−Γ i p
s ξp

∂
(
π jkuk

)
∂ξs

+ Γ j p
s ξp

∂
(
π ikuk

)
∂ξs

+ π stvi
sv

j
t

)
. (50)

Formulas (27) and (50) imply that (48) holds for

Qi j
= Q̄i j

− ∇̄
i
(
π jkuk

)
+ ∇̄

j
(
π ikuk

)
+
∂π i j

∂x s π
skuk + {π ikuk, π

jlul}Ω . (51)
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Let U be a global vertical 1-form on (T ∗M, Z). For a 1-form α ∈ Ω1(M) define an element
U (α) ∈ C∞(T ∗M, Z) as follows:

U (α) = 〈U, α̂〉.

The mapping Ω1(M) 3 α 7→ U (α) from Ω1(M) to C∞(T ∗M, Z) is a global morphism of
C∞(M)-modules. Now assume that U is a global vertical 1-form on (T ∗M, Z) for which there
exist local potentials uk(x, ξ) and vi

k(x, ξ) (on a covering by coordinate charts) satisfying (42)
and such that

U (dx i ) = π ikuk, (52)

uk = −ξk(mod ξ2), and vi
k = δi

k(mod ξ). (53)

We see from (42) and (52) that U (α) ∈ HΩ for any α ∈ Ω1(M).
Introduce local contravariant connections D• and ĎD• by formulas (39) and (41), respectively.

Thus ĎD• is torsion-free. It follows from (42) that D• and ĎD• are associated. Conditions
(53) imply that both D• and ĎD• are invertible. Lemma 7 means that system (31) with F ∈

C∞(T ∗M, Z) has the same solutions as system (31) with F ∈ HΩ . It follows from (27) and (42)
that if F ∈ HΩ , system (31) can be rewritten as

∇̄
αF = {U (α), F}Ω . (54)

Introduce a global skew-symmetric mapping

Q : Ω1(M)⊗C∞(M) Ω1(M) → C∞(T ∗M, Z)

by the formula

Q(α, β) = Q̄(α, β)− ∇
αU (β)+ ∇

βU (α)

+ U ([α, β])+ {U (α),U (β)}Ω . (55)

It is easy to check that Q is a morphism of C∞(M)-modules. Notice that

Q(dx i , dx j ) = Qi j ,

where Qi j is given by formula (51). It follows from formula (48) that

ι
(

RD(α, β)
)
Ω = −dξ Q(α, β). (56)

We obtain from Theorem 1 and (56) that for any f ∈ C∞(M) system (54) has a unique solution
F ∈ HΩ such that F |Z = p∗( f ) if and only if

dξ Q(α, β) = 0. (57)

Taking into account conditions (53) we get from (57) that

Q(α, β) = Π (α, β).

Summing up the results obtained in this section we can state the following theorem.

Theorem 2. If U is a global vertical 1-form on (T ∗M, Z) which has local potentials uk(x, ξ)
and vi

k(x, ξ) such that conditions (42), (52) and (53) hold and which satisfies the equation
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Π (α, β) = Q̄(α, β)− ∇̄
αU (β)+ ∇̄

βU (α)

+ U ([α, β])+ {U (α),U (β)}Ω , (58)

then for any f ∈ C∞(M) system (54) has a unique solution F ∈ HΩ such that F |Z = p∗( f ).

We call Eq. (58) the Fundamental Equation. If U is as in Theorem 2, introduce the mapping

θ : C∞(M) → HΩ

which maps f ∈ C∞(M) to the solution F ∈ HΩ of system (54) with the initial condition
F |Z = p∗( f ). We get from Lemma 6 and Proposition 2 that the mapping

HΩ 3 F 7→ ∇̄
αF − {U (α), F}Ω

is a derivation of the Poisson algebra (HΩ , {·, ·}Ω ), whence we see that the solutions of system
(54) are closed with respect to the Poisson bracket {·, ·}Ω . Using this fact one can readily show
that the mapping θ is a Poisson morphism.

Proposition 4. If U is a global vertical 1-form on (T ∗M, Z) which has local potentials uk(x, ξ)
and vi

k(x, ξ) such that conditions (42), (52) and (53) hold and which satisfies the Fundamental
Equation, the corresponding mapping θ is a Poisson morphism from (C∞(M), {·, ·}) to
(HΩ , {·, ·}Ω ).

The following theorem which states the existence and uniqueness of a normalized solution of
the Fundamental Equation can be proved by induction.

Theorem 3. Given a pair (∇•, Ď∇•) of associated contravariant connections on M such that
Ď
∇

• is torsion-free, there exists a unique global solution U of the Fundamental Equation (58)
which satisfies the normalization condition

〈U, E〉 = 0 (59)

and has local potentials uk(x, ξ) and vi
k(x, ξ) such that conditions (42), (52) and (53) hold.

We will give a recurrence formula for

ui
:= U (dx i ) (60)

which proves the uniqueness part of the theorem. For a function α(x, ξ) ∈ C∞(T ∗M, Z) denote
by α(s) its homogeneous component of degree s with respect to the fibre variables ξ . Assume
that U is a normalized solution of the Fundamental Equation. Locally normalization condition
(59) reads

uiξi = 0, (61)

where ui is given by (60). The Fundamental Equation can be written locally as follows:

π i j
= Q̄i j

− ∇̄
dx i

u j
+ ∇̄

dx j
ui

+
∂π i j

∂xk uk
+ {ui , u j

}Ω . (62)

Taking into account formulas (27), (44) and (53), observe that Q̄i j is quadratic in ξ , the Poisson
bracket {·, ·}Ω reduces the degree of homogeneity by two, (ui )(1) = −π i jξ j , and for F ∈ HΩ

{(ui )(1), F}Ω = {−π i jξ j , F}Ω =
∂F

∂ξi
. (63)
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Extracting from (62) the homogeneous component of degree s − 1, s ≥ 2, we obtain, using (63),
the following formula:

∂(ui )(s)

∂ξ j
−
∂(u j )(s)

∂ξi
= α

i j
s , (64)

where

α
i j
s =

(
Q̄i j

)(s−1)
− ∇̄

dx i
(

u j
)(s−1)

+ ∇̄
dx j

(
ui
)(s−1)

+
∂π i j

∂xk

(
uk
)(s−1)

+

s−2∑
t=1

{(ui )(t+1), (u j )(s−t)
}Ω . (65)

Taking into account normalization condition (61), we find a unique solution of (64) which
provides a recurrence formula for ui :

(ui )(s) =
1

s + 1
α

i j
s ξ j . (66)

Remark. The existence part of the proof of Theorem 3 involves a simultaneous recursive
calculation, along with ui , of the local potentials uk and vi

k satisfying (42) and the condition

ui
= π ikuk .

This calculation is based upon the following observations. The function αi j
s can be represented

in the form

α
i j
s = π ik A j

s;k, (67)

where

A j
s;k = ( Ā j

k )
(s−1)

−
∂(u j )(s−1)

∂xk +
ĎΓml

k ξl(v
j
m)
(s−2)

+ π jl ∂u(s−1)
k

∂x l

+Γ jm
l ξm

∂u(s−1)
k

∂x l +
∂π jl

∂xk u(s−1)
l −

s−2∑
t=1

∂(ul)(t+1)

∂ξk
(v

j
l )
(s−t+1),

and

Ā j
k =

1
2
ξpξqπ

jm

(
∂ ĎΓ pq

m

∂xk −
∂ ĎΓ pq

k

∂xm

)
− ξpξq

ĎΓ lp
k Γ jq

l .

This provides a recurrence formula for uk :

u(s)k =
1

s + 1
A j

s;kξ j .

On the one hand, to obtain a recurrence formula for vi
k we have to satisfy the condition

∂(ui )(s)

∂ξ j
= π jk(vi

k)
(s−1).
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On the other hand, it follows from (66) that

∂(ui )(s)

∂ξ j
=

1
s + 1

(
α

i j
s +

∂αil
s

∂ξ j
ξl

)
.

Formulas (67) and αi j
s = −α

j i
s imply that

α
i j
s = π jk(−Ai

s;k).

One can check that

∂αil
s

∂ξ j
= π jk Bil

s;k,

where

Bil
s;k =

(
R̄il

k

)(s−2)
− π im ∂(v

l
k)
(s−2)

∂xm + π lm ∂(v
i
k)
(s−2)

∂xm

−Γ im
n ξm

∂(vl
k)
(s−2)

∂ξn
+ Γ lm

n ξm
∂(vi

k)
(s−2)

∂ξn

+Γ im
k (vl

m)
(s−2)

− Γ lm
k (vi

m)
(s−2)

+
∂π il

∂xm (v
m
k )
(s−2)

+

s−2∑
t=1

(
−
∂(vi

k)
(t)

∂ξm
(vl

m)
(s−t−1)

+ (vi
m)
(t) ∂(v

l
k)
(s−t−1)

∂ξm

)
.

Thus we can give a recurrence formula for vi
k :

(vi
k)
(s−1)

=
1

s + 1

(
−Ai

s;k + Bil
s;kξl

)
.

Next we want to give a recurrence formula for the unique global solution F ∈ HΩ of system
(54) with the initial condition F (0) = f, f ∈ C∞(M). Extracting from the equation

∇̄
dx i

F = {ui , F}Ω

its homogeneous component of degree s−1, s ≥ 1, we obtain, using (63), the following formula:

∂F (s)

∂ξi
= β i

s , (68)

where

β i
s = ∇̄

dx i
F (s−1)

−

s−1∑
t=1

{(ui )(t+1), F (s−t)
}Ω . (69)

Thus we get a recurrence formula for F :

F (s) =
1
s
β i

sξi . (70)
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6. Fedosov’s formal symplectic groupoids

Assume that on a Poisson manifold M with the Poisson tensor π i j there is a pair of associated
global contravariant connections (∇•, Ď∇•) with Ď

∇
• torsion-free, and on (T ∗M, Z) there is a

global vertical 1-form U with local potentials uk and vi
k as in Theorem 2. These local potentials

define associated local nonlinear invertible contravariant connections D• and ĎD• given by
formulas (39) and (41). Thus ĎD• is torsion-free. Assume also that there exist global tensors
P i

j and Qi
j on M such that the contravariant connection ∇

• respects them,

P i
j + Qi

j = δi
j , and π ik P j

k = Qi
kπ

k j . (71)

We give two basic examples of the tensors P i
j and Qi

j . The first one is P i
j = Qi

j = (1/2)δi
j .

The second example is related to the case of a Kähler–Poisson manifold endowed with the
Kähler–Poisson contravariant connection (see Section 2). In this case one can set

Pk
m = δk

m and Q l̄
n̄ = δl̄

n̄, (72)

where k,m are holomorphic and l̄, n̄ antiholomorphic indices. The tensor coefficients with
mixed types of indices are set to zero. Otherwise speaking, P projects a tangent vector onto
its component of type (1, 0) and Q onto that of type (0, 1).

Define a local change of variables on (T ∗M, Z), (x, ζ ) 7→ (x, ξ) such that

ξp = u p

(
x,−ζ j P j

·

)
− u p

(
x, ζ j Q j

·

)
. (73)

We see from (53) and (71) that ζp = ξp(mod ξ2), thus the change of variables is invertible.
Introduce local mappings f 7→ S f, f 7→ T f from functions on M to functions on (T ∗M, Z) as
follows:

(S f )(x, ξ) = θ( f )
(

x,−ζ j P j
·

)
and (T f )(x, ξ) = θ( f )

(
x, ζ j Q j

·

)
, (74)

where θ( f ) is the solution of system (31) with the initial condition θ( f ) |Z = p∗( f ). Denote by
{·, ·}T ∗ M the standard Poisson bracket on T ∗M ,

{F,G}T ∗ M =
∂F

∂ξk

∂G

∂xk −
∂G

∂ξk

∂F

∂xk .

It turns out that S is a global Poisson morphism and T is a global anti-Poisson morphism from
(C∞(M), {·, ·}) to (C∞(T ∗M, Z), {·, ·}T ∗ M ), and for f, g ∈ C∞(M) the elements S f and T g
Poisson commute with respect to the Poisson bracket {·, ·}T ∗ M . Thus, according to [10], there
exists a formal symplectic groupoid on (T ∗M, Z)whose source mapping is S and target mapping
is T . We call it Fedosov’s formal symplectic groupoid.

One can prove the following lemma by straightforward calculations.

Lemma 8. The space HΩ is closed with respect to the Poisson bracket {·, ·}T ∗ M .

Thus HΩ has two different Poisson algebra structures corresponding to {·, ·}Ω and {·, ·}T ∗ M .
We will prove that S and T are global mappings and that the images of S and T belong to HΩ .
The latter is a specific property of Fedosov’s formal symplectic groupoids. First we need to prove
a technical statement.
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Lemma 9. There exists an invertible formal matrix Ai
k(x, ζ ) such that

π ik ∂ξk

∂ζl
= Ai

kπ
kl .

Proof. Using formulas (42), (71) and (73), we proceed as follows:

π ik ∂ξk

∂ζl
= −π ik P l

t
∂uk

∂ξt
(x,−ζ j P j

· )− π ik Ql
t
∂uk

∂ξt
(x, ζ j Q j

· )

= −π ts P l
t v

i
s(x,−ζ j P j

· )− π ts Ql
tv

i
s(x, ζ j Q j

· )

=

(
Qs

kv
i
s(x,−ζ j P j

· )+ Ps
k v

i
s(x, ζ j Q j

· )
)
πkl .

We see from (53) and (71) that the matrix

Ai
k = Qs

kv
i
s(x,−ζ j P j

· )+ Ps
k v

i
s(x, ζ j Q j

· )

is invertible. �

Denote by Bi
k the inverse of the matrix Ai

k . Lemma 9 implies the following formula:

Bi
jπ

jk
= π il ∂ζl

∂ξk
. (75)

Lemma 10. For a given local function f on M there exists a formal function al(x, ξ) such that

∂(S f )

∂ξk
= πklal .

Proof. It follows from Proposition 4 that

∂θ( f )

∂ξs
= π st bt (76)

for some formal function bt (x, ξ). Differentiating both sides of the first formula in (74) with
respect to ζl we get, using (76), the following equality:

∂(S f )

∂ξk

∂ξk

∂ζl
= −P l

sπ
st bt

(
x,−ζ j P j

·

)
. (77)

Taking into account (71), (75) and (76) we get from (77) that

∂(S f )

∂ξk
= −πkl Bs

l Qt
sbt

(
x,−ζ j P j

·

)
whence the lemma follows. �

Lemma 11. Assume that F(x, ξ) is a formal function such that

∂F

∂ξk
= πklal

and φp(x, ξ), ψp(x, ξ) are formal functions such that π i pφp = π i pψp. Then F(x, φ) =

F(x, ψ).
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Proof. Consider the function

α(t) = F(x, tφ + (1 − t)ψ),

so that α(0) = F(x, ψ) and α(1) = F(x, φ). We have

dα
dt

=
∂F

∂ξk
(φk − ψk) = πklal(φk − ψk) = 0,

whence the lemma follows. �

The local potential u p of the global vertical 1-form U is not uniquely defined. Assume that
ũ p is another local potential of U . Then π i pu p = π i pũ p. It follows from Lemmas 10 and 11 that
formulas (73) and (74) determine the same mapping S for the potentials u p and ũ p. Thus S is
globally defined. Lemma 10 implies that the image of S is in the space HΩ . The proof that T is
globally defined and has the image in HΩ is similar.

The following theorem can be proved by long straightforward calculations.

Theorem 4. The mappings

S, T : (C∞(M), {·, ·}) → (HΩ , {·, ·}T ∗ M )

are a Poisson and an anti-Poisson morphism, respectively. Moreover, the images of the mappings
S and T Poisson commute. Thus there is a unique formal symplectic groupoid on (T ∗M, Z)
whose source and target maps are S and T , respectively.

7. The symplectic case

In [9] we gave a self-contained construction of the formal symplectic groupoid of Fedosov’s
deformation quantization. In this section we will show that in the symplectic case Fedosov’s
formal symplectic groupoid constructed in the previous sections is the same groupoid as in [9].
Recall the construction from [9].

Let M be a symplectic manifold with symplectic form ω =
1
2ωi j dx i

∧ dx j . The inverse of
ωi j is a Poisson tensor π i j . We assume that there is a tensor Λi j on M such that

1
2

(
Λi j

− Λ j i
)

= π i j .

Let ∇• be a covariant connection which respects Λi j (and therefore the symplectic and Poisson
tensors as well). The connection ∇• may have torsion. From these data one can construct
Fedosov’s deformation quantization on M and the corresponding formal symplectic groupoid
(see [9,10]). The groupoid construction starts with the (ν-free) Fedosov’s lift

τ∨
: C∞(M) → C∞(T M, Z)

first extracted from Fedosov’s quantization in [4].
Introduce Fedosov’s operators on C∞(T M)⊗Ω(M), where Ω(M) is the space of differential

forms on M :

δ(a) = dx i
∧
∂a

∂yi , δ′(a) = yi ι

(
∂

∂x i

)
a.
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Here {x i
} are local coordinates on M and {yi

} are the corresponding fibre coordinates on T M .
Denote by {·, ·}T M the fibrewise Poisson bracket on T M ,

{F,G}T M = π jk ∂F

∂y j

∂G

∂yk .

Connection ∇• on M induces a covariant connection ∇̄• on (T M, Z) expressed locally as
follows:

∇̄dx i =
∂

∂x i − Γ k
i j y j ∂

∂yk .

There exists a flat nonlinear covariant connection D• on (T M, Z),

D• = ∇̄• + {ρ, ·}T M ,

where ρ = ρp(x, y)dx p is a unique 1-form satisfying the equation

−ω = R + ∇̄•ρ +
1
2
{ρ, ρ}T M

and such that δ′ρ = 0 and ρp = ykωkp(mod y2). Here

R =
1
4
ωsαRαtkl ys yt dxk

∧ dx l ,

where

Rs
tkl =

∂Γ s
lt

∂xk −
∂Γ s

kt

∂x l + Γ s
kαΓ

α
lt − Γ s

lαΓ
α
kt

is the curvature of ∇•. In the notations of [9],

ρp = ykωkp + r∨
p .

Fedosov’s lift F = τ∨( f ) of a function f ∈ C∞(M) is a unique element of C∞(T M, Z)
such that D•F = 0 and F |y=0 = f . The mapping τ∨ is a Poisson morphism from C∞(M)
to (C∞(T M, Z), {·, ·}T M ). Consider the global diffeomorphism of (T ∗M, Z), (x, ζ ) 7→ (x, ξ),
such that

ξp = ρp

(
x,

1
2
Λ j ·ζ j

)
− ρp

(
x,

1
2
Λ· jζ j

)
.

Then, according to [9], the source and the target mappings of the formal symplectic groupoid of
Fedosov’s deformation quantization are given by the formulas

(S f )(x, ξ) = τ∨( f )

(
x,

1
2
Λ· jζ j

)
and (T f )(x, ξ) = τ∨( f )

(
x,

1
2
Λ j ·ζ j

)
,

where f ∈ C∞(M). To obtain the construction of Fedosov’s formal symplectic groupoid one
has to pull back Fedosov’s lift via the mapping #. For a function F = F(x, y) ∈ C∞(T M, Z)
denote its pullback via # by F# so that

F#(x, ξ) = F(x, ξ jπ
j ·).



2008 A.V. Karabegov / Journal of Geometry and Physics 56 (2006) 1985–2009

We get the following identifications. For f ∈ C∞(M)

θ( f ) =
(
τ∨( f )

)#
, u p = −ρ#

p, and v
q
p = −

(
πqs ∂ρs

∂y p

)#

.

Finally,

P j
k =

1
2
ωkiΛi j and Q j

k =
1
2
Λ j iωik .

Notice that in the symplectic case u pdx p is a global object on M , while in the general Poisson
case only π pquq

∂
∂x p is global.

8. The Kähler–Poisson case

Assume that M is a Kähler–Poisson manifold with the Kähler–Poisson tensor gl̄k , where
k, l̄ are holomorphic and antiholomorphic indices, respectively (we use the agreement that
π l̄k

= gl̄k, πkl̄
= −gl̄k, πkm

= 0 and π l̄ n̄
= 0). Denote by ∇

• the Kähler–Poisson contravariant
connection whose Christoffel symbols are given by (10). The Kähler–Poisson contravariant
connection is Poisson and torsion-free. Introduce tensors P and Q on M by formula (72). With
these data, one can construct a Fedosov’s formal symplectic groupoid on (T ∗M, Z). It was
proved in [10] that for a Kähler–Poisson manifold M there exists a unique formal symplectic
groupoid with separation of variables on (T ∗M, Z), i.e., such that for a local holomorphic
function a and a local antiholomorphic function b on M

Sa = a and T b = b. (78)

We want to prove the following proposition.

Proposition 5. The Fedosov’s formal symplectic groupoid on (T ∗M, Z) constructed from the
data (∇•, P, Q) is the formal symplectic groupoid with separation of variables.

For local holomorphic coordinates zk, z̄l on M denote by ηk, η̄l the corresponding fibre
coordinates on T ∗M . Denote by I and Ī the ideals in C∞(T ∗M, Z) locally generated by the
coordinates η and η̄, respectively. Formulas

∇̄
dzk

= −gl̄k ∂

∂ z̄l +
∂gn̄k

∂ z̄l η̄n
∂

∂η̄l
, ∇̄

dz̄l
= gl̄k ∂

∂zk −
∂gl̄m

∂zk ηm
∂

∂ηk

imply that the connection ∇̄
• respects the ideals I and Ī. Let us show that the spaces HΩ ∩ I

and HΩ ∩ Ī are closed with respect to the Poisson bracket {·, ·}Ω . Assume that F,G ∈ HΩ ∩ I.
Then there exist local potentials ak, al̄ and bk, bl̄ of F and G, respectively, such that

∂F

∂η̄l
= gl̄kak,

∂F

∂ηk
= −gl̄kal̄ ,

∂G

∂η̄l
= gl̄kbk,

∂G

∂ηk
= −gl̄kbl̄ .

Now,

{F,G}Ω = gl̄kal̄bk − gl̄kakbl̄ =
∂G

∂η̄l
al̄ −

∂F

∂η̄l
bl̄ ∈ I.

The proof that HΩ ∩ Ī is closed with respect to the Poisson bracket {·, ·}Ω is similar. Using
these statements and recurrence formulas (66) and (70) one can prove by induction the following
lemma.
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Lemma 12. (a) Let U be the normalized solution of the Fundamental Equation corresponding to
the Kähler–Poisson connection ∇̄

• on M. Then its local potential uk, u l̄ satisfies the condition

uk = −ηk, u l̄ = −η̄l(mod I ∩ Ī).
(b) Let a and b be a local holomorphic and a local antiholomorphic function on M, respectively.

Then

θ(a)− a ∈ Ī and θ(b)− b ∈ I.
Lemma 12 implies that for the tensors P and Q given by formula (72) the change of variables

(73) is trivial. Namely, for uk = uk(z, z̄, η, η̄) and u l̄ = u l̄(z, z̄, η, η̄)

uk(z, z̄,−η, 0)− uk(z, z̄, 0, η̄) = ηk and (79)

u l̄(z, z̄,−η, 0)− u l̄(z, z̄, 0, η̄) = η̄l .

Now conditions (78) follow from formulas (74) and (79), and Lemma 12, which proves
Proposition 5.
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