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a b s t r a c t

In this paper, we extend the Hijazi inequality, involving the energy–momentum tensor, to
the eigenvalues of the Dirac operator on Spinc manifolds without boundary. The limiting
case is then studied and an example is given.
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1. Introduction

For a compact Riemannian spin manifold (Mn, g) of dimension n > 2, Friedrich [1] showed that any eigenvalue λ of the
Dirac operator satisfies

λ2 > λ21 :=
n

4(n− 1)
inf
M
Sg , (1)

where Sg denotes the scalar curvature of M . The limiting case of (1) is characterized by the existence of a special spinor
called a real Killing spinor. This is a section ψ of the spinor bundle satisfying for every X ∈ Γ (TM),

∇Xψ = −
λ1

n
X · ψ,

where X · ψ denotes the Clifford multiplication and ∇ is the spinorial Levi-Civita connection [2]. On the complement set
of zeros of any spinor field φ, we define `φ , the field of symmetric endomorphisms associated with the field of quadratic
forms, denoted by Tφ , called the energy–momentum tensor, which is given, for any vector field X , by

Tφ(X) = g(`φ(X), X) = Re
〈
X · ∇Xφ,

φ

|φ|2

〉
.

The associated symmetric bilinear form is then given for every X, Y ∈ Γ (TM) by

g(`φ(X), Y ) =
1
2
Re
〈
X · ∇Yφ + Y · ∇Xφ,

φ

|φ|2

〉
.
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Note that if the spinor field φ is an eigenspinor, Bär showed that the zero set is contained in a countable union of (n − 2)-
dimensional submanifolds and has locally finite (n− 2)-dimensional Hausdorff density [3]. In 1995, Hijazi [4] modified the
connection ∇ in the direction of the endomorphism `ψ where ψ is an eigenspinor associated with an eigenvalue λ of the
Dirac operator and established that

λ2 > inf
M

(
1
4
Sg + |`ψ |2

)
. (2)

The limiting case of (2) is characterized by the existence of a spinor field ψ satisfying for all X ∈ Γ (TM),

∇Xψ = −`
ψ (X) · ψ. (3)

The trace of `ψ being equal to λ, Inequality (2) improves Inequality (1) since by the Cauchy–Schwarz inequality, |`ψ |2 >
(tr(`ψ ))2

n , where tr denotes the trace of `ψ . Ginoux andHabib showed in [5] that theHeisenbergmanifold is a limitingmanifold
for (2) but equality in (1) cannot occur.
Using the conformal covariance of the Dirac operator, Hijazi [6] showed that, on a compact Riemannian spin manifold

(Mn, g) of dimension n > 3, any eigenvalue of the Dirac operator satisfies

λ2 >
n

4(n− 1)
µ1, (4)

where µ1 is the first eigenvalue of the Yamabe operator given by

L := 4
n− 1
n− 2

4g +Sg ,

and4g is the Laplacian acting on functions. For dimension 2, Bär [7] proved that any eigenvalue of the Dirac operator onM
satisfies

λ2 >
2πχ(M)
Area(M, g)

, (5)

where χ(M) is the Euler–Poincaré characteristic ofM . The limiting case of (4) and (5) is also characterized by the existence
of a real Killing spinor. In terms of the energy–momentum tensor, Hijazi [4] proved that, on such manifolds any eigenvalue
of the Dirac operator satisfies the following:

λ2 >


1
4
µ1 + inf

M
|`ψ |2 if n > 3,

πχ(M)
Area(M, g)

+ inf
M
|`ψ |2 if n = 2.

(6)

Again, the trace of `ψ being equal toλ, Inequality (6) improves Inequalities (4) and (5). The limiting case of (6) is characterized
by the existence of a spinor field ϕ satisfying for all X ∈ Γ (TM),

∇Xϕ = −`
ϕ(X)·ϕ, (7)

where ϕ = e−
n−1
2 uψ , the spinor field ψ is an eigenspinor associated with the first eigenvalue of the Dirac operator and ψ

is the image of ψ under the isometry between the spinor bundles of (Mn, g) and (Mn, g = e2ug). Suppose that on a spin
manifoldM , there exists a spinor field φ such that for all X ∈ Γ (TM),

∇Xφ = −E(X) · φ, (8)
where E is a symmetric 2-tensor defined on TM . It is easy to see that E must be equal to `φ . For the two-dimensional case,
Friedrich [8] proved that the existence of a pair (φ, E) satisfying (8) is equivalent to the existence of a local immersion of
M into the euclidean space R3 with Weingarten tensor equal to E. In [9], Morel showed that if Mn is a hypersurface of a
manifold N carrying a parallel spinor, then the energy–momentum tensor (associated with the restriction of the parallel
spinor) appears, up to a constant, as the second fundamental form of the hypersurface. Habib [10] studied Eq. (8) for an
endomorphism E, not necessarily symmetric. He showed that the symmetric part of E is `φ and the skew-symmetric part of
E is qφ defined on the complement set of zeros of φ by

g(qφ(X), Y ) =
1
2
Re
〈
Y · ∇Xφ − X · ∇Yφ,

φ

|φ|2

〉
,

for all X, Y ∈ Γ (TM). Then he modified the connection in the direction of `ψ + qψ where ψ is an eigenspinor associated
with an eigenvalue λ and obtained that

λ2 > inf
M

(
1
4
Sg + |`ψ |2 + |qψ |2

)
. (9)

The Heisenberg group and the solvable group are examples of limiting manifolds [10]. For a better understanding of the
tensor qφ , he studied Riemannian flows and proved that if the normal bundle carries a parallel spinor, the tensor qφ plays
the role of the O’Neill tensor of the flow. Here we prove the corresponding inequalities for Spinc manifolds:
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Theorem 1.1. Let (Mn, g) be a compact Riemannian Spinc manifold of dimension n > 2, and denote by iΩ the curvature form
of the connection A on the S1-principal fibre bundle (S1M, π,M). Then any eigenvalue of the Dirac operator to which is attached
an eigenspinor ψ satisfies

λ2 > inf
M

(1
4
Sg −

cn
4
|Ω|g + |`

ψ
|
2
+ |qψ |2

)
, (10)

where cn = 2[ n2 ]
1
2 and |Ω|g is the norm of Ω with respect to g.

In this paper, we only consider the deformation of the connection in the direction of the symmetric endomorphism `φ and
hence under the same conditions as for Theorem 1.1, one gets

λ2 > inf
M

(1
4
Sg −

cn
4
|Ω|g + |`

ψ
|
2
)
. (11)

In 1999,Moroianu andHerzlich [11] proved that on Spincmanifolds of dimension n > 3, any eigenvalue of the Dirac operator
satisfies

λ2 > λ21 :=
n

4(n− 1)
µ1, (12)

where µ1 is the first eigenvalue of the perturbed Yamabe operator defined by

LΩ = L− cn|Ω|g .

The limiting case of (12) is characterized by the existence of a real Killing spinor ψ satisfyingΩ · ψ = i cn2 |Ω|gψ . In terms
of the energy–momentum tensor we prove:

Theorem 1.2. Under the same conditions as for Theorem 1.1, any eigenvalue λ of the Dirac operator to which is attached an
eigenspinor ψ satisfies

λ2 >


1
4
µ1 + inf

M
|`ψ |2 if n > 3,

πχ(M)
Area(M, g)

−
1
2

∫
M |Ω|gvg

Area(M, g)
+ inf

M
|`ψ |2 if n = 2,

(13)

where µ1 is the first eigenvalue of the perturbed Yamabe operator.

Using the Cauchy–Schwarz inequality in dimension n > 3,we have that Inequality (13) implies Inequality (12). As a corollary
of Theorem 1.2, we compare the lower bound to a conformal invariant (the Yamabe number) and to a topological invariant,
in the case of four-dimensional manifolds whose associated line bundle has self-dual curvature (see Corollaries 4.1 and 4.2).
Finally, we study the limiting case of (11) and (13), and we give an example.
Even though the number infM |`ψ |2 is not a nice geometric invariant, it appears naturally in some situations. For

example, for hypersurfaces of certain limiting Spinc manifolds it is easy to see, with the help of the Spinc Gauss formula,
that it is precisely the second fundamental form. Also, when deforming the Riemannian metric in the direction of the
energy–momentum tensor, the eigenvalues of the Dirac operator on a Spinc manifold are then critical (see [12]). The author
would like to thank Oussama Hijazi for his support and encouragements.

2. Spinc geometry and the Dirac operator

In this section, we briefly introduce basic notions concerning Spincmanifolds and the Dirac operator. Details can be found
in [13,2,14].
Let (Mn, g) be a compact connected oriented Riemannian manifold of dimension n > 2 without boundary. Furthermore,

let SOM be the SOn-principal bundle over M of positively oriented orthonormal frames. A Spinc structure of M is a Spincn-
principal bundle (SpincM, π,M) and a S1-principal bundle (S1M, π,M) together with a double covering given by θ :
SpincM −→ SOM ×M S1M such that

θ(ua) = θ(u)ξ(a),

for every u ∈ SpincM and a ∈ Spincn, where ξ is the twofold covering of Spin
c
n over SOn × S1. A Riemannian manifold that

admits a Spinc structure is called a Riemannian Spinc manifold.

LetΣ cM := SpincM ×ρn Σn be the associated spinor bundlewhereΣn = C2
[
n
2 ] and ρn : Spincn −→ End(Σn) the complex

spinor representation. A section of Σ cM will be called a spinor and the set of all spinors will be denoted by Γ (Σ cM). The
spinor bundleΣ cM is equipped with a natural Hermitian scalar product, denoted by 〈., .〉 and satisfies

〈X · ψ, ϕ〉 = −〈ψ, X · ϕ〉 for every X ∈ Γ (TM) and ψ, ϕ ∈ Γ (Σ cM),
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where X ·ψ denotes the Cliffordmultiplication of X andψ .With this Hermitian scalar productwe define an L2-scalar product

(ψ, φ) =

∫
M
〈ψ, φ〉vg ,

for any spinors ψ and φ. Additionally, given a connection 1-form A on S1M , A : T (S1M) −→ iR and the connection 1-form
ωM on SOM for the Levi-Civita connection ∇M , induce a connection on the principal bundle SOM ×M S1M , and hence a
covariant derivative ∇ on Γ (Σ cM) [13], given by

∇eiψ =

[
b, ei(σ )+

1
4

n∑
j=1

ej · ∇Mei ej · σ +
1
2
A(s∗(ei))σ

]
, (14)

where ψ = [b, σ ] is a locally defined spinor field, (e1, . . . , en) is a local oriented orthonormal tangent frame and s : U −→
S1M is a local section of S1M .
The curvature of A is an imaginary valued 2-form denoted by FA = dA, i.e., FA = iΩ , whereΩ is a real valued 2-form on

S1M . We know thatΩ can be viewed as a real valued 2-form onM [13]. In this case iΩ is the curvature form of the associated
line bundle L. It is the complex line bundle associated with the S1-principal bundle via the standard representation of the
unit circle. The spinorial curvatureR associated with the connection ∇ , is given by

RX,Y =
1
4

n∑
i,j=1

g
(
RX,Y ei, ej

)
ei · ej · +

i
2
Ω(X, Y ).

In the Spinc case, the Ricci identity translates to∑
j

ej ·Rej,Xψ =
1
2
Ric(X) · ψ −

i
2
(XyΩ) · ψ, (15)

where y denotes the interior product. For every spinor ψ , the Dirac operator is locally defined by

Dψ =
n∑
i=1

ei · ∇eiψ.

It is an elliptic, self-adjoint operatorwith respect to the L2-scalar product and verifies the Schrödinger–Lichnerowicz formula

D2 = ∇∗∇ +
1
4
Sg Id Γ (ΣcM) +

i
2
Ω·,

whereΩ· is the extension of the Clifford multiplication to differential forms given by (e∗i ∧ e
∗

j ) · ψ = ei · ej · ψ .

3. Eigenvalue estimates on Spinc manifolds

In this section,weprove the lower bound (10). This proof is based on the following lemmagiven byMoroianu andHerzlich
in [11]:

Lemma 3.1 ([11]). Let (Mn, g) be a Spinc manifold. For any spinor ψ ∈ Γ (Σ cM) and a real 2-formΩ , we have

〈iΩ · ψ,ψ〉 > −
cn
2
|Ω|g |ψ |

2, (16)

where |Ω|g is the norm of Ω with respect to g given by |Ω|2g =
∑
i<j(Ωij)

2, in any orthonormal local frame. Moreover, if equality
holds in (16), then

Ω · ψ = i
cn
2
|Ω|gψ. (17)

Proof of Theorem 1.1. Let E (resp. Q ) be a symmetric (resp. skew-symmetric) 2-tensor defined on TM . For any spinor field
φ, the modified connection

∇̃Xφ := ∇Xφ + E(X) · φ + Q (X) · φ

satisfies |∇̃φ|2 = |∇φ|2 − |E|2|φ|2 − |Q |2|φ|2. After integration overM , the Schrödinger–Lichnerowicz formula gives∫
M
|∇̃φ|2vg =

∫
M
|Dφ|2vg −

∫
M

1
4
Sg |φ|2vg −

∫
M
(|E|2 + |Q |2)|φ|2vg −

∫
M

〈
i
2
Ω · φ, φ

〉
vg .
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Let ψ be an eigenspinor corresponding to the eigenvalue λ of D. For E = `ψ , Q = qψ and by Lemma 3.1, it follows that

λ2
∫
M
|ψ |2vg >

1
4

∫
M
Sg |ψ |2vg +

∫
M
(|`ψ |2 + |qψ |2)|ψ |2vg +

∫
M

〈
i
2
Ω · ψ,ψ

〉
vg

>

∫
M

(1
4
Sg −

cn
4
|Ω|g + |`

ψ
|
2
+ |qψ |2

)
|ψ |2vg .

Finally,

λ2 > inf
M

(1
4
Sg −

cn
4
|Ω|g + |`

ψ
|
2
+ |qψ |2

)
. �

4. Conformal geometry and eigenvalue estimates

Before proving Theorem 1.2, we give some basic facts on conformal Spinc geometry. The conformal class of g is the set
of metrics g = e2ug for a real function u on M . At a given point x of M , we consider a g-orthonormal basis {e1, . . . , en} of
TxM . The corresponding g -orthonormal basis is denoted by {e1 = e−ue1, . . . , en = e−uen} . This correspondence extends
to the Spinc level to give an isometry between the corresponding spinor bundles. We put a ‘‘ ’’ above every object which is
naturally associated with the metric g , except for the scalar curvature where Sg (resp. Su or Sh) denotes the scalar curvature

associated with the metric g (resp. g = e2ug = h
4
n−2 g). Then, for any spinor fields ψ and ϕ, one has

〈ψ, ϕ〉 = 〈ψ, ϕ〉,

where 〈., .〉 denotes the natural Hermitian scalar products onΓ (Σ cM), and onΓ (Σ c M). The corresponding Dirac operators
satisfy

D (e−
(n−1)
2 u ψ) = e−

(n+1)
2 u Dψ.

The norms of any real 2-formΩ with respect to g and g are related by
|Ω|g = e−2u|Ω|g .

Hijazi [4] showed that on a spin manifold the energy–momentum tensor verifies
|`ϕ |2 = e−2u |`ϕ |2 = e−2u |`ψ |2,

where ϕ = e−
(n−1)
2 uψ . We extend the result to a Spinc manifold and get the same relation.

Lemma 4.1. Under the same conditions as for Theorem 1.1, any eigenvalue λ of the Dirac operator to which is attached an
eigenspinor ψ satisfies

λ2 >
1
4
sup
u
inf
M
(Sue2u − cn|Ω|g)+ inf

M
|`ψ |2.

Proof. For any spinor field φ and for any symmetric 2-tensor E defined on TM , the modified connection introduced in [4]:

∇
E
Xφ = ∇Xφ + E(X) · φ,

verifies |∇Eφ|2 = |∇φ|2 − |E|2|φ|2. Using the Schrödinger–Lichnerowicz formula on M , applied to the spinor field φ with
respect to the metric g , yields∫

M
|∇
E
φ|2vg =

∫
M
|Dφ|2vg −

∫
M

1
4
Su|φ|2vg −

∫
M
|E|2|φ|2vg −

∫
M

〈
i
2
Ω·φ, φ

〉
vg . (18)

For the spinor ϕ = e−
(n−1)
2 u ψ with Dψ = λψ , one gets D ϕ = λe−u ϕ, and hence by Lemma 3.1 and for E = `ϕ ,∫

M

[
λ2 −

(
1
4
Sue2u + |`ψ |2 −

cn
4
|Ω|g

)]
e−2u|ϕ|2vg > 0. � (19)

Lemma 4.2. Let (Mn, g) be a compact Riemannian Spinc manifold of dimension n > 2 and Sg (resp. Su or Sh) the scalar curvature
associated with the metric g (resp. g = e2ug = h

4
n−2 g). The 2-form iΩ denotes the curvature form on the S1-principal bundle

associated with the Spinc structure. We have

sup
u
inf
M
(Sue2u − cn|Ω|g) =


µ1 if n > 3,
4πχ(M)− 2

∫
M |Ω|vg

Area(M, g)
if n = 2,

(20)

where µ1 is the first eigenvalue of the perturbed Yamabe operator LΩ .
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Proof. For n > 3, let h > 0 be an eigenfunction of LΩ associated with the eigenvalue µ1 such that
∫
M h2vg = 1. For a

conformal metric g = e2ug = h
4
n−2 g , we have

Shh
4
n−2 − cn|Ω|g = Sue2u − cn|Ω|g = h−1LΩh.

So µ1 = h−1LΩh = Shh
4
n−2 − cn|Ω|g . For any positive function H , we write fH = h, where f is a positive function, and

referring to [15] we get

µ1 =

∫
(H−1LH)f 2H2 vg − cn

∫
M
|Ω|g f 2H2 vg +

∫
M
H2|df |2 vg .

Finally,

µ1 > inf
M
(H−1LΩH) = inf

M
(Sve2v − cn|Ω|g),

where e2v = H
4
n−2 ; then µ1 = supu infM(Sue2u − cn|Ω|g). For n = 2 and for every u we have Sue2u = Sg + 24g u. The

Stokes and Gauß–Bonnet theorems yield

inf
M
(Sue2u − 2|Ω|g) 6

∫
M

(
Sue2u − 2|Ω|g

)
vg

Area(M, g)
=
4πχ(M)− 2

∫
M |Ω|gvg

Area(M, g)
.

Let u0 be a solution of the following equation [16]:

24g u =

∫
M(Sg − 2|Ω|g)vg
Area(M, g)

− Sg + 2|Ω|g . (21)

Hence,

Su0e
2u0 − 2|Ω|g = 24g u0 + Sg − 2|Ω|g =

4πχ(M)− 2
∫
M |Ω|gvg

Area(M, g)
. �

Proof of Theorem 1.2. Combining Lemmas 4.2 and 4.1, Theorem 1.2 follows. �

Remark 4.1. Inequality (11) improves Inequality (12), which itself implies the Friedrich Spinc inequality given by

λ2 >
n

4(n− 1)
inf
M
(Sg − cn|Ω|g). (22)

Equality holds in (22) if and only if equality holds in (12), i.e., if and only if the eigenspinor ψ associated with the first
eigenvalue of D is a real Killing spinor andΩ · ψ = i cn2 |Ω|gψ.

Corollary 4.1. Any eigenvalue of the Dirac operator on a compact Riemannian Spinc manifold of dimension n > 3 satisfies

λ2 >
1
4
vol(M, g)−

2
n

(
Y (M, [g])− cn‖Ω‖ n2

)
+ infM |`ψ |2,

where Y (M, [g]) is the Yamabe number given by

Y (M, [g]) = inf
η 6=0

∫
M 4

n−1
n−2 |dη|

2
+ Sgη2(∫

M |η|
2n
n−2

) n−2
n

.

Proof. Using the Hölder inequality, it follows that

µ1 = inf
η 6=0

∫
M 4

n−1
n−2 |dη|

2
+ (Sg − cn|Ω|g)η2∫
M η

2
> inf
η 6=0

∫
M 4

n−1
n−2 |dη|

2
+ (Sg − cn|Ω|)η2(∫

M |η|
2n
n−2

) n−2
n
vol(M, g)

2
n

.

Using the Hölder inequality again, we deduce

µ1 vol(M, g)
2
n > inf

η 6=0

∫
M 4

n−1
n−2 |dη|

2
+ Sη2(∫

M |η|
2n
n−2

) n−2
n
− cn

(∫
M
|Ω|

n
2

) 2
n
= Y (M, [g])− cn‖Ω‖ n2 .

Finally, replacing in (13), we get the result. �
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Corollary 4.2. On a compact four-dimensional Spinc manifold with self-dual curvature form iΩ , any eigenvalue of the Dirac
operator satisfies

λ2 >
1
4
vol(M, g)−

1
2

(
Y (M, [g])− 4π

√
2
√
c1(L)2

)
+ infM |`ψ |2,

where c1(L) is the Chern number of the line bundle L associated with the Spinc structure.

Proof. It follows directly from Corollary 4.1 and the fact that if n = 4 and Ω is self-dual, then
∫
M |Ω|

2
gvg = 4π

2c1(L)2
(see [13]). �

5. The equality case

In this section, we study the limiting case of (11) and (13). An example is then given.

Proposition 5.1. Under the same conditions as for Theorem 1.1,

Equality in (11) holds⇐⇒

{
∇Xψ = −`

ψ (X) · ψ,

Ω · ψ = i
cn
2
|Ω|gψ,

(23)

for any X ∈ Γ (TM) and where ψ is an eigenspinor associated with the first eigenvalue of the Dirac operator.

Proof. If equality in (11) is achieved, the two conditions follow directly. Now, suppose that ∇Xψ = −`ψ (X) · ψ and
Ω ·ψ = i cn2 |Ω|gψ . The condition∇Xψ = −`

ψ (X) ·ψ implies that |ψ |2 is constant. Denoting byR the curvature tensor on
the Spinc bundle associated with the connection ∇ , one easily gets the following relation:

RX,Y ψ + d`ψ (X, Y ) · ψ + [`ψ (X), `ψ (Y )] · ψ = 0,

where d`ψ is a 2-form with values in Γ (TM) given by

d`ψ (X, Y ) = (∇X`ψ )Y − (∇Y`ψ )X .

Taking Y = ej and performing its Clifford multiplication by ej yields by the Ricci identity (15) on a Spinc manifold

−
1
2
Ric(X) · ψ +

i
2
(XyΩ) · ψ +

∑
j

ej · d`ψ (X, ej) · ψ +
∑
j

ej · [`ψ (X), `ψ (ej)] · ψ = 0. (24)

We then decompose the last two terms in (24) using that X · α = X ∧ α − Xyα for any form α; it follows that∑
j

ej · d`ψ (X, ej) · ψ =
∑
j

[ej ∧ d`ψ (X, ej)] · ψ − [X(tr `ψ )+ div `ψ (X)]ψ.∑
j

ej · [`ψ (X), `ψ (ej)] · ψ = 2 (tr `ψ ) `ψ (X) · ψ − 2
∑
j

g(X, `ψ (ej)) `ψ (ej) · ψ.

Taking the scalar product of (24) withψ , and separating real and imaginary parts, yields for every vector field X the relation(
X(tr `ψ )+ div `ψ (X)

)
|ψ |2 =

i
2
〈(XyΩ) · ψ,ψ〉. (25)

But since Equality (17) holds we compute

〈(XyΩ) · ψ,ψ〉 = 〈(X ∧Ω) · ψ,ψ〉 − 〈X ·Ω · ψ,ψ〉

= 〈(X ∧Ω) · ψ,ψ〉 − i
[n
2

] 1
2
|Ω|g〈X · ψ,ψ〉.

After separating the real and imaginary parts, 〈(XyΩ) · ψ,ψ〉must vanish. Using this and
∑n
j=1 ej · (ejyΩ) = 2Ω , Clifford

multiplication of (24) with ek, and for X = ek, gives

−
1
2
Sgψ − iΩ · ψ =

∑
k,j

ej · (ek ∧ d`ψ (ej, ek)) · ψ − 2(tr `ψ )2ψ + 2|`ψ |2ψ.

An easy computation implies that
∑
k,j ej · (ek ∧ d`

ψ (ej, ek)) · ψ = 0; hence

−
1
2
Sg +

[n
2

] 1
2
|Ω|g = −2(tr `ψ )2 + 2|`ψ |2, (26)

which implies equality in (11). �
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Proposition 5.2. On a compact Riemannian Spinc manifold (Mn, g) of dimension n > 3, assume that the first eigenvalue λ1 of
the Dirac operator to which is attached an eigenspinor ψ satisfies the equality case in (13). Then, |`ψ | is constant and if h > 0
denotes an eigenfunction of the Yamabe operator corresponding to µ1, then for any vector field X

g(X, `ψ (dh)− λ1dh) = g(λ1X − `ψ (X), dh) = 0. (27)

Proof. If n > 3 and equality holds in (13), we consider the positive function v > 0 defined by e2v = h
4
n−2 where

h is an eigenfunction of the Yamabe operator corresponding to µ1. Inequality (19) with u = v gives |`ψ | is constant,
∇Xϕ = −`

ϕ(X) ·ϕ and Ω· ϕ = i cn2 |Ω|gϕ. By Proposition 5.1, Equality (26) and (25) can be considered for the conformal

metric g = e2vg = h
4
n−2 g to get

(tr `ϕ)2 := f 2 =
1
4
Sv −

cn
4
|Ω|g + |`

ϕ
|
2,

grad f = −div `ϕ .

It is straightforward to see that these two equalities give (27). �

Example. If the lower bound (22) is achieved, automatically equality holds in (11). Here we will give an example where
equality holds in (11) but not in (22).

Let (M3, g) = (S3, can) be endowedwith its unique spin structure and consider a real Killing spinorψ with Killing constant
1
2 . As the norm of ψ is constant, we may suppose that |ψ | = 1. Let ξ be the Killing vector field onM defined by

ig(ξ , X) = 〈X · ψ,ψ〉.

In [11], it is shown that:

1. idξ(X, Y ) = −〈X ∧ Y · ψ,ψ〉 for any X, Y ∈ Γ (TM).
2. d|ξ |2 = −2dξ(ξ, .) = −2g(∇ξ ξ, .) ' −2∇ξ ξ = 0.
3. ξ · ψ = iψ and |ξ | = 1.
4. ξ · ψ = −e1 · e2 · ψ, where {ξ/|ξ |, e1, e2} is an oriented local orthonormal frame.

Let h be a real constant such that h > 1. We define the metric gh onM by{
gh(ξ , X) = g(ξ , X) pour tout X ∈ Γ (TM),
gh(X, Y ) = h−2g(X, Y ) pour X, Y ⊥ ξ .

Using the following isomorphism:

(TM, g) −→ (TM, gh)

Z −→ Zh =
{
Z si Z = ξ,
hZ si Z ⊥ ξ,

if u = {ξ, e1, e2} is a positive local g-orthonormal frame defined in a neighborhood U of x, then uh = {ξ h = ξ, eh1 =
he1, eh2 = he2} is a positive local g

h-orthonormal frame defined in a neighborhood U of x.
There exists an isomorphism of vector bundles (see [11]) given by

ΣgM −→ ΣghM

ψ = [ũ, φ] −→ ψh = [ũh, φ],

satisfying

〈ψ1, ψ2〉ΣgM = 〈ψ
h
1 , ψ

h
2 〉ΣghM

and (X · ψ)h = Xh · ψh for any X ∈ Γ (TM).

The covariant derivative of the spinor ψh = [ũh, φ] is given by (see [11])

∇
h
Xhψ

h
=
h2

2
Xh · ψh + i((1− h2)ξ)(Xh)ψh.

Let α = (1− h2)ξ be a 1-form onM . We may view iα as a connection 1-form on the trivial S1 bundle. Let L = M ×C be the
induced trivial line bundle overM . We denote by σ the global section of L and by ∇0 the covariant derivative on L induced
by the above connection. It satisfies

∇
0
Xσ = iα(X)σ , for any X ∈ Γ (TM).



1642 R. Nakad / Journal of Geometry and Physics 60 (2010) 1634–1642

We consider, on the twisted bundleΣghM ⊗ L, the connection ∇ = ∇
h
⊗∇

0 and we calculate

∇eh1
(ψh ⊗ σ) =

h2

2
eh1 · (ψ

h
⊗ σ),

∇eh2
(ψh ⊗ σ) =

h2

2
eh2 · (ψ

h
⊗ σ),

∇ξ (ψ
h
⊗ σ) =

(
−3h2

2
+ 2

)
ξ · (ψh ⊗ σ).

The spinor ψh ⊗ σ is a section ofΣghM ⊗ L, which is, of course, the spinor bundle associated with the Spin
c structure with

auxiliary line bundle L2. It is easy to see that ψh ⊗ σ is an eigenspinor associated with the eigenvalue h
2

2 − 2, and it is clear
that ψh ⊗ σ is not a real Killing spinor since h 6= 1, so (M, gh) is not a limiting manifold for the Friedrich Spinc inequality.
But it is a limiting manifold for the lower bound (11); in fact we will prove that (23) holds.
The complex 2-form idα is the curvature form associated with the connection ∇0 on L. We have

dα · (ψh ⊗ σ) = (1− h2)dξ · (ψh ⊗ σ) = i(h2 − 1)h2ψh ⊗ σ .

The norm of dα with respect to the metric gh is given by

|dα|2gh = (1− h
2)2|dξ |2gh = (1− h

2)2(dξ(eh1, e
h
2))
2
= h4(1− h2)2.

Since h > 1, |dα|gh = h
2(h2 − 1), then the second equation of (23) is verified. Furthermore, it is easy to check that

Tψ
h
⊗σ (eh1) = T

ψh⊗σ (eh2) = g
h(`ψ

h
⊗σ (eh1), e

h
1) = g

h(`ψ
h
⊗σ (eh2), e

h
2) = −

h2

2
,

gh(`ψ
h
⊗σ (eh1), ξ) = g

h(`ψ
h
⊗σ (eh2), ξ) = g

h(`ψ
h
⊗σ (eh1), e

h
2) = 0,

Tψ
h
⊗σ (ξ) = gh(`ψ

h
⊗σ (ξ), ξ) =

3h2

2
− 2.

Finally, it is straightforward to verify that the first equation of (23) holds:

−`ψ
h
⊗σ (eh1) · (ψ

h
⊗ σ) =

h2

2
eh1 · (ψ

h
⊗ σ) = ∇eh1

(ψh ⊗ σ),

−`ψ
h
⊗σ (eh2) · (ψ

h
⊗ σ) =

h2

2
eh2 · (ψ

h
⊗ σ) = ∇eh2

(ψh ⊗ σ),

−`ψ
h
⊗σ (ξ) · (ψh ⊗ σ) =

(
−3h2

2
+ 2

)
ξ · (ψh ⊗ σ) = ∇ξ (ψ

h
⊗ σ).
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