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a b s t r a c t

Collapsing dynamics of awide class of self-interacting, self-gravitating homogeneous scalar
field models is analyzed. The assumptions made on the potential satisfy some general
conditions allowing to show that the generic evolution is divergent in a finite time.
Combining results shownherewith the ones from [R. Giambó, F. Giannoni, G.Magli, J.Math.
Phys. 49 (2008) 042504], dealing with sub-exponential growing potentials, allows us to
obtain the same results of singularity formation for more general potentials. Moreover it
turns out that these models can be completed to find radiating collapsing star models of
the Vaidya type, where blackholes are generically formed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and formulation of the problem

The study of singularities has always played a central role in General Relativity, since theorems by Hawking and Penrose
predicted formation of singularities under some particular assumptions as formation of trapped surfaces and energy
conditions [1]. Nonetheless, in general, when one imposes regular initial condition on a spacelike hypersurface and lets
it evolve under laws of General Relativity is not always able to predict whether the evolution leads to a singularity, or not,
both in the future and/or in the past. Indeed, on the one side, cosmological models have always been investigated to study
the evolution of early universe and in this context past singularities from these examples are interpreted as models of the
big-bang. On the other side, there aremany interestingmodels of gravitational collapse in the literature that have been used
by Relativists to test singularity theorems, in particular connection with Penrose Cosmic Censorship conjecture [2], which
roughly asserts that a singularity arising from dynamical collapse is always hidden inside a trapped region and produces
a black hole. A number of counterexamples to the conjecture have been found out since its formulation, so that now the
debate mostly concerns on other features of these counterexamples yielding the so-called naked singularities, such as their
stability with respect to perturbation of the spacetime (see for instance [3–5]). For instance, it is well known that naked
singularities are stable with respect to regular initial data leading to complete gravitational collapse of spherical dust [6,7].
A generalization of this result also exists, that deals with a wider class of elastic-solid matter solutions obeying a particular
equation of state [8], but the behavior in all these cases is not known if, for example, one removes the spherical symmetry
assumption.
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In this paper we deal with scalar field spacetimes which are used in the literature both as cosmological models [9–13],
and as model of gravitational collapse [14–19], and are therefore of great importance for both relativistic cosmology and
astrophysics. In particular, we will consider flat Robertson–Walker metric,

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (1)

where gravity minimally couples with a scalar field φ(t) under the action of a potential V (φ). The evolution of the unknown
functions a(t), φ(t) are driven by Einstein Field Equations that in this case take the following form (hereafter geometrized
units will be used so that 8πG = 1):

3ȧ2

a2
= (φ̇2 + 2V (φ)), (2)

ȧ2 + 2aä
a2

= −(φ̇2 − 2V (φ)), (3)

and so theweak energy condition is satisfied throughout the evolution.Moreover, these equations imply the Bianchi identity

Tµ0;µ = −2φ̇
(
φ̈ + V ′(φ)+ 3

ȧ
a
φ̇

)
= 0. (4)

The system expands or collapses if a(t) increases or decreases, respectively, and it is precisely the form of the potential
V (φ) that strongly influences the evolution. In this paper, we will find results about singularity formation for some classes
of potentials, without solving explicitly the equations, but rather through a qualitative study of Eq. (4). In particular, we will
be concerned with solutions that do not exhibit a trivial evolution in any subinterval [t1, t2], which means that there is no
such interval where φ(t) is constant. In this case, it can be proven [20, Proposition 2.3] that if (a, φ) is a C2 solution of (2)
and (3) on some interval [a, b]with φ nonconstant on such interval then

φ̈ + V ′(φ)+ 3
ȧ
a
φ̇ = 0 (5)

holds on [a, b].

Remark 1.1. It is easy to see that, if ȧ 6= 0, then (2) and (5) imply (3). Therefore, in view of (2), and denoted by ε the energy
density given by

ε = φ̇2 + 2V (φ), (6)

we would like to exclude that ε vanishes for some t > 0. Since we will study situations starting from an initial collapsing
state, i.e.

ȧ(0) < 0, (7)

it can be easily proved that (7) implies, for C2 solutions of (2) and (3) with φ nonconstant on any subinterval, that

ε(t) > 0, ȧ(t) < 0, ∀t > 0. (8)

Indeed, let t1 > 0 such that ε(t1) = 0, ε(t) > 0∀t ∈]0, t1[. Using (4) we have

ε̇ = −6
ȧ
a
φ̇2, (9)

so (7) ensures that ε starts increasing and then ∃t2 ∈]0, t1[ local maximum for ε(t). Therefore (2) would give ε(t2) = 0, a
contradiction. Then this kind of solutions will never re-expand.

By the aforesaid we will consider the system (2) and (5) and taking the square root in the second equation we arrive at
the form

φ̈ + V ′(φ) =
√
3
√
ε φ̇, (10)

ȧ
a
= −

√
ε

3
, (11)

where the first equation is decoupled from the scale factor. Using (9) and (11) we also have the relation

ε̇ = 2
√
3
√
εφ̇2. (12)

We will make the assumption (7) on the initial data, together of course with ε(0) ≥ 0. Our task will be to determine
whether this collapse is defined for all times t > 0, or a singularity develops at a finite amount of time t = ts. We will found
out that, for the situation considered, the latter is always the case.
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The paper is organized as follows. In Section 2 the general sufficient condition on V (φ) for singularity formation is stated,
and it will be also used in the examples contained in the same section. In Section 3 a collapsing model is built, performing
a junction of the scalar field interior spacetime with a suitable choice for the exterior metric. Final section is devoted to the
discussion, and in particular it is observed how to deal with more general potentials starting from the classes considered in
Section 2.

2. Singularity formation

In this section we are going to study forward-in-time evolution of solutions of (10) and (11) such that χ(0) < 0. Let us
make the positions φ0 = φ(0), φ̇0 = φ̇(0). Eq. (12) implies that the (monotonically increasing) energy density function is
such that ε(t) ≥ ε0 := φ̇20 + 2V (φ0).

Remark 2.1. In the above sectionwe needed to impose the condition ε0 ≥ 0 on the derived system (10) and (11). Therefore,
if V (φ) is not strictly positive, one can choose ε0 = 0 in principle. In this case, Eq. (10) is nonregular at the initial data, and
this may give rise to loss of uniqueness of solutions. However, a local result of existence and uniqueness of solutions of (10)
such that ε0 = 0 and ε(t) > 0 as t > 0 can be proven [21]. Because of this fact we will henceforth suppose ε0 > 0.

Here we are going to state a sufficient condition for singularity formation, that will be applied in the examples that we
are going to review next.

Proposition 2.2. Let φ(t) be a solution of (10) such that ε0 > 0, and let I be its maximal interval of definition. Call ts = sup I ∈
]0,+∞], and suppose that

lim sup
t→t−s

2V (φ(t))
φ̇(t)2

< +∞. (13)

Then, the solution cannot be prolonged indefinitely on the right, i.e. ts ∈ R, and

lim
t→ts

ε(t) = +∞. (14)

Moreover, suppose that

lim inf
t→t−s

2V (φ(t))
φ̇(t)2

> −1, (15)

φ̇(t) 6= 0 eventually true, (16)

lim
t→t−s
|φ(t)| = +∞. (17)

Then, the function a(t) solution of (11) is such that

lim
t→t−s

a(t) = 0. (18)

Proof. To prove (14), let us call

ρ(t) =
2V (φ(t))
φ̇(t)2

. (19)

Then (12) implies that

ε̇ = 2
√
3ε3/2

1
1+ ρ

, (20)

and if (13) holds then there exists a positive constant ` such that ε̇ > `ε3/2, that means that ε(t) is not defined for all t > 0,
and moreover (14) must hold.
To prove (18), observe that (15) implies ε(t) = φ̇(t)2(1 + ρ) ≥ k2φ̇(t)2, for some positive constant k, from which√
ε(t) ≥ k|φ̇(t)|. Integrating this relation and using (16) and (17) we obtain

lim
t→t−s

∫ t

0

√
ε(τ )dτ = +∞. (21)

Therefore (11) implies

ln
a(t)
a(0)
=

∫ t

0

ȧ(τ )
a(τ )

dτ = −
1
√
3

∫ t

0

√
ε(τ ) dτ ,

from which (18) follows. �
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Condition (13) basically states that the solution asymptotically behaves as in the free massless case, i.e. when V ≡ 0. In
the following, we are going to see some examples when conditions to apply Proposition 2.2 will be proved to hold. Notice
that one can prove (13) without knowing that ts < +∞, which comes out as a consequence. Moreover, in some of the
examples (some of the) conditions (15) and (17) will be necessary to prove (13) later.

2.1. Increasing and positive potential

Assumption 2.3. We consider a potential V (φ) ∈ C1(] −∞, α],R) such that

V (φ) ≥ 0, V ′(φ) ≥ 0, ∀φ ≤ α (22)

where we take the initial data for the scalar field as follows:

φ0 ≤ α, φ̇0 = −v0 < 0. (23)

We are going to show that this situation leads to singularity formation in a finite amount of comoving time.

Lemma 2.4. Let I be the (possibly unbounded) maximal interval of definition of (10) with initial data (23). Then, ∀t ∈ I,
φ(t) ≤ φ0, φ̇(t) ≤ −v0 < 0, φ̈(t) < 0.

Proof. Since φ̇0 and V ′(φ0) > 0, from (10), φ̈(0) < 0 and then φ̇ is decreasing in a right neighborhood of t = 0, yielding a
negative φ̇. Using the same argument it is easy to show that the same happens along the whole solution until its maximal
extension on the right.
So φ̈(t) < 0 ∀t ∈ I, that is, φ̇(t) decreasing ∀t ∈ I; but then φ̇(t) ≤ −v0 < 0 ∀t ∈ I and so φ(t) decreasing ∀t ∈ I. So

we can conclude that φ(t) ≤ φ0, ∀t ∈ I. �

Before stating next result, we need to recall the following definition.

Definition 2.5. Given the ordinary differential equation (ODE) y′(t) = F(t, y(t)), we say that v(t) is a supersolution of the
ODE if v̇(t) ≥ F(t, v(t)).

A standard comparison result in ODE theory ensures that if v(t) is a supersolution of the ODE y′(t) = F(t, y(t)) for t > 0,
and y(t) is a solution such that v(0) ≥ y(0) then v(t) ≥ y(t) for t ≥ 0.
The following crucial lemma shows that φ satisfies the sufficient conditions for singularity formation stated in

Proposition 2.2.

Lemma 2.6. There exists ts ∈ R such that

lim
t→ts

φ̇(t) = −∞.

In particular, (13), (15) and (16) hold.

Proof. Let v(t) := −φ̇(t). Then, by Lemma 2.4, v(t) > 0, v̇(t) > 0, and using (6), (10) and (22), it is

v̇(t) = −φ̈(t) = V ′(φ(t))−
√
3ε(t)φ̇(t) = V ′(φ(t))+

√
3
√
v2(t)+ 2V (φ(t))v(t) ≥

√
3v2(t).

So v(t) is a supersolution of the ODE ẏ(t) =
√
3y2(t) and then considering the Cauchy problem{

ẏ(t) =
√
3y2(t)

y(0) = v0 = −φ̇0

it must be

v(t) ≥
1

1
v0
−
√
3t
⇒ −φ̇(t) ≥

1

−
1
φ̇0
−
√
3t
⇒ φ̇(t) ≤ φ̇0

1
√
3φ̇0t + 1

= φ̇0
1

1−
√
3v0t

.

The above fact shows that ts = sup I ≤ 1
√
3v0
. Moreover, φ̇ must diverge as t → t−s , otherwise it could be prolonged on a

right neighborhood of ts, against the assumption of maximality. In particular, since V (φ(t))must be bounded, it follows that
limt→t−s ρ(t) = 0. �

From the above lemma, and first part of Proposition 2.2, it follows that a singularity forms in a finite amount of comoving
time.

Lemma 2.7. The solution φ(t) satisfies (17).
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Proof. Let us suppose by contradiction:

lim
t→t−s

φ(t) = φ̄ ∈ R.

Then φ(t) takes values in a compact K , so V (φ) also takes values in a compact K ′, that is, V (φ(t)) is bounded in a left
neighborhood of ts; from (6) there must exists a positive constantM such that:√

ε(t) ≤ |φ̇(t)| +M = −φ̇(t)+M,

from which, integrating, we have∫ t

0

√
ε(τ )dτ ≤

∫ t

0
−φ̇(τ )dτ +Mt = −φ(t)+ φ(0)+Mt ≤ −φ(t)+ φ0 +Mts.

If we show that the integral on the left-hand side diverges as t → t−s we have a contradiction.
Equation (10) implies:

√
3
∫ t

0

√
ε(τ )dτ =

∫ t

0

φ̈(τ )

φ̇(τ )
dτ +

∫ t

0

V ′(φ(τ))
φ̇(τ )

dτ = ln
φ̇(t)
φ̇0
+

∫ t

0

V ′

φ̇
dτ .

By Lemma 2.7, the first term on the right-hand side above diverges to+∞. Moreover, since we are supposing that φ(t) has
a finite limit for t → t−s , also V

′(φ(t)) is bounded in a right neighborhood of ts; since φ̇(t) diverges, it must be

V ′

φ̇
→ 0 if t → t−s ⇒

∫ t

0

V ′

φ̇
dτ < +∞,

so:

lim
t→t−s

√
3
∫ t

0

√
εdτ = +∞⇒ lim

t→t−s

∫ t

0

√
εdτ = +∞.

But this is a contradiction, so:

φ̄ 6∈ R ⇒ lim
t→t−s

φ(t) = −∞. �

From the results of Lemma above, we can apply the second part of Proposition 2.2 to find that a(t) converges to zero as
t → t−s .

2.2. Bounded and positive potential

Now let us focus on the case given by the following assumption.

Assumption 2.8. We consider a nonzero potential V (φ) ∈ C1(R,R) such that

0 ≤ V (φ) ≤ sup
R
V (φ) =: V ∗ (24)

and we take initial data φ0, φ̇0 for the scalar field such that

ε0 ≥ 2V ∗. (25)

Under the above hypotheses, we can again show that φ̇(t) diverges in a finite amount of comoving time.
Let us define the function J(t) as

J(t) =
∫ t

0
φ̇2(τ )dτ . (26)

Then, from (6) and (11), J(t) solves the following Cauchy problem:{
J̇(t) = [

√
3J(t)+

√
ε0]
2
− 2V (φ(t))

J(0) = 0.
(27)

We will now show a similar result to Lemma 2.6 of previous case.
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Fig. 1. Cyclic potential corresponding to parameters V0 = 10−3 ,m1 = 0.2,m2 = 20/21.

Lemma 2.9. There exists ts > 0 such that

lim
t→t−s

J(t) = +∞. (28)

In particular, limt→t−s |φ̇(t)| = +∞ and so (13), (15) and (16) hold.

Proof. Using (24) in (27), the nonnegative function J(t) is a supersolution of the Cauchy problem:{
ẏ(t) = [

√
3y(t)+

√
ε0]
2
− 2V ∗

y(0) = 0
(29)

Denoting Q :=
√
ε0−
√
2V∗

√
ε0+
√
2V∗
, then

J(t) ≥
Q (
√
ε0 +
√
2V ∗)e2t

√
6V∗
− (
√
ε0 −
√
2V ∗)

√
3(1− Qe2t

√
6V∗)

. (30)

Moreover, (24) and (25) hold, then 0 < Q < 1, so the right-hand side function in (30) diverges for t∗ = − 1
2
√
6V∗
logQ > 0,

that is, there exists ts ∈]0, t∗[ such that J(t) satisfies (28). �

Also in this case we can state that a singularity forms in a finite amount of comoving time. Now arguments from the
above Section, in particular Lemma 2.7, can be almost repeated, only paying attention to the sign of φ̇(t), to show also (17),
and so, again, a(t)→ 0 as t → t−s .

2.3. Cyclic potential

Cyclic potentials are of relevant physical interest in cosmology; they are named after the possibility of a cyclic universe
proposed in [22] (see also the references cited therein), where the universe undergoes a periodic sequence of expansion
and contraction. Loop quantum gravity modifications in this framework have been considered in [23], where the following
potential is considered: V (φ) = V0(1 − e−φ/m1)ee

−φ/m2 , with V0, m1,m2 positive constants (Fig. 1). In this section we will
consider cyclic potentials as an extension of the case analyzed in [21]. In that work the potential V satisfies the following
conditions:

1. V (φ) is a C2 function bounded from below;
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2. The critical points of V are isolated. They are either minimum points or nondegenerate maximum points;
3. ∃V ∗ positive constant such that:
• the set B := {φ ∈ R : V (φ) ≤ V ∗} is bounded;
• φ ≥ sup B⇒ V ′(φ) > 0, φ ≤ inf B⇒ V ′(φ) < 0;

4. The function u(φ) := V ′(φ)
2
√
3V (φ)

satisfies the following conditions:
• lim supφ→±∞ |u(φ)| < 1;
• ∃ limφ→±∞ u′(φ)(= 0).

Under the above hypotheses, in [21] it is shown that the set of initial data of (10) and (11), except for a null set, is such that
a singularity forms in a finite amount of comoving time.
Let us now consider the following extension of the case just described. The first two conditions on the potential V are

the same, while the other two conditions are replaced with the following ones:

3′. ∃V ∗ ∈ R (possibly negative) constant such that:
• the set B := {φ ∈ R : V (φ) ≤ V ∗} is bounded;
• φ ≥ sup B⇒ V ′(φ) > 0, φ ≤ inf B⇒ V ′(φ) < 0;

4′. If conditions on u(φ) are not satisfied if φ→−∞, the potential V must satisfy the following conditions:
• limφ→−∞ V (φ) = V∞ ≤ 0;
• ∃ limφ→−∞ V ′(φ) (= 0).

Remark 2.10. Same situation in 4′ can happen if φ→+∞; for simplicity we will not consider this further extension.

Lemma 2.11. The solution φ(t) satisfies (16) and (17).

Proof. The first two conditions on potential are enough, and the same arguments of [21] can be used, to prove that φ(t)
is unbounded, that is, lim supt→t−s |φ(t)| = +∞. We will actually show that φ(t) admits limit if t → t−s . Indeed, let us
suppose by contradiction that φ(t) is not monotonic in its interval of definition, that is, φ(t) has an oscillatory character.
That implies that ∃tk sequence of time instants such that φ̇(tk) = 0. So we have that V (φ(tk)) > 0, indeed:

0 < ε0 < ε(tk) = φ̇2(tk)+ 2V (φ(tk)) = 2V (φ(tk)).

Moreover, we can consider V ∗ a negative constant (otherwise we can refer to case in [21]), and so it is:

2V (φ(tk)) > 0 > 2V ∗ ⇒ V (φ(tk)) > V ∗ ⇒ φ(tk) 6∈ B.

Then, recalling that V (φ) is eventually negative as φ→+∞, we can conclude that φ(tk) ≥ sup B, fromwhich V ′(φ(tk)) > 0
follows. Using (10),we also have: φ̈(tk) = −V ′(φ(tk))+

√
3
√
ε(tk)φ̇(tk) = −V ′(φ(tk)) < 0. Thismeans that all time instants

tk are maximum points of φ(t), but this is a contradiction.
Then φ̇(t) is eventually nonzero and this implies that there exists limt→t−s |φ(t)| and it is+∞.

Lemma 2.12. The solution φ(t) satisfies (13) and (15). In particular, a singularity forms in a finite amount of comoving time ts,
and a(t)→ 0 as t → t .s .

Proof. The case in which limφ→ts φ(t) = +∞ is analyzed in [21], then here we consider the following situation:

φ̇(t) < 0 and lim
t→t−s

φ(t) = −∞.

We have two different cases according to limit in 4′.

• If V∞= 0, recalling 0 < ε0 < ε(t) = φ̇2(t) + 2V (φ(t)), then φ̇(t)2 is strictly bounded away from zero, and so
limt→t−s ρ(t) = 0.
• If V∞ < 0, we can prove the same result. First of all let us remark that φ̈(t) is eventually negative; indeed, since ε(t) is
increasing and φ̇ is negative, we have:

φ̇2 = ε − 2V > ε0 − 2V ⇒ |φ̇| >
√
ε0 − 2V ⇒ −φ̇ >

√
ε0 − 2V ⇒ φ̇ < −

√
ε0 − 2V ;

this implies:

φ̈ = −V ′(φ)+
√
3
√
εφ̇ < −V ′(φ)−

√
3
√
ε0
√
ε0 − 2V .

Recalling 4′, the right-hand side of the inequality above goes to−
√
3
√
ε0
√
ε0 − 2V < 0 if t → t−s , so φ̈(t) is eventually

smaller than zero. But then φ̇(t) is eventually monotonically decreasing, so ∃ limt→t−s φ̇ = m < 0.
Let us suppose thatm ∈ R; then: limt→t−s ε(t) = m

2
+ 2V∞ ∈ R+. On the other hand we have:

φ̇2

ε
−→

t→t−s m2

m2 + 2V∞
> 0⇒ ∃k > 0 :

φ̇2

ε
> k.
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But, since it is ε̇ = 2
√
3
√
ε φ̇2 = 2

√
3
√
ε ε(φ̇2/ε) > 2

√
3kε3/2, using comparison theorems for ODE it easily follows

that limt→t−s ε(t) = +∞, in contradiction with the aforesaid. So we can conclude that m = −∞ and that also in this
case ρ = 2V

φ̇2
→ 0 if t → t−s . �

3. Gravitational collapse models

We now show how models of collapsing objects composed by homogeneous scalar fields can be constructed, matching
the interior solution (1) with the so-called generalized Vaidya solution

ds2ext = −
(
1−

2M(U, Y )
Y

)
dU2 − 2dYdU + Y 2dΩ2, (31)

where M is an arbitrary (positive) function (we refer to [24] for a detailed physical discussion of this spacetime, which is
essentially the spacetime generated by a radiating fluid). The matching is performed along the hypersurface Σ defined by
r = rb constant, where r2 = x2 + y2 + z2 in the coordinate system of the interior metric (1). The Israel junction conditions
at the matching hypersurface read as follows:

M(U(t), Y (t)) =
1
2
r2b a(t)ȧ(t)

2, (32)

∂M
∂Y
(U(t), Y (t)) =

1
2
r3b (ȧ(t)

2
+ 2a(t)ä(t)), (33)

where the functions (Y (t),U(t)) satisfy

Y (t) = rba(t),
dU
dt
(t) =

1
1+ ȧ(t)rb

. (34)

The two equations (32) and (33) are equivalent to require that Misner–Sharp mass M is continuous and ∂M
∂U = 0 on the

junction hypersurfaceΣ .
The endstate of the collapse of these models is analyzed in the following theorem.

Proposition 3.1. Let φ(t) be a solution of (10) that forms a singularity in a finite amount of comoving time (i.e. there exists
ts ∈ R such that the solution can be prolonged up to ts and not beyond, and limt→ts ε(t) = +∞). If

lim sup
t→t−s

ρ(t) < 2 (35)

then the scalar field model matched with the generalized Vaidya solution (31) collapses to a black hole.

Proof. Wewill make use of the result in [16, Theorem 5.2], that states that if, in the approach to the singularity, the quantity
ȧ2 = a2ε is bounded, then the apparent horizon cannot form, and the singularity is naked. It is indeed easy to check that
the equation of the apparent horizon for the metric (1) is given by r2ȧ(t)2 = 1. If ȧ is bounded, one can choose the junction
surface r = rb sufficiently small such that ȧ2(t) < 1

r2
, ∀(t, r) ∈ [0, ts] × [0, rb], and so

(
1− 2M

R

)
is bounded away from

zero near the singularity. As a consequence, one can find in the exterior portion of the spacetime (31), null radial geodesics
which meet the singularity in the past, and therefore the singularity is naked. Otherwise, if ȧ2 is unbounded, the trapped
region forms and the collapse ends into a black hole. Now, field equations imply

ä = −
ȧ2

a

(
2− ρ
1+ ρ

)
, (36)

and therefore, recalling (35) and weak energy condition (which implies 1+ ρ ≥ 0), there exists a positive constant C such
that ä ≤ −C ȧ

2

a eventually holds in a left neighborhood of ts, say [t0, ts[, where ȧ is decreasing. It follows that ∀t ∈]t0, ts[,
ȧ(t) ≤ ȧ(t0), which is negative by hypotheses. Then

ȧ(t)− ȧ(t0) =
∫ t

t0
ä(τ )dτ ≤ −

∫ t

t0

ȧ(τ )2

a(τ )
dτ ≤ −ȧ(t0)

∫ t

t0

ȧ(τ )
a(τ )

dτ ,

that diverges to−∞, and so ȧ(t) is unbounded. �

Remark 3.2. All the examples from Sections 2.1–2.3 shows that ρ(t)→ 0 as t → t−s , and so the above Proposition applies,
to find that the model exhibited here collapses completely to a black hole.
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4. Conclusions

In this paper, we have studied collapsing evolution of scalar field under some conditions on the potential function V (φ).
In the cases studied, conditions on the initial datawere also imposed to ensure that the scalar field diverges either negatively
or positively. For instance, in the example sketched in Section 2.1 conditions (23) ensure that φ ≤ φ0 and therefore we do
not need to impose conditions on V (φ) as φ → φ0. However, we can combine the results obtained here with the ones
studied in [21] to obtain the same results dropping the assumptions on the initial data – except, of course, ε0 > 0 which
ensures weak energy condition. To give an example, consider for instance the potential V (φ) = λ2 + eκ

2φ . If φ̇(t0) < 0 for
some t0 one can set α = φ0 = φ(t0) and apply results from Section 2.1. Otherwise φ̇(t) > 0∀t , which allow us to use results
from [21]: indeed, provided k2 < 2

√
3, the potential satisfies condition (4) stated at the beginning of Section 2.3. Therefore,

up to a zero measured set of initial data, singularity always forms in a finite time for this potential.
Observe that the situation studied here can also be interpreted in terms of expanding solutions, where one wants to

examine time backwards evolution. In other words, the particular form of (10) and (11) allows us to reverse time and re-read
the future evolution of a collapsing solution as the past evolution of an expanding solution: then, one can conclude that for
the class of potential studied in the present paper expanding scalar fields are always generated by an initial big-bang. Notice
that this result cannot be deduced simply by ordinary singularity theorems in cosmology, since the solution under exam do
not satisfy in principle the strong energy condition, but only the weak energy condition.
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