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1. Introduction

The spectral action principle of Connes and Chamseddine was originally developed mainly to give a conceptual and 
geometric formulation of the standard model of particle physics [3]. The spectral action can be defined for spectral triples 
(A, H, D), even when the algebra A is not commutative. An interesting feature here is the additivity of the spectral action 
with respect to the direct sum of spectral triples. Conversely, one can wonder whether any such additive functional on 
spectral triples is obtained via a spectral action.

In a recent paper [4], Chamseddine, Connes and van Suijlekom have shown that the von Neumann entropy of the Gibbs 
state naturally defined by a fermionic second quantization of a spectral triple is in fact a spectral action and they find a 
universal function that defines the spectral action.

In this paper we extend this result by incorporating chemical potentials, and by considering both fermionic and bosonic 
second quantization. In fact we show that the von Neumann entropy and the average energy of the thermal equilibrium 
state defined by the bosonic or fermionic grand partition function, with a given chemical potential, can be expressed as 
spectral actions. We show that all spectral action coefficients can be expressed in terms of the modified Bessel functions of 
the second kind. In the fermionic case, we show that the spectral action coefficients for the von Neumann entropy, in the 
limit when the chemical potential μ approaches 0, can be expressed in terms of the Riemann zeta function. This recovers 
the recent result of [4].

It should be noted that without the use of chemical potentials, the natural spectral function for the von Neumann 
entropy in the bosonic case is singular at β = 0.

We start in section 2 by recalling some of the main concepts and results from the theory of second quantization. Our 
main results are presented in Sections 3 (fermionic) and 4 (bosonic).

In searching for a suitable expression of spectral action coefficients in all the cases studied in this paper, we were 
naturally led to the class of modified Bessel functions of the second kind. Appendix A recalls some basic properties of these 
functions. In Appendix B we collect some technical results on the heat expansions used throughout this paper. Finally in 
Appendix C we recall some of the basic definitions related to the spectral action principle.

2. Basics of second quantization

In this section, mainly to fix our notation and terminology, we shall recall some basic definitions and facts from the 
theory of second quantization in quantum statistical mechanics. We shall largely follow [1, Section 5.2].

2.1. Fock space and second quantization

Let H be a (complex) Hilbert space. For any n > 0 we denote by Hn = H⊗H⊗ · · · ⊗H the n-fold tensor product of H
with itself, and write H0 =C. The Fock space F(H) is the completion of the pre-Hilbert space 

⊕
n≥0

Hn .

Define the projection operators P± on Hn by

P+ ( f1 ⊗ f2 ⊗ · · · ⊗ fn) = (n!)−1
∑
π∈Sn

fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n),

P− ( f1 ⊗ f2 ⊗ · · · ⊗ fn) = (n!)−1
∑
π∈Sn

(−1)|π | fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n),

for all f1, ..., fn ∈ H. Since P± are bounded operators with norm 1 on Hn , they can be extended by continuity to bounded 
projection operators on the Fock space F(H).

The bosonic Fock space F+(H) and the fermionic Fock space F−(H) are then defined by

F±(H) = P±(F(H)).

The corresponding n-particle subspaces Hn± are defined by Hn± = P±Hn .
The structure of the Fock space allows us to amplify a linear operator on H to the whole bosonic/fermionic Fock spaces 

F±(H). In fact, this is a functorial procedure and is commonly referred to as second quantization.
Let H be a self-adjoint operator on H with domain D(H). We define Hn on Hn± by

Hn (P± ( f1 ⊗ · · · ⊗ fn)) = P±

(
n∑

i=1

f1 ⊗ f2 ⊗ · · · ⊗ H fi ⊗ · · · ⊗ fn

)
for all f i ∈ D(H) and n > 0, while we set H0 = 0. The direct sum of the Hn is essentially self-adjoint, and the self-adjoint 
closure of this direct sum operator is called the second quantization of the self-adjoint operator H and it is denoted by d�(H).

In particular, let H = 1 be the identity operator. Then we have

d�(1) = N,
2
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where N is the number operator on F±(H), whose domain is defined by

D(N) =
⎧⎨⎩ψ = {ψ(n)}n≥0;

∑
n≥0

n2||ψ(n)||2 < ∞
⎫⎬⎭ ,

and for any ψ ∈ D(N)

Nψ = {nψ(n)}n≥0.

For a unitary operator U on H, first we define Un on Hn± by

Un (P± ( f1 ⊗ f2 ⊗ · · · ⊗ fn)) = P± (U f1 ⊗ U f2 ⊗ · · · ⊗ U fn)

and U0 = 1, and then extend it to the whole Fock space. We denote this extension by �(U ), called the second quantization 
of the unitary operator U ,

�(U ) =
⊕
n≥0

Un.

It is worth noticing that here �(U ) is also a unitary operator on F±(H). Also, if Ut = eit H is a strongly continuous 
one-parameter unitary group acting on H, then

�(Ut) = eitd�(H)

on the Fock spaces F±(H).

2.1.1. Hamiltonians and time evolution
If H is a self-adjoint Hamiltonian operator on the one-particle Hilbert space H, then the dynamics of the ideal Bose gas 

and the ideal Fermi gas are described by the Schrödinger equation

ih̄
dψt

dt
= d�(H)ψt

on F+(H) and F−(H), separately. We choose the units so that h̄ = 1. The solution of the Schrödinger equation gives us the 
evolution

ψ ∈ F±(H) �→ ψt = e−itd�(H)ψ = �(e−it H )ψ,

and the evolution of a bounded observable A ∈ B(F±(H)) is given by conjugation as

A ∈ B(F±(H)) �→ τt(A) = �(eit H )A�(e−it H ).

Next we shall introduce the Gibbs grand canonical equilibrium state ω of a particle system at inverse temperature β ∈R, 
and with chemical potential μ ∈R. Let

Kμ = d�(H − μ1) = d�(H) − μN

be the so-called modified Hamiltonian. Then the Gibbs state φ is defined by

φ(A) = Tr
(
e−βKμ A

)
Tr
(
e−βKμ

) , A ∈ B(F±(H)).

Here we assumed that the operator e−βKμ is a trace-class operator. The density operator is defined as

ρ = e−βd�(H−μ1)

Tr(e−βd�(H−μ1)

so that we have φ(A) = Trρ A. As in physics the Hamiltonian H is always unbounded it only makes sense when β > 0 and 
μ < 0.

For later use, we record the following result.

Lemma 2.1. We have e−d�(H1⊕H2) = e−d�(H1) ⊗ e−d�(H2) , as operators on F±(H1 ⊕ H2) ∼= F±(H1) ⊗ F±(H2). Moreover, when 
e−d�(Hi) are trace-class operators for i = 1, 2, we have for the density operators that ρ12 = ρ1 ⊗ ρ2 .
3
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2.2. CAR and CCR algebras

Both of the CAR and CCR algebras are constructed with the help of creation and annihilation operators, whose definition 
we now recall.

Let H be a complex Hilbert space. For each f ∈ H, we define the annihilation operator a( f ), and the creation operator
a∗( f ) acting on the Fock space F(H) by setting a( f )ψ(0) = 0, a∗( f )ψ(0) = f ψ(0) and ψ(0) ∈H0± and on Hn± by setting

a( f )( f1 ⊗ f2 ⊗ · · · ⊗ fn) = √
n ( f , f1) f2 ⊗ f3 ⊗ · · · ⊗ fn,

a∗( f )( f1 ⊗ f2 ⊗ · · · ⊗ fn) = √
n + 1 f ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fn,

for all f ∈H. One can see that the maps f �→ a( f ) are anti-linear while the maps f �→ a∗( f ) are linear. Also, one can show 
that a( f ) and a∗( f ) have well-defined extensions to D(N1/2), the domain of the operator N1/2. Moreover, we have that 
a∗( f ) is the formal adjoint of a( f ); namely, for any φ, ψ ∈ D(N1/2), one has(

a∗( f )φ,ψ
)= (φ,a( f )ψ) .

We can then define the annihilation operators a±( f ) and the creation operators a∗±( f ) on the fermionic/bosonic Fock 
spaces F±(H) by

a±( f ) = P±a( f )P±, a∗±( f ) = P±a∗( f )P±.

Moreover, since the annihilation operator a( f ) keeps the subspaces F±(H) invariant, we have

a±( f ) = a( f )P±, a∗±( f ) = P±a∗( f ).

One computes straightforwardly that on the fermionic Fock space F−(H),

{a−( f ),a−(g)} = {a∗−( f ),a∗−(g)} = 0, {a−( f ),a∗−(g)} = ( f , g)1,

and on the bosonic Fock space F+(H),

[a+( f ),a+(g)] = [a∗+( f ),a∗+(g)] = 0, [a+( f ),a∗+(g)] = ( f , g)1.

The first relations are called the canonical anti-commutation relations (CAR), and the second relations are called the canon-
ical commutation relations (CCR).

Roughly speaking, the CAR algebra is the algebra generated by the annihilation operators a−( f ) and creation operators 
a∗−( f ). In fact, we have the following proposition [1, Prop. 5.2.2]:

Proposition 2.2. Let H be a complex Hilbert space, F−(H) be the fermionic Fock space, and a−( f ) and a∗−(g) the corresponding 
annihilation and creation operators on F−(H).

(1) For all f ∈H, we have

||a−( f )|| = || f || = ||a∗−( f )||.
Therefore both a−( f ) and a∗−(g) have bounded extensions on F−(H).

(2) Taking 
 = (1, 0, 0, · · · ), called the vacuum vector, and { fα} an orthonormal basis of H, then

ψ( fα1 , ..., fαn) := a∗−
(

fα1

) · · ·a∗−
(

fαn

)



is an orthonormal basis of F−(H), when { fα1 , ..., fαn } runs over all the finite subsets of the orthonormal basis { fα}.
(3) The set of bounded operators {a−( f ), a∗−(g); f , g ∈H} is irreducible on F−(H).

Definition 2.3. The C∗-subalgebra of B(F−(H)) generated by a−( f ), a∗−(g) and 1 is called the CAR algebra, and will be 
denoted by C AR(H).

Although the CCR rules look very similar to the CAR rules, however, one can not simply mimic the previous definition of 
CAR algebras to deduce the definition of CCR algebras. The reason is that the annihilation operators a+( f ) and the creation 
operators a∗+(g) are not bounded operators on F+(H).

First we introduce the set of real-linear operators {�( f ), f ∈H} by

�( f ) = a+( f ) + a∗+( f )√
2

.

Using that the map f �→ a+( f ) is anti-linear, and f �→ a∗+( f ) is linear, we can invert:
4
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a+( f ) = �( f ) + i�(i f )√
2

, a∗+( f ) = �( f ) − i�(i f )√
2

.

Thus it suffices to examine the set of operators {�( f ), f ∈H}.
Let F+(H) = P+

(⊕
n≥0 Hn

) ⊆ F+(H), i.e. F+(H) consists of the sequences ψ = {ψ(n)}n≥0 which have only a finite 
number of nonvanishing components.

It turns out that for each f ∈H, �( f ) is essentially self-adjoint on F+(H), so that �( f ) can be extended to a self-adjoint 
operator; we still use the notation �( f ) for this closure. We have the following result [1, Prop. 5.2.4]:

Proposition 2.4. For each f ∈ H define a unitary operator W ( f ) = exp (i�( f )) on F+(H). Let CC R(H) denote the C∗-algebra 
generated by {W ( f ), f ∈H}. It follows that

(1) For any f , g ∈H, W ( f )D(�(g)) = D(�(g)), and

W ( f )�(g)W ( f )∗ = �(g) − Im( f , g)1.

(2) For each pair f , g ∈H

W ( f )W (g) = e−iIm( f ,g)/2W ( f + g).

(3) W (− f ) = W ( f )∗ .
(4) For each f ∈H\{0}

||W ( f ) − 1|| = 2,

and W (0) = 1.
(5) The set {W ( f ); f ∈H} is irreducible on F+(H), and CC R(H) is a simple C∗− algebra.
(6) If || fα − f || → 0, then

|| (W ( fα) − W ( f ))ψ || → 0

for all ψ ∈F+(H). The operators W ( f ) are called Weyl operators, and the algebra CC R(H) is called the CCR algebra of H.

2.2.1. Gibbs states, entropy and energy
As before, let Kμ denote the modified Hamiltonian operator

Kμ = d�(H − μ1) ,

and we denote by Zβ,μ := Tr(e−βKμ) the corresponding partition function.
In the fermionic case, we can define the Gibbs state φ f over the CAR algebra by

φ f (A) = Z−1
β,μTr

(
e−βKμ A

)
, (A ∈ C AR(H)).

Here we have tacitly assumed that the operator e−βKμ is a trace-class operator on F−(H), but this in fact happens if 
and only if e−βH is of trace-class on the one-particle Hilbert space H [1, Prop. 5.2.22].

In the bosonic case, we can define the Gibbs state φb over the CCR algebra CC R(H) by

φb(A) = Z−1
β,μTr

(
e−βKμ A

)
, (A ∈ CC R(H)).

Similarly as above, it is assumed that the operator e−βKμ is trace-class on F+(H), which again is equivalent to the 
assumption that e−βH is trace-class on the one-particle Hilbert space H [1, Prop. 5.2.27]

In this paper we always assume that exp(−βKμ) is a trace-class operator on H, under this assumption, we let ρ denote 
the corresponding density operator:

ρ = e−βKμ

Zβ,μ
.

We will also write ρ f and ρb to stress whether we are dealing with the fermionic or the bosonic case.
The von Neumann entropy is then defined to be

S(φ) := −Tr(ρ logρ)

with φ the state corresponding to ρ , while the average energy 〈Kμ〉β is given by

〈Kμ〉β = Tr(ρKμ) = − ∂ (
log Zβ,μ

)
. (1)
∂β

5
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2.3. Spectral triples and second quantization

In this paper we are interested in the above concepts of Fock space, entropy, average energy, et cetera such as they derive 
from spectral triples in noncommutative geometry. We recall the definition [5]:

Definition 2.5. A unital spectral triple is a triple (A, H, D) where A is a unital ∗-algebra of bounded operators acting on a 
Hilbert space H, and D is a self-adjoint operator in H with compact resolvent and such that [D, a] is a bounded operator 
for all a ∈A.

Starting with a spectral triple, we can construct the bosonic and fermionic Fock spaces F+(H) and F−(H), respec-
tively. In the fermionic case, we denote by ρD the density matrix and φD the Gibbs state corresponding to the operator 
exp(−βd�|D|), the von Neumann entropy S(φD) and average energy 〈d�|D|〉β are thus defined. Both of these two quanti-
ties are additive in the sense that if D has a direct sum decomposition D = S ⊕ T , then

S(φD) = S(φS) + S(φT ), and 〈d�|D|〉β = 〈d�|S|〉β + 〈d�|T |〉β .

Arguing as in [4] we thus obtain two ‘spectral actions’:

D �→ S(φD), and D �→ 〈d�|D|〉β
associated naturally to the spectral triple (A, H, D).

Even though for the motivating example of a spectral triple given by a Riemannian spinc manifold it is natural to 
consider vectors in the Hilbert space as fermions, in general there is no reason to exclude the possibility that they are 
bosonic instead. We include this possibility here as well, thus replacing the fermionic Fock space by the bosonic Fock space.

Then, when the second quantization operator exp(−βd�D2) is trace-class on F+(H) we can obtain another two spectral 
actions given by the von Neumann entropy and average energy. However, in general the operator exp(−βd�D2) is not 
trace-class, which is another reason for including the chemical potential μ < 0.

In Section 3 we shall first discuss the von Neumann entropy and average energy in fermionic Fock space, starting with 
following one-particle Hamiltonians:

H f ,μ :=
√

D2 + μ21, and H ′
f ,μ := |D| − μ1.

This generalizes the case considered in [4] without chemical potential. We will see that even though the operator H ′
f ,μ is 

more natural to consider from a physical point of view (as it is the Hamiltonian based on the Dirac sea in the presence 
of a chemical potential [10]), the operator H f ,μ gives rise to interesting mathematical structure hidden in the entropy and 
average energy.

Then, in Section 4 we shall analyse the same two concepts but now in bosonic Fock space and for the following one-
particle Hamiltonians:

Hb,μ :=
√

D2 + μ21, and H ′
b,μ := D2 − μ1.

Again the latter is the one-particle Hamiltonian considered in physics [10].

3. Fermionic second quantization

Let D : H → H be a self adjoint operator with compact resolvent. Let β > 0. If e−β|D| is a trace class operator, then for 
any μ < 0 the one-particle Hamiltonians H f ,μ, H ′

f ,μ as defined above, give rise to two trace class operators e−βH f ,μ and 

e−βH ′
f ,μ . In fact, since√

D2 + μ21− |D| = μ2
(√

D2 + μ21+ |D|
)−1

is a bounded operator, we obtain the following equalities:

Tr
(

e−βH f ,μ

)
= Tr

(
e−β|D|e−βμ2(

√
D2+μ21+|D|)−1

)
,

Tr
(

e−βH ′
f ,μ

)
= eβμ Tr

(
e−β|D|) ,

ensuring the finiteness of the trace.
Let K f ,μ = d�H f ,μ and K ′

f ,μ = d�H ′
f ,μ denote the second-quantized operators acting as unbounded operators on the 

fermionic Fock space F−(H). We write ρ f , ρ ′
f for the respective density matrices and φ f , φ′

f for the corresponding states. 
We will now compute their von Neumann entropy and their average energy.
6
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3.1. The entropy of φ f

We start by introducing the following function:

hμ(x) =
√

x2 + μ2

e
√

x2+μ2 + 1
+ log

(
1 + e−√x2+μ2

)
.

Notice that if we take μ = 0 we obtain the spectral action function h(x) given in [4],

h0(x) = h(x) = x

ex + 1
+ log

(
1 + e−x) .

We may imitate the proof of [4, Theorem 3.4] to show that the von Neumann entropy of φ f is given by

S(φ f ) = −Tr
(
ρ f logρ f

)= Tr(hβμ(βD)).

In fact, suppose if D has a direct sum decomposition D = S ⊕ T , then we get the direct sum decomposition 
√

D2 + μ2 =√
S2 + μ2 ⊕√T 2 + μ2. Using Lemma 2.1, we obtain that

e−βd�
√

D2+μ2 = e−βd�
√

S2+μ2 ⊗ e−βd�
√

T 2+μ2
,

thus

S(φ f (D)) = S(φ f (S)) + S(φ f (T )),

with φ f (D), φ f (S), φ f (T ) the states corresponding to the fermionic second quantization operators e−βd�
√

D2+μ2
, 

e−βd�
√

S2+μ2
and e−βd�

√
T 2+μ2

. Hence we obtain that

S(φ f ) = Tr(

(
h(β

√
D2 + μ2)

)
) = Tr

(
hβμ(βD)

)
with φ f the state corresponding to e−βd�

√
D2+μ2

.
We now derive the asymptotic expansion of Tr(hβμ(βD)) for large temperature (that is, as β → 0+). Let us first show 

that the function hμ(
√

x) can be expressed as a Laplace transform. According to Proposition 4.4 in [4],

h0(x) =
∞∫

0

e−tx2
g̃(t)dt,

where

g̃(t) = 1

2t

∑
n∈Z

(
2π2(2n + 1)2t − 1

)
e−π2(2n+1)2t = 1

8
√

πt5/2

∑
Z

(−1)n+1n2e− n2
4t .

Thus

hμ(x) =
∞∫

0

e−t(x2+μ2) g̃(t)dt =
∞∫

0

e−tx2
g̃μ(t)dt,

where g̃μ(t) := e−tμ2
g̃(t).

As a preparation for the asymptotic expansion of the entropy for large temperature we now derive some results express-
ing the moments of the function hμ(x), that is to say, the integrals

∞∫
0

hμ(x)xνdx.

To this end, we first compute the two integrals

∞∫
0

log
(

1 + e−√x2+μ2
)

xνdx and

∞∫
0

√
x2 + μ2

e
√

x2+μ2 + 1
xνdx

separately, and then sum them up.
7



R. Dong, M. Khalkhali and W.D. van Suijlekom Journal of Geometry and Physics 167 (2021) 104285
Lemma 3.1. We have the following formulae:

∞∫
1

e−zx(x2 − 1)ν− 1
2 xdx = 2ν

√
π

�

(
ν + 1

2

)
z−ν Kν+1(z) (2)

and

∞∫
1

e−zx(x2 − 1)ν− 1
2 x2dx = 2ν

√
π

�

(
ν + 1

2

)
z−ν−1(zKν(z) + (1 + 2ν)Kν+1(z)

)
. (3)

Proof. According to Lemma A.4, one has the integral formula:

∞∫
1

e−zx(x2 − 1)ν− 1
2 xdx = − 2ν

√
π

�

(
ν + 1

2

)
z−ν

(
∂

∂z
Kν(z) − νKν(z)z−1

)
,

which combined with (40) yields Equation (2).
On the other hand, taking the derivative with respect to z on both sides of (2), we obtain

∞∫
1

e−zx(x2 − 1)ν− 1
2 x2dx = 2ν

√
π

�

(
ν + 1

2

)(
νz−ν−1 Kν+1(z) − z−ν ∂

∂z
Kν+1(z)

)
. (4)

Taking into account Equation (39), we obtain (3). �
Now we can obtain the integrals that we are after, as follows:

Lemma 3.2. When ν > −1, one has the formulae:

∞∫
0

log
(

1 + e−√x2+μ2
)

xνdx = |μ| ν
2 +1 2

ν
2√
π

�

(
ν + 1

2

) ∞∑
n=1

(−1)n+1
K ν

2 +1 (n|μ|)
n

ν
2 +1

, (5)

and

∞∫
0

√
x2 + μ2

e
√

x2+μ2 + 1
xνdx = |μ| ν

2 +1 2
ν
2√
π

�

(
ν + 1

2

) ∞∑
n=1

(−1)n+1

(
|μ|
n

ν
2

K ν
2
(n|μ|) + (1 + ν)

K ν
2 +1 (n|μ|)

n
ν
2 +1

)
. (6)

Proof. We first notice that

∞∫
0

log
(

1 + e−√x2+μ2
)

xνdx =
∞∑

n=1

(−1)n+1 1

n

∞∫
0

e−n
√

x2+μ2
xνdx. (7)

Let z =
√

x2

μ2 + 1, substitute x by z we obtain:

∞∫
0

e−n
√

x2+μ2
xνdx = |μ|ν+1

∞∫
1

e−n|μ|z(z2 − 1)
ν−1

2 zdz.

Thus using Lemma 3.1, one has

∞∫
0

e−n
√

x2+μ2
xνdx = |μ|ν+1 2

ν
2√
π

�

(
ν + 1

2

)
(n|μ|)− ν

2 K ν
2 +1 (n|μ|) . (8)

Taking (8) into (7), we get formula (5).
8
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On the other hand, since√
x2 + μ2

1 + e
√

x2+μ2
=

∞∑
n=1

(−1)n+1
√

x2 + μ2e−n
√

x2+μ2
,

we obtain the formula:

∞∫
0

√
x2 + μ2

e
√

x2+μ2 + 1
xνdx = |μ|ν+2

∞∑
n=1

(−1)n+1

∞∫
1

e−n|μ|z (z2 − 1
) ν−1

2
z2dz.

Now applying Lemma 3.1 again, one gets the integral formula (6). �
If we combine the formula (37) with the sum of the formulae (5) and (6), we obtain the ν-th moment of the function 

hμ(x):

Lemma 3.3. For ν > −1, one has

∞∫
0

hμ(x)xνdx = |μ| ν
2 +22

ν
2√

π
�

(
ν + 1

2

) ∞∑
n=1

(−1)n+1
(

n− ν
2 K ν

2 +2 (n|μ|)
)

.

Let us write

γμ(a) :=
∞∫

0

ta g̃μ(t)dt =
∞∫

0

tae−tμ2
g̃(t)dt. (9)

It is clear that for a fixed chemical potential μ < 0, the equation (9) is an entire function with respect to a ∈C. In view of 
Lemma 3.3, we deduce that when the order a < 0, the coefficient of ta in the heat expansion (see definition in Appendix C) 
is

γμ(a) = 1

�(−a)

∞∫
0

hμ(x
1
2 )x−a−1dx = 2

�(−a)

∞∫
0

hμ(x)x−2a−1dx

= 1√
π

2−a+ 1
2 |μ|−a+ 3

2

∞∑
n=1

(−1)n+1
(

na+ 1
2 K−a+ 3

2
(n|μ|)

)
, a < 0. (10)

Now we will show that for any fixed chemical potential μ < 0, the function (10) is an entire function with respect to 
a ∈C, so that the function (10) can give rise to spectral action coefficients for any order a.

Proposition 3.4. For any fixed chemical potential μ < 0, the function (10) is an entire function in a ∈C. Hence we have the formula

γμ(a) = 1√
π

2−a+ 1
2 |μ|−a+ 3

2

∞∑
n=1

(−1)n+1
(

na+ 1
2 K−a+ 3

2
(n|μ|)

)
(11)

for all a.

Proof. We only need to show that the series

∞∑
n=1

(−1)n+1
(

na+ 1
2 K−a+ 3

2
(n|μ|)

)
(12)

is an entire function in a ∈C. In fact, using the integral expression for the Bessel function Kν (z) [8, 8.432], we have

Kν(z) =
∞∫

0

e−z cosh t cosh(νt)dt, |argz| < π

2
or Re(z) = 0 and ν = 0.

We see that for a fixed z > 0 the function Kν(z) is an entire function with respect to ν ∈ C. Now we need to show that 
equation (12) is locally uniformly convergent. In fact, for |ν| ≤ R ,
9
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|Kν(z)| ≤
∞∫

0

e−z cosh t cosh(Rt)dt = K R(z).

For | − a + 3
2 | ≤ R , where R < ∞, we have∣∣∣ ∞∑

n=1

(−1)n+1
(

na+ 1
2 K−a+ 3

2
(n|μ|)

) ∣∣∣≤ ∞∑
n=1

nR+2 K R (n|μ|) .

According to Lemma A.3, we have the asymptotic expansion

Kν(z) ∼
√

π

2z
e−z z → ∞,

from which it follows that the series 
∑∞

n=1 nR+2 K R (n|μ|) is convergent. Therefore the series (12) is locally uniformly con-
vergent, and the function (11) is an entire function. Since according to Proposition 3.4, γμ(a) is an entire function, the 
expression (11) is valid for all a. �

In addition, we can express the spectral action coefficients γμ(a) in a more concise way via the Poisson summation 
formula.

Proposition 3.5. For any fixed chemical potential μ < 0, we have

γμ(a) = �(a)

2

∞∑
n=−∞

(2a − 1)(2n + 1)2π2 − μ2

((2n + 1)2π2 + μ2)a+1
. (13)

Proof. Using Lemma A.8 and the Poisson summation formula, when ν ≥ − 1
2 , a > 0, we have

∞∑
n=1

(−1)n|n|ν+2 Kν(a|n|) = 1

2

�
(
ν + 1

2

)
(2a)ν

−4π�
( 1

2

) ∞∑
n=−∞

φ′′
ν,a(n), (14)

where φν,a(x) = 1

((2x+1)2π2+a2)
ν+ 1

2
. Since we have the equation

K−a+ 3
2
(n|μ|) = Ka− 3

2
(n|μ|) ,

applying Equation (14) to Proposition 3.4 we then get Equation (13) when a ≥ 3
2 . Now, in Proposition 3.4 we saw that 

γμ(a) is an entire function. It follows that the function (13) has an analytic extension to the whole complex plane C, and 
therefore equation (13) holds for all a ∈C. �

Whenever μ ∈ (−π, 0) we can express the function γμ(a) in terms of Riemann ξ function as well, similar to [4, Prop. 
4.6].

Lemma 3.6. When μ ∈ (−π, 0), the function γμ(a) can be expressed as

γμ(a) =
∞∑

k=0

(−1)k 1 − 2−(2a+2k)

�(k + 1)πa+k(a + k)
ξ(2a + 2k)μ2k. (15)

Proof. We will try to modify formula (13) to get to (15). Since μ ∈ (−π, 0),

1

((2n + 1)2π2 + μ2)a
= 1

((2n + 1)2π2)a

1(
1 + μ2

(2n+1)2π2

)a

= 1

((2n + 1)2π2)a

∞∑
k=0

�(−a + 1)

�(k + 1)�(−a − k + 1)

(
μ2

(2n + 1)2π2

)k

,

which we may substitute in formula (13) to obtain

γμ(a) =
∞∑ (−1)k�(k + a)(2a + 2k − 1)

�(k + 1)

22a+2k − 1

(2π)2a+2k
ζ(2a + 2k)μ2k.
k=0

10
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Since

ξ(s) = s(s − 1)

2π s/2
�
( s

2

)
ζ(s),

we obtain the formula (15). �
We shall follow the same notation as in [4] and denote by

γ (a) = 1 − 2−2a

a
π−aξ(2a).

We then have a more concise expression of γμ(a):

γμ(a) =
∞∑

k=0

(−1)k γ (a + k)

k! μ2k, μ ∈ (−π,0). (16)

Rather than the expressions of γμ in (11) and (13), the formula (16) is only convergent when −π < μ < 0, however as 
we are mainly interested in the asymptotic behaviour of γμ as μ approaches to 0, the expression (16) is more meaningful 
to us, which leads to the following proposition:

Proposition 3.7. Under the assumption of a heat trace expansion of the form (45), we write ψl(β, μ) := ∑
z∈Xl

β−2zγβμ(−z).

For μ < 0 we then have the following expansion for the entropy:

S(φ f ) = Tr(hβμ(βD)) ∼
∞∑
l

ψl(β,μ), β → 0+.

More precisely,

Tr(hβμ(βD)) −
L∑

l=0

ψl(β,μ) = O0(β
2L),

and each term ψl(β, μ) = O0(β
rl ).

Here we refer to Appendix B for the rl and big-O, small-O notations in the above Proposition.

3.2. The average energy of K f ,μ

Now we shall consider the average energy 〈K f ,μ〉β = 〈d�H f ,μ〉β . Let

Z f = Tr(e−βd�H f ,μ )

be the corresponding canonical partition function. Let {εn}n≥0 denote the eigenvalues of D2 in increasing order with multi-
plicities counted, using a similar argument as in the proof of [1, Proposition 5.2.22.] we have

TrHm−

(
e−βd�H f ,μ

)
=

∑
0≤n1<n2<···<nm

exp

⎛⎝−β

m∑
p=1

√
εnp + μ2

⎞⎠
due to the anti-symmetrization and the definition of the second quantization process. Hence we obtain the partition function

Z f = Tr
(

e−βd�H f ,μ

)
=
∑
m≥0

TrHm−

(
e−βd�H f ,μ

)
=
∏
n≥0

(
1 + e−β

√
εn+μ2

)
.

Recall the formula (1) for average energy, we see that the average energy with respect to the operator d�H f ,μ is given by

〈d�H f ,μ〉β = − ∂

∂β
log Z f =

∑
n≥0

√
εn + μ2

1 + eβ
√

εn+μ2
= Tr

(
H f ,μ

1 + eβH f ,μ

)
≡ 1

β
Tr(uβμ(βD)),

in terms of the function uμ(x) :=
√

x2+μ2√
x2+μ2

.

1+e

11
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We observe that the function uμ(x) is just the first part of the function hμ(x) used to describe the entropy above. Let us 
first show that uμ(

√
x) can be expressed as a Laplace transform. Indeed, since we have the expansion

uμ(x) =
√

x2 + μ2

1 + e
√

x2+μ2
=

∞∑
n=1

(−1)n+1
√

x2 + μ2e−n
√

x2+μ2
,

and (cf. e.g. [2, P146, Formula(29)])

√
xe−n

√
x = 1√

π

∞∫
0

t−5/2
(

n2

4
− t

2

)
e− n2

4t e−txdt,

for a fixed μ < 0, we obtain

uμ(x) =
∞∑

n=1

(−1)n+1 1√
π

∞∫
0

t−5/2
(

n2

4
− t

2

)
e− n2

4t e−t(x2+μ2)dt.

Using the Fubini theorem we can switch the order of infinite sum and integral, so that

uμ(x) = 1√
π

∞∫
0

t−5/2
∞∑

n=1

(−1)n+1
(

n2

4
− t

2

)
e− n2

4t e−t(x2+μ2)dt, x ≥ 0.

In fact, let

rμ(t) := 1√
π

t−5/2
∞∑

n=1

(−1)n+1
(

n2

4
− t

2

)
e− n2

4t e−tμ2
, (17)

we observe first that the function rμ(t) can be written more concisely as

rμ(t) = g̃μ(t) − e−tμ2

4
√

πt3/2

(
1 − θ4(0, e− 1

4t )
)

. (18)

As it is shown in [4], the function g̃(t) is positive and 0 ≤ θ4(0, e− 1
4t ) ≤ 1, hence both of the two terms on the right hand 

side of equation (18) are positive. We write this result as the following lemma:

Lemma 3.8. Let ĝμ(t) = e−tμ2

4
√

πt3/2

(
1 − θ4(0, e− 1

4t )
)

, we can then express the function rμ(t) given in (17) more concisely as

rμ(t) = g̃μ(t) − ĝμ(t)

with both g̃μ(t) and ĝμ(t) are positive functions.

Hence we obtain that

∞∫
0

∣∣∣rμ(t)e−tx2
∣∣∣dt =

∞∫
0

g̃μ(t)e−tx2
dt +

∞∫
0

ĝμ(t)e−tx2
dt

≤ hμ(x) +
∞∫

0

e−t(x2+μ2)

4
√

πt3/2
dt < ∞

for μ < ∞. Thus by applying the Fubini theorem we obtain the following expression for the Laplace transform of rμ:

uμ(
√

x) =
∞∫

rμ(t)e−txdt, μ < 0, x ≥ 0.
0

12
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When a < 0, the spectral action coefficient of ta is given by

ωμ(a) =
∞∫

0

rμ(t)tadt = 1

�(−a)

∞∫
0

uμ(
√

x)x−a−1dx.

As before, we can express ωμ(a) in terms of the modified Bessel functions of the second kind:

Lemma 3.9. For any fixed chemical potential μ < 0, the function ωμ(a) is given by

ωμ(a) = |2μ|−a+ 1
2√

π

∞∑
n=1

(−1)n
(

2ana− 1
2 K−a+ 1

2
(n|μ|) − na+ 1

2 |μ|K−a− 1
2
(n|μ|)

)
. (19)

Moreover, it can be extended to an entire function in a.

Proof. Taking any μ < 0, and using the same argument as in the proof of Proposition 3.4, we can show that ωμ(a) can be 
extended to an entire function. �

A more explicit expression for ωμ(a) can again be found using the Poisson summation formula.

Lemma 3.10. For any fixed chemical potential μ < 0, we can express ωμ(a) as

ωμ(a) = �(a + 1)

∞∑
n=−∞

(2n + 1)2π2

((2n + 1)2π2 + μ2)a+1
− |μ|1−2a

4
√

π
�

(
a − 1

2

)
. (20)

Proof. Using (42) and applying Poisson’s summation formula, we obtain, for any ν > 0 and z > 0,

∞∑
n=1

(−1)nnν Kν(z n) =
√

π

2
�

(
ν + 1

2

)
(2z)ν

∞∑
n=−∞

1

((2πn + π)2 + z2)ν+ 1
2

− �(ν)

4

(
2

z

)ν

.

When a > 1
2 , if we apply this formula to (19), we can deduce the equation (20). Now since ωμ(a) is an entire function, we 

conclude that (20) is valid in the whole complex plane. �
Moreover, when μ ∈ (−π, 0), using a similar argument as in the proof of Lemma 3.6 we can express the function ωμ in 

terms of ξ function as well.

Lemma 3.11. When μ ∈ (−π, 0), we obtain the equation

ωμ(a) =
∞∑

(−1)k 2(1 − 2−2(a+k))ξ(2(a + k))

(2a + 2k − 1)k!πa+k
μ2k − �(a − 1/2)

4
√

π
|μ|1−2a.
k=0

13
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If we write

ω(a) := 2(1 − 2−2a)

(2a − 1)πa
ξ(2a) = 2a

2a − 1
γ (a),

we can then express ωμ(a) as

ωμ(a) =
∞∑

k=0

(−1)k ω(a + k)

k! μ2k − �(a − 1/2)

4
√

π
|μ|1−2a, μ ∈ (−π,0), (21)

hence with the assumption of a heat expansion of the form (45), we can express the average energy as follows:

Proposition 3.12. Assume we have the heat trace expansion Tr(e−t D2
) ∼∑l ρl(t), with respect to the scale r0 < r1 < · · · < rl < · · ·

we have ρl(t) = O0(trl ) and ρl(t) = O∞(trl+1). If we write ψl(β, μ) := 1
β

∑
z∈Xl

β−2zωβμ(−z) then we have the following asymptotic 

expansion for the average energy 〈K f ,μ〉β :

〈K f ,μ〉β = 1

β
Tr(uβμ(βD)) ∼

∑
l

ψl(β,μ), β → 0+, |μ| → 0+,

in the sense that

1

β
Tr(uβμ(βD)) −

L∑
l=0

ψl(β,μ) = O0(β
2rL−1) +O0(|μ|1−2rL+1), β → 0+, |μ| → 0+,

and each term ψl(β, μ) = O0(β
2rl−1) + O0(|μ|1−2rl+1).

Proof. By definition,

〈K f ,μ〉β = 1

β
Tr(uβμ(βD)) = 1

β

∞∫
0

rβμ(t)Tr(e−tβ2 D2
)dt,

and

Tr(e−tβ2 D2
) =

L∑
l=0

ρl(tβ
2) + R L(tβ

2),

where the remainder term R L(tβ2) = O0((tβ2)rL ), and R L(tβ2) = O∞((tβ2)rL+1 ). We derive that

1

β
Tr(uβμ(βD)) = 1

β

L∑
l=0

∞∫
0

rβμ(t)ρl(tβ
2)dt + 1

β

∞∫
0

rβμ(t)R L(tβ
2))dt.

Recall that each term ρl(tβ2) = ∑
z∈Xl

az(tβ2)−z so that 
∫∞

0 rβμ(t)ρl(tβ2)dt = ∑
z∈Xl

β−2zωβμ(−z). We shall first show that each 

term ψl(β, μ) = O0(β
2rl−1) + O0(|μ|1−2rl+1). Take the formula (21) into account,

ψl(β,μ) =
∑
z∈Xl

β−1−2z

( ∞∑
k=0

(−1)k ω(−z + k)

k! |βμ|2k − �(−z − 1/2)

4
√

π
|βμ|1+2z

)

= β−1−2z
∑
z∈Xl

∞∑
k=0

(−1)k ω(−z + k)

k! |βμ|2k − |μ|1+2z
∑
z∈Xl

�(−z − 1/2)

4
√

π
,

recall that Xl is a finite set of points with −rl+1 < R(z) < −rl for each z ∈ Xl . Hence we obtain that as β, |μ| → 0+ the first 
term on the right hand side of the above formula is of O0(β

2rl−1) and the second term is of O0(|μ|1−2rl+1).
Now we only need to show that the remainder

1

β

∞∫
0

rβμ(t)R L(tβ
2)dt = O0(β

2rL−1) +O0(|μ|1−2rL+1), as β, |μ| → 0+.

Using Lemma 3.8,
14
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∣∣∣∣∣∣ 1

β

∞∫
0

rβμ(t)R L(tβ
2)dt

∣∣∣∣∣∣≤ 1

β

∞∫
0

g̃βμ(t)
∣∣R L(tβ

2)
∣∣dt + 1

β

∞∫
0

ĝβμ(t)
∣∣R L(tβ

2)
∣∣dt, (22)

according to Proposition 3.7, the first term on the right hand side of (22) is of O0(β
2rL−1), and we have

R L(t) = O0(t
rL ) ⇔ ∀ε > 0,∃δ > 0, such that t < δ implies |R L(t)| ≤ εtrL ,

and since in our assumption each term ψl(t) is locally bounded hence R L(t) is locally bounded as well, therefore

R L(t) = O∞(trL+1) ⇔ ∀δ > 0,∃M(δ) > 0, such that t > δ implies |R L(t)| ≤ M(δ)trL+1 ,

thus the second term on the right hand side of (22) satisfies

1

β

∞∫
0

ĝβμ(t)
∣∣R L(tβ

2)
∣∣dt ≤ εβ2rL−1

β−2δ∫
0

ĝβμ(t)trL dt + M(δ)β2rL+1−1

∞∫
β−2δ

ĝβμ(t)trL+1dt

≤ εβ2rL−1

∞∫
0

ĝβμ(t)trL dt + M(δ)β2rL+1−1

∞∫
0

ĝβμ(t)trL+1dt,

recall that ĝβμ(t) = g̃βμ(t) − rβμ(t), thus

1

β

∞∫
0

ĝβμ(t)
∣∣R L(tβ

2)
∣∣dt ≤ εβ2rL−1(γβμ(rL) − ωβμ(rL)) + M(δ)β2rL+1−1(γβμ(rL+1) − ωβμ(rL+1)). (23)

Take the difference between (16) and (21), we obtain that

β2a−1 (γβμ(a) − ωβμ(a)
)=

( ∞∑
k=0

(−1)k+1

k!
γ (a + k)

2(a + k) − 1
(βμ)2k

)
β2a−1 +

(
�(a − 1/2)

4
√

π

)
|μ|1−2a. (24)

Take (24) into account of (23) we then obtain that

1

β

∞∫
0

rβμ(t)R L(tβ
2)dt = O0(β

2rL−1) +O0(|μ|1−2rL+1), as β, |μ| → 0+. �

3.3. The entropy of φ′
f

We now consider the function h′
μ defined by

h′
μ(x) = |x| − μ

e|x|−μ + 1
+ log

(
1 + e−(|x|−μ)

)
.

The entropy of the state φ′
f associated to K ′

f ,μ can then be expressed as

S(φ′
f ) = −Tr

(
ρ ′

f logρ ′
f

)
= Tr(h′

βμ(βD)).

Notice that

Tr(h′
βμ(βD)) =

∞∫
0

g̃βμ(t)Tr
(

e−tβ2(D2−2μ|D|))dt,

where g̃βμ(t) = g̃(t)e−tβ2μ2
.

We can obtain the asymptotic expansion of Tr(h′ (βD)):
βμ

15
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Proposition 3.13. With the formula (45) and (46) we write

ψl,k(β) =
∑
z∈Xl

z+k/2/∈Z−

1

2
�(z + k/2)Res(ζD(s), z)γβμ(−z + k/2)β−2z+k

+
∑
z∈Xl

z+k/2∈Z−

(−1)z+k/2

(−(z + k/2))!ζD(2z)γβμ(−z + k/2)β−2z+k.

(25)

We then have the following asymptotic expansion:

Tr(h′
βμ(βD)) ∼

∑
k,l≥0

(2μ)k

k! ψl,k(β), β → 0+, (26)

and each term ψl,k(β) = O0(β
2rl+k).

Remark 3.1. Similar to the heat trace expansion (48), the asymptotic formula (26) should be read in the sense that

Tr(h′
βμ(βD)) −

∑
0≤k≤K

rl+1<r0+ K−k
2

(2μ)k

k! ψl,k(β) = O0(β
2r0+K ).

3.4. The average energy of K ′
f ,μ

The average energy of K ′
f ,μ is given by

〈K ′
f ,μ〉β = 〈d�H ′

f ,μ〉β = Tr

(
H ′

f ,μ

1 + eβH ′
f ,μ

)
.

If we define

u′
μ(x) = |x| − μ

1 + e|x|−μ
,

then it follows that

〈d�H ′
f ,μ〉β = 1

β
Tr(u′

βμ(βD)) = 1

β

∞∫
0

rβμ(t)Tr(e−tβ2(D2−2μ|D|))dt.

Proposition 3.14. With the formula (45) and (46), we denote by

ψl,k(β,μ) = 1

β

∞∫
0

(tβ2)kρl,k(tβ
2)rβμ(t)dt,

which can be explicitly expressed as

ψl,k(β,μ) =
∑
z∈Xl

z+k/2/∈Z−

�(z + k/2)Res(ζD2(s), z)ωβμ(−z + k/2)β−2z+k−1

+
∑
z∈Xl

z+k/2∈Z−

(−1)z+k/2

(−(z + k/2))!ζD2(z)ωβμ(−z + k/2)β−2z+k−1.

(27)

We have the following asymptotic expansion:

〈d�H ′
f ,μ〉β = 1

β
Tr(u′

βμ(βD)) ∼
∑

k,l≥0

(2μ)k

k! ψl,k(β,μ), |β| → 0, |μ| → 0,

and each term

(2μ)k

ψl,k(β,μ) = O0(β
2rl+k−1) + O0(|μ|1−2rl+1).
k!
16
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Remark 3.2. The asymptotic expansion is such that

1

β
Tr(u′

βμ(βD)) −
∑

0≤k≤K
rl+1≤r0+ K−k

2

(2μ)k

k! ψl,k(β,μ) = O0

(
β2r0+K−1

)
+O0

(
|μ|1−2r1

)
.

Proof. We denote by r(t) = rμ(t)etμ2
. By definition

〈d�H ′
f ,μ〉β = 1

β
Tr(u′

βμ(βD)) = 1

β

∞∫
0

Tr(e−tβ2(|D|−μ)2
)r(t)dt.

We denote the remainder by R K (t):

R K (t) = Tr(e−tβ2(D2−2μ|D|)) −
∑

0≤k≤K
rl+1≤r0+ K−k

2

(2tβ2μ)k

k! ρl,k(tβ
2),

we observe that R K (t) = O0((tβ2)r0+K/2), and R K (t) = O∞((tβ2)r1+K/2), hence using a similar argument as in the proof of 
Proposition 3.12 we can show that

1

β

∞∫
0

R K (t)rβμ(t)dt = O0

(
β2r0+K−1

)
+O0

(
|μ|1−2r1

)
.

From the explicit expression of ρl,k(t) given in (46) it follows that

ρl,k(t) =
∑
z∈Xl

z+k/2/∈Z−

�(z + k/2)Res(ζD2(s), z)t−z−k/2 +
∑
z∈Xl

z+k/2∈Z−

(−1)z+k/2

(−(z + k/2))!ζD2(z)t−z−k/2.

Since this is a finite sum we may compute the integral term-by-term to obtain the equation (27). Since ρl,k(tβ2) =
O0((tβ2)rl−k/2) and ρl,k(tβ2) = O∞((tβ2)rl+1−k/2), we obtain that

(2μ)k

k! ψl,k(β,μ) = (2μ)k

k!
∞∫

0

(tβ2)kρl,k(tβ
2)rβμ(t)dt

= O0(β
2rl+k−1) + O0(|μ|1−2rl+1). �

4. Bosonic second quantization

In this section we again assume D : H →H is a self adjoint operator with compact resolvent.
Let β > 0, μ < 0 be the inverse temperature and chemical potential, respectively. As before we denote by Hb,μ :=√

D2 + μ21 and H ′
b,μ := D2 − μ1 and write

Kb,μ := d�Hb,μ : F+(H) → F+(H), K ′
b,μ := d�H ′

b,μ : F+(H) → F+(H)

for the corresponding second-quantized operators on the bosonic Fock space F+(H). When e−βHb,μ and e−βH ′
b,μ are trace 

class operators, we denote by

Zb = Tr(e−βKb,μ ), Z ′
b = Tr(e−βK ′

b,μ )

the corresponding canonical partition functions, and by

ρb := e−βKb,μ

Zb
, φb(·) := Tr(ρb·),

ρ ′
b := e−βK ′

b,μ

Z ′
b

, φ′
b(·) := Tr(ρ ′

b ·)

the corresponding density operators and Gibbs states.
17
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4.1. The entropy of φb

let D be a self-adjoint operator with a decomposition D = S ⊕ T , which induces a direct sum decomposition 
√

D2 + μ2 =√
S2 + μ2 ⊕ √

T 2 + μ2. By Lemma 2.1, we obtain the equation with respect to the second quantization operator in the 
bosonic case,

e−βd�
√

D2+μ = e−βd�
√

S2+μ ⊗ e−βd�
√

T 2+μ,

hence we obtain that

S(φb(D)) = S(φb(S)) + S(φb(T )),

here φb(D), φb(S), φb(T ) are the corresponding states respect to the bosonic second quantization operators e−βd�
√

D2+μ , 
e−βd�

√
S2+μ and e−βd�

√
T 2+μ . Namely we obtain that

D �→ S (φb(D))

is an additive spectral function. Now we consider a self-adjoint operator D acting on a one-dimensional Hilbert space 
H = C with eigenvalue x > 0. Then {xn}x≥0 contains the spectrums of the bosonic second quantization operator e−βd�D . 
Thus the corresponding canonical partition function Z =∑n≥0 xn = 1

1−x , and the density matrix ρb = Z−1e−βd�D . We then 
obtain the entropy

S(φb) = −Tr (ρb logρb) = − βx

1 − eβx
− log

(
1 − e−βx) .

This inspires us to define a function k(x) by

k(x) := − |x|
1 − e|x| − log

(
1 − e−|x|) . (28)

If we denote by kμ(x) := k(
√

x2 + μ2), then we get

S(φb) = −Tr(ρb logρb) = Tr
(
kβμ(βD)

)
.

Lemma 4.1. The function k(x) is an even positive function of the variable x ∈R\{0}, and its derivative is

dk

dx
(x) = − x

4 sinh2( x
2 )

.

Lemma 4.2. For x > 0,∑ (2πn)2 − x

((2πn)2 + x)2
= − 1

4 sinh2(
√

x
)
.

Z 2

18
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Proof. We use the Eisenstein series [4]∑
Z

1

(πn + x)2
= 1

sin2 x
,

in conjunction with

sinh x = −i sin(ix).

Thus

1

4 sinh2(
√

x
2 )

= − 1

4 sin2(i
√

x
2 )

= −
∑
Z

1

4(πn + i
√

x
2 )2

= −
∑
Z

(2πn)2 − x

((2πn)2 + x)2
. �

Now since one has the equation

∞∫
0

(
2(2πn)2t − 1

)
e−(2πn)2t−txdt = (2πn)2 − x(

(2πn)2 + x
)2

,

by the Fubini theorem we have the formula

− 1

4 sinh2
√

x
2

=
∞∫

0

f (t)e−txdt, f (t) :=
∑
n∈Z

(
2(2πn)2t − 1

)
e−(2πn)2t,

when x > 0.
Next, let us determine the behaviour of the function f (t) as t → 0+ and t → +∞.

Lemma 4.3. Let

f (t) =
∑
n∈Z

(
2(2πn)2t − 1

)
e−(2πn)2t .

The function f (t) is rapidly decreasing as t → 0+ and approaches −1 as t → +∞.

Proof. Consider the theta function θ(t) = ∑
n∈Z

e−πn2t . Let g(t) = −2t θ ′(t) − θ(t). We have f (t) = g(4πt). Thus it suffices 

to show that g(t) is rapidly decreasing as t → 0+ and approaches −1 as t → +∞. Since θ ′(t) is rapidly decreasing when 
t → +∞, and θ(t) → 1 as t → +∞, we proved that g(t) approaches −1 as t → +∞.

Now, using the Jacobi inversion formula, θ(t) = 1√
t
θ
( 1

t

)
, we have

g(t) = −2t

(
−1

2
t−3/2θ

(
1

t

)
− 1√

t
θ ′
(

1

t

)
t−2
)

− θ(t)

= t−1/2θ

(
1

t

)
+ 2t−3/2θ ′

(
1

t

)
− θ(t)

= 2t−3/2θ ′
(

1

t

)
.

Since as t → 0+ , θ ′ ( 1
t

)
is rapidly decreasing, g(t) is rapidly decreasing, and also the function f (t) is rapidly decreasing as 

t → 0+ . �
Then we have the following lemma:

Lemma 4.4. When x > 0, one has

k(x) =
∞∫

0

e−tx2
f̃ (t)dt, (29)

here

f̃ (t) = − f (t)

2t
= − 1

2t

∑(
2(2πn)2t − 1

)
e−(2πn)2t .
n∈Z

19
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Proof. According to Lemma 4.3, f̃ (t) is rapidly decreasing as t → 0+ . Thus when x > 0, the integral on the right hand side 
is well-defined. We denote the integral on the right hand side of (29) by k̃(x). We have

∂xk̃(x) = −2x

∞∫
0

e−tx2
t f̃ (t)dt = − x

4 sinh2 ( x
2

) = ∂xk(x),

and since both k(x) and k̃(x) approach to 0 when x → ∞, thus k(x) = k̃(x). �
Thus immediately we have

Proposition 4.5. When the chemical potential μ < 0, for all x ∈R,

kμ(x) =
∞∫

0

e−tx2
f̃μ(t)dt,

where

f̃μ(t) = e−μ2t f̃ (t) = −e−μ2t

2t

∑
n∈Z

(
2(2πn)2t − 1

)
e−(2πn)2t .

For the bosonic Fock space, we can get results for the moments of the function kμ which are analogous those in 
Lemma 3.3 for the fermionic case.

Lemma 4.6. When ν > −1, one has the integral formula

∞∫
0

kμ(x)xνdx = |μ| ν
2 +22

ν
2

1√
π

�

(
ν + 1

2

) ∞∑
n=1

n− ν
2 K ν

2 +2 (n|μ|) .

Let us denote by χμ(a) the a’th order spectral action coefficient of kμ(
√

x), that is,

χμ(a) =
∞∫

0

ta f̃μ(t)dt.

Analogous to Proposition 3.4 and 3.5, we have the following lemma:

Lemma 4.7. For a fixed chemical potential μ < 0, we can express the a-th order spectral action coefficient of kμ(
√

x) as:

χμ(a) = 1√
π

2−a+ 1
2 |μ|−a+ 3

2

∞∑
n=1

na+ 1
2 K−a+ 3

2
(n|μ|) , (30)

and

χμ(a) = −�(a)

2

∞∑
n=−∞

(2a − 1)(2n)2π2 − μ2

((2n)2π2 + μ2)a+1
. (31)

Moreover, the expressions (30) and (31) both are entire functions with respect to a ∈C.

We can also express the function χμ(a) in terms of the Riemann ξ function when |μ| is small enough.

Lemma 4.8. For a fixed μ ∈ (−2π, 0), we have the formula

χμ(a) = �(a)

2
|μ|−2a +

∞∑
n=0

(−1)n+1 χ(n + a)

n! μ2n,

where

χ(a) = ξ(2a)

a
= 1

2a
γ (a).
(4π) a 2 − 1

20
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Hence with the assumption of the heat trace expansion (45), using a similar argument as in the proof of Proposition 3.12, 
we finally obtain the asymptotic expansion of Tr(kβμ(βD)):

Proposition 4.9. With the heat trace expansion (45), let

ψl(β,μ) :=
∞∫

0

ρl(tβ
2) f̃βμ(t)dt =

∑
z∈Xl

azβ
−2zχβμ(−z),

we obtain the following asymptotic expansion for the von Neumann entropy S(ρb):

S(ρb) = Tr(kβμ(βD)) ∼
∑

l

ψl(β,μ), β → 0+, |μ| → 0+.

More precisely,

Tr(kβμ(βD)) −
L∑

l=0

ψl(β,μ) = O0(β
2rL ) +O0(|μ|−2rL+1),

and each term ψl(β, μ) = O0(β
2rl ) + O0(|μ|−2rl+1).

4.2. The average energy of Kb,μ

In the bosonic case, the
average energy with respect to the operator Kb,μ = d�Hb,μ is equal to

〈d�Hb,μ〉β = − ∂

∂β

(
log Zb,β,μ

)= −Tr

(
Hb,μ

1 − eβHb,μ

)
.

If we write pμ(x) := −
√

x2+μ2

1−e

√
x2+μ2

, then the average energy is equal to

〈d�Hb,μ〉β = 1

β
Tr(pβμ(βD)).

As with the discussion in section 3.2, with the chemical potential μ < 0, the function pμ(x) is given by the following 
Laplace transform:

pμ(
√

x) =
∞∫

0

sμ(t)e−txdt, μ < 0, x ≥ 0, (32)

where

sμ(t) = 1√
π

t−5/2
∞∑

n=1

(
n2

4
− t

2

)
e− n2

4t e−μ2t .

In contrast to the case of fermionic second quantization, here we cannot take μ = 0, as then the integral on the right-hand 
side of the formula (32) does not converge. This is consistent with the fact that p0(x) is singular at x = 0.
21
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When the order a < 0, we denote by κμ(a) the spectral action coefficient of the spectral action function pμ(
√

x), namely,

κμ(a) =
∞∫

0

sμ(t)tadt = 1

�(−a)

∞∫
0

pμ(
√

x)x−a−1dx = 2

�(−a)

∞∫
0

pμ(x)x−2a−1dx.

Using the same argument as in section 3.2, we have

Lemma 4.10. For any fixed chemical potential μ < 0,

κμ(a) = 2−a+ 1
2√

π
|μ|−a+ 1

2

∞∑
n=1

(
na+ 1

2 |μ| K−a− 1
2
(n|μ|) − 2 a na− 1

2 K−a+ 1
2
(n|μ|)

)
, (33)

and it can be extended to a holomorphic function on C. Thus this formula gives the spectral action coefficients of all orders. Moreover,

κμ(a) = −�(a + 1)

∞∑
n=−∞

(2n)2π2

((2n)2π2 + μ2)a+1
+ |μ|−2a+1

4
√

π
�

(
a − 1

2

)
, (34)

which can also be extended to an entire function for any fixed chemical potential μ < 0.

Using the same trick as in the previous section, we can express κμ(a) in terms of Riemann ξ function as follows:

Lemma 4.11. Let

κ(a) = 2ξ(2a)

(4π)a(2a − 1)
= 2a

(2a − 1)(22a − 1)
γ (a),

when μ ∈ (−2π, 0), we can express the function αμ(a) as

κμ(a) =
∞∑

n=0

(−1)n+1 κ(a + n)

n! μ2n + |μ|1−2a

4
√

π
�

(
a − 1

2

)
. (35)

Proposition 4.12. In terms of the heat trace expansion (45) let

ψl(β,μ) := 1

β

∞∫
0

ρl(tβ
2)sβμ(t)dt = 1

β

∑
z∈Xl

azβ
−2zκβμ(−z).

We then obtain the asymptotic expansion for the average energy:

〈Kb,μ〉β = 1

β
Tr(pβμ(βD)) ∼

∑
l

ψl(β,μ), β → 0+, |μ| → 0+,

in the sense that

1

β
Tr(pβμ(βD)) −

L∑
l=0

ψl(β,μ) = O0(β
2rL−1) +O0(|μ|1−2rL+1),

and each term ψl(β, μ) = O0(β
2rl−1) + O0(|μ|1−2rl+1).

4.3. The entropy of φ′
b

Let k′
μ(x) = k(x − μ), where the function k(x) is given in (28). Then the entropy of the state φ′

b is given by

S(φ′
b) = −Tr(ρ ′

b logρ ′
b) = Tr(k′

βμ(βD2)).

Now we shall consider the spectral action

Tr(kβμ(βD2)) =
∞∫

f̃ (t)Tr(e−tβ2(D2−μ)2
)dt.
0

22
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Proposition 4.13. With the asymptotic expansion (50), let

ψl,k(β,μ) =
∞∫

0

f̃βμ(t)(tβ2)kρ̃l,k(tβ
2)dt,

and, more explicitly,

ψl,k(β,μ) =1

2

∑
z∈Xl

(z+k)/2/∈Z−

�

(
k + z

2

)
Res(ζD2(s), z)χβμ

(−z + k

2

)
β−z+k

+
∑
z∈Xl

(z+k)/2∈Z−

(−1)
k+z

2(
− k+z

2

)
!
ζD2(z)χβμ

(−z + k

2

)
β−z+k.

Then there is the following asymptotic expansion:

S(φ′
b) = Tr(kβμ(βD2)) ∼

∑
l,k

(2μ)k

k! ψl,k(β,μ), β → 0+, |μ| → 0+.

More precisely,

Tr(kβμ(βD2)) −
∑

0≤k≤K
rl+1≤r0+K−k

(2μ)k

k! ψl,k(β,μ) = O0(β
r0+K ) +O0(|μ|−r0),

and each term

(2μ)k

k! ψl,k(β,μ) = O0(β
rl+k) + O0(|μ|−rl+1).

4.4. The average energy of K ′
b,μ

Let pμ(x) = − x−μ
1−ex−μ and recall that H ′

b,μ = D2 − μ1. By definition, the average energy of K ′
b,μ = d�H ′

b,μ is given by

〈K ′
b,μ〉β = − ∂

∂β
(log Zb,β,μ) = 1

β
Tr(pβμ(βD2)) = 1

β

∞∫
0

s(t)Tr
(

e−tβ2(D2−μ)2
)

dt.

Using similar argument as before, we obtain the following proposition:

Proposition 4.14. With the asymptotic expansion (50), let

ψl,k(β,μ) = 1

β

∞∫
0

sβμ(t)(tβ2)kρ̃l,k(tβ
2)dt,

and, more explicitly,

ψl,k(β,μ) =1

2

∑
z∈Xl

(z+k)/2/∈Z−

�

(
k + z

2

)
Res(ζD2(s), z)κβμ

(−z + k − 1

2

)
β−z+k−1

+
∑
z∈Xl

(z+k)/2∈Z−

(−1)
k+z

2(
− k+z

2

)
!
ζD2(z)κβμ

(−z + k

2

)
β−z+k−1.

We then obtain the asymptotic expansion:

〈K ′
b,μ〉β = 1

β

∞∫
s(t)Tr

(
e−tβ2(D2−μ)2

)
dt ∼

∑
l,k

(2μ)k

k! ψl,k(β,μ), β → 0+, |μ| → 0+.
0
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More precisely,

〈K ′
b,μ〉β −

∑
0≤k≤K

rl+1≤r0+K−k

(2μ)k

k! ψl,k(β,μ) = O0

(
βr0+K

)
+O0(|μ|−r0)

and each term

(2μ)k

k! ψl,k(β,μ) = O0

(
βrl+k−1

)
+ O0(|μ|1−rl+1).

Appendix A. Modified Bessel functions of the second kind

The modified Bessel functions {Iν (z), Kν(z)} are the solutions of the modified Bessel differential equation

z2 y′′ + zy′ − (z2 + ν2)y = 0,

where

Iν(z) =
(

1

2
z

)ν ∞∑
n=0

( 1
2 z
)2n

�(n + ν + 1)n! ,

and

Kν(z) = π

2

I−ν(z) − Iν(z)

sinνπ
, −π < argz < π. (36)

The right-hand side of (36) should be determined by taking the limit when ν is an integer. The function Iν(z) is called the 
modified Bessel function of the first kind, and Kν (z) the modified Bessel function of the second kind.

We shall introduce some basic properties of the modified Bessel function of the second kind referring to [11,2,8] for 
more details.

Lemma A.1. When α ∈R, one has the formula

Kα(z) = K−α(z).

Lemma A.2. We have the formula

d

dz
K0(z) = −K1(z).

Lemma A.3. For α ≥ 0, when z → 0+ , one has the asymptotics

Kα(z) ∼
{− log( z

2 ) − γ α = 0,

�(α)
2

(
2
z

)α
α > 0,

where γ is Euler’s constant. When z ↗ ∞, one has

Kα(z) ∼
√

π

2z
e−z.

Lemma A.4. One has the integral representation formula of the function Kν(z):

Kν(z) =
√

π

�
(
ν + 1

2

) ( z

2

)ν
∞∫

1

e−zx(x2 − 1)ν−1/2dx for ν > −1

2
.

Lemma A.5. [8, 8.486] Let Kν(z) be the modified Bessel function of the second kind. Then one has

zKν−1(z) − zKν+1(z) = −2νKν(z), (37)

Kν−1(z) + Kν+1(z) = −2
∂

∂z
Kν(z), (38)

z
∂

∂z
Kν(z) + νKν(z) = −zKν−1(z), (39)

z
∂

Kν(z) − νKν(z) = −zKν+1(z). (40)

∂z
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Lemma A.6. [8, 8.432] When ν > − 1
2 , a > 0, and x > 0, we have the integral formula

xν Kν(ax) = �
(
ν + 1

2

)
(2a)ν

�
( 1

2

) ∞∫
0

cos xt

(t2 + a2)ν+ 1
2

dt.

Using Lemma A.6, we obtain the following Lemma:

Lemma A.7. When ν > − 1
2 , a > 0, and x ∈R\{0}, one has

|x|ν Kν (a|x|) = π�
(
ν + 1

2

)
(2a)ν

�
( 1

2

) ψ̂ν,a(x), (41)

and

eiπx|x|ν Kν (a|x|) = π�
(
ν + 1

2

)
(2a)ν

�
( 1

2

) φ̂ν,a(x), (42)

where

ψν,a(t) = 1(
(2πt)2 + a2

)ν+ 1
2

, φν,a(t) = ψν,a

(
t + 1

2

)
,

and ψ̂ν,a, ̂φν,a denote the corresponding Fourier transforms of ψν,a and φν,a. Namely,

ψ̂ν,a(x) =
∞∫

−∞
ψν,a(t)e−2π ixtdt, φ̂ν,a(x) =

∞∫
−∞

φν,a(t)e−2π ixtdt.

Proof. According to Lemma A.6, one has

|x|ν Kν(a|x|) = �
(
ν + 1

2

)
(2a)ν

2�
( 1

2

) ∞∫
−∞

1(
t2 + a2

)ν+ 1
2

e−ixtdt,

and then changing the variable t �→ 2πt , we can obtain formulae (41) and (42). �
From Lemma A.7, one can easily deduce the following lemma:

Lemma A.8. When ν ≥ − 1
2 , a > 0, and x ∈R\{0}, one has

|x|ν+2 Kν (a|x|) = �
(
ν + 1

2

)
(2a)ν

−4π�
( 1

2

) ψ̂ ′′
ν,a(x), (43)

and

eiπx|x|ν+2 Kν (a|x|) = �
(
ν + 1

2

)
(2a)ν

−4π�
( 1

2

) φ̂′′
ν,a(x). (44)

Appendix B. Asymptotic expansion

Before the discussion we recall the big-O and small-O notation: Let X be the space C ∪ {∞} or R ∪ {∞}, U be a 
neighbourhood of 0 and V = U\{0}. For two functions f , g : V →C we write

f (x) = O0(g(x)) if lim sup
x→0

| f (x)/g(x)| < ∞,

f (x) = O0(g(x)) if lim
x→0

| f (x)/g(x)| = 0.

Similarly, if U is a neighbourhood of ∞ we write

f (x) = O∞(g(x)) if lim sup
x→∞

| f (x)/g(x)| < ∞,

f (x) = O∞(g(x)) if lim | f (x)/g(x)| = 0.

x→∞
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We deduce, under suitable conditions, a heat trace expansion for Tr(e−t(|D|−μ)2
) and for Tr(e−t(D2−μ)2

), from the heat 
trace expansion of Tr(e−t D2

).
Let D be a self-adjoint unbounded operator acting on a Hilbert space H such that ker D = 0. We assume that for some 

p > 0, and all ε > 0,

Tr |D|−p−ε < ∞, but Tr |D|−p+ε = ∞.

We obtain the spectral zeta function

ζD2(s) := Tr |D|−2s, R(s) > p/2,

and we denote by

Zk(s) := �(s)ζD2(s − k/2), k ∈N.

We assume that

(1) There exists a sequence r0 < r1 < r2 < · · · strictly increasing to +∞ and a discrete set X ⊂C such that for each vertical 
strip Ul := {z ∈C

∣∣∣− rl+1 < R(z) < −rl} the intersection Xl := Ul ∩ X is a finite set and

Tr e−t D2 ∼
t↓0

∞∑
l=0

ρl(t), with ρl(t) =
∑
z∈Xl

azt−z. (45)

Remark B.1. Recall from [6, Theorem 3.2] (see also [7,9]) that by assumption (1) we may conclude that ζD2 (s) admits a 
meromorphic extension to the whole complex plane with only simple poles in the dimension spectrum �(D). Moreover

Res(Z0(s), z) = az.

(2) ζD2 (s) is regular at s = −n for all n ∈N .

By assumption (1)

Tr e−t D2 =
N∑

l=0

ρl(t) + R N(t),

where R N(t) =O0(trN+1).
Moreover, for each k ∈N

Tr(|D|ke−t D2
) =

N∑
l=0

ρl,k(t) + R N,k(t).

In more detail, ρl,k can be expressed as

ρl,k(t) =
∑
z∈Xl

z+k/2/∈Z−

�(z + k/2)Res(ζD2(s), z)t−z−k/2

+
∑
z∈Xl

z+k/2∈Z−

(−1)z+k/2

(−(z + k/2))!ζD2(z)t−z−k/2,

(46)

so that ρl,k(t) = O0(trl−k/2), and ρl,k(t) = O∞(trl+1−k/2).
Now we apply the functional calculus to show that

e−t(|D|−μ)2 − e−tμ2
K∑

k=0

(2tμ)k

k! e−t D2 |D|k ≤ e−tμ2 |2tμ|K+1

(K + 1)! e−t D2 |D|K+1. (47)

Indeed, we can consider the Taylor expansion of e−t(|λ|−μ)2
on an eigenvalue λ of D:

e−t(|λ|−μ)2 = e−tμ2
e−tλ2

(
K∑ (2tμ)k

k! |λ|k +RK (tμ)

)
,

k=0
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where the remainder satisfies

RK (tμ) = (−2|λ|)K+1

K !
0∫

tμ

e2s|λ|(s − tμ)K ds

≤ (2|λ|)K+1

K !
0∫

tμ

(s − tμ)K ds

= |2tμλ|K+1

(K + 1)! .

Now the operator inequality (47) follows. Taking the trace on both sides of that inequality yields

Tr
(

e−t(|D|−μ)2
)

− e−tμ2
K∑

k=0

(2tμ)k

k! Tr
(

e−t D2 |D|k
)

≤ e−tμ2 |2tμ|K+1

(K + 1)! Tr
(

e−t D2 |D|K+1
)

.

We now realise that for k ≤ K

Tr
(

e−t D2 |D|k
)

=
∑

rl+1≤r0+ K−k
2

ρl,k(t) + O(tr0+ K
2 −k), t → 0+,

and

Tr
(

e−t D2 |D|K+1
)

= O(tr0− K+1
2 ), t → 0+,

hence we obtain the asymptotic expansion

Tr(e−t(|D|−μ)2
) ∼ e−tμ2 ∑

k,l≥0

(2tμ)k

k! ρl,k(t), t → 0+. (48)

More precisely,

Tr(e−t(|D|−μ)2
) − e−tμ2 ∑

0≤k≤K
rl+1≤r0+ K−k

2

(2tμ)k

k! ρl,k(t) = O(tr0+ K
2 ), t → 0+.

We should also compute the asymptotic expansion of Tr(e−t(D2−μ)2
). We denote Y(s) := �(s)ζD2 (2s). According to [6, 

Corollary 3.9], we obtain the asymptotic expansion:

Tr(e−t D4
) ∼

∑
l

ρ̃l(t), ρ̃l(t) =
∑
z∈Xl

ãzt−z, t → 0+, (49)

with ãz = Res(Y(s), z). Moreover, we have

Tr(D2ke−t D4
) ∼

∑
l

ρ̃l,k(t),

where

ρ̃l,k(t) =
∑
z∈Xl

(z+k)/2/∈Z−

�((z + k)/2)

2
Res(ζD2(s), z)t− z+k

2

+
∑
z∈Xl

(z+k)/2∈Z−

(−1)(z+k)/2

(−(z + k)/2)!ζD2(z)t− z+k
2 .

Thus we get the asymptotic expansion

Tr(e−t(D2−μ)2
) ∼ e−tμ2 ∑ (2tμ)k

k! ρ̃l,k(t), t → 0+, (50)

k,l≥0
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so that

Tr(e−t(D2−μ)2
) − e−tμ2 ∑

0≤k≤K
rl+1≤r0+K−k

(2tμ)k

k! ρ̃l,k(t) = O(t
r0+K

2 ), t → 0+.

Appendix C. Spectral action basics

In this appendix we shall briefly recall the spectral action principle, originally formulated by Chamseddine and Connes 
[3]. Note that we assume a slightly weaker condition on the spectral triple compared to our assumptions in Appendix B
in Eq. (45). Also we use a slightly different notation in this Appendix, in conformity with the original formulation in [3]. 
Assume (A, H, D) is a finitely summable regular spectral triple with a simple dimension spectrum �(D). The spectral action 
is defined as

Tr( f (D/�)),

where f (x) is a non-negative even smooth function which is rapidly decreasing at ±∞, and � is a positive number called 
mass scale, or cutoff. Note that f (D/�) is a trace-class operator. We denote by χ(x) = f (

√
x), and assume that χ(x) is 

given as a Laplace transform

χ(x) =
∞∫

0

e−sx g(s)ds,

where g(s) is rapidly decreasing near 0 and ∞. We also assume that there is a heat trace expansion

Tr
(

e−t D2
)

∼
∑
α

aαtα, t → 0+.

It was proved in [3] that the spectral action has an asymptotic expansion for � → ∞, namely,

Tr(χ(D2/�)) ∼
∑

aα�−α

∞∫
0

sα g(s)ds.

When α < 0, by the Mellin transform,

sα = 1

�(−α)

∞∫
0

e−sxx−α−1dx.

Thus the spectral action coefficient is

∞∫
0

sα g(s)ds = 1

�(−α)

∞∫
0

χ(x)x−α−1dx.

When α = 0,

∞∫
0

g(s)ds = χ(0).

When α > 0, the spectral action coefficient 
∫∞

0 sα g(s)ds is of order �−1. Thus we get

Tr(χ(D2/�)) ∼
∑
α<0

aα�−α 1

�(−α)

∞∫
0

χ(x)x−α−1dx + a0χ(0) +O(�−1), � → ∞.

And when α = n is a positive integer, since (∂x)
n(e−sx) = (−1)nsne−sx , we have that

∞∫
sn g(s)ds = (−1)n

⎛⎝ ∞∫
(∂x)

n(e−sx)g(s)ds

⎞⎠∣∣∣∣∣
x=0

= (−1)nχ(n)(0).
0 0

28



R. Dong, M. Khalkhali and W.D. van Suijlekom Journal of Geometry and Physics 167 (2021) 104285
References

[1] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum-Statistical Mechanics. II, second edition, Springer-Verlag, New York, 1997.
[2] Bateman Manuscript Project, H. Bateman, A. Erdélyi, United States Office of Naval Research, Tables of Integral Transforms: Based, in Part, on Notes Left 

by Harry Bateman, Bateman Manuscript Project, vol. 1, McGraw-Hill, 1954.
[3] A.H. Chamseddine, A. Connes, The spectral action principle, Commun. Math. Phys. 186 (1997) 731–750.
[4] A.H. Chamseddine, A. Connes, W.D. van Suijlekom, Entropy and the spectral action, Commun. Math. Phys. 373 (2020) 457–471.
[5] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
[6] M. Eckstein, B. Iochum, Spectral Action in Noncommutative Geometry, Springer Briefs in Mathematical Physics, Springer International Publishing, 2019.
[7] H.D. Fegan, P. Gilkey, Invariants of the heat equation, Pac. J. Math. 117 (2) (1985) 233–254.
[8] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, seventh edition, Elsevier/Academic Press, Amsterdam, 2007, Translated from the 

Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.
[9] G. Grubb, R.T. Seeley, Zeta and eta functions for Atiyah–Patodi–Singer operators, J. Geom. Anal. 6 (1996) 31–77.

[10] E.M. Harrell, W. Thirring, Quantum Mathematical Physics: Atoms, Molecules and Large Systems, Springer, Berlin, Heidelberg, 2013.
[11] N.M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, Wiley, 1996.
29

http://refhub.elsevier.com/S0393-0440(21)00131-5/bibE1014F74BEE4270F6BFCA481BF36509Fs1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibFF9E9A1B23412FACFB77ECA91D1D6A82s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibFF9E9A1B23412FACFB77ECA91D1D6A82s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibA74DEDF05406AB6A1A606E9F5A525768s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bib6AB6757E65B0DCD9D4CB20F36C4AC713s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bib22CD12897C9A59BBE2A187D071443094s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bib020C670823F60D2151BED09CECB84AA1s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibD30DE621FA43C525BB6D49A77C6F2D52s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibEA300A1838354A9A0F78559D9677F492s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibEA300A1838354A9A0F78559D9677F492s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibEF6E7DB31B7661F848996727B711EE32s1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bib25E75436CF5B272BB6AFB12A0B57644Cs1
http://refhub.elsevier.com/S0393-0440(21)00131-5/bibED8280AE349BC67605C8BEF23F0565B0s1

	Second quantization and the spectral action
	1 Introduction
	2 Basics of second quantization
	2.1 Fock space and second quantization
	2.1.1 Hamiltonians and time evolution

	2.2 CAR and CCR algebras
	2.2.1 Gibbs states, entropy and energy

	2.3 Spectral triples and second quantization

	3 Fermionic second quantization
	3.1 The entropy of φf
	3.2 The average energy of Kf,μ
	3.3 The entropy of φ′f
	3.4 The average energy of K′f,μ

	4 Bosonic second quantization
	4.1 The entropy of φb
	4.2 The average energy of Kb,μ
	4.3 The entropy of φ′b
	4.4 The average energy of K′b,μ

	Appendix A Modified Bessel functions of the second kind
	Appendix B Asymptotic expansion
	Appendix C Spectral action basics
	References


