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Jacobi identities

1. Introduction
In paper [1], Doubrov and Ferapontov introduced the general heavenly equation (GHE)

QUiplsg + BUislizg + YUqslizz = 0, a+B+y=0 (1.1)

where «, 8 and y are arbitrary constants satisfying one linear relation given above. Here u = u(z;, z, z3, z4) is a holomorphic
function of four complex variables. They also obtained the Lax pair for Eq. (1.1)

X1 = U3401 — Uq304 + Y A(U3401 — U1403),
X = U304 — U340 + BA(U3402 — Up403), (1.2)

where 9; means 9/dz;, while u; = Bzu/az,-azj.
There are only few examples of multi-dimensional integrable systems. The so-called heavenly equations make up an
important class of such integrable systems since they are obtained by a reduction of the Einstein equations with Euclidean
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(and neutral) signature for (anti-)self-dual gravity which includes the theory of gravitational instantons. All of these
equations are of Monge-Ampére type, so that the only nonlinear terms are Hessian 2 x 2 determinants. General heavenly
equation is an important example of such equations. An explicit description of ASD Ricci-flat vacuum metric governed by
GHE, null tetrad and basis 1-forms for this metric were obtained in our paper [2]. Recently, Bogdanov [3] showed important
relations between GHE and heavenly equations of Plebariski and developed d-dressing scheme for GHE in the context of
the inverse scattering method. This stresses the importance of further study of the Doubrov-Ferapontov’s general heavenly
equation.

In this paper, we obtain recursion operators for symmetries of GHE (1.1) and discover its bi-Hamiltonian structure in a
two-component form, where the single second-order PDE (1.1) is presented as an evolutionary system of two PDEs with two
unknowns. Therefore, by the theorem of Magri [4] this general heavenly (GH) system is completely integrable.

While completing this paper, we became aware of the preprint [5] by A. Sergyeyev where he discovers a recursion
operator for the one-component version of GHE, which coincides with the first one of our recursion operators, as an example
of application of his general method for constructing recursion operators for dispersionless integrable systems.

If ¢ is a symmetry characteristic for (1.1), it satisfies the symmetry condition, “linearization” of Eq. (1.1)

Ap = a(U3a012 4 U12934) + B(Ulrag1s + U13¢24) + ¥ (Uz3014 + Urapas) = O. (1.3)

A recursion operator maps any symmetry again into a symmetry and, as a consequence, it commutes with the operator A
on solutions. For all other heavenly equations in the classification [ 1] of Doubrov and Ferapontov the symmetry condition
has a two-dimensional divergence form which allows us to introduce partner symmetries [6-12], a powerful tool for finding
recursion operators and noninvariant solutions [ 13,14] which are necessary for the construction of the famous gravitational
instanton K 3. It is easy to check that the symmetry condition ( 1.3) for the general heavenly equation cannot be presented in
a two-dimensional divergence form but it can be presented in a three-dimensional divergence form.

Therefore, the method of partner symmetries does not work any more for GHE, so that we have to use here a different
approach in order to find a recursion operator which could be regarded as a generalization of the method of partner
symmetries. This approach is based on splitting each of the two Lax operators with respect to the spectral parameter A in two
operators and multiplying the first operator by the inverse of the second operator in each pair, obtained by the splitting in A.
This method was presented earlier in the first version of [5] using somewhat more geometric language. The idea of obtaining
recursion operators from Lax pairs was used in 2003 in our paper on partner symmetries of the complex Monge-Ampére
equation [7].

For a single-component equation (1.1), we discover three Lax pairs, related by discrete symmetries of both GHE and its
symmetry condition, and three recursion operators corresponding to them. However, a two component form of Eq.(1.1)is
not invariant under these permutations of indices, so two other recursion operators are related to two other 2-component
systems. We do not consider them here because they are obtained from our two-component system just by the permutations
of indices.

Another important property of heavenly equations is that they can be presented in a two-component evolutionary form
as bi-Hamiltonian systems [ 15-17,11,12]. We show here that GHE also possesses this property. In a two-component form we
construct a Lagrangian for this system and discover its symplectic and Hamiltonian structure. We obtain all point symmetries
of this system and, using its Hamiltonian structure, apply the inverse Noether theorem to derive Hamiltonians generating
all symmetry flows. Hamiltonians of the symmetry flows which commute with the GH flow are integrals of the motion
for the GH system. Each such Hamiltonian is also conserved by all the symmetry flows that commute with the symmetry
generated by this Hamiltonian. This procedure works only for variational (Noether) symmetries. Composing the recursion
operator in a 2 x 2 matrix form with the Hamiltonian operator J; we generate a candidate for the second Hamiltonian
operator J; = RJy. The property of J; to be Hamiltonian operator is equivalent to the recursion operator being hereditary
(Nijenhuis) [ 18,19]. Since this property of our R is not known, we check directly the Jacobi identities for J;, which is obviously
skew-symmetric, and the compatibility of the two Hamiltonian operators Jy and J;. We find the corresponding Hamiltonian
density Hp such that the original general heavenly flow is generated by the action of J; on variational derivatives of the
Hamiltonian functional #,, so that the GH system turns out to be a bi-Hamiltonian system. We demonstrate how applying
the formal adjoint recursion operator R" we can generate higher flows which are nonlocal symmetries of the system. We
show how further local Hamiltonians can be constructed which generate nonlocal Hamiltonian flows.

In Section 2, we obtain two more Lax pairs for GHE in addition to the Doubrov-Ferapontov Lax pair. We show how to use
these three Lax pairs for constructing three nonlocal recursion operators for GHE.

In Section 3, we present the general heavenly equation in a two-component evolutionary form and obtain a Lagrangian
for this GH system.

In Section 4, we discover symplectic and Hamiltonian structure of the GH system.

In Section 5, we obtain all point Lie symmetries of the GH system and show how the corresponding Hamiltonians of the
variational symmetry flows can be obtained from the inverse Noether theorem in a Hamiltonian form. These Hamiltonians
are integrals of the motion along the original GH flow for all the variational symmetry flows that commute with the GH flow.
Each Hamiltonian is also conserved along all the symmetry flows that commute with the flow generated by this Hamiltonian.

In Section 6, we derive a nonlocal recursion operator for the two component GH system.

In Section 7, composing the recursion operator with the first Hamiltonian operator J, we obtain the second nonlocal
Hamiltonian operator J;. We also find the corresponding Hamiltonian density which generates the GH system with the aid
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of the second Hamiltonian operator. Therefore, we obtain a bi-Hamiltonian representation for the general heavenly equation
in a two-component form.

In Section 8, we prove the Jacobi identities for the second Hamiltonian operator J; and compatibility of the two
Hamiltonian structures Jp and J; using the theory of functional multivectors by P. Olver [20]. So far, the nonlocal Hamiltonian
operators for equations of the Monge-Ampére type involved only operators inverse to total derivatives. Now, the operator
Ji is essentially nonlocal, i.e. it involves the operator inverse to the linear combination of total derivatives with coefficients
depending on the derivatives of unknown u. We show how P. Olver’s theory works nicely even for this more complicated
case. The applicability of P. Olver’s method to nonlocal Hamiltonian operators seems to be a well-founded conjecture though
arigorous generalization is still awaited.

In Section 9, we demonstrate how to use the formal adjoint recursion operator R' to generate an infinite number of higher
nonlocal symmetry flows and obtain their Hamiltonians which are integrals of the motion.

2. Recursion operators

We introduce the following first-order differential operators from which the Lax operators (1.2) are constructed
L1a3) = u34D1 — U13Ds,  Li3a) = U34D1 — U14D3,
Lyy3) = u3qDy — Up3Dy,  Lp3a) = 34Dy — UpgDs (2.1)

where D; denotes total derivative with respect to z;.. We could restrict ourselves just by the general definition L =
upD; — uyD;, so that Ly = —Lj), but explicit expressions for different values of i, j, k are given for reader’s convenience.
Lax operators take the form

X1 = L)+ AyLiza),  Xo = —Laa) + ABLasw). (2.2)

The symmetry condition (1.3), where we use @ = —(8 + y)

Ag = {B(Lia@D3 — Ligz)D2) + y(L241)D3 — LoazyD1)}e = 0
= {B(D3L1a) — DaL1a3)) + v (D3Laary — Dilagz))}p = 0 (2.3)
contains two more operators
Liaz) = UzaD1 — U12Ds,  Lya(n) = U14Dy — Uu12Ds. (24)

To arrive at two different Lax pairs, we apply two permutations of indices which leave invariant both Eq. (1.1) and its
symmetry condition (1.3) but which do change the Lax pair and recursion operators. The permutation 1 <> 3, 2 <> 4 yields
the second Lax pair

X = Losay + AyLise, X5 = Loy — ABLuagy) >
where
Li32) = up3Dq — uypD3, La31) = u13D2 — u12Ds =

and operators Li4(2), Lo41) are defined in (2.4). In (2.5) we have skipped the overall minus in Xiz).
The permutation 1 <> 4, 2 <> 3 yields the third Lax pair

XP = Loy + Avlam, X = —Layg) + ABLay (2.7)
where
Lyy2) = u12D4 — uz4Dy, Lyz1y = u12D4 — u14D;,
L312) = u13D3 — up3Dy, L3ty = u12D3 — uq3Ds. (2.8)

We note that the symmetry condition (2.3) has a three-dimensional divergence form and therefore our definition of partner
symmetries, which requires a two-dimensional divergence form of the symmetry condition [6], does not work here, so that
we need here a different approach to obtain a recursion operator which is applied to the proof of the following theorem.
According to it, recursion operators are composed from the operators obtained by splitting the Lax operators with respect to
spectral parameter A and multiplying the first operator by the inverse of the second operator in each pair, that was obtained
by splitting in A (this approach was presented earlier in the first version of [5]). We note that for partner symmetries of the
heavenly equations [7-9,16,17,11,12], recursion operators could be readily obtained by using the same general idea.
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Theorem 2.1. The general heavenly equation admits the following three different Lax pairs (2.9a), (2.10a), (2.11a) and three
respective recursion operators defined by the relations (2.9b), (2.10b), (2.11b)

X" = Ly + AyLisa, %" = —Laas) + 4BLosa (2.93)
Ly = yvLlisw¥,  Luge = —Blawy. (2.9b)
X = Loy + AvLise.  X3? = Laany — ABLia) (2.10a)
Lyxnye = yLiso¥,  Laaye = —BLiy¥. (2.10b)
X7 = L)+ yLagy, Xy = —Laia) + ABlag) (2.112)
Ly = vloayW,  Laee = —BLany. (2.11b)

Proof. The Lax pair (2.9a) is known from the paper [ 1] while two other Lax pairs are obviously valid since they are obtained
from (2.9a) by the permutations of indices which do not change Eq. (1.1).

To prove that the relations (2.9b) indeed represent a recursion operator, we analyze their integrability conditions. We
have two sets of integrability conditions for (2.9b)

[La4(3), L1azyle = (v LaazyLazeay + BLia)Losa)) ¥ (2.12)
By [L23(a), Li3a)]¥ = (BLa3a)L143) + ¥ Li3ayL2a3))e. (2.13)

In condition (2.12), the commutator on the left-hand side expands as

1
[L24(3), L1a3yle = o {(u34Uz3s4 + U23U344)L143) + (Us4U134 — Ui3U3a4)La3)}
34

which, with the use of Egs. (2.9b), converts to derivatives of 1. In condition (2.13), the commutator on the left-hand side
expands as

1
[L23(4), L1zl = —{(u34l234 — U4U344)L13(4) — (U34l134 — U1aU334)Lo3(4)} Y
U3g

which again with the use of (2.9b) converts to derivatives of ¢. Thus, the condition (2.12) becomes the equation for v only,
which can be straightforwardly checked to coincide with Alﬁ = 0, while the condition (2.13) is the equation A(p = 0forg
only. Therefore, the integrability conditions of Egs. (2.9b) are symmetry conditions for ¥ and ¢, which means that both
and ¢ are symmetry characteristics for GHE (1.1). Hence, the relations (2.9b) are recursion relations between symmetries
and ¢ and, consequently, the relations (2.9b) determine a recursion operator. Since two other relations (2.10b) and (2.11b)
are obtained from the recursion relations (2.9b) by permutations of indices, which leave invariant Eq. (1.1) and its symmetry
condition, these two relations also obviously determine recursion operators. [

_ We note that the recursion relations (2.9b) define an auto-Bdcklund transformation between the symmetry conditions
Ap = 0.and Ayr = 0. Later, we have found that the same observation was made earlier in [5] in a more general context. We
have checked that our recursion relations (2.9b) coincide with the ones obtained somewhat earlier by A. Sergyeyev in the
version 1 of [5]. The approach we used here can be regarded as a generalization of the concept of partner symmetries.

3. Two-component evolutionary form of the general heavenly equation
In order to discover Hamiltonian structure of GHE we need to convert it to a two-component evolutionary form. For this
purpose, we transform z;, z, into the “time” and “space” variables t and x
t=z21+23, X=21—25, Yy=123, Z=2.

GHE (1.1) becomes

a(U — Uy, + Bl + Uy MUz — Uz) + ¥ (Ugy — UnyNUpz + Uyz) = 0. (3.1)

To convert (3.1) into an evolutionary system, we define the second component as v = u, with the following final result
for (3.1)

U =v

1 3.2
UVt = ui [uxxuyz — Uyyly; + Vyv; + b(Uyuxz - Uzuxy)] (3:2)
yz

where we have used the conditionoe + 8+ y = 0and b = B~7 s the single parameter of the general heavenly flow (3.2)
constructed from the coefficients of GHE (1.1). It is easy to check that (3.2) are Euler-Lagrange equations with the Lagrangian
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density

v? 1 b
L={vu — 35 Uy, — Euyuzuxx + gu[(uzuxy — Uylly,). (3.3)

4. First Hamiltonian structure

We define momenta

oL b oL

= 8Ttt = vy, + §(uzuxy —Uly,), I, = a—v[ =0 (4.1)
which show that the Lagrangian (3.3) is degenerate since the momenta cannot be inverted for the velocities. Therefore,
following Dirac [21] we impose (4.1) as constraints

u

@y =11, — vuy, — g(uzuxy —Ully,), Dy, =11, (4.2)
and calculate the Poisson bracket of the constraints K = [®i(x,y, z), ®j(X',y’,Z')], where i,j = 1,2, u; = u,u; = v,
& = Py, &, = @, using

UTix, y, 2), u(X, Y, 2)] = 8{8(x — X)8(y — ¥')8(z — 2,
The result in a matrix form reads

(- (b(uxsz — UyD,) + v;Dy + vyD; + vy, —uyz>

Uy, 0 (4.3)

which is obviously a skew symmetric matrix. The symplectic structure is defined in terms of (4.3) by the differential two-form
w = 3du; A Kdu; with the final result

b 1
w = 5(uxzdu A duy — ugdu A du,) + 5(vzdu A duy + vydu A du,) — uy,du A dv. (4.4)

It is easy to check that the two-form (4.4) is closed, dw = 0, up to a total divergence, and hence it determines a symplectic
structure. The inverse to the symplectic operator is the Hamiltonian operator J, because the closedness condition for w is
equivalent to the Jacobi identity for Jo [20]. Thus, we obtain the first Hamiltonian operator in the form

1 1
Jo=K'= 0 i) 1 (4.5)
K1

detK; \ Uz det K;;
ij ij

where det Kj = u},. In a final form, the first Hamiltonian operator reads

1
.
Jo= 1 ” (4.6)
_ 22
Uy, 0
where
1 1 B—y
J§> = — [b(uDy — uyD;) + v:Dy + vyD; + vy.] —, b= (4.7)
Uy, uy, o
We note that J, is obviously skew symmetric.
The Hamiltonian density for the system (3.2) corresponding to the Lagrangian (3.3) is determined by
1 1
Hy = Hyu + vy — L = 5 (V’uy; + wyluy) < Hy= 3 (v +u) uy, (4.8)

the two expressions being equivalent because their difference is a total divergence. The system (3.2) in the first Hamiltonian
form becomes

1

0 -
Ug) _ (Squ _ Uy, (SUH]
(U[> _]0 <5vH1> - _i ]22 ((SUH]) (49)
0

Uy,

<

with ]32 defined in (4.7). Here §,, and §, are Euler-Lagrange operators with respect to u and v, respectively, closely related to
the variational derivatives of the functional #; = fR3 Hy dxdydz with respect to u and v [20]. Here we change the notation
E, of [20] to §ye.



M.B. Sheftel et al. / Journal of Geometry and Physics 116 (2017) 124-139 129
5. Symmetries and integrals of motion

Point Lie symmetries of the system (3.2) are determined by the following generators
X1 =1t0 +x0x+udy, Xp=0 —box, Xz=20
Xa=udy +vdy, Xs=[(2)0y, Xo=g)u, X7=h(y)o, (5.1)
Xs = k(2)8;, Xea = {c(t +X)+ d(t — x)}d, + {c/(t +x) +d(t — )},
where f, g, h, k, c, d are arbitrary functions of a single variable and primes denote derivatives of c and d. The Lie subgroup
of commuting symmetries is generated by the Lie subalgebra {X;, X3, X5, X5}.

We need symmetry characteristics determining symmetries in evolutionary form [20]. For the point symmetry generator
of the form X = &'d,i + n*dy«, where the summation over repeated indices is used, the symmetry characteristics are defined
as ¢ = n* — uf&' with the subscripts i denoting derivatives with respect to x'. In our problem, & = 1, 2, u' = u,u? =,
=t =0 Y =Y X =t =xx*=y,x* =zand ¢' = ¢ while 9> = ¥/, where ¢ and ¥ determine the
transformation of u and v, respectively. We also use u; = v and v = q where q is the right-hand side of the second of our
Eqgs. (3.2)

1
g=—— [txettyz — Uyylixz + Vyz + b(vyllx; — Vzlyy)] - (5.2)
'yz
The symmetry characteristics become

Q= nt — Ust — uE* — uy";:y —ug*, Yy=n'— qéft — ¥ — Uy";:y — v &% (5.3)
Applying the formula (5.3) to the generators in (5.1), we obtain characteristics of these symmetries
Q1 =U—tV — Xy, Y1 = —1q — XUx;
@2 = —v+buy, Yo =—q+bv; @3=-v, ¥y3=—¢q
pa=1U, Y4=v; @5=f(z), ¥s=0; ¢s=gy), ¥6=0
Q7 = _h(Y)uy» Y7 = _h(y)vy; g = —k(Z2)u,, Vg = —k(z)v;;
@ca = c(t +X)+d(t —x), Yea=c(t+x)+4d (t —x). (5.4)

From (5.4), it is clear that the GH system itself is the symmetry generated by —Xs.
First Hamiltonian structure provides a link between symmetries in evolutionary form and integrals of motion conserved
by the Hamiltonian flow (3.2) or in the explicitly Hamiltonian form (4.9)

<5§> =Jo <§u51> : (5.5)

Replacing time t by the group parameter 7 in (5.5) and using u, = ¢, v, = ¥ for symmetries in the evolutionary form, we
arrive at the Hamiltonian form of the Noether theorem for any conserved density H of an integral of motion

(5)»(t)

To determine a conserved density of the integral H that corresponds to a known symmetry with the characteristic (¢, ¥) we
use the inverse Noether theorem

S.H
<6UH> =K (:Z) (5.7)

where operator K :]0‘1 is defined in (4.3). Here (5.7) is obtained by applying the operator K to both sides of (5.6).
Let us now apply the formula (5.7) to determine conserved densities H' corresponding to all variational symmetries with
characteristics (¢;, ;) from the list (5.4). Using the expression (4.3) for K, we rewrite the formula (5.7) in an explicit form

SHYN _ (K~ (o
(aUHl) - (uyz 0 Vi (5.8)
which provides the formulas for determining H' for the known symmetries (¢;, ¥;)
8uH' = Knigi — i, 8,H' = Uy (5.9)
where Ky is determined from (4.3) to be

K11 = (v; + buy;) Dy + (vy — buiyy) D; + vy;. (5.10)
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We always start with solving the second equation in (5.9) in which, due to the fact that ¢; never contains derivatives of
v, 8,H' is reduced to the partial derivative H! with respect to v, so that the equation H\ = uy,¢; is easily integrated with
respect to v with the “constant of integration” hi[u] depending only on u and its derivatives. Then the operator 8, is applied
to the resulting H', which involves the unknown §,hi[u], and the result is equated to 8,H' following from the first equation
in (5.9) to determine 8,h'[u]. Finally, we reconstruct hi[u] and hence H'. If we encounter a contradiction, then this particular
symmetry is not a variational one and does not lead to an integral.

This solution algorithm for the symmetries listed in (5.1) with characteristics (5.4) yields the following results. X; and X,
from (5.1) generate non-variational symmetries. For all other symmetries the corresponding conserved densities read

H2

1
{bvux — E(uf + Uz)} Uyz,
1
H3 = _E(,ﬂuﬂ + uyu uy) = —H;, definedin (4.8)

H5

b,
f(@)vuy, + 5f (2)uxuy,
6 __ _ B /
H> = g(y)vuy, 58 (¥)uxu,

1
H = _Zh(J’) {4vuyuy, + bQuuyuy, — uuy))

y
1

H® = —Zk(z) {4vuzuy, — bQuyuzuy, — 1u2uy)} (5.11)

/ ’

d

H® = (c + d)vuy, + €+d) er )uyuz, c=c(t+x), d=d(t —x).

We have checked that the time derivatives of all the Hamiltonian densities H' along the flow (3.2) are total three-
dimensional divergences which present an independent check that the corresponding functionals #; = fm@ Hy dxdydz

are indeed integrals of motion of the flow (3.2) subject to suitable boundary conditions. This agrees with the fact that the
symmetry generators X», Xs, Xs, X7 and Xg commute with X3. On the contrary, H is not a conserved density for the GH
flow, since X5 and X4 do not commute, but it is a conserved density by its own flow generated by X.4 and also by the flows
Xs, Xs, X7 and Xg commuting with X.4. Similarly, each H' is the conserved density of the integral of motion along all the
symmetry flows with characteristics (5.4) that commute with the corresponding X;.

We also note that by replacing v by u; in the expressions (5.11) for H' we obtain conserved densities for the original
one-component form of the general heavenly equation (1.1).

6. Recursion operator for the two-component form of the general heavenly equation

Recursion operators in a two-component form are required for constructing new Hamiltonian operators for the two-
component system (3.2).
Recursion relations (2.9b) become

uyz(ﬁﬂt + @x) — (Uy + uxy)‘ﬂz = V{uyz(l/ft + ) — (v, + uxz)l/fy}
Uyz(@r — @x) — (Vy — Uy = — Bty (Ve — VYx) — (V2 — U )y} (6.1)

Now we change the notation: i is now reserved for the second component of the symmetry characteristic, so that Lie
equations read

(9,-6)

where v = u, implies ¥ = ¢, and the symmetry transformed by recursion operator R is denoted by tilde:

(©)-1()

where ¢; = ¥ and ¢ = . Recursion relations (6.1) take the form
uyz(l/f + @x) — (Uy + uxy)(ﬂz = V{uyz(& +ox) — (v, + uxz)@y}
(Uy - uxy)‘ﬂz - uyz(w —@x) = lg{uyz(w — @) — (v, — sz)@y}

which in a two-component matrix form becomes

uy,Dy — (vy + uxy)Dz Uy; Yy _ V{uysz — (v, + sz)Dy} YUy, (Z) (6.4)
(vy - uxy)Dz +uy, Dy —uy, ) ﬂ{_uysz + (Uy — Uz)Dy} Buy, v ’
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To obtain the recursion operator R explicitly, we need to invert the matrix differential operator on the right-hand side of

the relation (6.4). Note that the inverse ; ’; for the matrix (g Z) with non-commuting entries a, b, c, d, defined by the

equation (2 j;) (g Z) = ((1) (1)) is determined by the formulas

e=(a—bd7 ey, f=(c—dbla)", g=(b—ac”'d)", h=(d—ca 'b)". (6.5)

The result for R is convenient to express in terms of the two differential operators

W = uy,Dy — uy,Dy, ¢ = Uy, Dy — uyyD,. (6.6)
Using the corresponding entries of the matrix on the right-hand side of (6.4) for a, b, c, d in Egs. (6.5), we obtaine, f, g, h
1 1
e=—W7' f=——W' g= 1+ v,D,W™!
2y f 28 g 20U, ( 2Dy )
h= 1—v,D,W™ ).
Zpu (1~ DWW
The recursion operator is explicitly defined by the relation
1 p R4 ¢—vD, u
R=—1| B Y w! yozo Ty 6.7
a \ —W+v,D)) —(W —uv,D)) ({ + vyD, _uyz> 6.7)
Uy, Uy,

which we have multiplied by the overall constant factor (28y)/«. After performing multiplication in (6.7) we obtain the
matrix elements of R explicitly

Ri1 = W™'(b¢ + v,Dy), Ry = —W 'y,

1 -1 b -1
Ry = — (v:D,W™'vyD, — ¢) + — (v:DyW™'¢ — vyD;)
Uy, Uy,
Rpy=b— —ZDW u,  b=(8—y)e (6.8)
Uy,
We do not consider the second and third recursion operators R? and R® defined in (2.10b) and (2.11b) in the two-component
form because they refer to two different two-component systems.

The definition of the recursion operator in the two-component form (6.8) contains arbitrariness related to the definition
of the inverse operator W~! which involves addition of an arbitrary element of the kernel of W defined by W(f) =
(uy,Dx — uy,Dy)f = 0. The general solution for W(f) = 0 reads ker W = {f(z, u,)} with an arbitrary smooth f. Thus,
W1 is defined up to the addition of an arbitrary function f(z, u,) which plays the role of an arbitrary integration constant.
This arbitrariness is eliminated by the condition that not only relation WW~! = [ is satisfied, but also W~'W = I has to
be satisfied. Similar problems with the inversion of recursion operators for (1 4+ 1)-dimensional (systems of) PDEs were
analyzed much earlier by different researchers (see [22-25] and references therein).

Let us analyze the definition of the inverse operator W~! in more detail. It determines a solution f = W~g to the
first-order ODE: Wf = u,,fy — uxf, = g for any given g. Introduce parameter s along the curves tangent to the vector field
W, x = x(s), y = y(s) on the plane z = const

df(x(s), y(s),z) _dx_  dy
Wf = T = gfx‘i‘afy:uzyfx_uzxf)/:g
which implies & = u,,, ¥ = —u,, and so
d d
uzy Uzx
The second of these equations is the characteristic ODE with the integrals
z = const, u,(x,y,z)= const (6.10)

while the first one determines the parameter s along the characteristics

d d 1 d d
oo [ B 1:,/<1_1) (6.11)
Uzy Uzx 2 Uzy Uzx

where the integrals are taken under conditions (6.10) and Eqgs. (6.9) have been used. Under the constraints (6.10), we have
Wf =4 =Df =g sothatf =W~ 'g =D;'g = [dsg.
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We define W~ as the integral operator [ ds with ds defined by (6.9)

Wl { / & }
X0 uzy(ésy(s’cvz)’z) c=uz(x,y.z)

RN | o
vo UzdX(n,€,2),m.2) ) _, 0

where all the integrals are taken at the conditions (6.10) so that y = y(x, c¢,z) and x = x(y, c, z) are determined by the

equation u,(x, y, z) = ¢ = const and z is a parameter of the integrations. Here X and y, are arbitrarily fixed points such that

the functions f(x, y, z) are subject to the boundary condition f|,_,, = 0 or f|,_, = 0, respectively. Then for these classes of

functions one can check that W ~'Wf(x, y, z) = f and also that WW~1f(x,y,z) = f sothat W™ 'W =T and WW~! =1.
Indeed, using characteristic equations (6.9) and definition (6.6) of W for the first integral in (6.12) we have

xde 9 Xde 9
/; uzyuzyaé_f(SMVsz)_‘/x‘o leyuzxa-)/f(‘%-?y’z)}cu

0 =uz

W 'Wf(x,y,2) = {

/ de {06 (6, .2) + ey (6.3, 2)) _,.

0
{y=y(§.c,2)}

U dSDsf(S,y(S,C,Z),Z)} = [f(x, y(x, ¢,2), )| =, Iy,

=fx,y,2) = f(x0,y.2) =f(x,¥,2)
=0,sothat W='w = 1.

for all f satisfying f|,
Next, define

—Xo
fxd f(&.¥(&,¢c,2),2) }
o Uy(E¥E.c.2).2))
where we should use the equations of the characteristics (6.9) for the integral. Then
X
_ f(&,y(§,¢,2),2)
ww 1f(X; Y, Z) = (uzny - uszy) {/ dé—
o Uy ¥E.c.2).2))

= (uzny - leny)F(X, U (x,y,2),2) = UgyFy + UgyFiy, Uz — UpFy Uy

f(x,y,2)

= uzny = uzyT =f(x.y.2)
2y

F(x,u,(x,y,2),z) = {

so that WW ! = I. The check of the second definition of W~ in (6.12) could be made in a similar way.
With a more symmetric definition

W_1=1{/‘ d-‘?_/x°‘1$]
2 —X0 uzy(éd’(fvcaz)az) X uZy(évy(é’Cvz)vz) c:uz(x,y,z)

W~IW = I implies the boundary condition f(—x, ¥, z) = —f(xo, y, z) for an arbitrarily fixed xo.
7. Second Hamiltonian structure

A natural candidate for the second Hamiltonian operator J; is obtained by composing the recursion operator (6.7) with
the first Hamiltonian operator J; = Ry or explicitly

1
1n 12 0 —
1 1) _ (Ru Rn Uy, (7.1)
o Ry1 R 1 2 )
_ jO
Uy,

where we have used the formula (4.6) and ]32 is defined in (4.7). Utilizing also the expressions (6.8), we obtain the matrix
elements of J; in the form

e oo by v 21=—i+£DW”
1 N Uy y yz’ 1 " 2 Yy
1 1 b 1 b 1
2o — (L = W)— + — (Dyv; + ;D)) —
uyz uyz uyz uyz uyz uyl
— kD3,W’1Dy£, where b= B-v) (7.2)
Llyz uyz o



M.B. Sheftel et al. / Journal of Geometry and Physics 116 (2017) 124-139 133

which is manifestly skew-symmetric. Since it is not known whether the recursion operator Rin (6.7) is hereditary (Nijenhuis),
there is no guarantee that the action of R on the Hamiltonian operator J, yields again a Hamiltonian operator. Therefore, we
have to check explicitly in Section 8 the Jacobi identities for the operator J; and the compatibility of the two Hamiltonian
structures Jp and J;.

The Hamiltonian density corresponding to the general heavenly system (3.2) with respect to the second Hamiltonian
operator J; is

Ho [2uxv + b(v* + 112)] uy. (7.3)

_ 1

T 20?2 —1)
Here we eliminate the case of the degenerate GHE with 8 - y = 0, so that b> — 1 # 0. Thus, the general heavenly flow takes
the bi-Hamiltonian form

u SyH SuH

provided that J; is proved to be a Hamiltonian operator and J, and J; are compatible.
8. Jacobi identities for J; and compatibility of the two Hamiltonian structures Jy and J;

Compatibility of two Hamiltonian structures means that the linear combination of the two Hamiltonian operators with
arbitrary constant coefficients is also a Hamiltonian operator. Since J; and J; both are obviously skew symmetric, the
remaining problem is to prove the Jacobi identities for the mixture ] = J; + ajJy of the two Hamiltonian operators with
an arbitrary constant mixing parameter a. Thus, we check simultaneously that J; is indeed a second Hamiltonian operator,
at a = 0, and that the two Hamiltonian operators Jp and J; are compatible (J, and J; form a Poisson pencil) and the system
(3.2)is bi-Hamiltonian. Since we will use the technique of P. Olver’s book [20], below we give a short summary of the notation
and results from this book.

Let A’ be the vector space of I-component differential functions that depend on independent and dependent variables of
the problem and also on partial derivatives of the dependent variables up to some fixed order. A linear operator J : A — A!
is called Hamiltonian if its Poisson bracket {2, 2} = f 82 - ]§2 dxdydz is skew-symmetric

{2, 2} =—-{2 2}, (8.1)
and satisfies the Jacobi identity

{2, 2}, #z} + ({%, 2}, 2} + {2, %}, 2} =0 (8.2)

for all functionals &7, 2 and %, where § is the variational derivative. However, the direct verification of the Jacobi identity
(8.2) is a hopelessly complicated computational task. For this reason we will use P. Olver’s theory of the functional multi-
vectors, in particular, his criterion (Theorem 7.8 in his book [20]) (we present the formalism from [20] just for the case of
three independent variables):

Theorem 8.1. Let 2 be a skew-adjoint | x | matrix differential operator and ® = %f(wT A 9w)dxdydz the corresponding
functional bi-vector. Then 2 is Hamiltonian if and only if
Prv,,(0)=0 (8.3)

where prvy,,, is a prolonged evolutionary vector field with the characteristic 9w defined by

; 0
prvg, = ZD] Z 20 PwE J=0,%y,2,xx,Xy,XZ . .. (8.4)
i j ]

where ul) = u' and in our case i,j = 1,2, while u' = uand u> = v. Here w = (0!, w?) = (, 0) is a functional one-form

corresponding to a “uni-vector” with the following property for the action of total derivatives Dj(w') = w]' By definition of

the space of functional multi-vectors, integrals of total divergences in ® and in pr v, (® ) always vanish. We also note that by

definition of the prolonged evolutionary vector field prvy,,, it commutes with total derivatives and annihilates uni-vectors
pl'V@w(a)i) =0.

To check the Jacobi identities for the operator | = J; + aJy we set 2 = | where

w-! @+D) _pyoip b
u u
J= b vz 2, (8.5)
_@db) | Ve 2
Uy, Uy,
1 1 b(a+b 1 1 1 v _ v
.]22 =-——¢—+ !(4’ -W)—+ — [(a+ Zb)DyUz + aD,vy — (a+ b)vyz] — - iDyW ]DyiZ (8.6)
Uy, Uy, Uy, vz vz Uy, Uy, Uyz
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where the linear differential operators W and ¢ are defined in (6.6), a is mixing parameter in J and b = (8 — y)/« is the
single parameter of the flow (3.2).

We note that the matrix operator J is a nonlocal one since it contains the integral operator W~!, inverse to W, which is
defined in (6.12). Nonlocal Hamiltonian structures are typical for bi-Hamiltonian systems arising from the equations of the
Monge-Ampére type that describe (anti)-self-dual gravity (see, for example [15-17,11,12]). However, so far the only type
of non-locality displayed by these examples has been due to operators inverse to total derivatives, like D/ 1 not containing
variable coefficients in their definitions, so that they commute with total derivatives. The Hamiltonian operators J; and J
could be called essentially nonlocal because they contain the inverse to the operator W, which is a combination of total
derivatives with variable coefficients, and therefore W~! does not commute with total derivatives. Nevertheless, all the
calculations below are made with no use of such a commutativity and even without using the explicit definition (6.12) of
W1, only its consequence W~ - W = 1.

An extensive literature exists on the theory of nonlocal Hamiltonian operators in 1+ 1 dimensions, e.g. [26-29]. However,
to the authors’ knowledge, no effective methods for checking the Jacobi identities exist in the multi-dimensional case.

P. Olver’s criterion is formulated for matrix-differential operators. The Jacobi identities for nonlocal symmetries were
shown to be correct if nonlocal variables are included in symmetries’ characteristics which imply “ghost” terms in the com-
mutators [30,31]. Since according to P. Olver’s method nonlocal terms are automatically included in the characteristic of the
evolutionary vector field prv;,, below, with nonlocal J, and all such terms are canceled in the process of application of the cri-
terion, we believe that the criterion works correctly in this more general case. Of course, a rigorous formulation of this method
for checking the Jacobi identities for nonlocal Hamiltonian operators is still awaited and could be a very worthwhile project.

The bi-vector @ in the theorem above has the form

1 11 12
o =3 [won( a) (7) aaves

1 b
f/ n AWy 429 A BT )e—n/\wq(ﬁ)e
2 Uy, y

Uy (1 1
FOAZ(W ) +0 A [y<9) - (9) ]
Uy, Uyz \Uyz /, Uyz
u 1 u 1
+b(a+b)o A ”(9) —ﬁ<—9>
Uyz \Uyz /,  Uyz \Uyz /,

1 1
+(a+2b) A E(—&) +ao AL <—9) oA lw <£0> dxdydz. (8.7)
Uyz \Uyz /, Uyz \Uyz /, Uyz Uz Jy y

According to P. Olver’s criterion (8.3) applied to the operator J, the condition for Jacobi identities to be satisfied reads

prv,,(0) = 1 /(n, 0) APprv, A G;: j;i) (g) dxdydz =0 (8.8)

2

where (8.7) is used for ® and prv,, is the prolonged vector field with the characteristic Jo which acts on each term
in the integrand of (8.7) as the evolutionary vector field. We will further skip the factor 1/2 and integral sign in the
condition (8.8), keeping in mind the possibility of integration by parts while always omitting total divergences, and leaving
out the characteristic Jw in the notation prv for the evolutionary vector field in (8.8) for brevity. We also use the following
formula for the action of evolutionary vector field on W~!

pry(W=1) = —wW lprv(w)w!

obtained by differentiating WW~! = 1.
The condition (8.8) becomes (the letter subscripts denote partial derivatives)

_ _ a+b
(W) Aprv(W) A (W) — 5 e )n A Prv(uy,) A6
yz
v 1
—2(W™ '), Aprv (u—z) AO+ UTG A [Prv(uy;) A by + prv(uy) A 6; ]
yz yzZ
u b(a+b
—2220 Aprv(uy,) A6, + %6 A [prv(ug) A 6y — prv(uy) A6,
uyz uyz
b(a + b)
+ ZTQ A [ugyPrv(uy,) A 6, — weprv(uy;) A 6y
vz

Uz Uy -1 vz Vz
+(a+2b)0/\prv<—2>/\9y+a9/\prv<—2)/\02+2 w (—9) Aprv(—)AO
uz, uz, W, /, ) Uy,
+w! <£9> Aprva W (£9> — 0 (mod tot div) (8.9)
Uy, y Uy, y
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where “mod tot div’ means that the left-hand side of (8.9) equal to a total divergence is equivalent to zero and we have
simplified this equation by applying integration by parts. For example,

AWl prvIW)W ™I A = (W) A prv(W) A (W™ 1p).

The action of the evolutionary vector field prv;,, involved in (8.9) is defined in terms of the matrix elements of the operator
Jin(8.5) and (8.6) according to the following rules (the letter indices i and j below can take the values x, y, z)

prv,,(u;) = DDy +J "6}

b
— DD, {W‘ln GRS w—lnyvze} ,
Uy, Uy,
(a+b) v _
prv,(v) = Dif*'n +J°%0} = D; {— n+—D,W'n
uyz uyz
u 1 b(a+b 1
- (Dx - ﬂm) —0+ g(uxsz — uyD,)—6
yz Uy, Uyz Uyz

1 1 v v
+ — [(a 4 2b)v,Dy + avyD; + (a + b)vy,, | —6 — iDyw-lnyie} ,
Uy, Uy, Uy, Uy,

prv;, (W) = prv;,(uy;)Dy — prv,(u)Dy (8.10)

where in the last line we have used the definition W = uy, Dy — uy,D, from (6.6). One should use the results (8.10) in order
to obtain an explicit form of Eq. (8.9).

We consider different groups of terms in Eq. (8.9) which should separately either vanish or be reducible to a total diver-
gence form. These are terms trilinear in #, bilinear in #, linear in n and without 5. Now, the operator J should be Hamiltonian
for an arbitrary parameter b = (8 — y )/« of the two-component GH flow (3.2) and for an arbitrary mixing parameter a.
Therefore, vanishing of terms should happen in each group separately for different dependence on the letter coefficients
a and b. Hence, each group with a given dependence on 7 is divided into subgroups with the trilinear, bilinear or linear
dependence on a and b and the terms without constant letter coefficients and all the terms in each subgroup also should
vanish separately or be a total divergence. Further, terms in each subgroup are distinguished by the type of their non-locality,
i.e. either trilinear, or bilinear, or linear in W' or terms without W~ and each such subgroup should either vanish separately
or be a total divergence if there no terms containing DyW ~!. If there are such terms and all terms in the subgroup do not
cancel (up to a total divergence), then first eliminate D, using the definition (6.6) of W to obtain D, = i(w +1uy,Dy), so that

DW= 1 D W e (Wlpy= - 4

wn),. (8.11)
uyz uyz uyz yz

Then the terms containing the first summand in D,W ™! as a factor should be moved into a different group, with the lesser

power dependence on the non-locality W', and we account only for the remaining second summands in the group while

requiring this group to vanish separately. In analyzing each subgroup of terms we apply extensively integration by parts.
For example, consider all the terms in (8.9) trilinear in n

W) AW )y AW ) = (W) A (W) A (W),
= _(an)y N (Wﬁln)z A (Wﬁ]n)x - (Wﬁln) A (Wﬁln)z A (Wilrl)xy
+(W_177)x N (W_ln)z A (W_]ﬂ)y + (W_]ﬂ) A (W_ln)z A (W_ln)yx
= - (W_177)x A (W_177)y 74N (W_177)z

2
= =5 (D [W i) AWty A (W] 4 Dy (W e A (W) A (W) ]

+ D [(W ' AW )y A (W™ )]}

which vanishes up to a total divergence.
In the group of terms bilinear in n there are two subgroups of terms, either proportional to (a + b) or without a and b.
First consider terms with (a + b) skipping this overall factor

_ 0 _ 0 _ n _ 0 n _ 0
(W) A (—) A (W 1n)x—(—> AW )y | —2— AW 1n)yzA——2<—> AW )y A —
Uyz /y, Uyz / xz Uy, Uy, Uyz /), Uy,

=—(W ')y A (%) AW I+ (W) A (i) AWTI)y 42— A (W) A (i>

yz Uyz Uyz Uyz
u 0 0
-2 [’7 + *Z(W1n)y] A W)y A (7> +2-L AW ), A <7> -0
l,lyz uyz uyz 2 Llyz Llyz 2

where we have used integrations by part and, at the last step, Eq. (8.11).



136 M.B. Sheftel et al. / Journal of Geometry and Physics 116 (2017) 124-139

The terms bilinear in  without a and b are

22 (W )y AW )y A0 +(w-1n)A<[w—1 [(”ze) ” A W),
v1)

2
uyz

- {Wl |:<v29> i” /\(W]n)x> - i(‘/\/7]77))/ A I:UZ(W177)y:| NO
Uz /y 1 Uy, Uyz z

+2 {(W_ln)x 74N (W_ln)yz - (W_ln)y A (W_ln)xz} AW™T |:<Lll}ze) i| .
yz y

By integrating by parts the second and third terms, the above expression becomes

2AW ) A (W), A [W—1 [(”29> “
we /|,

F2AW T AW )y + (W e AW )l AW |:<v20) :|
y

Uy,
= 2D, {(wln)x AW ), AW {(”0) ] }
Uy /,

which vanishes up to a total derivative.

Now, as a further example, let us consider the subgroup of terms in (8.9) linear in #, that are bilinear in a, b. Terms
containing nonlocality W15 contain the overall factor b(a + b) which we skip until the end of this calculation. They have
the form

2 u 0 u 0
(@), 3]
Uyz Uz \Uyz Jy Uyz \Uyz /|

1 2
+— [(W”n)xz A Oy — (W )y A6 + —(W )y A (U — uxzey)} N2
Uy, Uyz

Integrating by parts we obtain

2 u u u %] u 1
<7) W)y A <§Zey - %@) NG +2(W )y A 7‘2<7) - %(—) AN
Uyz z uyz uyz uyz Uy, y uyz Uyz z

2 1 1 2
+—W Al —)6—— )6 |An0— T(W N A Oy NG,
uyz uyz y u.VZ z uyZ

Next we eliminate here (W ~15),, using formula (8.11), and insert the coefficient b(a + b), which was skipped, to obtain

b(a + b) 1 1 1
2 arnl(—)eno—(—)o,r0——06 10, (8.12)
u2 u u 4 Uy, 0
yz Yz /)y Yz /) z yz

so that all the non-local terms are canceled and the resulting local terms (8.12) should be joined with the following terms in
this group which were local from the start

2
_2(a+b) nA(i) /\9_(a+2b)(a+b)i2/\<l) /\Qy_a(a;ij—b)e/\<i> N 6;.
vz z Y

2
uy, Uyz uy, Uyz Yz Uyz

After integrations by part and arising cancelations the last group of terms becomes

b)? 0 0,
2(a+2)7)/\ —(—) + 22 | A G +2b(a+b)— NGy G,
uyz uyl yz uyl uyz

2b)( 1 1
(a+2 )<—>nx\9y/\9+2(a+b)%(—>n/\eer.
uyz uyl z uyz uyl y

+2(a+b)

Expanding here (u%) and joining the resulting terms together with the terms in (8.12) we check that all the terms cancel,

so that all the terms linear in » and bilinear in a, b vanish.
In a similar way we analyze all other groups of terms in Eq. (8.9) and make sure that each of them either vanishes or is a
total divergence. The calculations are straightforward but too lengthy to be presented here.
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Thus, we have proved that the Jacobi identities are satisfied for the operator J = J; + ajo for any constant a and any
coefficient b of the two-component flow (3.2) of the general heavenly equation and since J is obviously skew-symmetric,
J is a Hamiltonian operator. This implies that the second operator J; is indeed Hamiltonian one and that both Hamiltonian
operators Jo and J; are compatible and hence Eq. (3.2) is a bi-Hamiltonian system.

9. Higher flows

Fuchssteiner and Fokas [18] (see also [19] and references therein) showed that if a recursion operator has the form
R=JJ, ! where J, and J; are compatible Hamiltonian operators, then it is hereditary (Nijenhuis), which implies that it can
generate a commuting hierarchy of symmetries. Moreover, in order that the repeated applications of the formal adjoint of a
hereditary recursion operator to a vector of variational derivatives of an integral would produce again vectors of variational
derivatives of (another) integral, it is necessary (but not sufficient) that the result of the first such application will be a
vector of variational derivatives (see e.g. Hilfssatz 4 (c) in [32]).! This condition is satisfied in our case because our recursion
operator admits the factorization mentioned above: R = J,J, ! Hence, because of skew symmetry of operators J, and J;, the
formal adjoint recursion operator also factorizes in the form Rt = Jo !J; and the bi-Hamiltonian representation of our system
(7.4) implies

8uH, _ 8uH, S8uH
T uflo } 1 utlo } utly
R <BUHO> _JO Jl ((SUH()) - <5UH1> (9])
so that the first application of R to a vector of variational derivatives indeed produces the vector of variational derivatives.
Thus, the necessary condition for the repeated applications of R to the vector of variational derivatives of Hy to produce

again vectors of variational derivatives is satisfied.
The formal adjoint recursion operator R for our original recursion operator (6.8) has the following matrix elements

R, = (b + D)W, Rl =u,w™!

1
Riy = ~(DovyW~'Dyv; — ¢ +b(EW'Dyv; — Doy} —
vz
Rl =b—u,W D, % (9.2)
22 — vz y . .
uyz

Its repeated action results in

SuH SuH vV, + vuy, — Wu SuH

T2 utlo )} _ pt utl1 ) _ pt yVz yz x ) __ ull2

@ (pe) = () = (e ) = () 93)
where variational derivatives of the integral with the density H; in (4.8) were used. We reconstruct H, from this equation
to be

b
H, = 3 (v + u)uy, — vuyl,. (9.4)

H, is a new conserved density. This also can be checked directly by computing the total time derivative of H, along the flow
(3.2) and showing that it is a total divergence in the space variables.
Since Rf = J; 'J1, (9.3) can be rewritten as

Ur SuH. SH bv — uy
(1) = (i) =0 () = (a=) &

where q is defined in (5.2). This is still a local point symmetry which is a linear combination of symmetries (¢,, ¥,) and
(@3, ¥3) from the list (5.4).
A nontrivial result is obtained by applying J; to the vector of variational derivatives of the integral with the density H,

us\ _ SyHy
(4) =1 (32) (96)
which yields

b
u; = (14 b*)v —2bu, — EW”(vvyz + ;)

v = (14 b%) (q n ”yvz) — 2bu, (9.7)
Uy,

where the right-hand side is a nonlocal symmetry characteristic. Here the local integral with the density H, generates a
nonlocal symmetry.

1 We are grateful to an anonymous referee for this important remark.
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We can repeat the procedure by applying R' to variational derivatives of H,

8.H 8.H 8.H
T3 ul'lo _ pt ull2 _ ufl3
(RT) (a,,HO) =R ((SUHZ) = <(SUH3) (98)

to determine the next Hamiltonian Hs, which will be used together with J; to generate further nonlocal symmetry

(jj) - (2’;;) (9.9)

and so on.?
In a similar way we can construct higher integrals and corresponding higher flows by applying the adjoint recursion
operator R' to the variational derivatives of all the integrals constructed in Section 5.

10. Conclusion

We have constructed two additional Lax pairs and three nonlocal recursion operators for the general heavenly equation
(GHE) obtained by the splitting of the Lax pairs with respect to the spectral parameter. Converting GHE to a two-component
evolutionary form, we have discovered Lagrangian, symplectic and Hamiltonian structures of this GH system. We have
determined all local Lie point symmetries of the GH system and, using the inverse Noether theorem in Hamiltonian form,
we obtained Hamiltonians generating all the variational (Noether) point symmetries. These Hamiltonians are integrals of
the motion along the general heavenly flow if the symmetry flows generated by them commute with the GH flow. Each
Hamiltonian generating a variational point symmetry flow is conserved along each point symmetry flow that commutes
with the flow generated by the Hamiltonian under study. Converting the GH system back to the general heavenly equation in
the one-component form, one could obtain integrals of GHE as reductions of the integrals for the system. We have converted
the first recursion operator to a matrix 2 x 2 form appropriate for our two-component evolutionary system, while the other
two operators refer to different two-component systems obtained from the first one by permutations, so that we end up with
a single nonlocal recursion operator for the first GH system. Composing the recursion operator R with the first Hamiltonian
operator Jo we have obtained the second Hamiltonian operator J; = RJp and found the corresponding Hamiltonian density
generating the two-component flow of GHE. We have checked the Jacobi identities for J; and compatibility of the two
Hamiltonian structures Jo and Ji, so that our recursion operator is hereditary (Nijenhuis). In doing this, we have used
P. Olver’s theory of functional multi-vectors and showed that it works nicely even if being applied to nonlocal operators.
This seems to be a well-founded conjecture because all nonlocal terms are canceled while applying the Olver’s criterion, the
rigorous generalization to nonlocal Hamiltonian operators being still awaited. Under this conjecture, we have shown that
the GHE two-component flow is a bi-Hamiltonian system integrable in the sense of Magri. Using the formal adjoint recursion
operator R, we demonstrate how to generate infinite series of Hamiltonians generating higher nonlocal symmetry flows of
the GH system.

A detailed study of the hierarchies of nonlocal symmetries and conservation laws of the general heavenly system deserves
more attention and is currently in progress.
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