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a Departamento de Matemáticas, Universidad de Castilla-La Mancha, Spain
b Departamento de Geometrı́a y Topologı́a, Universidad de Granada, Spain

Received 9 June 2006; received in revised form 20 December 2006; accepted 16 February 2007
Available online 23 February 2007

Abstract

In this paper we study a wide family of spacelike surfaces in S3
1 which includes, for instance, constant mean curvature 1 surfaces

and flat surfaces: those whose mean and Gauss–Kronecker curvatures verify the lineal relationship 2a(H − 1)+ b(K − 1) = 0 for
a, b ∈ R, a +b 6= 0. We show that these surfaces can be parametrized with holomorphic data and we use it to classify the complete
surfaces from this family with non-negative Gaussian curvature.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The global study of constant mean curvature and constant Gaussian curvature surfaces in space forms has been of
special relevance in submanifolds geometry, especially those ones whose structure equations are integrable in terms
of holomorphic data. This is owing to the fact that, in this case, there are a great deal of global results from complex
analysis which can be applied to such study. Some representative examples are the Enneper–Weierstrass representation
for minimal surfaces in R3 [17] and the McNertney–Kobayashi one for maximal surfaces in L3 [13].

In this paper we will deal with spacelike surfaces in the de Sitter space S3
1, which have been of increasing

interest in recent years, motivated, in part, by the fact that they exhibit nice Bernstein-type properties. For instance,
Ramanathan [18] proved that every compact spacelike surface in S3

1 with constant mean curvature is totally umbilical.
This result was generalized to hypersurfaces of any dimension by Montiel [16]. In the same direction, the first author
and Alı́as proved in [2] that the totally umbilical round spheres are the only complete spacelike hypersurfaces with
bounded Gauss map and constant mean curvature.
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On the other hand, Li [14] showed that every compact spacelike surface in S3
1 with constant Gaussian curvature is

totally umbilical (see also [3] for some generalizations to the case of hypersurfaces in Sn
1 with a higher order mean

curvature). More recently, the first author and Romero [5] have proved that the totally umbilical round spheres are the
only compact spacelike surfaces in the de Sitter space such that the Gaussian curvature of the second fundamental
form is constant.

As a natural generalization of Ramanathan and Li results, the first author and Gálvez [4] characterized the totally
umbilical round spheres of S3

1 as the only compact linear Weingarten spacelike surfaces.
In this work we study spacelike surfaces in S3

1 whose mean curvature, H , and Gauss–Kronecker curvature, K ,
verify the relationship

2 a (H − 1)+ b(K − 1) = 0,

with a+b 6= 0, that is, surfaces of elliptic type. We will refer to such surfaces as linear Weingarten surfaces of Bianchi
type, in short BLW-surfaces. The reason for this terminology is that Bianchi [6] was the first to study such surfaces in
the hyperbolic space H3.

We have organized the paper as follows. In Section 2 we introduce the notation and main concepts. Also, in
Theorem 1 we find a special Riemannian metric σ on any BLW-surface and prove that its hyperbolic Gauss map is
conformal for the conformal structure induced by σ . This fact will be the key, in Section 3, to obtaining a Weierstrass
representation for such a surface (Theorem 2 and Corollary 1) in terms of meromorphic data which generalizes the one
given by Aiyama and Akutagawa for H = 1 [1] (see also [8]) and by Gálvez, Martı́nez and Milán for flat surfaces [9].
We also refer the reader to [10] where a representation for linear Weingarten surfaces of Bryant type in H3 is obtained.

By using this representation, in Section 4 we classify the complete BLW-surfaces with non-negative Gaussian
curvature (Theorems 3 and 4).

2. Set-up

Let us denote by L4 the four-dimensional Lorentz–Minkowski space given as the vectorial space R4 with the
Lorentzian metric 〈, 〉 induced by the quadratic form −x2

0 + x2
1 + x2

2 + x2
3 , and consider the de Sitter space realized as

the Lorentzian submanifold

S3
1 = {(x0, x1, x2, x3) ∈ L4

: −x2
0 + x2

1 + x2
2 + x2

3 = 1}.

As is well known, S3
1 inherits from L4 a time-orientable Lorentzian metric which makes it the standard model of a

Lorentzian space of constant sectional curvature 1.
We will also consider the hyperbolic space

H3
= {(x0, x1, x2, x3) ∈ L4

: −x2
0 + x2

1 + x2
2 + x2

3 = −1, x0 > 0}

and the positive null cone given by

N3
+ = {(x0, x1, x2, x3) ∈ L4

: −x2
0 + x2

1 + x2
2 + x2

3 = 0, x0 > 0}.

A smooth immersion ψ : S −→ S3
1 of a two-dimensional connected manifold S is said to be a spacelike surface if

the induced metric via ψ is a Riemannian metric on S, which, as usual, is also denoted by 〈, 〉. The time orientation of
S3

1 allows us to choose a timelike unit normal field η globally defined on S, tangent to S3
1, and hence we may assume

that S is oriented by η.
Let us consider, associated with ψ , the map
φ : S −→ N3

+ given by φ := ψ +η = (φ0, φ1, φ2, φ3). Then the hyperbolic Gauss map of ψ is defined as the map

G =
φ1 + iφ2

φ0 + φ3
∈ C ∪ {∞}

or equivalently

G ≡

(
φ1

φ0
,
φ2

φ0
,
φ2

φ0

)
∈ S2

⊆ R3
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(see [7]). In addition, by considering the inclusion R3
−→ L4 given by (x1, x2, x3) 7−→ (1, x1, x2, x3) we can also

identify

G ≡
1
φ0
(φ0, φ1, φ2, φ3) ∈ N3

+.

Given a spacelike immersionψ : S −→ S3
1, we will denote by I = 〈dψ, dψ〉, I I = 〈dψ,−dη〉 and I I I = 〈dη, dη〉

its first, second and third fundamental forms respectively.
Let A be a Riemannian metric on S and let us take a conformal parameter z for A. Given a 2-form B =

Ldz2
+ 2M |dz|2 + Ndz2, we define Q(B, A) as the 2-form Q(B, A) = Ldz2. Observe that, in particular, Q(I I, I ) is

nothing but the Hopf differential of the immersion ψ .
In this paper we will deal with a wide family of linear Weingarten surfaces in S3

1, in particular those whose mean
and Gauss–Kronecker curvatures, H and K respectively, satisfy a linear relationship of the type

2 a (H − 1)+ b (K − 1) = 0, a, b ∈ R, a + b 6= 0. (1)

We will refer to these surfaces as linear Weingarten surfaces of Bianchi type, for short, BLW-surfaces.
In the following lemma we gather several technical results that will be essential for obtaining the conformal

representation for the BLW-surfaces.

Theorem 1. Let ψ : S −→ S3
1 be a BLW-surface. Then we can choose a, b ∈ R such that |a + b| = 1,

2 a (H − 1) + b (K − 1) = 0, and σ = a I + b I I is a Riemannian metric on S. In addition, the hyperbolic
Gauss map is conformal for σ . Moreover, either ψ is a totally umbilical surface contained in a degenerate hyperplane
or Iφ = 〈dφ, dφ〉 is a pseudometric which is conformal to σ .

Proof. First, note that scaling a and b in (1), such relationship holds with a + b = 1.
In order to complete the proof, we will use some elemental facts from the theory of Codazzi pairs. In particular,

the concepts and results that we will need can be found in [15].
Since (I, I I ) is a Codazzi pair and H and K verify the linear relationship (1), it follows from [15, Theorem 8] that

σ is definite. Actually, it can also be seen by taking {e1, e2} as a 〈, 〉-orthonormal frame at a point p ∈ S such that
dη(ei ) = −ki ei , i = 1, 2, where k1, k2 stand for the principal curvatures of ψ . Then

σ(e1, e1) σ (e2, e2)− σ(e1, e2)
2

= (a + bk1) (a + bk2)

= a2
+ b (2aH + bK ) = (a + b)2 = 1,

and so we can assume that σ is definite.
Now, replacing a by −a and b by −b if necessary, we have that σ is positive definite and |a + b| = 1.
On the other hand, using the well-known relation I I I = 2H I I − K I , one gets

Iφ = 〈d(ψ + η), d(ψ + η)〉 = −(K − 1)I + 2(H − 1)I I. (2)

Let us distinguish the two following cases:
• If b = 0, and so H = 1 on S, let us take a conformal parameter z for σ = I . Then, from [15, Theorem 8, (i)]

Q(I I, I ) = 〈ψz,−ηz〉dz2 is a holomorphic 2-form for the conformal structure induced by σ . Observe that the
set of singular points of Iφ = −(K − 1)I coincides with that of umbilical points of ψ with K = 1. Now, since
the zeros of Q(I I, I ) are precisely the umbilical points of S, either ψ is a totally umbilical surface contained in a
degenerate hyperplane or Iφ is a pseudometric.

• If b 6= 0, let us take a conformal parameter z for σ . In this case [15, Theorem 8, (ii)] assures that Q(I, σ ) =

〈ψz, ψz〉dz2 is holomorphic for the conformal structure induced by σ . Hence, since 0 = Q(σ, σ ) = 〈aψz −

bηz, ψz〉dz2 then Q(I I, σ ) is also holomorphic. Now, from (1) and (2) we have that bIφ = 2(H − 1)σ and so its
set of singular points coincides with that of umbilical points of ψ with H = 1 = K . The reasoning ends as in the
above case.

Finally, let us see that G is conformal for the conformal structure given by σ . If we take z as a conformal parameter
for σ and put G = (1/φ0)(φ0, φ1, φ2, φ3), that is equivalent to seeing that 〈Gz,Gz〉 = 0. In fact,

〈Gz,Gz〉 =
1
φ2

0
〈(ψ + η)z, (ψ + η)z〉

which vanishes identically because the pseudometric Iφ is conformal to σ as we have seen above. �
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Remark 1. If S is compact and simply connected (and consequently ψ(S) is a topological sphere), since Theorem 1
assures that Q(I, σ ) and Q(I I, σ ) are holomorphic 2-forms, it follows that both Q(I, σ ) and Q(I I, σ ) vanish
identically on S and ψ(S) must be a totally umbilical sphere.

Remark 2. From the proof of Theorem 1, it follows easily that ψ is totally umbilical if and only if Iφ vanishes
identically.

3. Conformal representation of BLW-surfaces

Let ψ : S −→ S3
1 be a BLW-surface and let us take a conformal parameter z for the Riemannian metric σ , which

is also conformal for the pseudometric Iφ from Theorem 1. If we put

G ≡ G1 + iG2 =
φ1 + iφ2

φ0 + φ3
∈ C ∪ {∞} ,

then φ can be written as

φ =
ρ

2
(1 + |G|

2,G + G,−i(G − G), 1 − |G|
2) ∈ N3

+ (3)

where ρ = φ0 + φ3.
In the following theorem we obtain a conformal representation for the BLW-surfaceψ in terms of the data G and ρ.

Theorem 2. Let ψ : S −→ S3
1 be a non-totally umbilical BLW-surface satisfying (1), with normal η : S −→ H3 and

hyperbolic Gauss map G. Let us take φ := ψ + η = (φ0, φ1, φ2, φ3) and ρ = φ0 + φ3. Given a local conformal
parameter z for the metric σ on S, ψ and η can be recovered as

ψ0 = −
1
ρ
(1 − (ρ/2)2(1 + |G|

2))−
2
ρ2R

(
Gρz

Gz

)
−

|ρz |
2(1 + |G|

2)

|Gz |2ρ3

ψ1 + iψ2 =
ρG
2

− 2
ρz̄

ρ2Gz
− 2

|ρz |
2G

|Gz |2ρ3

ψ3 = −
1
ρ
(−1 − (ρ/2)2(1 − |G|

2))+
2
ρ2R

(
Gρz

Gz

)
−

|ρz |
2(1 − |G|

2)

|Gz |2ρ3

(4)

and

η0 =
1
ρ
(1 + (ρ/2)2(1 + |G|

2))+
2
ρ2R

(
Gρz

Gz

)
+

|ρz |
2(1 + |G|

2)

|Gz |2ρ3

η1 + iη2 =
ρG
2

+ 2
ρz̄

ρ2Gz
+ 2

|ρz |
2G

|Gz |2ρ3

η3 =
1
ρ
(−1 + (ρ/2)2(1 − |G|

2))−
2
ρ2R

(
Gρz

Gz

)
+

|ρz |
2(1 − |G|

2)

|Gz |2ρ3 ,

(5)

whereR(w) stands for the real part of w ∈ C. Moreover, the pseudometric Iφ = 〈dφ, dφ〉 on S has constant curvature

Kφ = −
a

a + b
. (6)

Conversely, let S be a simply connected Riemann surface, G : S −→ S2 a meromorphic map, Kφ ∈ R and ρ a
solution of the Liouville-type equation

(ln ρ)zz = Kφ
|Gz |

2

4
ρ2. (7)

Then the immersion given by (4) is a BLW-surface such that

2(−Kφ)(H − 1)+ (1 + Kφ)(K − 1) = 0 (8)



J.A. Aledo, J.M. Espinar / Journal of Geometry and Physics 57 (2007) 1669–1677 1673

with normal (5) and whose hyperbolic Gauss map coincides with G. Moreover, the conformal structure of S as a
Riemann surface coincides with the one induced by σ .

Proof. First, let us recover ψ and η from G and ρ. To do that, let us put φ as in (3). Since 〈ψ,ψ〉 = 1, 〈ψ, η〉 = 0
and 〈φz, ψ〉 = 0 = 〈φz̄, ψ〉, the coordinates ψ1, ψ2 and ψ3 can be obtained from φ1 φ2 φ3

(φ1)z (φ2)z (φ3)z
(φ1)z̄ (φ2)z̄ (φ3)z̄

ψ1
ψ2
ψ3

 =

1 + φ0ψ0
(φ0)zψ0
(φ0)z̄ψ0


where z is a conformal parameter for σ . Once you have these three coordinates,ψ0 can be calculated from 〈ψ,ψ〉 = 1.
Thus, (4) holds. Now, (5) follows from (4) and (3).

On the other hand, it is a standard calculation to check that

Iφ = 2〈φz, φz̄〉|dz|2 = ρ2
|Gz |

2
|dz|2.

Hence, the curvature of Iφ is given by

ρ2
|Gz |

2 Kφ = −4(log ρ)zz̄ . (9)

Now, putting λ = (log ρ)z and ω = ρGz , and using (9), one gets from (4) and (5) that the first and second fundamental
forms of ψ are given by

I = −(1 + Kφ)ω
(
λ

ω

)
z

dz2
+ 2

(
(1 + Kφ)2

8
|ω|

2
+ 2

∣∣∣∣( λω
)

z

∣∣∣∣2
)

|dz|2 − (1 + Kφ)ω

(
λ

ω

)
z

dz2

I I = −Kφω
(
λ

ω

)
z

dz2
+ 2

(
−

1 + Kφ
4

|ω|
2
+ 〈ψz, ψz̄〉

)
|dz|2 − Kφω

(
λ

ω

)
z

dz2

= −Kφω
(
λ

ω

)
z

dz2
+ 2

(
K 2
φ − 1

8
|ω|

2
+ 2

∣∣∣∣( λω
)

z

∣∣∣∣2
)

|dz|2 − Kφω

(
λ

ω

)
z

dz2

respectively, and so its Gauss–Kronecker and mean curvatures become

K = 1 +
4Kφ |ω|

2

16|(λ/ω)z |2 − (1 + Kφ)2|ω|2
, H = 1 +

2(1 + Kφ)|ω|
2

16|(λ/ω)z |2 − (1 + Kφ)2|ω|2
. (10)

Thus, from (9),

2Kφ(H − 1) = (Kφ + 1)(K − 1),

and using that 2 a (H − 1)+ b (K − 1) = 0, (6) finally holds.
The converse is a straightforward computation. �

Remark 3. It is well known that the solutions of the Liouville-type equation (7) can be expressed in terms of
holomorphic functions (see, for instance, [11]). In fact, every solution of (7) can be written as

ρ2
=

4|hz |
2

|Gz |2(1 + Kφ |h|2)2
,

where h is a meromorphic function on S, holomorphic if Kφ ≤ 0 and 1 + Kφ |h|
2 > 0. Thus, our representation is,

actually, a conformal one.

Corollary 1. Let S be a non-compact simply connected surface and ψ : S −→ S3
1 a BLW-immersion satisfying (1).

Then there exists a pair (h, α), where h is a meromorphic function and α a holomorphic 1-form on S, such that its
first and second fundamental forms are given by

I = −(1 + Kφ)αdh +

(
(1 + Kφ)2|dh|

2

(1 + Kφ |h|2)2
+ (1 + Kφ |h|

2)2|α|
2

)
− (1 + Kφ)ᾱdh̄ (11)
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I I = −Kφαdh +

(
(K 2

φ − 1)|dh|
2

(1 + Kφ |h|2)2
+ (1 + Kφ |h|

2)2|α|
2

)
− Kφ ᾱdh̄ (12)

respectively, where Kφ = −
a

a+b . In addition the metric σ becomes

σ = (a + b)

(
(1 + Kφ |h|

2)2|α|
2
−
(1 + Kφ)2|dh|

2

(1 + Kφ |h|2)2

)
(13)

and the Gauss–Kronecker and mean curvatures of ψ are given by

K = 1 −
4Kφ |dh|

2

(1 + Kφ)2|dh|2 − (1 + Kφ |h|2)4|α|2
, H = 1 +

2(1 + Kφ)|dh|
2

(1 + Kφ |h|2)4|α|2 − (1 + Kφ)2|dh|2
. (14)

Conversely, given a simply connected Riemann surface S, Kφ ∈ R and a pair (h, α) as above such that (13) is a
positive definite metric, then there exists ψ : S −→ S3

1 a BLW-immersion, unique up to isometries of S3
1, satisfying

(8) with I , I I and σ given by (11), (12) and (13) respectively.

Proof. We will suppose that ψ is not totally umbilical. Otherwise the result follows easily by taking h as a constant.
As S is simply connected and non-compact, we can choose a global isothermal parameter z on S and, from

Theorem 1, Iφ = 〈d(ψ + η), d(ψ + η)〉 is a pseudometric with constant curvature Kφ . Hence (see Remark 3),
there exists a meromorphic function h on S (holomorphic if Kφ ≤ 0) such that

Iφ = ρ2
|dG|

2
=

4|dh|
2

(1 + Kφ |h|2)2
(15)

and

1 + Kφ |h|
2 > 0. (16)

Thus, it is clear that if h has a pole of order m at a point p, then dh has a pole of order m +1 at p and dG has a zero
of order m − 1 there. Analogously, if h has a zero of order k, both dh and dG have a zero of order k − 1. In particular,
the function f = dh/dG is meromorphic on S (holomorphic if Kφ ≤ 0) without zeros on S.

On the other hand, from (9), we have

ρz̄

(
λ

ω

)
z
+ ρ

(
λ

ω

)
zz̄

= 0

which means that ρ(λ/ω)zdz is a meromorphic 1-form on S. Hence, if we define the meromorphic 1-form

α =
ρ

f

(
λ

ω

)
z

dz

we can write I , I I and σ as (11), (12) and (13) respectively. Regarding (14), it follows easily from (10).
Finally note that (1 + Kφ |h|

2)2|α|
2 is finite on S, because otherwise σ would not be a positive definite metric (see

(13)) since

(1 + Kφ)2|dh|
2

(1 + Kφ |h|2)2

has no poles, as we have reasoned in the paragraph after formula (16). Therefore we can assure that α is holomorphic.
The converse is, again, a standard computation. �

4. Complete BLW-surfaces

First, note that non-negative Gaussian curvature is equivalent to K ≤ 1. Let us take, then, a complete immersion
ψ : S −→ S3

1 with K ≤ 1.
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Observe that if the immersion is flat (that is, K = 1) then a = 0, whereas a > 0 if it is non-flat. In fact, from (13)
and (14) one gets

K − 1 = −4a
|dh2

|

(1 + Kφ |h|2)2σ

and the above assertion follows bearing in mind that σ is positive definite and K ≤ 1.
We will distinguish these two cases. We will assume from now on that S is simply connected, by taking its simply

connected cover if necessary.

Theorem 3. Let ψ : S −→ S3
1 be a complete flat BLW-surface satisfying (1). Then either ψ(S) is a totally umbilical

surface contained in a degenerate hyperplane or ψ(S) is a hyperbolic cylinder.

Proof. Since a = 0, it follows that Kφ = 0 and, from (13), we have

|dh|
2

≤ |α|
2 if b = 1,

|dh|
2

≥ |α|
2 if b = −1.

On the other hand, from (11),

1
2

I ≤ |dh|
2
+ |α|

2

that is, in both cases (b = 1 and b = −1), we have a complete flat metric on S (|α|
2 if b = 1 and |dh|

2 if b = −1)
conformal to σ , which assures that S is conformally equivalent to the complex plane.

When b = 1, it follows that |dh/α| ≤ 1 and therefore dh/α is constant. In particular, if dh vanishes identically, then
from (11) and (12) ψ(S) is a totally umbilical surface contained in a degenerate hyperplane. Otherwise, dh = c1α for
a non-zero complex constant c1, |c1| ≤ 1. Under this assumption, we can take locally a parameter ζ such that dh = dζ
and so α(ζ ) = c1dζ . Then, (15) becomes

ρ2
=

4
|Gζ |

2 , (17)

whence

ρζ

ρ
= −

Gζ ζ

2Gζ

(18)

and

ρ2Gζ =
4

Gζ

. (19)

Now, from (18) and (19) we get

ρζ

ρ2Gζ

= −
ρGζ ζGζ

8Gζ

and so, using again (18),(
ρζ

ρ2Gζ

)
ζ

= −
ρGζ

8

((
Gζ ζ

Gζ

)
ζ

−
1
2

(
Gζ ζ

Gζ

)2
)

= −
ρGζ

8
{G, ζ }

where {G, ζ } :=

((
Gζ ζ

Gζ

)
ζ

−
1
2

(
Gζ ζ

Gζ

)2
)

is the Schwarzian derivative of G (see [12, Chapter 10]).

Then, bearing in mind the notation used in Corollary 1, f = 1/|Gζ |
2 and

α =
ρ

f

(
ρζ

ρ2Gζ

)
ζ

= −
1
2
{G, ζ }
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where we have also used (17). Consequently, {G, ζ } = −2c1dζ and therefore G(ζ ) = tanh(
√

2c1 ζ ) (see [12,
Theorem 10.1.1]). Thus, from (17), ρ = (

√
2/|c1|)| cosh(

√
2c1ζ )|

2 and it can be easily checked that the surface
given by (4) for the data Kφ = 0 and G, ρ as above is a hyperbolic cylinder.

Analogously, when b = −1, α/dh is constant. Thus, if α ≡ 0, then H ≡ −1 and ψ(S) is a totally umbilical surface
contained in a degenerate hyperplane. Otherwise, dh = c2α for a non-zero complex constant c2 and, reasoning as
above, ψ(S) is a hyperbolic cylinder. �

Regarding the non-flat case, we have the following:

Theorem 4. Let ψ : S −→ S3
1 be a complete non-flat BLW-surface satisfying (1) with non-negative Gaussian

curvature. Then either ψ(S) is a totally umbilical sphere or ψ(S) is a totally umbilical surface contained in a
degenerate hyperplane.

Proof. As we have seen in Theorem 1, we can assume that |a + b| = 1. So, we distinguish the following cases:

• If a + b = −1, then Kφ = a > 0. From (13) and (15) we have that

σ = −

(
(1 + Kφ)2|dh|

2

(1 + Kφ |h|2)2
+ (1 + Kφ |h|

2)2|α|
2

)
+

b2

2
Iφ

and so

1
2

I ≤

(
(1 + Kφ)2|dh|

2

(1 + Kφ |h|2)2
+ (1 + Kφ |h|

2)2|α|
2

)
≤

b2

2
Iφ .

Consequently, Iφ is a complete metric with positive constant Gaussian curvature, which allows us to assure that
S is compact from the Bonnet–Myers Theorem. Then, as we have seen in Remark 1, ψ(S) is a totally umbilical
sphere.

• If a + b = 1, from (13) we have that
1
2

I ≤ 2(1 + Kφ |h|
2)2|α|

2
≤ 2|α|

2

because Kφ = −a < 0.
Thus, |α|

2 is a complete flat metric on S conformal to σ , and so S is conformally equivalent to C. Now, from
(16), h is a bounded holomorphic function on C and therefore h is constant. Hence, H = K = 1 and ψ(S) is a
totally umbilical surface contained in a degenerate hyperplane. �
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