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1. Introduction

Line bundles are key in classical algebraic geometry. Ample (resp. very ample) line bundles on schemes give morphisms
to (resp. embeddings into) projective space, e.g. the Plucker embedding of a Grassmannian.

In the development of algebraic supergeometry, it turns out that line bundles are no longer so fundamental. For instance,
over C, generic super Grassmannians possess no ample line bundles (see, e.g. [1] for a proof of this fact for Gr(2|2, 4|4)), and
therefore cannot be embedded as subsupermanifolds of super projective space Pm|n for any m|n.

Manin [1] has suggested that a different concept, due to I.A. Skornyakov, should be a substitute for invertible sheaves
in supergeometry: that of Π-invertible sheaf. These objects are pairs (S, φ), where S is a locally free sheaf of rank 1|1
and φ is an odd endomorphism of S such that φ2

= 1. Their transition functions can be reduced to G1|1
m , a nonabelian

supergroup analogous to the usual multiplicative group Gm. Sections ofΠ-invertible sheaves give embeddings into a novel
supergeometric generalization of classical projective spaces, theΠ-projective superspaces.

Deligne [2] has pointed out that over C,G1|1
m may be interpreted as the multiplicative supergroup D∗ of the so called

‘‘super skew field’’ D, a noncommutative central simple superalgebra. This point of view continues to be valid over any
algebraically closed field k of characteristic not equal to 2, and sheds considerable light onΠ-projective geometry. Many of
the basic constructions inΠ-projective geometry become more transparent when interpreted in terms of the algebra of D.
This is the task of this current work.

The plan of the paper is as follows. In Section 1 we review basic material about the ‘‘super skew field’’ D. This object
may be characterized as the unique (up to Brauer equivalence) central simple superalgebra over an algebraically closed
field k, char(k) ≠ 2. We define super Azumaya algebras, and extend D to a sheaf DB of super Azumaya algebras over a
k-superscheme B. We prove some basic results about the structure of D-modules in some key special cases.

In the category of affine algebraic B-superschemes, we then give a new construction of the Π-projective space Pn
Π,B.

Given a free D-bimodule (V , φ, ψ), we realize PΠ (V ) as the quotient of V \ {0} by the algebraic supergroup G1|1
m = D∗
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(anti-)acting by left scalarmultiplication. This resultwas asserted in [3], but no proof given.Weprove thatwith our definition
of theΠ-projective space, V \{0} becomes aD∗-principal bundle overPΠ (V ). This is enough to show thatPΠ (V ) is a quotient
of V \ {0} by D∗. Many of the basic results of supergeometry needed for this portion of the paper may be found in [4]; a
more detailed treatment of basic supercommutative algebra and algebraic supergeometry is contained in the Ph.D. Thesis
of Westra [5].

We then briefly discuss the theory of Π-invertible sheaves. We explain, as noted in [2], that a Π-invertible sheaf is
nothing more than a locally free sheaf of D-modules of rank 1. We then define a ‘‘hyperplane bundle’’ OΠ (1) on PΠ,B(V ),
and use it to characterize all B-morphisms X → PΠ,B(V ) (a result again stated in [6] without proof).

Finally, using the algebra of the super skew field D, we define a product structure on the set of Π-invertible sheaves,
taking values in the set of 1|1 locally free sheaves. This product is shown to be the same as the composition ofΠ-invertible
sheaves proposed by Voronov, Manin, and Penkov [7].

We now make a few remarks about the motivation behind this work and its implications for supergeometry. Levin [3]
has constructed super analogues of Jacobi theta functions and used them to embed families of SUSY-1 elliptic curves into
(products of) Π-projective superspaces. This suggests that a deeper understanding of Π-projective supergeometry may
prove key for the algebraic supergeometry of SUSY-1 curves, and is one of the motivation for our embarking upon this
paper.

A definition of the Jacobian of a SUSY-1 curvewas given in [8] in termsof line bundles. This object is an abelian supergroup,
but not an algebraic supervariety, even in the genus 1 case [9]. Alternatively, in Chapter 2.7.1 of [1], Manin sketches a
definition of the Jacobian of a SUSY-1 curve. In general, Manin’s Jacobian is not a supergroup, and he asserts that such
Jacobians should be linked to Π-invertible sheaves. The fact that the product of Π-invertible sheaves does not define a
group structure on the set ofΠ-invertible sheavesmay be connected withManin’s suggestion; this led us to investigate this
product more thoroughly.

2. The super Azumaya algebra D

2.1. The super skew field D

Let k denote an algebraically closed field of characteristic ≠ 2. Let D be the ‘‘super skew field’’ D := k[θ ], θ odd, θ2 = −1.
D is a noncommutative, associative superalgebra. Any homogeneous nonzero element of D is invertible. As we shall see, D
is an example of a central simple superalgebra, which notion we now define.

We recall some definitions for the reader’s convenience. As usual, the quantities appearing in all equations below are
assumed to be homogeneous unless otherwise stated.

The opposite of a superalgebraA is the superalgebraAo whose underlying set is equal to that ofA, andwhosemultiplication
is given by:

x ·o y := (−1)|x| |y|y · x

where the multiplication on the right hand side is that of A. The center of A is the superalgebra Z(A) generated by:

{x ∈ A : xa = (−1)|x| |a|ax ∀a ∈ A}.

Note that Z(A) is a supercommutative ring. Given any k-superalgebra A, we can define a superalgebra homomorphism
ψ : A⊗k Ao

→ Endk(A) by:

a ⊗ b → (x → (−1)|b| |x|axb).

We say that a k-superalgebra A is central if Z(A) = k, and A is simple if A has no non-trivial two-sided homogeneous ideals.
The super Artin–Wedderburn theorem (cf. [10]) then states that:

Theorem 2.1. Let A be a superalgebra over a field k, finite dimensional as a k-super vector space. Then A is central simple over k
if and only if ψ : A ⊗ Ao

→ Endk(A) is an isomorphism of k-superalgebras.

Weemphasize that the End appearing in the statement of the theorem is the ‘‘internal End’’ (i.e. the superalgebra of ungraded
endomorphisms), not the categorical End (i.e., the even subalgebra of even endomorphisms).

In [11], it is shown that the super skew field D/k is a central simple superalgebra, and that it generates the super Brauer
group sBr of k of Brauer equivalence classes of central simple superalgebras over k.

In ungraded commutative algebra, the notion of central simple algebra over a field k is generalized to the category of
algebras over a commutative ring by adopting the conclusion of the Artin–Wedderburn theoremas a definition. The resulting
objects are called Azumaya algebras. We define the super analogue as follows:

Definition 1. Let A be a superalgebra over a supercommutative ring R. A is a super Azumaya algebra over R if A is a faithful,
finitely generated projective R-module, and the natural homomorphism ψ : A⊗R Ao

→ EndR(A) is an isomorphism of
R-superalgebras.
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We then have the following:

Proposition 2.2. Let k be an algebraically closed field, char(k) ≠ 2 and R be a commutative k-superalgebra. Then DR := D ⊗k R
is a super Azumaya algebra over R.

Proof. Since DR is a free R-module, it is certainly faithful, finitely-generated, and projective. {1|θ} is a homogeneous R-basis
of DR, and so {1⊗1, θ⊗θ | 1⊗θ, θ⊗1} is a homogeneous R-basis of D ⊗R Do. Using the basis 1, θ of D to identify EndR(DR)
with the matrix superalgebraM1|1(R), one sees that:

ψ(1 ⊗ 1) =


1 0
0 1


ψ(θ ⊗ 1) =


0 −1
1 0


ψ(1 ⊗ θ) =


0 1
1 0


ψ(θ ⊗ θ) =


−1 0
0 1


.

(2.1)

It is readily checked that these matrices form an R-basis of M1|1(R). (This requires the fact that 2 is invertible in R.) Thus ψ
sends an R-basis of D ⊗ Do to one ofM1|1,R, hence must be an isomorphism. �

At this point, one ought to generalize our construction to obtain sheaves of super Azumaya algebras, locally isomorphic
to DR. However, we will work in a more restrictive category rather than pursuing this line of development. Let B/k be a
superscheme over an algebraically closed field k, char(k) ≠ 2. We define the sheaf DB by:

DB(U) := Dk ⊗k OB(U).

The sheaf Do
B may be defined in a completely analogous fashion. The following properties of DB follow from standard

arguments and Proposition 2.2:

Proposition 2.3. • DB is a trivial, rank 1|1 locally free sheaf of OB-modules.
• DB is a sheaf of super Azumaya algebras over OB: for any point b ∈ |B|, there exists a Zariski open set U ∋ b such that
φ : DB(U)⊗ Do

B(U) → End(DB(U)) is an isomorphism.

One can prove an analogue of Proposition 2.3 for Do
B in the same way. More generally, we will consider the category

of relative superschemes X/B for B a Noetherian k-superscheme. We define a sheaf of super Azumaya algebras DX/B on
π : X → B by:

DX/B := π∗(DB).

The relative version of Proposition 2.3 holds in the category of B-superschemes:

Proposition 2.4. • DX/B is a trivial rank 1|1 locally free sheaf of OX -modules.
• DX/B is a sheaf of super Azumaya algebras over OX : for any point x ∈ |X |, there exists a Zariski open set U ∋ x such that
φ : DX/B(U)⊗ Do

X/B(U) → End(DX/B(U)) is an isomorphism.

Proof. The first statement follows from the fact that the inverse image of a trivial locally free sheaf of OB-modules is also
locally free over OX of the same rank and trivial.

For the second, note that for any x there is an open set U ⊆ X, x ∈ U , such that f (U) is contained in an open set V
in B and DB(V ) is a super Azumaya algebra with OB(V )-basis 1, θ . Then the proof of the claim is completely analogous to
Proposition 2.2, replacing k with OB(V ) and R with OX (U). The only point to note is that the direct limit of DB(W ) over all
openW containing f (U) is a super Azumaya algebra because DB(W ) is super Azumaya for any openW ⊆ V . �

In the future, when working in the relative category of X/B, we will occasionally abuse notation and use DX to denote
DX/B.

Remark. (1) It would be interesting to extend this theory to those cases where 2 is not invertible.
(2) DB is not the only possible sheaf of super Azumaya algebras on B which is locally isomorphic to D ⊗k OB; for instance,
one could tensor DB with any locally free sheaf of rank 1|0 on B.

Here the structure morphism B → Spec(k) allows us to pull back Dk to B in a canonical fashion, giving us a natural sheaf
of super Azumaya algebras DB on B, and the structure morphism f : X → B then gives a canonical pullback of DB to X/B.

Dk is canonical as well, in the following sense: the Brauer equivalence class of Dk generates the super Brauer group sBr(k)
of k, which is isomorphic to Z2 (see Chapter 3.2 of [11]). Thus DX/B is the most ‘‘natural’’ way of extending Dk to a sheaf of
super Azumaya algebras on X/B, in the sense that it involves no arbitrary choices, only the structure morphisms.

Presumably amore complete understanding of the situationwould entail developing the theory of the super Brauer group
of a superscheme along the lines of [12]. We speculate that those Brauer equivalence classes in the super Brauer group of
Bwhich are represented by sheaves of super Azumaya algebras locally isomorphic to DB each correspond to fundamentally
different ‘‘twisted’’ versions of Π-projective geometries over B. What we treat in this paper might justifiably be called the
‘‘untwisted’’Π-projective geometry.
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2.2. D-modules

In this section we shall discuss the theory of DR-modules. Since D is noncommutative, we must take care to maintain
the distinction between left and right D-modules. Often we denote DR by D to save notation; the omission of the base ring
should not cause any confusion.

Definition 2. A left (resp. right) DR-module is an R-moduleM with an R-algebra homomorphism (resp. antihomomorphism)
D → EndR(M).

It is readily seen that a left D-action onM is completely equivalent to the choice of an odd R-endomorphism φ ofM such
that φ2

= −1. Namely, suppose given a left action of D on M; then the left action of θ on M is an odd R-endomorphism
whose square is −1. Conversely, given an odd R-endomorphism φ such that φ2

= −1, a left action of D onM is given by:

(a + bθ) · v = av + bφ(v).

In order to comply with our convention that endomorphisms of modules act on the left, we often convert a right
D-module into a left Do-module via the usual formula:

s · m := (−1)|s| |m|m · s,

where · denotes the D-module action on the right and the Do-module action on the left. From this point of view, a right
D-action on an R-moduleM is equivalent to specifying an odd R-endomorphism φ′ ofM such that (φ′)2 = 1.

Definition 3. A homomorphism f : M → N of left (right) D-modules is a homomorphism of R-modules that intertwines the
actions of D onM and on N . f is a morphism if f preserves parity.

Now that we have a notion of morphism, we have categories DM (resp. MD) of left (resp. right) D-modules, as well as
the category DMD of D-bimodules. We can also define the categorical Hom (i.e., parity-preserving homomorphisms) and
internal Hom (all homomorphisms) in these categories, as one can for module categories over any associative super ring.

In particular, for a left (right) D-moduleM , the D-dualM∨
:= HomD(M,D) is well-defined.M∨ is a left (right) D-module

in the usual way, by (left) right multiplication in D.
One can also define a free D-module on an ungraded basis set I , via the usual universal property. If I is a finite set, the rank

of the free D-module on I is defined to be |I|. That the rank is well-defined follows from the fact that a free D-module of rank
n is also a free R-module of rank n|n and that a supercommutative ring R satisfies the invariant basis number property.

We note that the superrank of a free D-module is not a well-defined notion: for instance, D, regarded as an (e.g. left)
D-module, has even basis {1} or odd basis {θ}. This is a consequence of the noncommutativity of D.

Owing to this noncommutativity, the theory of D-modules is quite involved. However, we have the following extremely
important special case, which later serves as a model forΠ-invertible sheaves:

Proposition 2.5. Let k be an algebraically closed field, char(k) ≠ 2, R a commutative k-superalgebra, and M a right DR-module,
free of rank 1|1 over R. Then M ∼= DR in MDR .

Proof. By the previous discussion, M is an R-module with an odd endomorphism φ, φ2
= 1. Choose a basis for M as an

R-module. It is easily seen that φ2
= 1 if and only if the matrix representing φ in this basis has the form

P :=


α a
a−1

−α


in this basis, with a, α ∈ R. We conjugate P by the invertible matrix:

B :=


a−1

−α

0 1


obtaining:

P ′
:= BPB−1

=


a−1

−α

0 1

 
α a
a−1

−α

 
a aα
0 1


=


0 1
1 0


.

Applying the change of basis matrix B to our original basis, we obtain a right D-module isomorphism D → M . �

Remark. As previously, one can prove a completely analogous proposition for a left D- module, free of rank 1|1 over R.
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2.3. D∗ and the group superscheme G1|1
m

For now, let us work in the category of B-superschemes, where B is an arbitrary superscheme. Following [1], we define
the group superscheme G1|1

m over B, whose functor of points is given by:

T → [Γ (OT )]
∗

for any B-superscheme T . Hence G1|1
m (T ) consists of all global sections a + α of OT , where a is even and invertible, α odd.

Similarly, we may define a sheaf of groups G1|1
m , whose sections on an open set U ⊂ X are given by:

G1|1
m (U) = [OX (U)]∗.

This is evidently just the sheaf of groups O∗

X .
The following proposition (for the analytic category) is from [1]:

Proposition 2.6. The functor G1|1
m : (Superschemes/B) → (Groups) is represented by the affine B-superscheme A1|1

B \ {0}, with
group law given in terms of the functor of points by:

(a, α) · (a′, α′) := (aa′
+ αα′, aα′

+ a′α).

Proof. It is well known that the functor of points of A1|1
B \ {0} is:

A1|1
B \ {0}(T ) = {(a, α) : a, α ∈ Γ (OT ), a even and invertible, α odd}

for T a B-superscheme. (a, α) → a+α is the desired isomorphism between the functor of points ofA1|1
B \{0} and the functor

G1|1
m . One checks readily that this isomorphism preserves the group laws. �

Occasionally it will be convenient to embed G1|1
m into SL(1|1,OB) as a closed subsupergroup via:

a + α →


a α

α a


.

It is straightforward to check that the Berezinian of an element of this subsupergroup is 1. This embedding is also valid for
the sheaf G1|1

m into SL(1|1).
Nowwemake the further assumption that B is a superscheme over an algebraically closed field k, char(k) ≠ 2. Then the

sheaf DB of super Azumaya algebras naturally gives rise to a group superscheme D∗

B over B, via the functor of points:

T → [Γ (T , f ∗DB)]
∗

0

for any B-superscheme f : T → B. When the base B is understood, we will sometimes write D∗ for D∗

B . Similarly, for a fixed
B-superscheme f : X → Bwe have a sheaf of groups D∗

X on X , defined by:

D∗

X (U) := [f ∗(DB)(U)]
∗

0.

Deligne [2] has pointed out that there is a natural isomorphism G1|1
m → D∗, given on the level of T -points by:

a + α → a + θα

where a, α ∈ OT , a even and invertible, α odd.Wemay identify the sheaf of groups G1|1
m = O∗

X with D∗

X in the same fashion.

3. Construction of Manin’sΠ-projective space PΠ (V )

Wework in the category of B-superschemes, B a superscheme over an algebraically closed field k, char(k) ≠ 2. In analogy
with the case of ordinary projective space, we will construct theΠ-projective superspace as the space of D-lines, i.e. rank 1
free right D-modules of a free D-bimodule V . Intuitively, this is the space of orbits of the supergroup D∗ acting by left scalar
multiplication on V \ {0}. We shall make this intuition precise by constructing the quotient V \ {0}/D∗, then characterizing
morphisms into this quotient.

It would be very interesting to develop an analogue of the Proj construction for the category of D-modules in order to
extend these results to the case of arbitrary k-superschemes B and obtain a completely invariant way of producing relative
Π-projective spaces over arbitrary B-superschemes. We plan to address this topic in future work.

Let (E, ψ, φ) be a locally free sheaf of DB-bimodules on B of rank n + 1 (here ψ yields the left D-action, φ the right
D-action). E is, in a natural way, a locally free sheaf of OB-modules of rank n + 1|n + 1. To this sheaf is naturally associated
the family of relative affine superspaces A(E)B over B, given by

A(E)B = SpecB(Sym(E
∗)).



S. Kwok / Journal of Geometry and Physics 86 (2014) 134–148 139

Here SpecB denotes global super Spec over B. This is defined as follows: given any quasicoherent sheafA ofOB-superalgebras,
define the topological space |SpecB(A)| to be the set of prime ideal sheaves in A0, with the following basis for the topology:
for each open set |U| ⊆ |B| and section σ ∈ A(U)0, define the basis open set VU,σ to be the set of all prime ideal sheaves I in
A0 such that σ ∉ I(U). The structure sheaf OSpecB(A) is defined by setting OSpecB(A)(VU,σ ) to be the localization [A(VU,σ )]σ .
By its definition, SpecB(A) is a superscheme. The morphism p : SpecB → B is given on the underlying sets by sending any
prime ideal sheaf in A to its inverse image in OB via the structure morphism OB → A, and the sheaf map:

p# : OB(U) → OSpecB(p
−1(U)) = A(U)

is just the structure morphism OB → A, restricted to U . One may check that if A = Sym((Om|n)∗), then SpecB(A) is just
Am|n

B .
We will denote A(E)B by E to distinguish it from the sheaf E; structure morphism p : E → B. We have

Proposition 3.1. E represents the functor:

E : (Superschemes/B) → (Sets)
(f : T → B) → Γ (T , f ∗(E))0.

Proof. We just sketch the proof, since it is essentially the same as in the classical case. Fix a trivialization Bi for E. Then
given a morphism f : T → SpecB(Sym(E∗)), Tf ,i := f −1(Bi) is an open cover of T . Since OE(Bi) is a free OBi-module,
Spec(Sym(E∗))(Bi) is isomorphic to affine superspace Am|n

Bi
, wherem|n := rk(E). Hence, by the usual characterization of the

functor of points of Am|n
B , f |Tf ,i is represented by an ordered m|n-tuple of m even functions xi and n odd functions ξj on Tf ,i,

the pullbacks by f |Tf ,i of linear coordinates dual to the basis of OE(Bi) in our fixed trivialization.
Because f is a morphism from T , on the overlaps f −1(Bij) the m|n-tuples corresponding to f |Tf ,i are related by

multiplication by the transition functions of f ∗(E) and thus define an even section of f ∗(E). One checks that this
correspondence defines a natural transformation between the functor of points of SpecB(Sym(E∗)) and the functor E. That
this natural transformation is a functor equivalence may be checked locally, since the functor E and the functor of points
of SpecB(Sym(E∗)) are both sheaves. But on any Tf ,i the natural transformation is an equivalence by the above-mentioned
characterization of the functor of points of Am|n

Bi
. �

We will give a construction of Manin’s Π-projective bundle PΠ (E, ψ, φ) over B as the quotient of E \ {0} by the action
of the group superscheme D∗

B .
The right DB-action on E by scalar multiplication is given by:

v · (a + θα) := va + (−1)|v|φ(v)α (3.1)

for a homogeneous element a + θα of DB.
We now turn to the left action of D∗

B on the superscheme E induced by the left action of DB. It will be more convenient for
us to convert it into a right action by the standard device of composing with the inversion antihomomorphism:

v · (t + θτ) := (t + θτ)−1v (3.2)

where this equation is now interpreted in terms of the functor of points. This right D∗

B-action induces a left D∗

B-action on OE .
We emphasize that the right action of D∗

B so defined is completely distinct from the previously defined right action of DB;
indeed, the two actions commute.

The zero-section of E embeds B canonically into E as a closed subsuperscheme; hence the complement of the image of
the zero-section E \ {0} is an open B-subsuperscheme of E. The actions of D∗ and of D are linear, thus restrict to E \ {0}.

We have the reduction morphisms Gm → D∗, E \ {0} → E \ {0}, which are the identity on the underlying topological
spaces. Letπ : |E \{0}| → |PB(E)| be themap on the underlying spaces induced by the quotientmorphism E \{0} → PB(V ).
Recall that |V \ {0}| = |E \ {0}|.

We will define PΠ,B(E) as follows. Its underlying topological space will be the underlying space |PB(E)| of the B-
projective space, PB(E). We will construct a sheaf of OB-superalgebras OPΠ,B(E) on |PB(E)| such that (P(Ered),OPΠ,B(E)) is
a B-superscheme.

Let U ⊆ PB(E) be any Zariski open set. Then U ′
:= π−1(U) is an open subset of |E \ {0}| = |E \ {0}|. The open

subscheme (U ′,OE\{0}|U ′) of E \ {0} is well-known to be Gm-invariant. This implies that D∗

B acts on the B-superscheme
U ′

:= (U ′,OE\{0}|U ′) ⊆ E \ {0}, since the restriction a|D∗ ×B U ′ to D∗
×B U ′ of the action morphism a : D∗

×B E \ {0} → E \ {0}
maps into U ′.

Definition 4. Let X be a B-superscheme, G a group superscheme over B, and a (resp. p2) : G×B X → X an action of G on X
(resp. the projection on the second factor). A function f ∈ OX is G-invariant if and only if a∗(f ) = p∗

2(f ).



140 S. Kwok / Journal of Geometry and Physics 86 (2014) 134–148

Wemay now define the sheaf OPΠ (E) by:

OPΠ (E)(U) := OD∗

E\{0}(U
′) (3.3)

where OD∗

E\{0}(U
′) denotes the supercommutative ring of D∗-invariant sections of OE\{0} on U ′. One checks that this

assignment is indeed a sheaf of OB-modules on |PB(E)|.

Definition 5. TheΠ-projective superspace over B is the ringed superspace (|PB(E)|,OPΠ,B(E)) over B.

3.1. Affine cells of PΠ (E)

For simplicity, we will restrict ourselves in this section to the case where B is an affine k-superscheme, E a free sheaf of
D-modules on B. (The general case will be treated in later papers.) We will prove that PΠ (E) has a Zariski open covering by
B-superaffine spaces. This will imply in particular that (PB(E),OPB,Π (E)) is a smooth B-superscheme.

For this purpose, we may work locally on B, in a trivializing affine cover for E as a DB-bimodule. So we may assume that
B = Spec(A), for some affine k-superalgebra A, and that OV (B) is a free DB-bimodule of rank n + 1, some n. Hence there is
an OB-basis {ei|fi} of V such that φ(ei) = fi, φ(fi) = ei, ψ(ei) = fi, ψ(fi) = −ei for i = 0, . . . , n.

Let {zi|ζi} be linear functionals on V dual to the basis {ei|fi}; wemay then consider themas linear functions on V . Similarly,
let t, τ be linear functions onD∗ dual to 1, θ . Then the action of a T -point t+θτ ofD∗

B on a T -point


i eizi+fiζi of V becomes:
i

(eizi + fiζi) · (t + θτ) =


i

ei(t−1zi − t−2τζi)+ fi(t−1ζi − t−2τ zi). (3.4)

In these expressions we are abusing notation and writing zi for the pullback of zi to Γ (OT ), etc. This equality holds good
independent of the choice of T -point. Hence the right D∗ action on V may be written in terms of the zi and ζi as:

(z0, ζ0, . . . , zn, ζn) · (t, τ ) = (t−1z0 − t−2τζ0, t−1ζ0 − t−2τ z0, . . . , t−1zn − t−2τζn, t−1ζn − t−2τ zn). (3.5)

Remark. Althoughwe have chosen specific coordinates for V inwhich theD- andD∗-actions take a particularly simple form
in order to facilitate our calculations, these actions were defined purely in terms of the D-bimodule structure of V . Hence
our constructions will depend only on the D-bimodule structure of V , and not on any arbitrary choices.

To this end, let us consider the open subset U ′

i := D(zi) of E \ {0}. The image of U ′

i in PB(E) is then the open subset
Ui = {[z0, . . . zn] : z i ≠ 0}. The {Ui}, i = 0, . . . , n, form a Zariski open cover of |PB(E)|.

We may now characterize the rings OD∗

E\{0}(U
′

i ).

Proposition 3.2. OD∗

E\{0}(U
′

i ) is the A-superalgebra generated over A by the functions:

w
j
i :=

zj
zi

−
ζiζj

z2i

η
j
i :=

ζj

zi
−

zjζi
z2i

where j ∈ {0, 1, . . . , î, . . . , n}. In particular, OD∗

(Ui) is a finitely-generated A-superalgebra.

Proof. The D∗-invariance of the functionswj
i, η

j
i is shown by a direct calculation. It remains to be shown thatwj

i, η
j
i actually

generate OD∗

(Ui). For this we require the following lemma.

Lemma 3.3. Let s ∈ OD∗

(Ui) be a Z2-homogeneous invariant section. Suppose that s is a multiple of ζi. Then s is identically zero.

Proof. We begin by noting that π−1(Ui) is the affine B-superscheme with coordinate superalgebra Oπ−1(Ui)
= A[z0,

. . . , zn, ζ0, . . . , ζn][z−1
i ].

Since D∗ and π−1(Ui) are both affine B-superschemes, we may work with their superalgebras of global functions. s is in
particular invariant under the subsupergroup G1|0

m ⊂ D∗, which is true if and only if s is a sum of rational functions of the
form:

s =


J,K

aJK
zp1j1 zp2j2 · · · z

p|J|
j|J|
ζk1ζk2 · · · ζk|K |

z
|K |+


J pj

i

where zi does not appear in the numerator of any term, and ζi appears in the numerator of each term. Here J, K are
multiindices, and aJK ∈ OB.
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The equations that follow will all hold in OD∗ ×B π−1(Ui)
= OD∗ ⊗B Oπ−1(Ui)

= A[z0, . . . , zn, ζ0, . . . , ζn, t, τ ][z−1
i ]. The

pullback of s by (t + θτ)−1 is:

((t + θτ)−1)∗(s) =


J,K

aJK
(tzj1 + τζj1)

p1 · · · (tzj|J| + τζj|J|)
p|J|(tζk1 + τ zk1) · · · (tζk|K |

+ τ zk|K |
)

(tzi + τζi)
|K |+


J pj

=


J,K

aJK
(tzj1 + τζj1)

p1 · · · (tzj|J| + τζj|J|)
p|J|(tζk1 + τ zk1) · · · (tζk|K |

+ τ zk|K |
)

(zit)|K |+


J pj
.

The last equation holds since multiplication by τζi annihilates the numerator of (t + τθ)∗(s) (by expanding the numerator
as a polynomial in the zs, the ζ s, t and τ , one sees by the assumptions of the proposition that every termmust contain either
ζi or τ ).

Let P be the sum of all terms of ((t + θτ)−1)∗(s) that do not contain τ , and Q the sum of those that do contain τ . One
may check by direct calculation that P = s. Hence (t + τθ)∗(s) = s implies that Q = 0. Then (zit)|K |+


J pjQ is the zero

polynomial in OD∗ ×B Ui .
Let us consider the terms of (zit)|K |+


J pjQ that contain zi, call the sum of all such terms Q ′. Q ′ is a polynomial, and since

the numerator of s does not contain zi, each term in Q ′ contains only a linear power of zi. We see that each term of Q ′ must
be a multiple of ziτ , obtained by substituting ziτ for ζi in a corresponding term of s:

aj1...j|J|,k1...k|K |
zp1j1 . . . z

p|J|
j|J|
ζk1 . . . ζ̂i(ziτ) . . . ζk|K |

t |K |+


J pj−1.

Conversely, every term of s gives rise to a unique term of Q ′ in this way.
Since zi is algebraically independent from the other zjs and ζks, (zit)|K |+


J pjQ = 0 implies thatQ ′ must also be identically

zero. (Alternatively, to see this one could differentiate the equation (zit)|K |+


J pjQ = 0 with respect to zi.) Hence all of the
coefficients aJK must be zero. �

Now we show that any invariant section s on Ui may be written as a polynomial in the functionswj, ηj. Suppose that s is
such a section. Note that any product

j∈J

wj


k∈K

ηk =


j∈J


zj
zi

−
ζiζj

z2i

 
k∈K


ζk

zi
−
ζizk
z2i


of thewj and the ηk contains exactly one term that does not contain ζi in the numerator: namely, the rational function:

zJζK :=
zj1zj2 · · · zj|J|ζk1ζk2 · · · ζk|K |

z
|K |+


J pj

i

.

Note that zi also does not appear in the numerator of this rational function. We shall refer to rational functions of this type
as ‘‘head terms’’. Conversely, note that given any pair of multiindices J, K for which i ∉ J and i ∉ K , we may produce an
invariant section with head term zJζK by taking


j∈J wj


k∈K ηk.

Let


J,K aJK zJζK be the sum of all head terms in s. Then the section:

s′ := s −


J,K

aJK

j∈J

wj


k∈K

ηk

is D∗-invariant, being a difference of D∗-invariant sections. By our remark about products of the wj and ηk, all terms of s′
must contain ζi, since the only head terms of aJK


j∈J wj


k∈K ηk are aJK zJζK , and these cancel with the corresponding head

terms in s by construction. Therefore s′ is identically zero by Lemma 3.3, i.e.

s =


J,K

aJK

j∈J

wj


k∈K

ηk,

which is what we wished to prove. �

As a consequence, we may now show that PΠ,B(V ) so defined is actually covered by affine superspaces:

Corollary 3.4. OPn
Π
(Ui) is a free commutative A-superalgebra on n|n variables.

Proof. Without loss of generality wemay take i = 0, the argument being the same for the other values of i, after reindexing
the variables. Let C be the free A-superalgebra A[y1, . . . , yn] ⊗Λ[τ1, . . . , τn] on n|n variables. We define a homomorphism
F : C → OPn

Π
(Ui) by sending yj → wj, τj → ηj. By the above proposition, F is surjective.
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Weproceed to show that F is injective aswell. To this end, let P =


J,K aJKyJτK . Here, as before,wewill use themultiindex
notation:

yJ := yp1j1 y
p2
j2
. . . y

p|J|
j|J|

τK := τk1τk2 . . . τk|K |
.

We have:

F(P) =


J,K

aJK F(yJ)F(τK )

=


J,K

aJKwJηK

=


J,K

aJK

j∈J


zj
z0

−
ζ0ζj

z20

 
k∈K


ζk

z0
−
ζ0zk
z20


= 0.

For each pair of multiindices J, K there is a unique head term in F(P):

aJK zJζK := aJK

j∈J

zj
z0


k∈K

ζk

z0
.

Since all other terms besides aJK zJζK are multiples of ζi, F(P) = 0 implies that


JK aJK zJζK = 0. But the rational functions
zJζK are OB-linearly independent, so we conclude that aJK = 0 for all multiindices J, K , as desired. �

From Corollary 3.4, we deduce certain important properties of PΠ,B(V ). First, we have that OPΠ,B(V ) is a sheaf of local
super rings. Hence PΠ,B(V ) is indeed a B-superscheme. Second, we have that PΠ,B(V ) is of finite type over B, and smooth
over B.

4. Pn
Π as a quotient

In [6], it is statedwithout proof thatPn
Π is a quotient ofCn+1|n+1

\{0} byG1|1
m . Amore precise formulation of this statement

is given by the following:

Proposition 4.1. Let B be an affine k-superscheme, E a free DB-bimodule. Then E \ {0} is a D∗-principal bundle over PΠ,B(E), via
the projection map π : E \ {0} → PΠ,B(E).

Proof. We begin by noting that the open subsets |U ′

i | = {(z0, . . . , zn) : zi ≠ 0} of |SpecB(E) \ {0}| are invariant under
the action of the reduced group Gm of D∗, hence the U ′

i are invariant under the action of D∗. We will show that the U ′

i are
isomorphic, as D∗-superschemes, to D∗

×B Ui, where the latter is regarded as a D∗-superscheme by multiplication on the
first factor.

We shall construct such an isomorphismΦ : U ′

i → D∗
×B Ui with the aid of the invariant sectionswj

i, η
j
i of O(U ′

i ).
Let t, τ be coordinates on D∗ (i.e. linear functionals that generate Γ (D∗,OD∗) as a sheaf of OB-superalgebras), and

z0, . . . , zn, ζ0, . . . ζn the linear coordinates on SpecB(V ) \ {0}. We define a B-morphismΦ : U ′

i → D∗
×B Ui by:

Φ(z0, . . . , zn, ζ0, . . . , ζn) =


(zi, ζi),

z0
zi

−
ζiζ0

z2i
, . . . ,

zi−1

zi
−
ζiζi−1

z2i
,
zi+1

zi
−
ζiζi+1

z2i
, . . . ,

zn
zi

−
ζiζn

z2i
,
ζ0

zi
−
ζiz0
z2i
, . . . ,

ζi−1

zi
−
ζizi−1

z2i
,
ζi−1

zi
−
ζizi−1

z2i
, . . . ,

ζn

zi
−
ζizn
z2i


.

Define Ψ : D∗
×B Ui → U ′

i by:

Ψ ((t, τ ), w0, . . . , wi−1, wi+1, . . . , wn, η0, . . . , ηi−1, ηi+1, . . . , ηn)

= (tw0 + τη0, . . . , twi−1 + τηi−1, t, twi+1 + τηi+1, . . . , twn + τηn, tη0 + τw0, . . . , tηi−1

+ τwi−1, τ , tηi+1 + τwi+1, . . . , tηn + τwn).

Since the sectionswj
i, η

j
i freely generate OPn

Π
as an OB-superalgebra on the open set Ui = π(U ′

i ) ⊂ Pn
Π,B, by Corollary 3.4,

the above equations do indeed define morphisms of B-superschemes.
A direct calculation, which is lengthy but straightforward and thus omitted, shows that Φ and Ψ are mutually inverse,

so thatΦ is an isomorphism of B-superschemes. D∗-equivariance ofΦ is checked similarly. �
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5. Π-invertible sheaves

Let X/B be a B-supermanifold (B-superscheme), where B is a complex analytic supermanifold, or a superscheme. The
following definition is due to Skornyakov [1]:

Definition 6. A Π-invertible sheaf on X/B is a pair (S, φ), where S is a locally free sheaf of OX/B-modules of rank 1|1, and
φ ∈ H0(X, End(S)) is an odd endomorphism of S such that φ2

= 1. A morphism of rightΠ-invertible sheaves f : (S, φ) →

(S ′, φ′) is a homomorphism of locally free sheaves f : S → S ′ such that f ◦ φ = φ′
◦ f .

In the category of B-superschemes, where B is a k-superscheme and k an algebraically closed field of characteristic ≠ 2,
the concept of Π-invertible sheaf may be given a new interpretation, as suggested by Deligne [2] in the complex analytic
case: it is completely equivalent to the concept of a rank 1 locally free sheaf of right DX/B modules, and a morphism of
Π-invertible sheaves is precisely the same thing as a morphism of right DX/B-modules.

To show one direction, suppose (S, φ) is a Π-invertible sheaf on X → B. The right DX -action on S is recovered by the
formula:

s · (a + θα) := sa + (−1)|s|φ(s)α

for any open set U ⊆ X such that π(U) ⊆ V , where V is an open subset of B on which DB has basis 1, θ , where s ∈

OS(U), a + θα ∈ ODX/B(U). Since such U form a basis for the topology of X , this defines a right DX -action on S. Then by
Proposition 2.5, S is locally free of rank 1 as a sheaf of right DX -modules.

For the converse, suppose that S is a sheaf of locally free, rank 1 right DX -modules. Then by Proposition 2.4, S is a locally
free, rank 1|1 sheaf of OX -modules. The action of θ defines an odd endomorphism φ of S:

φ(s) := (−1)|s|s · θ

for s a homogeneous section of S over any open set U ⊆ X . One readily sees that φ is well-defined and OX -linear, and that
φ2

= 1, so (S, φ) is aΠ-invertible sheaf. Now it is routine to check that a morphism ofΠ-invertible sheaves f : (S, φ) →

(S ′, φ′) is precisely the same thing as a morphism f : S → S ′ of right DX -modules.
It follows from this discussion that the transition functions of a Π-invertible sheaf (S, φ) on X may be reduced to

GL(1,DX ) = D∗

X , and by standard arguments in the cohomology theory of sheaves of nonabelian groups, it may be shown
that the pointed set of isomorphism classes ofΠ-invertible sheaves (the distinguished point being O ⊕ΠO) is in bijective
correspondence with the pointed sheaf cohomology set H1(X,D∗

X ).

6. D-hyperplane bundle on PΠ (E)

The Π-projective superspace PΠ (E) is endowed with a natural Π-invertible sheaf OΠ (1), analogous to the hyperplane
bundle O(1) on ordinary projective space. Intuitively, the fiber of this Π-invertible sheaf over a point W ∈ PΠ (E) (i.e., a
free, rank 1 right D-module of E) is the free, rank 1 right D-moduleW∨.

In this section, we shall give a definition of OΠ (1) using the super skew field D, describe its basic properties, and use it
to characterize B-morphisms X → PΠ,B(E) for any affine B-superscheme X/B. The existence and key properties of OΠ (1)
were also mentioned in [1], without proofs.

Definition 7. Let E be a locally free, rank n sheaf of DB-bimodules. TheΠ-invertible sheaf OΠ (1) is the sheaf defined by:

OΠ (1)(U) := p∗(E∨)(U).

Here E∨ denotes the sheaf Hom(ED,D), p : PΠ (E) → B the structure morphism.

The first order of business is to verify that

Proposition 6.1. OΠ (1) is aΠ-invertible sheaf on PΠ,B(E).

Proof. OΠ (1) inherits a natural right D-module structure, given by the D-action on E∨ by right multiplication.
To check local freeness, we may work locally on B, in an affine cover trivializing E as a sheaf of D-bimodules. So let us

assume that B = Spec(A), and that there is a B-basis {ei|fi} of Γ (E) such that φ(ei) = fi, φ(fi) = ei, ψ(ei) = fi, ψ(fi) = −ei.
Let {zi, ζi} be a basis of B-linear functionals on E, dual to {ei, fi} respectively.

We sketch the calculation that sj := zj + θζj, σj := ζj + θzj, j = 0, . . . , n is a B-basis of E∨. Suppose s ∈ E∨; we may as
well assume s is even. Since s is D-linear it must in particular be OB-linear. Then s =


j zjaj + ζjαj + θ(ζjbj + zjβj). (Right)

D-linearity of s is equivalent to aj = bj, αj = βj for all i. Thus s =


j sjaj + σjαj, proving that the sj, σj span E∨ over OB. The
OB-linear independence of the zj + θζj, ζj + θzj follows immediately from that of the zj, ζj.

Let Ui be one of the affine open cells covering PΠ,B(E). We claim that si, σi span OΠ (1)(Ui) over OPΠ (E)(Ui). From the
identities:

zj + θζj = (zi + θζi)[(zi + θζi)
−1(zj + θζj)]

ζj + θzj = (zi + θζi)[(zi + θζi)
−1(ζj + θzj)]
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one sees that:

sj = si


zj
zi

−
ζiζj

z2i


+ σi


ζj

zi
−
ζizj
z2i


σj = si


ζj

zi
−
ζizj
z2i


+ σi


zj
zi

−
ζiζj

z2i


for any j ≠ i, and since we have shown that sj, σj, j = 0, . . . , n span E∨ over OB, we have proven the claim.

We show si, σi areOPΠ,B(E)-independent onUi. For suppose si ·a+σi ·α = 0 for some a, α ∈ OPΠ (E)(Ui). This is equivalent
to the system of equations:

zia + ζiα = 0
ζia + ziα = 0. (6.1)

Since zi is invertible on Ui, we see that a = −ζiα/zi from (6.1). Substituting this expression for a into (6.1), we find that
ziα = 0, but by invertibility of zi, α = 0. Consequently a = 0 as well.

We have shown that si, σi form a basis of OΠ (1)(Ui), hence OΠ (1) is a locally free rank 1|1 sheaf. �

Remark. As a consequence of this proof, we obtain a particularly nice trivialization ofOΠ (1) as aΠ-invertible sheaf. In each
Ui, si, σi form aΠ-symmetric basis, and

sj = si · w
j
i + σi · η

j
i

σj = si · η
j
i + σi · w

j
i .

We thus see that the transition functions for OΠ (1)(Ui ∩ Uj) are the matrix:
w

j
i η

j
i

η
j
i w

j
i


.

We note that this matrix lies in G1|1
m (Ui ∩ Uj), as it must.

Now we characterize the global sections of OΠ (1), assuming B is affine and V is trivial on B:

Proposition 6.2. If B = Spec(A) is an affine k-superscheme, and V a free DA-bimodule, then H0(PΠ (V ),OΠ (1)) = V∨.

Proof. By definition H0(PΠ (V ),OΠ (1)) = V∨
⊗ Γ (OPΠ (V )). So we only need show that Γ (OPΠ (V )) = A.

First we consider the case where the D-rank of V is larger than 1. We claim any function on V \ {0} extends uniquely
to V , thus is the restriction of a unique polynomial on V . This should follow from super analogues of standard Hartogs’-
lemma-like results in algebraic geometry, which we shall neither attempt to formulate nor prove. Instead, we give a direct
argument.

Let f be a function on V \ {0}. The open affine subsets Ui = {zi ≠ 0} cover V \ {0}. Then f |Ui = Pi/z
ki
i where Pi is a

polynomial, ki ≥ 0; we may assume for all i that zi does not divide Pi. On the intersection Ui ∩ Uj, fi|Uj = fj|Ui if and only if

zkii Pj = z
kj
j Pi in the polynomial ring Sym(V ∗). If ki > 0, we see from this equation that z

kj
j Pi, hence Pi, is divisible by zi. This

contradicts the assumption that zi does not divide Pi. Hence ki = 0. By the same argument kj = 0, so f |Ui = Pi, f |Uj = Pj.
Hence Pi = Pj for all i, j. We conclude that f extends to a polynomial on V , given by Pi for any i. This proves the uniqueness
as well.

It is routine to check that any D∗-invariant polynomial on V is in fact constant (indeed, it suffices to consider the action
of the even subsupergroup G1|0

m .) Hence the proposition is proven in this case.
If the D-rank of V is 1, V \ {0} is an affine supervariety with coordinate ring A[z, z−1, ζ ], on which D∗ acts by the formula

given in Eq. (3.5). We leave it to the reader to show, by direct calculation, that any D∗-invariant Laurent polynomial in z, ζ
is in fact constant. �

6.1. Morphisms into Pn
Π,B

We continue to assume that B is an affine k-superscheme and that E is a trivial sheaf of D-modules on B. We have the
following characterization of morphisms into Pn

Π,B.

Theorem 6.3. Let B be an affine k-superscheme, and let X → B be a B-superscheme. If f : X → Pn
Π,B is a B-morphism,

(f ∗(OΠ (1)), f ∗(Φ)) is aΠ-invertible sheaf on X, and the global sections f ∗(zi+ζiθ), f ∗(−ζi+ziθ) globally generate f ∗(OΠ (1)).
Conversely, given aΠ-invertible sheaf (S, φ) on X → B and aΠ-symmetric set of global sections {s0, . . . , sn|σ0, . . . , σn} of S
which globally generate S, there exists a unique B-morphism f : X → Pn

Π,B such that (f ∗(OΠ (1)), f ∗(Φ)) ∼= (S, φ) and
f ∗(zi + ζiθ) = si, f ∗(−ζi + ziθ) = σi.
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Proof. Suppose f : X → Pn
Π,B is a B-morphism. Then (f ∗(OΠ (1)), f ∗(Φ)) is a Π-invertible sheaf on X having the stated

properties.
Conversely, suppose given a Π-invertible sheaf (S, φ) and a set of sections {si|σi}i=0,...,n as given above. Clearly, the σi

can be recovered from the si via φ.
Let Xi denote the open subset of |X |:

Xi = {x ∈ |X | : (si)x ∉ MxSx}

where Mx denotes the maximal ideal of OX,x. Xi is an open subsuperscheme of X , which we also denote by Xi. By the
hypothesis that the si, ti generate S, the Xi form a cover of X .

Let V be an open subsuperscheme of Xi such that OS is trivial on V , and let {e|f } denote a Π-symmetric basis of OS(V ).
Suppose that in this basis, si, sj are given by:

si = eai + f αi

sj = eaj + f αj.

We now define an (even) local section s−1
i · sj of O

1|1
X over Xi as follows. Identifying OS(V )with D(V ) via e → 1, f → θ ,

we can identify si, sj with sections s̃i := ai + θαi, s̃j := aj + θαj of D(V ). Now we make use of the operations in the super
skew algebra D(V ):

s̃−1
i s̃j = (ai + θ · αi)

−1(aj + θ · αj)

=


aj
ai

−
αiαj

a2i


+ θ


αj

ai
−

ajαi

a2i


and then take the coefficients of 1 and θ respectively as the components of s−1

i sj:

s−1
i sj :=

 aj
ai

−
αiαj

a2i
αj
ai

−
ajαi
a2i

 .

All functions involved are regular, since ai is invertible in Xi by hypothesis. Nowwe check that s−1
i sj is independent of the

Π-symmetric basis chosen and hence is well-defined. Suppose we have a change ofΠ-symmetric basis:

(e | f ) = (e′
|f ′)


b β

β b


.

Then, identifying OS(V ) with D(V ) in this new basis, we have s̃′i = (b + θβ)(aj + θαj), s̃′j = (b + θβ)(aj + θαj), from
which it follows that:

(s̃′i)
−1

· s̃′j = (ai + θαi)
−1(b + θβ)−1(b + θβ)(aj + θαj)

= s̃−1
i · s̃j

hence (s′i)
−1s′j = s−1

i sj. As the functions wj
i, η

j
i freely generate the A-superalgebra OUi , we have a well-defined A-morphism

fi : Xi → Ui, given by setting:

f ∗

i (w
j
i) = (s−1

i sj)0

f ∗

i (η
j
i) = (s−1

i sj)1.

One may verify by direct calculation that the following four equalities hold in OPn
Π,B
(Ui ∩ Uj):

(1) wi
j = (w

j
i)

−1

(2) ηij = −η
j
i(w

j
i)

−2

(3) wk
j = wk

i w
i
j − ηki η

i
j (for k ≠ i)

(4) ηkj = wi
jη

k
i + ηijw

k
i (for k ≠ i).

The verification that the functions (s−1
i sj)0, (s−1

i sj)1 also satisfy the equalities (1)–(4) is a completely formal matter of
replacing zi with ai, ζi with αi, etc. in the calculations just given. Hence it follows that fi|Ui∩Uj = fj|Ui∩Uj , and by standard
arguments, the morphisms {fi} glue together into a morphism f : X → Pn

Π .
One sees that by the construction of f , f ∗(gij) = hij, where gij are the transition functions ofOΠ computed in the previous

remark, and hij are the transition functions of S on the cover Xi. Hence f ∗(OΠ (1)) ∼= S. Similarly, one checks immediately
that f ∗(zj + ζjθ) = sj, f ∗(−ζj + zjθ) = σj, and that f ∗(Φ) = φ (the last follows from theΠ-symmetry of si, ti for all i).

The uniqueness statement in the proposition follows, since any morphism f ′
: X → Pn

Π,B which satisfies the conditions
of the theorem must agree with f on each Ui, hence must equal f . �
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7. Product structure onΠ-invertible sheaves

Working in the category of complex supermanifolds, Voronov, Manin, and Penkov [7] define a notion of a composition
of an ordered pair ofΠ-invertible sheaves. In general, the result of this composition is not aΠ-invertible sheaf, but rather
merely a 1|1 locally free sheaf, and its significance is therefore somewhat obscured. We shall clarify matters by using the
algebra of the super skew field D to define a product operation on ordered pairs ofΠ-invertible sheaves (which takes values
in 1|1 locally free sheaves), and then showing that our product is the same as the composition of Voronov, Manin, and
Penkov.

7.1. Super Morita theory

Let A, B be super rings with unit (not necessarily supercommutative). Note that an (A, B)-bimodule is the same thing as
a left A ⊗ Bo-module by the following recipe: ifM is a left A ⊗ Bo module, we define an (A, B) bimodule structure onM by:

a ·A m ·B b := (−1)|b| |m|(a ⊗ b) · m

where a ∈ A, b ∈ B, and m ∈ M are all homogeneous. Conversely, if M is an (A, B)-bimodule, we may define a left A ⊗ Bo-
module structure onM using the same formula. It is readily seen that these correspondences define a category equivalence
between the category of (A, B)-bimodules and that of left A ⊗ Bo-modules.

From now on, we assume that A is an R-superalgebra, with R supercommutative.

Definition 8. LetM be an (A, A)-bimodule. The supercommutant ofM is the R-module MA generated by the set:

{m ∈ M : am = (−1)|a| |m|ma,m homogeneous}.

Equivalently, interpretingM as a left A⊗ Ao-module, we see thatMA may be defined in terms of the A⊗ Ao-action as the
R-module MA generated by the set:

{m ∈ M : (a ⊗ 1) · m = (1 ⊗ a) · m,m homogeneous}.

For brevity we will denote the superalgebra A⊗R Ao by Ae.
We will need the following theorem from the Morita theory of super rings, proven in [13].

Theorem 7.1. Let R be a supercommutative ring, and suppose A is a super Azumaya algebra over R. Then V → A⊗R V : MR →

AMA and W → W A
: AMA → RM are mutually inverse category equivalences.

7.2. Definition of the product

Let A/R be an R-superalgebra, R supercommutative. We begin by noting that ifM is a left A-module, N a right A-module,
thenM ⊗R N is an (A, A) bimodule via the formula:

a1 · (m ⊗ n) · a2 := (a1 · m)⊗ (n · a2).

Theorem 7.1 tells us that, given a sheaf of (DX ,DX )-bimodules E, there corresponds in a natural way a sheaf of OX -
modules given by the supercommutant sheaf EDX . We shall define our product via this correspondence. We begin with the
following proposition.

Proposition 7.2. Let R be a commutative k-superalgebra, M a free left DR-module of rank 1, and N a free right DR-module of
rank 1 (hence M,N are free R-modules of rank 1|1). Then the supercommutant (M ⊗R N)DR is a free R-module of rank 1|1.

Proof. By the previous lemma, there exist R-module bases {e|f }, {e′
|f ′

} ofM,N respectively such that:

θ · e = f
θ · f = −e
e′

· θ = f ′

f ′
· θ = −e′.

Then B := {e⊗ e′, f ⊗ f ′
|e⊗ f ′, f ⊗ e′

} is an R-module basis ofM ⊗N . Wewill now compute the homogeneous elements
of the supercommutant. For now, supposew ∈ (M ⊗ N)DR is even. Then

w = (e ⊗ e′)a + (f ⊗ f ′)b + (e ⊗ f ′)α + (f ⊗ e′)β,

where a, b, α, β are uniquely determined elements of R such that a, b (resp. α, β) are even (resp. odd).
The assertion thatw ∈ (M ⊗ N)DR is the same as the equality:

θ · w = w · θ. (7.1)
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One checks by direct calculation that (7.1) holds if and only if b = −a, β = −α, so that w = (e ⊗ e′
− f ⊗ f ′)a + (e ⊗

f ′
− f ⊗ e′)α. Let us define u := e ⊗ e′

− f ⊗ f ′, v := e ⊗ f ′
− f ⊗ e′.

Then w = u · a + v · α, so that any even w ∈ (M ⊗ N)DR is an R-linear combination of u and v, with a, α uniquely
determined. By a completely analogous argument we see that for odd w,w = u · α + v · a, for uniquely determined a, α.
Hence {u|v} form a homogeneous basis of (M ⊗ N)DR , and (M ⊗ N)DR is a free R-module of rank 1|1. �

Remark. A similar proposition can easily be proven for the tensor productM ′
⊗N ′ of free rank 1 left (resp. right)Do

R-modules
M ′ and N ′; the arguments are essentially the same as the above.

Now we may define our products. Let us choose a
√

−1 in k. Then given an ordered pair ofΠ-invertible sheaves (S, φ)
and (S ′, φ′) on a B-superscheme X , wemay form two canonically defined (up to our choice of

√
−1) sheaves ofOX -modules,

denoted by S � S ′ and S �o S ′, as follows.
To define S � S, (S,

√
−1φ) is regarded as a sheaf of left D-modules, (S, φ′) as a sheaf of right D-modules, so that S ⊗ S ′

is a sheaf of (D,D)-bimodules. Then we define:

S � S ′
:= (S ⊗ S ′)D.

More explicitly, for each open set U, (S � S ′)(U) is the OU -module generated by:

{s ⊗ s′ ∈ OS⊗S′(U) :
√

−1φ(s)⊗ s′ = (−1)|s|s ⊗ φ′(s′), s ∈ OS(U), s′ ∈ OS′(U), s, s′ homogeneous}.

It is routine to check this is a sheaf, since φ, φ′ are global endomorphisms. Applying Proposition 7.2 to sufficiently small
open sets U , we see that S � S ′ so defined is a locally free sheaf of OX -modules of rank 1|1.

To define S �o S ′, we instead regard (S, φ) as a sheaf of left Do-modules and (S ′,
√

−1φ′) as a sheaf of right Do-
modules; then (S ⊗ S ′, φ,

√
−1φ′) is a sheaf of (Do,Do)-bimodules, and we define S �o S ′

:= (S ⊗ S ′)D
o
. For each open

set U, (S ⊗ S ′)D
o
(U) is the OU -module generated by:

{s ⊗ s′ ∈ OS⊗S′(U) : φ(s)⊗ s′ =
√

−1(−1)|s|s ⊗ φ′(s′), s ∈ OS(U), s′ ∈ OS′(U), s, s′ homogeneous}.

By the remark following Proposition 7.2, we may apply the Do-analogue of Proposition 7.2 to show that S �o S ′ is also a
locally free sheaf of OX -modules of rank 1|1.

7.3. Equivalence with the composition of Voronov, Manin, and Penkov

In the category of complex supermanifolds, Voronov, Manin, and Penkov [7] define the composition of twoΠ-invertible
sheaves (S, φ), (S ′, φ′) as follows: fix a

√
−1. Then φ⊗φ′ is an even endomorphism of square−1 on S⊗S ′. The eigenspaces

for φ⊗φ′, which necessarily have eigenvalues±
√

−1, are what they call the result of the composition of (S, φ) and (S ′, φ′).
These eigenspaces are 1|1 locally free sheaves.

Their definition of composition can be carried over to the category of B-superschemes without change. In this context,
we now demonstrate the equivalence of their definitions with our products � and �o.

Regarding S ⊗ S ′ as a sheaf of (D,D)-bimodules via
√

−1φ and φ′, we claim that S � S ′ equals the
√

−1 eigenspace of
φ ⊗ φ′. For if s ⊗ s′ is a basic element of S ⊗ S ′, we have:

√
−1(φ(s)⊗ s′) = (−1)|s|(s ⊗ φ′(s′))

⇐⇒
√

−1(φ2(s)⊗ s′) = (−1)|s|(φ ⊗ 1) · (s ⊗ φ′(s′))

⇐⇒
√

−1(s ⊗ s′) = (φ ⊗ φ′) · (s ⊗ s′),

and the same is true of linear combinations of basic elements.
Similarly, if we regard S ⊗ S ′ as a sheaf of (Do,Do)-bimodules, via φ and

√
−1φ′, the −

√
−1-eigenspace of φ⊗φ′ equals

the product S �o S ′; the arguments are entirely analogous to the ones just given.

Acknowledgments

This work grew out of the author’s Ph.D. Thesis. The author owes much to his advisor, V.S. Varadarajan, for his guidance,
patience, insights, and moral support, all of which he shared generously. The author would also like to thank R. Fioresi for
reading a draft of this paper, and L. Migliorini for helpful discussions. Finally, the author is greatly indebted to P. Deligne for
pointing out the interpretation of G1|1

m and the connection between Π-invertible sheaves and D in [2,14], which provided
the germ of the present work.



148 S. Kwok / Journal of Geometry and Physics 86 (2014) 134–148

References

[1] Y.I. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991.
[2] P. Deligne, Email to Y.I. Manin, 2010.
[3] A.M. Levin, Supersymmetric and modular functions, Funct. Anal. Appl. 22 (1) (1988) 60–61.
[4] C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, EMS, 2011.
[5] D.B. Westra, Superrings and supergroups (Ph.D. thesis), Universitat Wien, 2009.
[6] A.M. Levin, Supersymmetric elliptic curves, Funct. Anal. Appl. 21 (3) (1987) 243–244.
[7] A.A. Voronov, Y.I. Manin, I.B. Penkov, Elements of supergeometry, J. Soviet Math. 51 (1) (1990) 2069–2083.
[8] A.A. Rosly, A.S. Schwarz, A.A. Voronov, Geometry of superconformal manifolds, Comm. Math. Phys. (125) (1988) 129–152.
[9] J. Rabin, Super elliptic curves, J. Geom. Phys. (15) (1995) 252–280.

[10] V.S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, in: Courant Lecture Notes, vol. 1, AMS, 2004.
[11] P. Deligne, Notes on spinors, in: Quantum Fields and Strings. A Course for Mathematicians, Vol. 1, AMS, 1999.
[12] A. Grothendieck, Le groupe de Brauer I, II, III, in: Dix Exposés sur La Cohomologie des Schemas, North-Holland, 1968.
[13] S. Kwok, Super Morita theory, arXiv:1301.5246.
[14] P. Deligne, Personal communication, 2010.

http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref1
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref3
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref4
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref5
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref6
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref7
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref8
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref9
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref10
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref11
http://refhub.elsevier.com/S0393-0440(14)00155-7/sbref12
http://arxiv.org/1301.5246

	The geometry of  Π-invertible sheaves
	Introduction
	The super Azumaya algebra  D 
	The super skew field  D 
	 D -modules
	 D*  and the group superscheme  Gm1|1 

	Construction of Manin's  Π-projective space  PΠ (V) 
	Affine cells of  PΠ (E) 

	 PΠn  as a quotient
	 Π-invertible sheaves
	 D -hyperplane bundle on  PΠ (E) 
	Morphisms into  PΠ, Bn 

	Product structure on  Π-invertible sheaves
	Super Morita theory
	Definition of the product
	Equivalence with the composition of Voronov, Manin, and Penkov

	Acknowledgments
	References


