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a b s t r a c t

A conditional symmetry is defined, in the phase space of a quadratic in velocities
constrained action, as a simultaneous conformal symmetry of the supermetric and the
superpotential. It is proven that such a symmetry corresponds to a variational (Noether)
symmetry. The use of these symmetries as quantum conditions on the wave function
entails a kind of selection rule. As an example, the minisuperspace model ensuing from
a reduction of the Einstein–Hilbert action by considering static, spherically symmetric
configurations and r as the independent dynamical variable is canonically quantized. The
conditional symmetries of this reduced action are used as supplementary conditions on
the wave function. Their integrability conditions dictate, at the first stage, that only one of
the three existing symmetries can be consistently imposed. At a second stage one is led
to the unique Casimir invariant, which is the product of the remaining two, as the only
possible second condition on Ψ . The uniqueness of the dynamical evolution implies the
need to identify this quadratic integral of motion to the reparametrization generator. This
can be achieved by fixing a suitable parametrization of the r-lapse function, exploiting the
freedom to arbitrarily rescale it. In this particular parametrization the measure is chosen
to be the determinant of the supermetric. The solutions to the combined Wheeler–DeWitt
and linear conditional symmetry equations are found and seen to depend on the product
of the two ‘‘scale factors’’.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we reexamine the issue of the presence of conditional symmetries in minisuperspace constrained systems.
The variational symmetries approach for classical Bianchi cosmologies has been, to the best of our knowledge, initiated
in [1]. For the case of classical and quantum cosmology, either Bianchi or higher derivatives, the first works known to
us are [2–6] (where conditional symmetries are used). Work on the subject has been recently revived; see [7–10]. The
method essentially consists in applying the standard theory of variational symmetries [11,12] to the Lagrangian of some
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minisuperspace model. The usual procedure in use is to gauge fix the lapse function to some convenient value (both in
canonical and loop cosmologies [13,14]); then apply the first prolongation in the velocity phase space of a vector in the
configuration space to this gauge fixed Lagrangian and demand its action to be zero. A slightly different approach using the
notion of the special projective and/or homothetic group is adopted in [15–17].

In our work, we do not gauge fix the lapse function. Our justification is that the presence of the lapse keeps intact the full
content of the corresponding reparametrization generator, i.e. the quadratic constraint. This is rather important in various
ways, not only for the symmetries, as the present work shows, but also in solving the classical equations of motion, a task
that is greatly facilitated by inserting the algebraic solution for N from the quadratic constraint into the other equations of
motion [18–21]. In the present work we start from a phase space point of view and define a conditional symmetry [22] as a
simultaneous conformal field of both the supermetric and the potential. We prove that this definition results in uncovering
all variational symmetries.

In short, to clearly state what are the new results concerning classical and quantum treatment of constrained systems,
we note that at the classical level, even though the conditional symmetries have been defined by Kǔchar in [22] as linear in
momenta integrals of motion, the particular definition (2.8), which is akin to quadratic constrained systems, is new. What
is more important is that the connection between the existence of these simultaneous conformal Killing fields and Noether
symmetriesmade explicit through the particular representation of the lapseN = V−1 N̄ (see discussion under (2.13) and the
following theorem in the same section) is also new. There is another new ingredient with respect to conditional symmetries
referring to Lagrangian formulation of constrained systems, that is definition (2.17). The importance of this definition is
exhibited in the Appendix inwhichwe give an explicit example of how the gauge fixing of the lapse function – in conjunction
with the use of the standard variational condition – can lead to a loss of certain existing symmetries. At the quantum level,
the definition of the linear quantum operators (2.20a) as Hermitian under the arbitrary measure µ(q) and the consistency
condition (2.24), which turns out to be independent of this measure, is certainly new. Moreover with this definition of Q ’s
there are no further restrictions when demanding the validity of the classical algebra of Q ’s at the quantum level (see the
paragraphs above and below (2.31)). Another important new point of view is the adoption of the specific choice µ =


|Ḡ|

as the determinant of the scaled supermetric where the potential V is constant. This adoption amounts in prescribing all
momenta to the far right (see (2.21)).

We give an application of the method to the case of static, spherically symmetric configurations. A minisuperspace
Lagrangian for the above family of metrics has been given in [23,24] by considering a 3 + 1 decomposition along the
radial coordinate r which is taken to be the dynamical variable. In [25,26] Vakili has used the symmetries of the reduced
Schwarzschild action in the quantization procedure. In the present work we also adopt the quantum analogues of the
linear integrals of motion as supplementary conditions imposed on the wave function. A careful examination of their role
and integrability conditions leads us to the unique Casimir invariant of their algebra. This invariant is identified to the
corresponding r-reparametrization generator through a particular redefinition of the lapse function.

The paper is organized as follows: in Section 2we start with some general considerations onminisuperspace constrained
actions possessing conditional symmetries (see [22] for the case of full pure gravity). Subsequently, in Section 3, we
give the reduced valid Lagrangian reproducing Einstein’s field equations for static, spherically symmetric configurations,
and passing to its Hamiltonian formulation [27], we reveal the three conditional symmetries. In Section 4 we quantize
the dynamical system according to Dirac’s canonical quantization procedure for constrained systems [28]. Finally, some
concluding remarks are included in Section 5.

2. General considerations

2.1. Classical treatment

First, let us give some general considerations on conditional symmetries concerning reparametrization invariant actions
of finite degrees of freedom. Sincewewould like to address collectively spatially homogeneous and/or point like geometries,
we adopt as a suitable starting point the following form of the line element:

d s2 = ±N(x)2 d x2 + gAB (qα(x)) ωA
i (x

i)ωB
j (x

i) dxi dxj i, j = 1, 2, 3. (2.1)

The dynamical variable x may either play the role of time in the former or of the radial coordinate in the latter case, hence
the ± sign in front of dx2. Thus, N(x), qα(x) are the lapse function and the ‘‘scale factor’’ components, which ought to be
considered as the dependent dynamical variables of the space–timemetric. Upon integration of the xi independent variables
in the appropriate full action, the minisuperspace action A =


L dx is obtained, with

L =
1
2N

Gαβ(q) q̇α q̇β
− N V (q) (2.2)

qα(x), α = 1, . . . , n.

It is straightforward to verify that the above action retains its form under a reparametrization x = f (x̃), if one adopts the
following transformations of the dependent variables qα(x),N(x):

N(x) → Ñ(x̃) := N(f (x̃)) f ′(x̃), qα(x) → q̃α(x̃) := qα(f (x̃)). (2.3)
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These transformations can be inferred from the underlying geometry (2.1), as of a kinematical type, dictated by the fact that
N(x) appears in the line element multiplied by dx while qα(x) multiplied by the differentials of the coordinates which are
being integrated out of the full action in order to arrive at A. If one were presented with only the reduced Lagrangian, then
(2.3) should be guessed as a kind of ‘‘gauge’’ transformation. The above changes of N(x) and qα(x) imply that one of these
variables can be prescribed at will by suitably choosing the freedom encoded in the arbitrariness of f ; when one attempts
to solve the Euler–Lagrange equations, it is both useful and instructive to let the value of N(x) be defined by algebraically
solving the corresponding constraint equation. If this value is substituted into the other equations concerning the qα(x)’s,
the rank of the system is diminished by one, i.e. one can solve only for n − 1 accelerations. This situation is reflected in the
presence of two first class constraints in the Hamiltonian formulation.

The momenta corresponding to the configuration variables qα(x),N(x) are

πα :=
∂L
∂ q̇α

=
1
N

Gαβ q̇β πN :=
∂L
∂Ṅ

= 0. (2.4)

According to Dirac’s theory

πN ≈ 0 (2.5)

constitutes the primary constraint. The weak equality symbol ≈ denotes that the corresponding relation can be used only
after all the Poisson brackets have been calculated. The canonical Hamiltonian is given by

H := πγ q̇γ
− L = N Hc = N


1
2
Gαβ(q) πα πβ + V (q)


, Gαµ Gµβ

= δβ
α . (2.6)

The consistency requirement that (2.5) must be preserved by the x-evolution leads to the secondary constraint

π̇N := {πN ,H} ≈ 0 ⇒ Hc ≈ 0 (2.7)

and the algorithm is terminated since {Hc,H} = 0 which is stronger than what is actually needed, i.e. ≈0. The two
constraints are first class on account of the Poisson bracket {πN , Hc} = 0. They represent the x-reparametrization invariance
of the action and reveal N(x) as a Lagrange multiplier (as pointed out above) not defined by the dynamical evolution
equations involving the accelerations of the n − 1 qα(x)’s.

On the part of the configuration space spanned by qα(x), one can define a conditional symmetry generated by a vector
field ξ which is a simultaneous conformal field of the metric Gαβ(q) and the potential V (q). This leads to the following
definition.

Definition. A vector field ξα on the configuration space generates a conditional symmetry if

LξGαβ
= φ(q)Gαβ , LξV (q) = φ(q) V (q) (2.8)

where Lξ stands for the Lie derivative operator acting on the corresponding geometrical objects:

LξGαβ
:= Gαβ

,ρ ξρ
− Gρβ ξα

,ρ − Gαρ ξβ
,ρ, LξV (q) := V (q),ρ ξρ . (2.9)

To each of the existing conditional symmetries one can correspond a phase space quantity

QI := ξα
I πα. (2.10)

As one can easily check, the Poisson brackets of (2.10) with the Hamiltonian vanish on the constrained surface on account
of (2.7):

{QI ,NHc} = −N

1
2


LξIG

αβ

παπβ + LξIV


= −N φI(q) Hc ≈ 0. (2.11)

Therefore, by virtue of (2.11) the quantities (2.10) are constants of motion

QI = κI . (2.12)

As it is well known, the totality of these charges forms a Lie algebra characterized by some structure constants, say CM
IJ

{QI ,QJ} = CM
IJ QM . (2.13)

The equation {QI ,H} ≈ 0 is the definition for conditional symmetries used in [22]. Our definition of conditional
symmetries (2.8) is of course equivalent to the aforesaid definition, so it is a matter of taste which one should be preferred
over the other.Moreover, (2.8) are somewhat different than the conditions used in the earlierworks cited in the Introduction,
in the sense that we allow the ξI ’s to be conformal fields of the supermetric and not Killing fields. This is justified by the
weak vanishing of the superHamiltonian H resulting from (2.7).
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A further important property emanating from this definition is the fact that under a scaling of Gαβ and V (x) by, say ω(q),
the conserved charges (2.10) retain their nature and, more usefully, remain form invariant. To see this, let us act with the
same ξ(I) on Ḡαβ

= ω(q)Gαβ and V̄ = ω(q) V (q):

Lξ (ω(q)V ) = ω(q) LξV + Lξω(q) V =


φ +

ξα ω,α

ω


ω(q)V =: Φ(q) (ω(q) V ) (2.14)

and likewise for Ḡαβ . The above equation shows that if we form the new quantities Q̄I = ξα
I π̄α , these remain constants of

motion, since their Poisson bracket with the H̄C still vanishes weakly.
The scaling by ω can be achieved by rescaling N , i.e. N = ω(q)N̄ , as it can be seen by the form of (2.6). A particularly

interesting and useful choice of ω(q) is the one that makes Φ(q) equal to zero. This ω(q) can be evaluated with the aid of
the second of the equations (2.9):

LξV = φ(q)V ⇒ ξα V,α = φ(q) V ⇒ φ(q) =
ξα V,α

V
. (2.15)

Use of this φ into the definition of Φ(q) leads to a linear partial differential equation for ω which can always be solved.
An obvious solution is ω = λV−1 (with λ being a constant) which makes the potential V̄ constant. Furthermore, in this

case the ξI ’s are turned into Killing fields of Ḡαβ rather than conformal fields. It is in this particular parametrization for the
lapse that a connection can be established with the usual variational (Noether) symmetries approach: the Killing fields ξI ,
with the appropriate prolongation, provide the fields XI which are the generators of the corresponding symmetries, i.e. they
satisfy pr (1)XI(L̄)+ L̄ Div ΞI = Div FI [12] (withΞI being the coefficient of the partial derivative of the independent variable
x and FI(qα, x) being an arbitrary function). This is rather important, since if one applies the above condition to another
lapse parametrization in which the potential is not constant and the ξI ’s are not Killing vector fields, one is bound to lose
some symmetries, if not all as the Appendix shows for the case of the specific example of Section 3. On the other hand, our
definition of symmetries (2.8), based on the phase space and inspired by the weak vanishing of the superHamiltonian, can
be applied to any conformal gauge. Therefore we have the following theorem.

Theorem. For the case of constrained systems described by (2.2), the conditional symmetries are equivalent to Noether
symmetries.

If one wished, one could also work in the velocity phase space and in an arbitrary parametrization of N(x). The price
one would have to pay is to accordingly modify the variational symmetry condition by allowing the right hand side to be
expressed as a multiple of the constraint Euler–Lagrange equation with respect to N . Let us start with

X := ξα(q)
∂

∂qα
, pr (1)X := X +

dξα(q)
dx

∂

∂ q̇α
. (2.16)

Definition. A vector field X = ξα(q) ∂α generates a conditional symmetry if

pr (1)X(L) = φ(q)N EL(N) (2.17)

where EL(N) is the Euler–Lagrange equation with respect to N .

Using the above definition we can easily compute the action of pr (1)X on (2.2)

pr (1)X(L) = φ(q)N EL(N)

⇒
1
2N


LξGαβ


q̇α q̇β

− NLξV = −φ(q)N


1
2N2

Gαβ q̇α q̇β
+ V


⇒

1
2N


LξGαβ + φ(q)Gαβ


q̇α q̇β

− N

LξV − φ(q) V


= 0 ∀ q̇µ (2.18)

which, in order to be an identity for all q̇µ, leads to the conditions (2.8) thus proving the equivalence of the two definitions.
This can also be visualized as an enlargement of the relevant vector X by adding the term −φ(q)N ∂

∂N , making manifest the
freedom to arbitrarily rescale N .

Lastly, one may ask what is the precise relation between the symmetries of the space–time metric and the symmetries
of the configuration space metric Gαβ (i.e. the conditional—Noether symmetries). In the case of Bianchi geometries, which
are included in the general form (2.1), there is a clear connection between the existence of Killing fields in the underlying
geometry and the conditional symmetries of the corresponding Lagrangian as explained in [6,18–21] as well as in [29].
In short, the connection is provided by the automorphism group of the symmetry group generated by the Killing fields
of the underlying geometry: to each element of the automorphism group there corresponds one linear integral of motion
i.e. a Noether symmetry whenever a Lagrangian exists. In the particular example we are presenting in Sections 3 and 4, the
number of spacelike Killing fields happens to coincide with the number of the conformal Killing fields of the supermetric
and thus, the number of Killing fields i.e. conditional symmetries. Since there is also the timelike Killing field (∂t ) we cannot
see any immediate connection.
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2.2. Quantum treatment

For the canonical quantization of the above system, we adopt the point of view of promoting to operators not only Hc ,
but also the generators of the conditional symmetries QI . In the Schrödinger picture the first class constraints become the
quantum conditions:

πNΨ (q,N) := −i
∂

∂N
Ψ (q,N) = 0 ⇒ Ψ ≡ Ψ (q)

HcΨ = 0 ⇒


−

1
2µ

∂α(µGαβ∂β) + V (q)


Ψ = 0 (2.19)

where µ is a suitable measure which must transform as a scalar density; under µ the quantum quadratic constraint (2.19)
is Hermitian. This form is the most general second order scalar operator, except for a possible multiple of the Ricci scalar,
R, corresponding to Gαβ .

A natural scalar density emerging from the geometric structure of the configuration space is


| detGαβ | =
√

|G|. It
is reasonable to limit the possible measures to be inferred from the classical geometrical structure, as µ = f (

√
|G|).

However, this choice of µ in conjunction to the scalar density transformation law for µ and
√

|G| leads to the equation
µ̄(

√
|G|J) = µ(

√
|G|)J , which must hold for any transformation qα

= qα(q̃β) with J = det ∂q
∂ q̃ . The only solution is therefore

µ = eλ(qα)
√

|G|, with λ any scalar. Thus, onemust essentially select the Laplacian based on the configuration spacemetric, if
λ(qα) = const., and the addition should then be exactly n−2

4(n−1)R in order for the operator to be conformally covariant [30].
The conditional symmetries (2.10), (2.12) must also be turned into Hermitian operators (see [31]), as

QIΨ := −
i

2µ


µ ξα

I ∂α + ∂α µ ξα
I


Ψ (2.20a)

QIΨ = κIΨ . (2.20b)

If we bear in mind that the classical quantities QI generate symmetries, it is mandatory, in order to retain their geometrical
character, to demand that they act as derivatives on the wave function Ψ . In other words, we must have the momentum
operators acting on the far right side, which translates into the condition ∂α(µ ξα

I )

µ
= 0. This equation can be satisfied in the

particular conformal parametrization N =
N̄
V , since then

∂α(µ ξα
I )

µ
=

∂α


exp (λ) |Ḡ|

1/2 ξα
I


exp (λ) |Ḡ|1/2

= ξα
I ∂αλ + ξα

I;α = 0 ⇒ ξα
I ∂αλ = 0. (2.21)

The term ξα
I;α is zero if evaluated with the metric Ḡαβ in which the ξI ’s are Killing fields.

The maximum number of QI ’s is n(n+1)
2 . If the actual existing symmetries are more than or equal to n, the above equation

fixes λ to a constant value. For a lesser number of symmetries, some non-trivial λ(q) may be allowed.
Upon quantization it is reasonable to assume that a quantum algebra isomorphic to the classical one holds:

{·, ·} →
−i
h̄

[·, ·] (2.22)

which turns (2.13) intoQI ,QJ


= i h̄ CM
IJ

QM ⇒
QI ,QJ


= i CM

IJ
QM (2.23)

where in the last equality we used units in which h̄ = 1. At first sight Eq. (2.23) in conjunction with (2.20) seems to impose
certain restrictions on the formof the ξ ’s, the constants κI and an initially arbitrarymeasureµ(qα) (althoughwehave already
committed ourselves to µ ∝

√
|G|). In order to begin exploring these restrictions, we act with (2.23) on Ψ (qα) and we use

(2.20b)QI ,QJ


Ψ (qα) = i CM
IJ

QM Ψ (qα)

⇒

κI κJ − κJ κI


Ψ (qα) = i CM

IJ κM Ψ (qα)

⇒ CM
IJ κM = 0. (2.24)

The above equation must be interpreted in a recursive and exhaustive manner: it must be checked for all subalgebras since
they will correspond to different admissible choices of subsets of the QI ’s, I ⊂ {1, . . . , n(n+1)

2 }. The number of essential
constants for the underlying geometry (2.1) can provide us with a lower bound of the dimension of the subalgebras to be
selected: if (2.1) depends on some constants κ1, κ2, . . . , one can always try to find a coordinate transformation of x, xi
that absorbs some (or all) of the constants. If a constant cannot be absorbed by such a transformation we call this constant
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essential. From this definition it is apparent that the constants not appearing in (2.24) are eligible candidates for representing
the geometry. Such constants will belong to the centre of the corresponding subalgebra.

Further restrictions, induced by (2.23), could come to life when we expand this equation taking into account (2.20a). The
left hand side of (2.23) then reads

l.h.s. =


−i ξα

I ∂α +
−i

2µ(qν)


µ(qν) ξα

I


,α

, −i ξβ

J ∂β +
−i

2µ(qν)


µ(qν) ξ

β

J


,β



= −


ξα
I ∂α, ξ

β

J ∂β


−

ξα
I ∂α,


µ(qν) ξ

β

J


,β

2µ(qν)

 +


ξ

β

J ∂β ,


µ(qν) ξα

I


,α

2µ(qν)


. (2.25)

The first commutator of (2.25) can be evaluated quite easily if we expand (2.13)

ξ
β

J ξα
I,β − ξ

β

I ξα
J,β = CM

IJ ξα
M , (2.26)

while the last two commutators of (2.25) combine to

µ(qν),β

2µ(qν)


ξα
I ξ

β

J,α − ξα
J ξ

β

I,α


+

1
2


ξα
I ξ

β

J,αβ − ξα
J ξ

β

I,αβ


. (2.27)

The right hand side of (2.23) reads

r.h.s. = i CM
IJ


−i ξα

M ∂α +
−i

2µ(qν)


µ(qν) ξα

M


,α


= CM

IJ ξα
M ∂α +

CM
IJ

2µ(qν)


µ(qν) ξα

M


,α

. (2.28)

Gathering the above results we get the integrability condition

µ(qν),β


ξα
I ξ

β

J,α − ξα
J ξ

β

I,α


+ µ(qν)


ξα
I ξ

β

J,αβ − ξα
J ξ

β

I,αβ


+ CM

IJ


µ(qν) ξα

M


,α

= 0 (2.29)

and using once more (2.26) we arrive at

CM
IJ ∇ξM +


LI ∇ξJ − LJ ∇ξI


= 0, (2.30)

where ∇ξI ≡ ∂αξα
I . Surprisingly enough, the above relation is nothing but an identity that can be derived by taking the

divergence of (2.26), leaving us with only (2.24).
Finally, let us point out that if someone wished to investigate the possibility that the quantum algebra is not isomorphic

to the classical algebra, thus relaxing (2.23) and just evaluating the commutator on thewave functionΦ(qα), then onewould
obtain a combined relation of the form

i CM
IJ κM −

1
2


LξI∇ξJ − LξJ ∇ξI + CM

IJ ∇ξM


= 0 (2.31)

which, however, is again reduced to (2.24). This establishes (2.24) as the only constraint on the classical quantities, even
without the assumption of the quantum algebra being isomorphic to the classical algebra.

These constraints among the κL’s prohibit the simultaneous realization of all QL’s as eigen-operators. Usually one adopts
the maximal Abelian subgroup along with the Casimir invariant as consistent conditions on the wave function. However,
choices of non-Abelian subgroups may also be consistent [32]. Further investigation can be made for particular systems as
in the example below.

3. Hamiltonian formulation of static, spherically symmetric geometries

Our starting point is the static, spherically symmetric line element

ds2 = −a(r)2dt2 + n(r)2dr2 + b(r)2(dθ2
+ sin2 θ dφ2), (3.1)

where we have changed the notation of the lapse function from N(x) to n(r).
In the usual ADM 3 + 1 decomposition one foliates space–time in t-hypersurfaces and the coefficient of dt2 is the

lapse function. Here we adopt a 3 + 1 foliation in the r coordinate and therefore the role of the lapse is attributed to the
coefficient of dr2 in the line element. Thus we consider n(r) in (3.1) to be the r-lapse function while a(r) and b(r) are the
dependent ‘‘dynamical’’ variables on the r-hypersurface. Previous authors use also a ‘‘shift’’ term 2B(r) dr dt . However, this
is not relevant for the following discussion, as B(r) does not enter the Einstein tensor while it can be absorbed by a time
redefinition of the form t = t̃ +

 B(r)
a(r)2

dr .
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The Einstein–Hilbert action AE–H =
 √

−g R d4x for the geometries (3.1) leads to the reduced action A =

Ldr with the

following Lagrange function L(a, b, a′, b′, n):

L = 2 a n +
4 b a′ b′

n
+

2 a b′ 2

n
, (3.2)

where ′ denotes differentiation with respect to the spatial coordinate r . It is easy to verify that the Euler–Lagrange equations
obtained from (3.2) are identical to Einstein’s equations Gµν = 0 for the line element (3.1).

In order to proceed with the Hamiltonian formalism we calculate the conjugate momenta,

πn =
∂L

∂n′
= 0,

πa =
∂L

∂a′
=

4b b′

n
,

πb =
∂L

∂b′
=

4b a′

n
+

4 a b′

n
.

(3.3)

Obviously, πn is a primary constraint. The Legendre transformation leads to the Hamiltonian

H = nHc,

where

Hc = −2 a −
aπ2

a

8 b2
+

πa πb

4 b
. (3.4)

The preservation of the primary constraint πn in the r-evolution, i.e.

π ′

n = {πn,H} ≈ 0,

leads to the secondary constraint

Hc ≈ 0. (3.5)

The minisuperspace metric inferred from (3.4) is

Gαβ
=

−
a

4b2
1
4b

1
4b

0

 . (3.6)

Our definition (2.8) is fulfilled by the following three conformal Killing fields of both Gαβ and the potential V = −2a:

ξ1 = (−a, b), ξ2 =


1
a b

, 0


, ξ3 =


−

a
2 b

, 1


(3.7)

which, contracted with (πa, πb), provide us with the three integrals of motion:

Q1 = −aπa + bπb, Q2 =
πa

a b
, Q3 = −

aπa

2 b
+ πb. (3.8)

We calculate the Poissonbrackets of these conservedquantitieswith the canonicalHamiltonianH and the Poisson algebra
that they satisfy:

{Q1,H} = nHc, {Q2,H} = −
n

a2 b
Hc, {Q3,H} =

n
2 b

Hc, (3.9a)

{Q1,Q3} = Q3, {Q2,Q1} = Q2, {Q3,Q2} = 0. (3.9b)

As expected from the discussion of the general case (2.11), the Poisson brackets (3.9a) areweakly vanishing on the constraint
surface Hc ≈ 0 and therefore the three QI ’s are constants of motion.

At this point it is interesting, and useful for what follows in the quantization, to adopt a new parametrization of the lapse
n(r) =

n̄(r)
2a(r) whichmakes the potential constant as explained in the previous section. The Lagrangian and the corresponding

Hamiltonian are now given by

L̄ = n̄ +
8 a b a′ b′

n̄
+

4 a2 b′ 2

n̄
, H̄ = n̄H̄c = n̄

1
2a

Hc . (3.10)
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If the value of n̄ specified by the constrained equation is substituted into the Euler–Lagrange equations for a(r) and b(r) the
system can be solved for only one acceleration, say a′′(r), and the general solution of the entire system is

n̄(r) = 2 c b′(r), a(r) = c


1 −

2M
b(r)

, (3.11)

where the constants of integration have been rearranged so that the ensuing line element

ds2 = −c2

1 −

2M
b(r)


dt2 +


1 −

2M
b(r)

−1

b′(r)2dr2 + b(r)2(dθ2
+ sin2 θ dφ2) (3.12)

bears the closest possible resemblance to the standard form of the Schwarzschild metric, while the presence of the arbitrary
function b(r) reflects the r-reparametrization covariance of the system.

The new supermetric is now given by

Ḡαβ
=

−
1

8b2
1

8a b
1

8a b
0

 , (3.13)

and the fields (3.7) are now turned into Killing fields of Ḡαβ ; they are also, trivially, symmetries of the constant potential
V̄ = 1 as well. The algebra satisfied by the new quantities Q̄I = ξα

I π̄α and H̄c can easily be seen to be

{Q̄1, H̄c} = 0, {Q̄2, H̄c} = 0, {Q̄3, H̄c} = 0. (3.14)

Therefore the quantities Q̄I still remain constants of motion. It is in this conformal gauge that one can explicitly verify that
the prolonged ξI ’s, XI , are satisfying a form of the standard condition of variational symmetries pr (1)XI(L̄) = 0, thus ensuring
that they are generators of Noether symmetries. It is important to note that if one had inserted the XI ’s into the full relation
pr (1)X(L) + L Div Ξ = Div F with L given by (3.2) the result would be negative. This situation is clearly depicted in the
Appendix.

If we invert the definitions for π̄α and use (3.11) in Q̄I we calculate the integrals’ values on the solution space:

Q1 = Q̄1 = 4 c M, Q2 = Q̄2 =
4
c
, Q3 = Q̄3 = 2 c. (3.15)

As it is known the Schwarzschild solution involves only one essential constant, the mass M . The second constant
appearing in the solution (3.11), (3.12) can be seen to be absorbable by a scaling of the time coordinate t →

t
c , allowing us

to set c = 1 but not c = 0. So, on the solution space, we can set Q̄1 = 4M, Q̄2 = 4, Q̄3 = 2. It is noteworthy that the values
of the last two integrals of motion can be changed at will and that they do not involve the essential parameter M which
characterizes the geometry. The above argument relies on the underlying geometry.

But what if we were deprived of the line element and we were just given the dynamical system (3.10)? How could we
differentiate between the constants κ1 and κ2, κ3? Interestingly enough, there is an argument that leads to a distinction
between them: the crucial observation is that Q̄1 has a vanishing Poisson bracket with each kinetic term of H̄ , while
Q̄2, Q̄3 need the entire kinetic term in order to produce vanishing Poisson brackets. This fact is reflected in the following
property concerning the one-parameter family of canonical transformations generated by the charge Q1 (see [33,34] for the
generalization of Noether symmetries for constrained systems and for Noether’s theorem in phase space),

a → eλa, π̄a → e−λπ̄a, b → e−λb, π̄b → eλπ̄b. (3.16)

Under such transformations Q̄1 remains, of course, unchanged, while Q̄2, Q̄3 are scaled by e−λ and eλ respectively. One can
thus use the freedom of λ to arbitrarily change the values κ2, κ3, but not κ1. Furthermore, the Hamiltonian H̄c remains, due
to the particular scaling of Q̄2, Q̄3, unchanged.

If we return to the phase space, we can write

Q̄23 = Q̄2 Q̄3 = −
1

2 b2
π̄2

α +
1
a b

π̄α π̄β (3.17)

with the relevant Poisson bracket algebra now becoming

{Q̄23, H̄c} = 0 (3.18a)

{Q̄I , Q̄23} = 0, I = 1, 2, 3. (3.18b)

As expected Q̄23 is a quadratic integral of motion. From a group theoretical view, Q̄23 is an element of the centre of the
universal enveloping algebra (uea) generated by Q̄I ’s, i.e. it is the Casimir invariant. The Hamiltonian H̄c belongs also to the



T. Christodoulakis et al. / Journal of Geometry and Physics 71 (2013) 127–138 135

centre of uea (it commutes with all Q̄I ’s); thus it can only differ from Q̄23 by an additive and/or a multiplicative constant. It
is an easy matter for one to check that indeed

Q̄23 = 8 (H̄c + 1). (3.19)

To sum up, we have constructed a gauge independent, quadratic in the momenta, integral of motion which commutes
with the only integral of motion that entangles the sole essential constant of the Schwarzschild solution. In the next section,
and in order to proceed with the quantization, we will rely on these two quantities.

4. Quantization

In order to quantize our system, wemust turn into operators H̄c =
1
8


Q̄23 − 8


, Q̄1, Q̄2 and Q̄3 (hereafter, for the sake of

simplicity, we will omit the bars from the symbols of the corresponding operators). The corresponding quantum operators
can be inferred from (2.19), (2.20a), (3.13) and (3.7). On account of our previous general discussion, the measure entering

the quantum operators ought to be taken as µ(a, b) = λ


det |Ḡαβ | ∝ a b. The constancy of λ is forced by the combined

requirement that the QI ’s must be realized as Hermitian operators and at the same time retain their classical geometrical
character by acting as derivatives. Thus the extra term ξα

I ∂αλ must vanish for all I = 1, 2, 3, which leads to a constant λ.
Two further arguments in favour of this choice of measure are as follows:

• The fact that the quantum analogue of the algebra (3.18b) is made isomorphic to the classical, i.e.

[QI ,Q23]F(a, b) = 0, I = 1, 2, 3 for any F(a, b) (4.1)

a fact that is highly non-trivial, since it depends on the choice of both the factor ordering and the measure.
• At the classical level, the only linear integral of motion involving the essential constant is Q1. If we seek the functions

on the configuration space which are invariant under the point transformations generated by Q1 we find {Q1, f (a, b)} =

0 ⇒ f (a, b) = f (a b).

The above arguments lead to the following linear operators corresponding to the elements of the classical algebra, the
Casimir invariant and the Hamiltonian:Q1 = −i (b ∂b − a ∂a) (4.2)

Q2 = −
i
a b

∂a (4.3)

Q3 = −i

∂b −

a
2 b

∂a


(4.4)

Q23 =
2
b2

∂a∂a −
1
a b

∂a∂b +
1

2a b2
∂b (4.5)

Hc =
1
8

Q23 − 8

. (4.6)

It is an easy task to check that these operators satisfy not only the relations

[QI ,QJ ]F(a, b) = i CK
IJ
QK F(a, b) (4.7)

for any test function F(a, b), but also (4.1) as well.
Due to the constraint condition (2.24), applied to the specific structure constants inferred from (3.9b), we conclude that

only the eigenvalue κ1 is free and κ2, κ3 must necessarily be zero. However, the latter is impossible since on the classical
solution space (3.15) hold. The reasoning given below (2.24) results in the need to consider the two- and/or one-dimensional
subalgebras. The investigation of these cases can be easily carried out.

As far as the 2d subalgebras are concerned the results obtained are briefly the following.

(a) For the two non-Abelian subgroups either κ2 or κ3 is forced to be zero, something that is inconsistent with their classical
values.

(b) For the Abelian subgroup, the two linear equations lead to the solutions Ψ (a, b) = A exp
 i
2 (κ2 a2 b + 2κ3 b)


, where

A is constant and the quadratic constraint enforces the restriction κ2 κ3 = 8. It is of course doubtful if one can accept
such a wave function to represent the geometry, knowing that it does not contain the essential constant M . However,
one could interpret it as plane waves representing the limiting flat space–timeM = 0.

The one-dimensional subalgebras spanned by Q2,Q3 give solutions which are special cases of the solution described in (b),
as expected since they commute.

Consequently, the only possibility is to adopt Hc and Q1 as conditions on the wave function. This is indeed possible,
since they commute with each other and therefore can be considered as physical quantities on the phase space that can be
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measured ‘‘simultaneously’’ (our dynamical parameter is the distance r). The ensuing eigenvalue equations are̄H cΨ = 0 ⇒ a ∂a∂a Ψ − 2 b ∂a∂b Ψ + ∂a Ψ − 16 a b2 Ψ = 0 (4.8a)Q1Ψ = κ1 Ψ ⇒ i (−a ∂a Ψ + b ∂b Ψ ) = κ1 Ψ . (4.8b)

The solution of the linear partial differential equation (4.8b) is

Ψ (a, b) = ai κ1 S(a b). (4.9)

At this point one could observe that Ψ (a, b) = b−iκ1 S̃(a b) is also a solution of (4.8b). However, it is contained in the above
solution, since it can be written as Ψ (a, b) = b−iκ1 S̃(a b) = aiκ1a−iκ1b−iκ1 S̃(a b) = aiκ1S(a b), with S(a b) = (a b)−iκ1 S̃(a b).
Consequently, the substitution of both forms of the solution in (4.8a) should and does yield the same final wave function.

If we insert the above solution into the Hamiltonian constraint (4.8a) we arrive at the following ordinary differential
equation for S(u)(u = a b):

u2 S ′′(u) + u S ′(u) +

κ2
1 + 16 u2 S(u) = 0 (4.10)

which has the general solution

S(u) = c1 Ji κ1(4 u) + c2 Yi κ1(4 u), (4.11)

in terms of the Bessel functions of imaginary order.
It is interesting to observe that the only dynamical degree of freedom is u = a b. The explanation of this reduction in

terms of the first class constraint and the variational symmetry used is as follows: the phase space is initially six-dimensional
(a, b, n, πa, πb, πn). The classical treatment of this constrained system results in two first class constraints πn and Hc which,
as it is well known, eliminate four degrees of freedom, two for each one of them. The conditional symmetry Q1 has a weakly
vanishing Poisson bracket, so if it was to be interpreted as a first class constraint, one would conclude that there are zero
degrees of freedom left according to the above reasoning. However, Q1 is not a first class constraint but a linear integral of
motion, which results in eliminating only one degree of freedom.

In order to gain some insight into the normalizability of the formal probability, instead of these Bessel functions and
because of their imaginary order, we can use the functions Fi κ1(4 u) and Gi κ1(4 u) defined in [35] through the Hankel
functions H(1)

µ (u) = Jµ(u) + i Yµ(u) and H(2)
µ (u) = Jµ(u) − i Yµ(u), µ ∈ C. Thus, the solution can be written as

S(u) = c1 Fi κ1(4 u) + c2 Gi κ1(4 u) (4.12)

with

Fi κ1(4 u) =
1
2


e−κ1π/2 H(1)

iκ1
(4u) + eκ1π/2 H(2)

iκ1
(4u)


(4.13)

Gi κ1(4 u) =
1
2i


e−κ1π/2 H(1)

iκ1
(4u) − eκ1π/2 H(2)

iκ1
(4u)


. (4.14)

These functions are linearly independent solutions of (4.10) and have the following properties: (a) when u ∈ (0, +∞) they
are real, (b) they are oscillatory with a phase difference of π

2 and (c) when both u and/or κ1 tend to zero, Fi κ1(4 u) tends to
1, while Gi κ1(4 u) becomes infinite.

The final form of the wave function Ψ (a, b) is

Ψ (a, b) = ai κ1 S(a b), (4.15)

so we can define a probability density of the form

µ(a b) Ψ ∗(a, b) Ψ (a, b) ∝ u S∗(u) S(u). (4.16)

5. Discussion

In this paper we give a definition of conditional symmetries (2.8) in terms of simultaneous conformal Killing fields ξI of
theminisuperspacemetricGαβ and the potentialV .We prove that these symmetries remain form invariant under a rescaling
of the lapse function N = ω(q)N̄ . Accordingly, we observe that there is a special scaling of the lapse by the inverse of the
potential ω =

1
V , in which the form invariant ξI ’s become Killing vector fields of Ḡαβ . In this conformal gauge we show that

these ξI ’s are indeed equivalent to the variational (Noether) symmetries one would have found if one had used the standard
definition of variational symmetries on the specially scaled Lagrangian L̄ =

1
2N̄

Ḡαβ q̇α q̇β
− N̄ . We also show that it is possible

to find the same variational (Noether) symmetries in the arbitrary parametrization L =
1
2N Gαβ q̇α q̇β

− N V if (2.17) is used
in the configuration space.

As a result, we propose a method to quantize theminisuperspace actions which are described by the singular Lagrangian
(2.2). The steps of this procedure are as follows.
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1. Go over to the Hamiltonian H̄ .
2. Calculate theNoether symmetries as Killing fields of themetric Ḡαβ(q) and, trivially, symmetries of the constant potential.
3. Identify the essential constants of the metric via the arguments following (2.24). Promote the allowed QI ’s to operators

according to (2.20) with µ = |Ḡ|
1/2.

4. Promote the Hamiltonian constraint H̄c (which is a linear function of the Casimir invariant) via (2.19) to a Hermitian
operator acting on the wave function.

In Sections 3 and 4wepresent an application of the abovemethod for the case of static, spherically symmetric geometries.
First, we begin from the Lagrangian (3.2) emanating from the line element (3.1). We find the simultaneous conformal Killing
fields (3.7) of the supermetric and the potential, which define the three conserved charges (3.8). The unique Casimir invariant
of their algebra isQ23. In order tomake it numerically proportional to the kinetic part of the Hamiltonianwe are led to (3.10).

• In [3] Capozziello and Lambiase use the standard Noether symmetries approach for the regular system obtained by
gauge fixing the lapse function occurring in a singular minisuperspace Lagrangian. Furthermore, they propose the use
as quantum operators of as many of the symmetries as they can be simultaneously brought into normal form by a
single coordinate transformation of the configuration space variables, so that they become manifestly cyclic. They thus,
effectively, invoke themaximal Abelian subgroup as the relevant tool for quantization. Our perspective is quite different,
sincewe startwith a singular Lagrangian (2.2) andwe use only those symmetries that are allowed by the condition (2.24).
In this sense, we have refined their method and their search for ‘‘. . . a criterion by which the Hartle point of view can be
recovered without arbitrariness’’; the selection rule (2.24) is exactly of that nature. An other worth-emphasizing point is
that the use of the Noether symmetriesmust be restricted by the requirement that they correspond to essential constants
of the underlying geometry; in our example, the use of the maximal Abelian subgroup leads to themarginally acceptable
plane-wave solutions not containing the classical geometry’s essential constant M .

• Our specific example (described in Sections 3 and 4) has also been the subject of [25]. In that work, Vakili finds two of the
QI ’s, but then he uses a linear combination of them in order to reproduce the essential constant M of the Schwarzschild
metric. He thus reaches to the unique acceptable linear quantum operator equivalent to our Q1. The clever choice of the
lapse function, his Eq. (4), alongwith the somewhat unorthodox choice of factor ordering for the operators (see below his
Eq. (55)) leads essentially to a constant potential (his Eq. (53)) and to the Laplacian operator (his Eq. (56)). As a result, the
solution spaces found both by us and Vakili essentially coincide. Of course, our general theory constitutes a systematic
explanation of the various choices of his work.

• In [36] Jizba and Pons use Noether symmetries in order to transform a regular Lagrangian into a singular one: they
promote, at the classical level, the constants of motion to constraints by adding them, with appropriate Lagrange
multipliers, to the Lagrangian. The most natural step after this, in order to quantize the theory ála Dirac, is to promote
the constants of motion to operators acting on the wave function. This is exactly our way of thinking since we already
start with a singular Lagrangian and we apply the appropriate QI on the wave function.

A further point that we would like to stress is the somewhat unexpected result that the quantum algebra (2.24) of the
linear operators turns to be isomorphic to the classical one (2.13) by virtue of the formof the operators (2.20) and the relation
among the ξ ’s (2.26) inferred from (2.13).

We plan to return with an exhaustive list of applications to all 2d and/or 3d configuration minisuperspaces, emanating
from the appropriate space–time geometries, i.e. Bianchi types. Furthermore there is also the difficult problem of
interpreting the wave function which must, at some stage, be addressed; the ‘‘correct’’ answers regarding the physical
interpretation could well constitute another separate work, which we hope to present in the future.

Appendix. Calculation of variational symmetries

As already stated in the main text, if one searched for the generators XI of variational symmetries of (3.2) by using the
relation

pr (1)XI(L) = 0, (A.1)

none of the three ξ ’s would emerge. On the other hand, condition (A.1) works for the reparametrized Lagrangian (3.10) and
reveals the three conditional symmetries. This is due to the fact that we are dealing with a singular Lagrangian. In the first
case, the QI = ξα

I πα are integrals of motion on the reduced phase space Hc ≈ 0, while in the latter, {QI ,H} = 0.
In order to calculate the right XI ’s in any reparametrization we use the definition (2.17) in which there exists an extra

term proportional to the quadratic constraint equation involving the velocities

pr (1)XI(L) = φ(a, b) n EL(n). (A.2)

In the case of the Schwarzschild example we have

X := ηa(a, b)
∂

∂a
+ ηb(a, b)

∂

∂b
(A.3)

pr (1)X := X +
dηa

dr
∂

∂a′
+

dηb

dr
∂

∂a′
(A.4)
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and by substituting (3.2) into (A.2) it is easy to calculate that

X1 = −a
∂

∂a
+ b

∂

∂b
, X2 =

1
ab

∂

∂a
, X3 = −

a
2b

∂

∂a
+

∂

∂b
, (A.5)

which are exactly the ξI ’s of (3.7). The corresponding functions φI that multiply the Euler–Lagrange equation EL(n) =
∂L
∂n are

φ1 = −1, φ2 =
1
a2b

, φ3 = −
1
2b

(A.6)

and are equal to the multiplying factors in (3.9a) divided by −n.
As a concluding remark it is reasonable to say that, it is of utmost importance not to fix the gauge, i.e. set n = 1, since

the presence of the quadratic constraint is needed in order to acquire all the variational symmetries regarding a singular
Lagrangian. This, of course, does not mean that one is prohibited to select a gauge for n; one must simply remember to
take into account the gauge fixed form of the constraint equation as in (A.2). The extra term in (A.2) can be interpreted as a
component of amore general generator,XI = −φI n ∂n+XI , expressingnot only transformations of the reduced configuration
space (a, b) as XI ’s do, but transformations over the full space (n, a, b). This does not add any term of the form ∂

∂n′ to the
prolonged vector, since the Lagrangian is free of n′.
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