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a b s t r a c t

The Mellin transform of the heat kernel on a non-compact symmetric space X gives rise to
a zeta function ζ (s; x, b) that was studied when the rank of X was 1. In this case the special
values of the zeta function and of its derivative at s = 0, for example, are relevant for the
quantum field effective potential in space-timesmodelled on X , or especially on a compact
locally symmetric quotient Γ \ X , where Γ is a discrete group of isometries of X . Also the
special value of ζ (s; x, b) at s = −

1
2 determines the Casimir energy of such a space-time.

In this paper we extend the study of ζ (s; x, b) to any symmetric space X of arbitrary
real rank. One of our main results is Theorem 2.1, where we show that for general X and
for x ≠ 1, ζ (s; x, b) admits a continuation to an entire function. On the other hand, we
show that under a mild condition, for x = 1̄, ζ (s; 1̄, b) has a meromorphic continuation to
C with at most simple poles, all lying in the set of half-integers.

In case G is complex, we give a very explicit form of the meromorphic continuation and
we compute special values of the zeta function and of its derivative at s = 0 and at s = −

1
2 ,

which give a local contribution to the Casimir energy of X . To illustrate the difficulties
present in the general case, we work out explicitly the meromorphic continuation for two
infinite families of higher rank groups.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let X = G/K be a Riemannian symmetric space of non-compact type where G is a connected non-compact real
semisimple Lie group with finite center, and K is a maximal compact subgroup of G. Let g0, k0 denote the Lie algebras of
G, K , respectively, and let g0 = k0 + p0 be a Cartan decomposition of g0 with Cartan involution θ . Thus, k0 and p0 are,
respectively, the ±1-eigenspaces of θ , and the Killing form ( , ) of g0 is positive definite on p0 and negative definite on k0.
Furthermore θ : x+ y → x− y, for (x, y) ∈ k0 × p0, is an automorphism of g0. Choose an Iwasawa decomposition G = KApN
of Gwhere Ap = exp ap for a maximal abelian subspace ap of p0. Let Σ denote the set of restricted real roots of (g0, ap). That
is, α ∈ Σ ⇔ α ∈ a∗

p (the dual space of ap), α ≠ 0, and the corresponding root space g0α := {Y ∈ g0 | [H, Y ] = α(H)Y
for all H ∈ ap} is non-zero. We have N = exp n0 where n0 =

∑
α∈Σ+ gα for a choice of positive root system Σ+

⊂ Σ . For
α ∈ Σ , we set mα := dim g0α and ρ :=

1
2

∑
α∈Σ+ mαα. The equation (λ, µ) :=


Hλ,Hµ


for λ, µ ∈ a∗

p , where Hλ ∈ ap is
the unique element such that λ(H) = (H,Hλ) for all H ∈ ap, defines an inner product ( , ) on a∗

p (and thus a norm | · | on

a∗
p) that extends C-bilinearly to a form ( , ) on the complexification Λ :=


a∗
p

C of a∗
p . We regard Λ as the space of R-linear,

C-valued maps on ap; R and C are the real and complex fields.
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For λ ∈ Λ, the corresponding Harish-Chandra spherical function φλ(x) on G is given by

φλ(x) =

∫
K
e(iλ−ρ)(H(xk))dk (1.1)

where dk is the normalized Haar measure on K with total mass one, and H : G → ap is the Iwasawa projection defined
by x ∈ K expH(x)N for all x ∈ G. The Weyl group of (g0, ap) is given by W = M ′/M where M and M ′ are the centralizer
and normalizer respectively, of ap in K . For further details regarding the preceding definitions and results, the reader can
consult [1–3]. Using φλ(x) and the Harish-Chandra c-function c(λ) on Λ, the heat kernel on G is given, for each t > 0, by
convolution with the function:

ht(x) =
1

|W |

∫
a∗
p

e−t(|λ|
2
+|ρ|

2)φλ(x)|c(λ)|−2dλ, (1.2)

(see Gangolli [4]); ht is K -bi-invariant, and as a function on X it satisfies the heat equation ∆ht =
∂ht
∂t , where ∆ is the

Laplace–Beltrami operator on X .
The zeta function that we attach to X and will be of interest to us is given by the Laplace–Mellin transform

ζ (s; x, b) :=
1

Γ (s)

∫
∞

0
e−tb2ht(x)ts−1dt (1.3)

for x ∈ X fixed, and for a fixed parameter b ∈ R. We shall see that ζ (s; x, b) is a well-defined holomorphic function of
s for Re s > d/2, d := dim X . The goal of this paper is to study its meromorphic continuation to C in the case when G is
semisimple, locally without compact factors and of arbitrary real rank.

Among other reasons, there aremotivations from physics for considering ζ (s; x, b), in particular when x = 1 := 1K is the
origin in X and 1 is the identity element of G. For example, if G = SO1(4, 1) and K = SO(4) (so that X is the real hyperbolic
4-space) then the meromorphic continuation of ζ (s; 1, b) (for an appropriate choice of b) is used to compute the one-loop
effective potential V (1) of a scalar field in anti de Sitter space. Indeed Camporesi in [5] computed that

V (1)
= −

1
2
ζ ′(0; 1, b) −

1
2
ζ (0; 1, b)

[
1
s

+ logµ2
]

, (1.4)

where µ is a fixed renormalization parameter (see also [6–8]). In this example, X is a rank one symmetric space.
Let now Γ ⊂ G be a co-compact torsion free discrete subgroup of G and let XΓ = Γ \ X be the associated locally

symmetric space. For all rank one X , themeromorphic continuation of ζ (s; 1, b)was carried out in [9,10]. Also for the locally
symmetric spaces XΓ = Γ \ X , the explicit meromorphic continuation of the spectral zeta function, which in turn involves
the meromorphic continuation of ζ (s; 1, b), was carried out in [10] by an application of the Selberg trace formula. In fact,
apart from contributions to themeromorphic continuation of certain functions indexed by hyperbolic elements γ ∈ Γ r{1},
the contribution of ζ (s; 1, b) is by way of the identity element 1 ∈ Γ , which is why we shall refer to ζ (s; x, b) as a local zeta
function.

It is also of interest in physics to compute the quantity EΓ :=
1
2ζXΓ

(− 1
2 ), which comes up in the expression of the Casimir

energy of the locally symmetric space XΓ and involves the special value ζ (− 1
2 ; 1, 0); EΓ was computed in some special

rank one cases in [11–13] and in the general rank one case in [14], and is given by the zeta regularization of the formal
(divergent) expression 1

2

∑
λj≠0 λ

1/2
j that arises in the canonical quantization of a scalar field on space–times modelled on

XΓ . Here, {λj : 1 ≤ j ≤ ∞} is the spectrum of −∆Γ , the Laplace–Beltrami operator of XΓ .
Regarding mathematical applications, one can find explicit formulas for all Minakshisundaram–Pleijel short-time

asymptotic heat kernel coefficients, using themeromorphic structure of zeta [15]; see also [16,17] and comparewith [18,19].
The physical applications that we have mentioned involve results that have been worked out in the rank one case only.

A study of the local zeta function ζ (s; x, b) for higher rank spaces is still open, and is the focus of the present paper.
One of ourmain results is Theorem2.1, which shows in particular that for general X , for all x ≠ 1, ζ (s; x, b) has an analytic

continuation to an entire function of s. In case G is complex, we give a very explicit form of the meromorphic continuation
of ζ (s; x, b) (for all x ∈ X) in Theorem 3.1. We also compute special values of the zeta function and of its derivative at s = 0
(with Eq. (1.4) in mind) and at s = −

1
2 . However, the special value at s = −

1
2 gives only a local contribution to the Casimir

energy.
To illustrate the difficulties present in the general case, we work out the meromorphic continuation for two higher rank

families in the last section. In future work we intend to compute the full energy EΓ by way of an appropriate version of the
trace formula.

2. Meromorphic continuation

The main goal of this section is to prove one of our main results, Theorem 2.1, on the meromorphic continuation of the
zeta function. As a first step, we will check the convergence of ζ (s; x, b) (c.f. definition (1.5)) for s such that σ = Re (s) > d

2
where d = dim X .
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We use the estimate

|c(λ)|−2
≤ C(1 + |λ|)n

on a∗
p , where n = dimN and C is some positive constant. Also for λ ∈ a∗

p, φλ(x) is positive definite on G and therefore
|φλ(x)| ≤ φλ(1) = 1. Also, let d = dim X , l = dim ap, the real rank of X , and let S1(0) := {λ ∈ a∗

p | |λ| = 1} denote the unit
sphere in a∗

p , with surface element dS.
We have the following bound,∫

a∗
p

∫
∞

0

e−tb2e−t(|λ|
2
+|ρ|

2)φλ(x)|c(λ)|−2ts−1
 dtdλ =

∫
a∗
p

∫
∞

0
e−(|λ|

2
+|ρ|

2
+b2)t tσ−1

|φλ(x)||c(λ)|−2dtdλ

= Γ (σ )

∫
a∗
p

|φλ(x)||c(λ)|−2

(|λ|2 + |ρ|2 + b2)σ
dλ

≤ C Γ (σ )

∫
a∗
p

(1 + |λ|)n

(|λ|2 + |ρ|2 + b2)σ
dλ

= CΓ (σ )

∫
S1(0)

∫
∞

0

(1 + r)n

(r2 + |ρ|2 + b2)σ
r l−1drdS < ∞

valid for 2σ − n − l + 1 > 1, i.e. for σ > n+l
2 =

d
2 .

Thus, by Fubini’s theorem and definitions (1.2) and (1.3),

ζ (s; x, b) =
1

|W |Γ (s)

∫
∞

0
e−tb2

∫
a∗
p

e−t(|λ|
2
+|ρ|

2)φλ(x)|c(λ)|−2dλts−1dt

=
1

|W |Γ (s)

∫
a∗
p

∫
∞

0
e−(|λ|

2
+|ρ|

2
+b2)t ts−1dtφλ(x)|c(λ)|−2dλ. (2.1)

That is, we obtain:

ζ (s; x, b) =
1

|W |

∫
a∗
p

φλ(x)|c(λ)|−2

(|λ|2 + |ρ|2 + b2)s
dλ, (2.2)

for any x ∈ G/K , b ∈ R and swith Re (s) > d
2 .

Since G = KApK and ht is K -bi-invariant we can write for every x ∈ X, x = (k expH)K with (k,H) ∈ K × ap so that

ζ (s; x, b) :=
1

Γ (s)

∫
∞

0
e−tb2ht(expH)ts−1dt. (2.3)

Furthermore, if

ap
+

:= {H ∈ ap | α(H) > 0 ∀α ∈ Σ+
},

then by the Cartan decomposition G = K exp ap
+K and one can assume that H ∈ ap

+, with H uniquely determined by x.
We now state one of the main results in this paper.

Theorem 2.1. Let X be a symmetric space of the noncompact type and arbitrary real rank.
(i) If x ∈ X, x ≠ 1, the origin in X = G/K, the function ζ (s; x, b) can be analytically continued to an entire function of s.
(ii) If X is such that the asymptotic expansion (2.9) holds, then ζ (s; 1, b) extends meromorphically to C for all X . Furthermore,

its poles are simple and are located at s of the form d
2 − r, with r ∈ N0 = N ∪ {0} and the residues can be expressed explicitly

in terms of the coefficients of the asymptotic expansion ak in (2.9).

Remark 2.2. Actually,webelieve that the requirement in (ii) should be true always as itwas shown in [16] for any symmetric
space of classical type, with an explicit determination of the coefficients ak in all cases. Thus, only the symmetric spaces
associated to exceptional groups need to be investigated. However, we do believe that the methods in [16] apply in these
cases as well to yield an expansion as in (2.9). After the proof of the theorem, we will give a simple argument that allows
one to obtain the meromorphic continuation by way of the special structure of the Plancherel measure for a class of higher
rank symmetric spaces which includes the case when G = SU(p, l + 1 − p) with 2 ≤ p ≤

l
2 .

Proof. We base the proof on a very useful global estimate for the heat kernel due to Anker and Ostellari (see [20,21]; also
see [22–25]) that gives for t > 0 and H ∈ ap:

ht(expH) ≤ Ct−
d
2

 ∏
α∈Σ

+

0

(1 + α(H))(1 + α(H) + t)
mα+m2α

2 −1

 · e−ρ(H)e−|ρ|
2t−|H|

2/4t . (2.4)
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Here, C > 0 is some constant and Σ+

0 := {α ∈ Σ+
| α/2 ∉ Σ+

} is the set of positive, indivisible roots. This estimate,
together with a lower bound estimate had been conjectured by Anker.

For t > 0 and H ∈ ap
+, one has 1 + α(H) < 1 + α(H) + t ≤ (1 + α(H))(1 + t), hence,∏

α∈Σ
+

0

(1 + α(H) + t)(mα+m2α)/2
≤

∏
α∈Σ

+

0

(1 + α(H))(mα+m2α)/2(1 + t)(mα+m2α)/2

≤

 ∏
α∈Σ

+

0

(1 + α(H))(mα+m2α)/2

 (1 + t)
d−l
2

since
∑

α∈Σ
+

0
(mα + m2α) = dim n = d − l. This estimate, together with (2.4) implies

ht(expH) ≤ γ (H)t−
d
2 e−|ρ|

2t−|H|
2/4t(1 + t)

d−l
2 (2.5)

where

γ (H) := Ce−ρ(H)
∏

α∈Σ
+

0

(1 + α(H))(mα+m2α)/2, (2.6)

for t > 0,H ∈ a+. In particular, for t ≥ 1, (1 + t)
d−l
2 ≤ (2t)

d−l
2 ⇒e−tb2ht(expH)ts−1

 ≤ γ (H)2
d−l
2 t−

l
2 +σ−1e−(|ρ|

2
+b2)t− |H|

2
4t

≤ γ (H)2
d−l
2 t−

l
2 +σ−1e−|ρ|

2t (2.7)

for σ = Re (s), a weaker estimate, but enough to show that the integral∫
∞

1
e−tb2ht(expH)ts−1dt

converges uniformly on Re (s) ≤ A for each A ∈ R. In particular, it converges uniformly on compact subsets of C, and hence
yields an entire function of s (c.f. [26, Ch. XII, Lemma 1.1, p. 308]).

Similarly,
 1
0 e−tb2ht(expH)ts−1dt =


∞

1 e
−b2
t h1/t(expH)t−s−1dt , and for t > 0, inequality (2.5) gives

h1/t(expH) < γ (H)t
d
2 e

−|ρ|
2

t −
|H|

2t
4


1 +

1
t

 d−l
2

.

In particular, for t ≥ 1, 1 +
1
t ≤ 2, thuse−b2/th1/t(expH)t−s−1
 ≤ γ (H) 2

d−l
2 t

d
2 −σ−1e

−|ρ|
2

t e−
|H|

2t
4

≤ γ (H)2
d−l
2 t

d
2 −σ−1e−

|H|
2t
4 ,

which shows that if H ≠ 0 then, as before, the integral∫
∞

1
e−b2/th1/t(expH)t−s−1dt

converges uniformly on Re (s) ≥ −A, for every A ∈ R, and thus it defines an entire function of s.
From these considerations and (2.3) we see that ζ (s; x, b) is an entire function of s provided that H ≠ 0, which is the

case if x ≠ 1. This completes the proof of part (i) in Theorem 2.1.
Note that if H = 0, the preceding estimate givese−b2/th1/t(expH)t−s−1

 ≤ γ (H)2
d−l
2 t

d
2 −σ−1e−|H|

2t/4
= γ (0)2

d−l
2 t

d
2 −σ−1,

where for σ ≥
d
2 + ϵ, ϵ > 0,


∞

1 t−
d
2 −σ−1dt < ∞, which shows (as is consistent with our earlier remarks) that ζ (s; 1, b) is

only holomorphic, a priori, on Re (s) > d
2 .

We now consider assertion (ii). Although X = G/K is non-compact, we employ some ideas that are standard in the study
of spectral zeta functions for compact manifolds.

The initial step is to assign to X an appropriate theta function θX (t). Namely, for t > 0 we take

θX (t) :=

∫
a∗
p

e−t|λ|
2
|c(λ)|−2 dλ. (2.8)
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A short time asymptotic expansion

θX (t)
t→0+

∼ (4π t)−d/2
∞−
k=0

aktk (2.9)

is assumed. In [16], it was shown that (2.9) is valid for all G of classical type and the coefficients were computed. More
precisely, (2.9) means that given any non-negative integer N one has that

lim
t→0+


(4π t)d/2θX (t) −

N−
k=0

aktk

t−N

= 0. (2.10)

Eq. (2.10) is equivalent to the existence, for each N , of a positive constant CN such thatθX (t) − (4π)−d/2
N−

k=0

aktk−d/2

 ≤ CN tN+1−d/2 (2.11)

for any 0 < t ≤ 1.
For Re (s) > d/2, define F(s) by

F(s) := |W |Γ (s)ζ (s; 1, b). (2.12)

If we set δ = b2 + |ρ|
2 > 0, for convenience, we can use Eq. (2.2) and definition (2.8) to write

F(s) =

∫
∞

0
e−δtθX (t)ts−1dt

=

∫ 1

0
e−δt


θX (t) − (4π)−d/2

N−
k=0

aktk−d/2


ts−1dt

+

∫ 1

0
e−δt(4π)−d/2


N−

k=0

aktk−d/2


ts−1dt +

∫
∞

1
e−δtθX (t)ts−1dt. (2.13)

The second term here is

(4π)−d/2
N−

k=0

ak

[∫
∞

0
e−δt tk−d/2+s−1dt −

∫
∞

1
e−δt tk−d/2+s−1dt

]
= (4π)−d/2

N−
k=0

akΓ

k −

d
2 + s


δk−d/2+s

+ FN(s) (2.14)

(since Re (s) > d/2 − k for 0 ≤ k ≤ N), where

FN(s) := −(4π)−d/2
N−

k=0

ak

∫
∞

1
e−δt tk−d/2+s−1dt, (2.15)

is a finite sum of entire functions.
Let

IN(s) :=

∫ 1

0
e−δt


θX (t) − (4π)−d/2

N−
k=0

aktk−d/2


ts−1dt (2.16)

denote the first integral in (2.13), which we claim is uniformly convergent on Re (s) ≥
d
2 − (N + 1) + ϵ for every ϵ > 0.

Namely, for Re (s) ≥ d/2 − (N + 1) + ϵ and 0 < t ≤ 1, by (2.11) we havee−δt


θX (t) − (4π)−d/2

N−
k=0

aktk−d/2


ts−1

 ≤ e−δtCN tN+1−d/2+Re (s)−1

≤ e−δtCN tϵ−1.

It follows that IN(s) is holomorphic on Re (s) > d
2 − (N + 1).

Now for H ∈ a+ we have noted that EH(s) :=


∞

1 e−tb2ht(expH)ts−1dt is an entire function of s. In particular, for H = 0,
we see by definitions (1.2) and (2.8) that

E0(s) =

∫
∞

1
e−tb2 1

|W |

∫
a∗
p

e−t(|λ|
2
+|ρ|

2)
|c(λ)|−2ts−1dλ

=
1

|W |
I(s), (2.17)
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where

I(s) :=

∫
∞

1
e−δtθX (t)ts−1dt, (2.18)

the third integral in (2.13), which shows that I(s) is an entire function of s.
We have therefore established that

ζ (s; 1, b) =
IN(s)

|W |Γ (s)
+

(4π)−d/2

|W |

N−
k=0

akΓ (k − d/2 + s)
δk−d/2+sΓ (s)

+
FN(s)

|W |Γ (s)
+

I(s)
|W |Γ (s)

(2.19)

for Re (s) > d/2, where FN(s) and I(s) are entire and IN(s) is holomorphic on the domain Re (s) > d
2 − (N + 1). Since

N ∈ N0 := N ∪ {0} is arbitrary, Eq. (2.19) proves the meromorphic continuation asserted in (ii) of the theorem.
Concerning the location of poles, there are two possibilities. Suppose, first that d = 2m is even. Choose N > d

2 = m and
write

∑N
n=0 =

∑m
k=0 +

∑N
k=m+1 for the sum in (2.19). For k ≥ m+ 1, Γ (k−m+ s)/Γ (s) =

∏k−m−1
j=0 (s+ j) is a polynomial

of degree k − m, therefore

N−
k=m+1

akΓ (k − d/2 − s)
δk−d/2+sΓ (s)

(2.20)

is a polynomial in s, hence an entire function.
On the other hand

m−
k=0

ak Γ (k − d/2 + s)
δk−d/2+s Γ (s)

=

m−
k=0

am−k

δs−k(s − 1)(s − 2) · · · (s − k)
. (2.21)

From (2.19)–(2.21) we see that if d = 2m is even, then ζ (s; 1, b) has finitely many poles, all simple, possibly at the points
s = 1, 2, . . . ,m =

d
2 .

If d is odd, the poles of ζ (s; 1, b) (all of which, again, are simple) lie at s =
d
2 − l, l ∈ N0 due to the summands containing

the factor Γ (k − d/2 + s) in (2.19). It is clear from (2.19) that the residues of ζ (s; 1, b) are computable in terms of the
coefficients ak in the asymptotic expansion (2.9). �

Remark 2.3. We note that if the rank of X is 1, then one can use the last equation in (2.2) and the formulas for the
Harish-Chandra Plancherel density |c(λ)|−2 to meromorphically continue ζ (s; 1, b) to C. This task is carried out in [9]; also
see [14,10].

We have mentioned that condition (ii) of Theorem 2.1 holds for symmetric spaces of non-compact type, where G is a
classical group as proved in [16]. We conjecture it holds for all G. Here we will show that this condition is valid, in a rather
simple way, for a certain class of groups G of higher rank that extends the class of rank one groups.

Indeed, we will assume that the Plancherel measure is of a special kind, namely of the form

c(λ)−2
= c0p(λ)

l∏
i=1

tanh(πxi)


or
∏
i

coth(πxi)


, (2.22)

where λ =
∑l

i=1 xiϵi and ϵ1, . . . , ϵl is an orthonormal basis of a∗
p , c0 is a constant and p(λ) is a polynomial function. This

includes the following choices of G:

SU(p, l + 1 − p)

2 ≤ p ≤

l
2


, Sl(l + 1, H), SO∗(4p), SO∗(4p + 2), (2.23)

together with any G of split R-rank one.
For these groups, to obtain the asymptotic expansion of (2.9) one can proceed as in the case of rank one groups, since

the integral over a∗
p in (2.8) essentially splits as a product of integrals of the type appearing for rank one groups. Hence the

asymptotic expansion can be obtained in this case by the methods in [17].

3. The zeta function for complex G

As a first illustrative example, in this sectionwe determine the structure of ζ (s; x, b) in the special casewhenG is complex
semisimple Lie group. The main point here is that in this case we can use Gangolli’s simple formula in [4] for the heat kernel
ht(x). Namely

ht(expH) = p(H)t−d/2e−|ρ|
2te−

|H|
2

4t , (3.1)
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for H ∈ ap, where

p(H) := π−l/22−d
∏

α∈Σ+

α(H)

(ρ, α) sinhα(H)
. (3.2)

We have, by [27, p. 340],∫
∞

0
e−γ t− β

t tν−1dt = 2


β

γ

ν/2

Kν(2


βγ ) (3.3)

for β, γ > 0, where Kν(r) is Macdonald’s modified Bessel function. From Eq. (1.3) it follows, for any x = (k expH)K ∈ X ,
with k ∈ K , H ∈ ap, H ≠ 0, that

ζ (s; x, b) =
p(H)

Γ (s)

∫
∞

0
e−[|ρ|

2
+b2]t− |H|

2
4t ts−

d
2 −1dt

=
2p(H)

Γ (s)


|H|

2

4(|ρ|2 + b2)

s/2−d/4

Ks− d
2


|H|


|ρ|2 + b2


. (3.4)

Here for any positive number r , Kν(r) is an entire function of ν. On the other hand if H = 0, then

ζ (s; 1, b) =
p(0)
Γ (s)

∫
∞

0
e−[|ρ|

2
+b2]t ts−

d
2 −1dt

=
p(0)

(|ρ|2 + b2)s−
d
2

Γ

s −

d
2


Γ (s)

,

for Re (s) > d
2 , by [27, p. 317].

In particular if d = 2m is even, then

ζ (s; 1̄, b) =
p(0)

(|ρ|2 + b2)s−
d
2

m∏
j=1

(s − j)
(3.5)

for Re (s) > d
2 . Summing up, the following result is obtained directly (without appealing to Theorem 2.1):

Theorem 3.1. Suppose G is complex semisimple. If x ∈ X = G/K and x ≠ 1, then the zeta function ζ (s; x, b) is an entire function
of s given by the explicit formula:

ζ (s; x, b) =
2p(H)

Γ (s)


|H|

2

4(|ρ|2 + b2)

s/2−d/4

Ks− d
2


|H|


|ρ|2 + b2


. (3.6)

On the other hand, for Re (s) > d
2 , x = 1̄ we have:

ζ (s; 1, b) =
p(0)

(|ρ|2 + b2)s−
d
2

Γ (s −
d
2 )

Γ (s)
(3.7)

where p(H) is as in (3.2). This gives a meromorphic function with possibly simple poles located at s =
d
2 − k, for k ∈ N0, the set

of non-negative integers.
Furthermore,

Ress= d
2 −kζ (s; 1, b) =

(−1)kp(0)(|ρ|
2
+ b2)k

k!Γ
 d
2 − k

 . (3.8)

In particular, if d is even, then ζ (s; 1, b) is given by formula (3.5), which shows it has finitelymany poles, all of them simple and
located at s =

d
2 − k, for 0 ≤ k ≤

d
2 − 1.

Examples of G as in Theorem 2.1 are given in Table 1 where the corresponding symmetric space X is irreducible of type
IV [1].

It is useful to note also that for all complex G, |ρ|
2 in the various formulas is given by

|ρ|
2

=
d
12

, (3.9)

a consequence of the so-called ‘‘strange formula’’ of Freudenthal–deVries [28] (compare [2, p. 487], for example).
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Table 1
.

G K d l = rank of X

SL(n, C) SU(n) n2
− 1 n − 1

SO(n, C) SO(n) n(n − 1)/2 [n/2]
Sp(n, C) Sp(n) n(2n + 1) n
GC
2 G2 14 2

FC
4 F4 52 4
EC
6 E6 78 6

EC
7 E7 133 7

EC
8 E8 248 8

Formulas (3.5)–(3.7) allow to compute special values of ζ (s; x, b). Given remarks in the introduction on the physical
applications, we have a particular interest in the values ζ (0; 1, b), ζ ′(0; 1, b) that come up in the computation of one-loop
effective potential (see Eq. (1.4)) and in the value 1

2ζ (− 1
2 ; 1, 0) which is the local Casimir energy. We continue to assume

here that G is a complex Lie group. We note from (3.2) that

p(0) =
π−l/22−d∏

α∈Σ+

(ρ, α)
. (3.10)

Proposition 3.2. If d is odd, then ζ (−k; 1, b) = 0 for any k ∈ N0. Furthermore, ζ (− 1
2 ; 1, b) = ∞. If d = 2m is even then

ζ (−k; 1, b) =
(−1)mp(0)(|ρ|

2
+ b2)m+k

m∏
j=1

(k + j)
. (3.11)

for k ∈ N0 and

ζ


−

1
2
; 1, b


=

(−1)m2mp(0)(|ρ|
2
+ b2)m+

1
2

m∏
j=1

(2j + 1)
. (3.12)

Proof. These statements are easy to check. Indeed if d = 2m + 1 is odd, then for k ∈ N0, Γ

−k −

d
2


/Γ (−k) = 0, hence,

by formula (3.7), ζ (−k; 1, b) = 0 and ζ

−

1
2 ; 1, b


= ∞.

If d = 2m is even, then (3.11) and (3.12) follow from formula (3.5). �

Proposition 3.3. If d = 2m + 1 is odd, then

ζ ′(0; 1, b) =
(−1)m+12m+1√πp(0)(|ρ|

2
+ b2)m+

1
2

m∏
j=1

(2j + 1)
. (3.13)

If d = 2m is even, then

ζ ′(0; 1, b) =
(−1)m+1

m!
p(0)(|ρ|

2
+ b2)m (log(|ρ|

2
+ b2) − Hm), (3.14)

where Hm :=
∑m

j=1
1
j is the mth harmonic number and p(0) is as in (3.10).

Proof. Eq. (3.13) follows from formula (3.7) in conjunctionwith the fact thatΓ (−m−
1
2 ) = (−1)m+12m+1√π/

∏m
j=1(2j+1).

Eq. (3.14) follows from formula (3.5), together with the fact that

d
ds

[(s − 1)(s − 2) · · · (s − m)]|s=0 = (−1)m+1m!Hm. �

Proposition 3.4. If x ≠ 1, then ζ (−k; x, b) = 0 for k ∈ N0. Furthermore, if p(0) is as in (3.10), then

ζ ′(0; x, b) = 2p(0)


|H|
2

4(|ρ|2 + b2)

−
d
4

K d
2
(|H|


|ρ|2 + b2). (3.15)



T.F. Godoy et al. / Journal of Geometry and Physics 61 (2011) 125–136 133

Proof. Proposition 3.4 follows from formula (3.6), and the fact that K−ν(t) = Kν(t). In particular if d = 2m + 1 is odd, the
formula

K d
2
(t) = Km+

1
2
(t) =


π

2t
e−t

m−
k=0

(m + k)!
k !(m − k)! (2t)k

(3.16)

in [27, p. 967] for t > 0, can be used to further explain Eq. (3.15). If d = 2m is even, a more complicated expression for K d
2
(t)

is given in [27, p. 961]. �

4. Some further examples

In this section, for the reader’s benefit, we carry out the explicit meromorphic continuation for a couple of higher rank
examples. We shall see that for these families, the expressions of the zeta functions become much more involved. We will
make use of some results in [16].

Consider first the space X = SU∗(2(l + 1))/Sp(l + 1), of rank l and dimension d = l(2(l + 1) + 1); see for example
[1, p. 354, Table II]. G = SU∗(2(l + 1)) = SL(l + 1, H), where H denotes the algebra of quaternions. Here,

|c(λ)|−2
= c0−2

∏
1≤i<j≤l+1


λi − λj

2

2

1 +


λi − λj

2

2


, (4.1)

for a suitable constant c0 = c0(l) > 0, and a suitable basis {ei}l+1
i=1

a∗

p =


λ =

l+1−
i=1

λiei

 l+1−
i=1

λi = 0


; (4.2)

(see Section 4.2.6 of [16], for example). We can write

|c(λ)|−2
=

−
I

aIλI
:=

−
r1,...,rl+1

ar1,...,rl+1λ
r1
1 λ

r2
2 · · · λ

rl+1
l+1 (4.3)

for I = (r1, . . . , rl+1), where the ri are nonnegative integers and, for each I , |I| =
∑l+1

i=1 ri ≤ 2l(l + 1), while there is some I
with |I| = 2l(l + 1). The norms |ei| have a common value, say v.

In Theorem 5.5.9 of [16], Godoy derives the formula∫
a∗
p

e−t|λ|
2
|c(λ)|−2dλ = vl

−
I:ri even

aI
(v

√
t)|I|+l

l+1∏
i=1

Γ


ri
2

+
1
2


(4.4)

for any t > 0. The first equation in (2.1) therefore gives

ζ (s; 1, b) =
1

|W |Γ (s)

−
ri∈2N0

aI
v|I|

l+1∏
i=1

Γ


ri
2

+
1
2

∫
∞

0
e−t(|ρ|

2
+b2)ts−


|I|+l
2


−1dt

=
1

|W |

−
ri∈2N0

aI
v|I|

l+1∏
i=1

Γ
 ri
2 +

1
2


Γ


s −


|I|+l
2


(|ρ|2 + b2)s−(|I|+l)/2 Γ (s)

(4.5)

for s such that Re (s) > (|I| + l)/2 for each I . But since, for each I , |I| ≤ 2l(l + 1) with |I| = 2l(l + 1) for some I , then, for
each I , (|I| + l)/2 ≤ [2l(l + 1) + l]/2 = d/2, hence the formula holds for Re (s) > d

2 , and it thus provides the meromorphic
continuation of ζ (s; 1, b) to C.

Suppose for example that d is even, that is, l is even. In (4.5) write l = 2m, ri = 2mi, and J = JI = (m1, . . . ,ml+1), where
themi are nonnegative integers. Then

Γ


s −


|I|+l
2


Γ (s)

=
Γ (s − (m + | JI |))

Γ (s)
=

m+| JI |∏
i=1

(s − i)−1,

thus

ζ (s; 1, b) =
1

|W |

−
mi∈N0

a2J
v2| J|

l+1∏
i=1

Γ

mi +

1
2


(|ρ|2 + b2)s−(m+| J|)

m+| J|∏
i=1

(s − i)
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for Re (s) > d
2 , where some | J| = l(l+ 1) (since some |I| = 2l(l+ 1)) hence, for some J , one hasm+ | J| =

l
2 + l(l+ 1) =

d
2 .

Thus, when d is even, we see from (4.6) that ζ (s; 1, b) has only finitely many poles, all of them simple, located at the points
s = 1, 2, . . . , d

2 .
As a final example we consider the symmetric space X = SU(p + 1, p + 1)/S(U(p + 1) × U(p + 1)), which has rank

l = p+1 and dimension d = 2(p+1)2. We look first at X = SU(2, 2)/S(U(2)×U(2)), which has rank l = 2 and dimension
d = 8, since the general case can be handled in a similar way. For (x, y) ∈ R2, let

Mx,y :=

0 0 x 0
0 0 0 y
x 0 0 0
0 y 0 0

 (4.6)

and choose

ap := {Mx,y | (x, y) ∈ R2
} ≃ R2. (4.7)

If α, β ∈ a∗
p are defined by α(Mx,y) = x, β(Mx,y) = y, then the set of restricted roots of (su(2, 2), ap) is Σ = {±α ±

β, ±2α, ±2β} and Σ+
= {α ± β, 2α, 2β} is a choice of positive roots in Σ . The roots ±2α, ±2β have multiplicity 1,

whereas those of the form ±α ± β have multiplicity 2.
For N = (n1, n2), n1, n2 ∈ N0 and a, δ > 0, we set

IN(s; δ, a) :=

∫
R2

x2n1+1
1 x2n2+1

2 tanh(ax1) tanh(ax2)
(x21 + x22 + δ)s

dx1dx2 (4.8)

for Re (s) > |N| + 2 = n1 + n2 + 2.

Theorem 4.1. If N! = (n1!)(n2!), |x|2 := x21 + x22, we have, for Re (s) > |N| + 2:

IN(s; δ, a) =

−
0≤j1≤n1
0≤j2≤n2

N!
 a
2

2
(n1 − j1)!(n2 − j2)!

j1+j2+2∏
j=1

(s − j)

.

∫
R2

x2(n1−j1)
1 x2(n2−j2)

2 sech2(ax1) sech2(ax2)
(|x|2 + δ)s−(j1+j2+2)

dx. (4.9)

Proof. Theorem 4.1 is a consequence of the formula∫
R

x2n+1 tanh(ax)
(x2 + δ)s

dx =
n!a
2

n−
j=0

Kn−j(s − j − 1; δ, a)

(n − j)!
j+1∏
i=1

(s − i)
(4.10)

for Re (s) > n + 1, where we have set, form ∈ N0 and for any s ∈ C,

Km(s; δ, a) =

∫
R

x2msech2(ax)
(x2 + δ)s

dx. � (4.11)

Formula (4.10), which in turn follows by induction on m and by integration by parts, is used in [14] to meromorphically
continue ζ (s; 1, b) in the rank one case, since the Km(s; δ, a) are entire functions of s. Similarly, the integrals over R2 in (4.8)
are entire functions of s, hence Theorem 4.1 yields the meromorphic continuation of IN(s; a, δ) to C. In particular we see
that all poles of IN(s; a, δ) (finite in number) are simple and located at the points s = 1, 2, . . . , |N| + 2.

Now for a suitable constant c0 > 0 depending on the normalization of various measures

|c(λ)|−2
= c−2

0 p(λ)

p+1∏
i=1

π tanh


πλi

2


, (4.12)

where p(λ) =
∏

1≤i<j≤p+1 π


λi−λj
2

2
π


λi+λj
2

2 ∏p+1
i=1 λi, for G = SU(p + 1, p + 1). Compare Section 4.2.6 of [16], for

example. We can thus write

p(λ) =

−
N

aNλN
=

−
N=(n1,...,np+1)

0≤ni∈Z

an1,...,np+1λ
2n1+1
1 · · · λ

2np+1+1
p+1 , (4.13)
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where |N| = p(p + 1). By the last equation of (2.2), the choice p = 1 in (4.13) and definition (4.8), we have for Re (s) > 4

ζ (s; 1, b) =
π2c−2

0

|W |

−
N=(n1,n2)

|N|=2

aN

∫
R2

x2n1+1
1 x2n2+1

2 tanh


πx1
2


tanh


πx2
2


(x21 + x22 + |ρ|2 + b2)s

dx1dx2

=
π2c−2

0

|W |

−
N=(n1,n2)

|N|=2

aN IN

s; |ρ|

2
+ b2,

π

2


.

Here |W | = 8. Since each IN(s; δ, a) extends meromorphically to C, by Theorem 4.1, this formula shows that (for X =

SU(2, 2)/S(U(2) × U(2))) ζ (s; 1, b) extends meromorphically to C, by way of Theorem 4.1. All of its poles are simple and
are located at the points s = 1, 2, 3, 4 = d/2.

One can formulate a generalization of Theorem 4.1 valid for the space X = SU(p + 1, p + 1)/S(U(p + 1) × U(p + 1)),
which coupled with Eqs. (4.12) and (4.13) allows to give the meromorphic continuation of ζ (s; 1, b) for this space. Namely,
let N = (n1, . . . , np+1), J = (j1, . . . , jp+1), again for integers ni, ji, and write 0 ≤ J ≤ N if 0 ≤ ji ≤ ni for each i. For
N! :=

∏p+1
i=1 (ni)! and (N − J)! =

∏p+1
i=1 (ni − ji)!, the obvious generalization of definition (4.8) is

IN(s; δ, a) :=

∫
Rp+1

p+1∏
i=1

x2ni+1
i tanh axip+1∑

i=1
x2i + δ

s dxi, (4.14)

for Re (s) > |N| + p + 1, a, δ > 0, while that of Theorem 4.1 is

Theorem 4.2. For Re (s) > |N| + p + 1,

IN(s; δ, a) =

−
J,N:0≤J≤N

N!
 a
2

p+1

(N − J)!
| J|+p+1∏

j=1
(s − j)

.

∫
Rp+1

p+1∏
i=1

x2(ni−ji)
i sech2(axi)p+1∑

i=1
x2i + δ

s−(| J|+p+1) dxi (4.15)

which is proved by induction on p.
The meromorphic continuation of ζ (s; 1, b) for the symmetric space X = SU(p + 1, p + 1)/S(U(p + 1) × U(p + 1))

can be carried out as before. Again start with the final equation in (2.2) and apply formulas (4.12) and (4.13), and definition
(4.14): For Re (s) > (p + 1)2,

ζ (s; 1, b) =
πp+1c−2

0

|W |

−
N=(n1,...,np+1)

|N|=p(p+1)

aN

∫
Rp+1

p+1∏
i=1

x2ni+1
i tanh


πxi
2


p+1∑
i=1

(x2i + |ρ|2 + b2)s
dxi

=
πp+1c−2

0

|W |

−
N:|N|=p(p+1)

aN IN

s; |ρ|

2
+ b2,

π

2


. (4.16)

Now, we can apply (4.15) to each IN(s; |ρ|
2
+ b2, π

2 ) in (4.16), provided that Re (s) > each |N| + p + 1 = (p + 1)2, which is
the assumption in place. Thus, by (4.15) and formula (4.16), we see that ζ (s; 1, b) extends meromorphically to C, with only
finitely many poles (all of them simple), located at the points s = 1, 2, . . . , (p + 1)2 = d/2.

In general, sl(r + s, C) is the complexification of the Lie algebra su(r, s). Thus the Killing form of su(r, s) is given by
(X, Y ) = 2(r + s)tr XY . In particular, for g0 = su(p + 1, p + 1) it is given by (X, Y ) = 4(p + 1) tr XY , for X, Y ∈ g0, and
|ρ|

2
= (Hρ,Hρ)sl(2(p+1),C) =

1
24 dim SL(2(p + 1), C)/SU(2(p + 1)), by Freudenthal–deVries formula (see (3.9)). Thus by

Table 1,

|ρ|
2

= (4p2 + 8p + 3)/24 (4.17)

for X = SU(p + 1, p + 1)/S(U(p + 1) × U(p + 1)). In particular (for p = 1), |ρ|
2

= 5/8 for X = SU(2, 2)/S(U(2) × U(2)).
This value also follows directly from (4.6), given that (X, Y ) = 8 tr XY is the Killing form of su(2, 2).

The constant c0 in formula (4.16) is given by

c0 =

∏
α∈Σ

+

0

Γ
 1
2

mα

2 + 1 + (ρ, α0)


Γ
 1
2

mα

2 + m2α + (ρ, α0)


2−(ρ,α0)Γ ((ρ, α0))
, (4.18)
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where α0 = α/(α, α) for α ∈ Σ . As in [2, p. 109], for example, c0 accounts for the normalization condition c(−iρ) = 1 of
Harish-Chandra’s c-function on Λ. Recall from the introduction that Λ is the complexification of the dual space a∗

p and Σ+

0

is the set of indivisible roots in Σ+. In the present case Σ+

0 = Σ+
= {αi ± αj | 1 ≤ i < j ≤ p + 1} ∪ {2αi | 1 ≤ i ≤ p + 1},

with mα = 2 for α = αi ± αj, i < j, and mα = 1 for α = 2αi. Here, in a similar way to (4.6), an element of ap has the form

H =


0 D
D 0


, where D is a (p + 1) × (p + 1) diagonal matrix with diagonal entry (x1, . . . , xp+1) ∈ Rp+1, and the roots αi

are such that αi(H) = xi. Also the Weyl group is given by W ≃ (Z/2Z)p+1
× Sp+1, where Sp+1 is the symmetric group on

p + 1 letters. Therefore |W | = 2p+1(p + 1)! in formula (4.16).
By formulas (4.15) and (4.16), the local Casimir energy 1

2ζ

−

1
2 ; 1, 0


assumes the form

1
2
ζ


−

1
2
; 1, 0


=

πp+1c−2
0

2|W |

−
N:|N|=p(p+1)

aN IN


−

1
2
; |ρ|

2,
π

2



=
πp+1c−2

0

2|W |

π

4

p+1 −
J,N:0≤J≤N

|N|=p(p+1)


N
J


J!aN

(−1)| J|+p+1
| J|+p+1∏

j=1

2j+1
2

.

∫
Rp+1

p+1∏
i=1

x2(ni−ji)
i sech


πxi
2

2
p+1∑

i=1
x2i + |ρ|2

−
1
2 −(| J|+p+1)

dxi

for |ρ|
2 given by Eq. (4.17), which shows that in some cases one obtains, unfortunately, less tractable formulas for the energy,

in contrast to the very simple, explicit formula obtained in Eq. (3.12), for example.
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