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Abstract

We present a general framework for models admitting a decomposition of thd typps, b],
with b the BRST operator antia certain (even) derivation. We focus our attention on models whose
fields can be described as components of two laddéesc+ A+ --- andF=¢+ ¢ +--- and
show how they relate to some aspects of topological Yang—Mills theory. We relate our construction
to the standard mathematical ideas of Cartgrd@eration and interprét’andF as pair of algebraic
connection and curvature in a certain bigraded differential algebra.
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1. Introduction

In this work we intend to investigate a class of models defined by ladders of the type:
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containing the basic fieldg, A, ¢, ¥} of TYMT as given in[1-3]. These ladders satisfy
connection-curvature like equations:

AW+ 3[W. W] = F, ©)

dF+[W,F]=0 (4)
with

~ D .

d=b+d+) A (5)

i=2

In this formulation, the presence of high component fiejgjii, m_z—i in the laddersV, F,
and of additional operatoﬁil*" in the general derivativé offers an attempt to extend the

superfield approach of TYMT originally introduced[i]. Here, an object written a; is
supposed to have bidegréej) wherei denotes form degree arjdhe ghost number The
operatorsA; 1= are superderivations that acting on a figiiproduce a field with bidegree
(i+k,r+1—1i). The fieldB is a two-form, generally not depending on the curvatura of

F = dA+ A2, The general derivativé contains the BRST operatbywhich is determined
from (3) and (4)after expanding these equations in terms with same form degree. The
operatord denotes the exterior derivative.

One motivation for the study of such models is to look for possible extensions of the
Chern-Simons term, the gauge anomaly and the Donaldson polynomials. The extensions
of the Chern—Simons term and the gauge anomaly were developgdana model defined
by D-dimensional ladderg) = c+A+¢£1+' : -+<p%{D,}'= ¢>+w+B+n§1+- . .+nf;D
and derivativel = b + d. The power of this formulation is that it allows to encode in a
single model both expressions for the Chern—Simons term and the gauge anomaly.

As for the Donaldson polynomials, the strategy is to consider descent equations:

ba)g + dw% =0, bw% + dw% =0, ba)% + da)? =0,
bw3 + dwg = 0, bwg =0 (6)

with the cycleszof‘i (0 < i < 4) being polynomials in the functional spa¥e= {c, A, wil",

¢, v, B,n”"'; dc, dA de ™', dp, dy, dB, dn?~'}. When we consider a simple model, de-
fined on the functional spade= {c, A, ¢, ¥, dc, dA d¢, dy}, one finds the generators of
Donaldson polynomialfl-5] as a possible solution to the descent equations, i.e.:

wo=Tr(30%)., @3 =Tr@y), o5 =Tr(oF + 3y,
W3 =Tr(yF,  wy=Tr(3F. )

As it was shown |r{5] for a modeI with ladder¥y = c + A, F = ¢> + ¢ and differential
d=b+d+ Ay 1y Az 24 Ay 3 we have obtained solutlom(s = w4 o, ..., a8),
which reduce th7) When the paramete(sl, ... ,ag) aresetto zero. The interesting aspect
of this solution is that it shows the existence of other quantum field theory models providing
a description for the Donaldson polynomials that differs from the approafdh-8f.

The purpose of our study is twofold. First, we intend to complete the study of models
described by ladderd) and (2) [4—7]by considering the case of negative ghost number
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fields and a general derivative as (). Thus, we expect that the presence of negative
ghost number fields, the fielsl and operatorsﬂil*l will modify the solution(7) giving a
generalization for the Donaldson polynomials for a model described hy2) and (5)

In general, even though these extensions may not define interesting topological invariants,
they still contain the terms associated to the generators of Donaldson polynomials (see
Egs. (110)—(119)

Second, we try to put our work into a general perspective by showing how an appro-
priate choice of ladders and derivativeallow us to describe several distinct models,
e.g. Yang-Mills, TYMT, Chern—-Simons, BF, etc. In this respect, our model is a partic-
ular case of auperfieldformalism which consists on accommodating gauge fields, ghosts,
antighosts, etc. as component of certain ladders. Essentially, these models can be divided
into two categories: (I) those admitting ladders satisfying connection-curvature like equa-
tions (e.g.[2-10)); and (Il) those where this requirement is absent (EL.d—14). The
ideas underlying the models in category (l) constitute a general approach for determin-
ing the BRST transformations for a set of fields given tRgs. (3)—(5)are satisfied for
a certain choice of laddefg/, F and derivatived. In these models, the general deriva-
tive containsat leastthe BRST operator and the exterior derivative, while the ladders
may contain several others component fields. The combined use of extended ladders and
derivatives has found applications in many different models (see, for example, the re-
cent development of10] for the stochastic quantization of Yang—Mills theory in five
dimensions, andb5,7] for the description of TYMT and four-dimensional Yang—Mills
theory).

The main feature of our model lies on the existence(@f a-1) derivations that allows us
to exhibit aparticular solution for the descemiquations (6pnce we have solvelslo? = 0
Mathematically converts a problem of determining the cohomology aiodulod into a
simple one, the cohomology 6falone. It was in this context thathas originally appeared
in [15], and since then it has been successfully applied in the algebraic renormalization of
several model§l6,17] Formally, we defing throughEgs. (26)—(28)In particular, from
(28)we obtain the form of the operataﬁﬂ asgivenin(31), and conditior/ = [, b]. Thes
operator is closely related to the so-called VSUSY symmetry discovered in the quantization
of Chern—Simon§L8,19]and BF topological theorid20]. This symmetry is determined by
an odd derivatiod, parameterized by a vector fietd= t#9,,, and it satisfies an equation
of the typé [8;, b] = L. [21] with £, the Lie derivative along. Another common aspectis
that many VSUSY models are formulated adopting a superfield form§li8s22] which
resemble$3)—(5). Nonetheless, in all these models the VSUSY opet not restricted
by (26)—-(28)

From a mathematical point of view, it is difficult to adopt the interpretatiof2¢H] and
consider the negative ghost number fields as components of a curvature and connection on
theG-bundl& (P xC)/G, M xC/G). In addition, the operators; 1=/ cannot be interpreted
as components of a general derivative in this bundle. ThIS lead us to look for another
description.

1 In the literature of VSUSY there are some modifications on the form assumed, By.[
2 CandG denotes, respectively, the space of connections and the group of gauge transformations on a principal
fiber bundleP.
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One possibility is to use the construction of BRST differential algebras as given by
Dubois-Violette[8,9]. This treatment has been applied successfull{5infor a model
containing only positive ghost number fields and the 0pera1k'}r‘§. Our task here is to
introduce in a consistent way negative ghost number fields into the approach of BRST dif-
ferential algebras used [5,8,9]. We recall that, even before the formulation of TQFT,
the two lowest components A of W were already geometrically understood as the
Maurer—Cartan form on the group of gauge transformafi@8kand a connection one-form
on a principal bundle. Therefore, sincés a field with ghost number one, it will be con-
sidered here as a one-form on the group of gauge transformations. We cannot think of
(pil_i (i = 2) as a(i — 1)-form on the same space. In fact,qj}‘i were a(i — 1)-form
on the same space asit would be natural to take the multiplication between them as
the exterior product of forms. Them, A <pil" would be ai-form. Nonetheless, the ad-
ditive Z-graded structure (associated to the ghost number) of the space which they be-
long would forcec A gol.l‘i to be a(i — 2)-form. Therefore, we will have an ambiguity if
we consider the positive and negative ghost number fields belonging to the same space.
The solution is to define the negative ghost number hn%ld’ as a(i — 1)-form on the
dual of the algebra of the group of gauge transformations. A similar argument shows that
the negative ghost number fieldéf’ should be defined a8 — 2)-forms on this same
space.

The other problem, on the meaning 4fis solved as a consequence of the first one,
e.g. once we know the spak&™™ (m andn labeling, respectively, form degree and ghost
number) each of the fields W and F belongs, we can define a space= eB(m,,,)IC(’”*”)
on whichd acts as a derivation. Indeed, we will see that= @(m,n)ez+lec(m’") will
have the structure of a bigraded differential algebra With™ being the space of-linear
antisymmetric maps od or G*, polynomial inC and with values i2" (P), i.e. K™ =
FCxG", 2™P) ~FC, NG ®@2"(P)ifn > 0andC"™" = F(Cx G, 2"(P)) =~
FC, N\"G® 2™(P) if n < 0. Here,G denotes the Lie algebra of the group of gauge
transformations$2(P) the space of forms i® andC the space of connections @h The
laddersyy and F will be elements of a subalgebfé C K that is generated by the fields
(pil_’, dgol-l_l, 77[2_’, dnl.z_l, i>0.

Our work is organized as follows. Bection 2we introduce two generalized laddéfg
F whose components will accommodate the fields of our model. We impose the ladders
satisfy a couple of connection-curvature like equations that will be related to the BRST
transformations of the fields. We adopt a step-by-step procedure for determining the BRST
transformations, we introduce theperator, determinﬂ}_i and all constraints they satisfy.

In Section 3ve discuss a four-dimensional model with ladders of the Wpe c+A+<p2_l,

F = ¢+ v + B and differentiad = b+ d + Agl + Agz + A;3. We analyze how the
expression for the Donaldson polynomials are modified by the presence of thepgélds

B and the operatora,*, A3%, A;°. In Section 4ve show how the original zero-curvature
models of{6,7] are obtained as a particular case of imposkg 0. In Section 5we give

a mathematical interpretation of our model. We relate our construction to the set up of
BRST algebras following closely the approach developd8,®]. We review the concepts

of gauge group and gauge algebra, and finally present an explicit realization of our model
in terms of the algebra of differential forms on a principal fiber burfelle
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2. Constructing the model

Let G be a Lie group and its Lie algebra whose generators we denotddyy (a =
,dim G). We denote the produet, - - - eq, = v5,..q,€c With yg, ., € K (K =R

or C) Let us consider a set of fields and its derivatiyes ', do 772 J dn 1,0 <

i, j < D with the upper and lower indices labeling, respectively, ghost number and form
degree. At this point, those fields are considered as Lie algebra valued maps defined on a
generic spacetim@1. We denote by the space of local polynomials in the fields and their
derivatives. The total degree of a field is given by the sum of its form degree and ghost
number. We say that € Vis a homogeneous element of bidegteen) if itis written as a

sum of terms with form degree and ghost number. The total degree of a homogeneous
element of typém, n) is thervn +n. Given two homogeneous elements of bidegtees:),

(P, q), &, Bh € V, we define the Lie-bracket] f]=ap — (—1)"+Mr+0 gy,

2.1. The BRST transformations

Let W, Fandd be given by(1), (2) and (5)and satisfying3) and (4) Expanding3) and
(4) in terms with same form degree we obtain (we adopt the convez\%aﬁt b, AY :=d):

k
bq)/%—kde(plf:ii_i_ZAil—z 1- k+z+ Z[ 1- l’(pk k+l] —" =0, 0<k<D,
(8)
k
b K+ d T+ Y A Z[wl ‘i it1=0, 0<k=<D, (9)
k . .
Z AFiATH =0, 0<k<D. (10)

i=0
Let us now suppose that it exisjsp € N,2< ¢ < D, 2 < ¢ < D (the casgy = 1 was
studied in[5]) such that

. 0 if i , i 0 if j ,
o= T and g = P
#0 ifi<gqg J #0 ifj<p.
Then(8) and (9)break into:
b(plil.fk= ZAl i l k+l _ Z[(pl l’(pk k+l] +77 , 0<k=<g,

q+1 19
1— q+i 1— —q+i
Z Ai l(pq_l,.]_ i = _d§0q 1 — E Z[‘P ) (Pq+1 1] + ’74_;,_11 (12)
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k q
1
Yo aTeT T =5 Y le el Tt k=42 (13)
i=k—q i=k—q
bn%—k ZAl i 2— k+, Z[(pl l»’h% f<+z . 0<k<p, 14)
p+l ptl
_pal —p+1
> al A =y = 3 o)
k
DAt = Z[wl L k= p+2 (16)

Egs. (11) and (14¢annot be taken as the BRST transformations of the fields unless we
specify the form of the operatozsl.l*’ (i > 2) on their right-hand side. One way of dealing
with this is to impose

k
YAt =0, 0<k=gq, (17)

ZA““*’=0, 0<k=<p, (18)
which then fix the BRST transformations as

bt = —ay? —-zw LA e, 0sksg 9

bnp " = —dy” Z[wl L 0<k<p. (20)

2.2. Implementing the conditiofis, d] = 0 andb? = 0

Let us now considef10). Takingk = 0 andk = 1 we obtainb? = 0 and p, d] = 0.

These two conditions should be satisfied on the{qafeT’ d(pll i 712 J dnz ’} O<icx<
q,0 < j < p). Implementing the conditiorb[ d] = O fixes the BRST transformatlon of
the field derivatives:

Z[d(pl l’ (pk k+l] - d’? ) 0 = k =q, (21)

k

bdy; ™ = [de ' it - Z[w,l Ldntt, 0<k<p. (22)
i=0
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The nilpotency ob is satisfied on the fieldﬁil‘i, 0 < i < g with no further restriction, but
overn?~',0<i < p we obtain

e(qk) i e(q.k) i
1 —k 1—k+i 2
Z D 7 I ria) ) Y Y (s (2 sl |
i=0 r=0 i=0 r=0
e(g.k)
—Z[nz 2 0<k<p (23)

with (g, k) = min{q, k} being the minimum element betwegmndk. Since the fields are
independent, in order to obtabin?* = 0 we should have

e(q.k) i e(q.k) i

1 I+ l 1 r Tr
=5 2 2 Mo el = 30 Y e S e ST (24)
i=0 r=0 i=0 r=0
€(q,k)
0= Z[n2 | (25)

The only way to vanish(25) without imposing any constraint on the fieldéf" is to
take e(q, k) = k. With this choice, and using Jacobi identity, we have also satisfied
(24).

Since the conditiom(g, k) = k must be verified for all values @fwithin 0 < k < pwe
obtain the constraint < g.

2.3. Determination oA}, i > 2

The operatorsﬁ,.l_i are determined through the introduction of an operatifrbidegree
(1, —1) such that

w=¢éc, (26)

F=¢é¢, (27)

d=¢€be. (28)
These equations are equivalent to

Spp ¥ = (k+ Dyt 0<k<gq. (29)

s * =+ Dyt 0<k<p, (30)

AR = i[5, [6,....[80]...1,

Z(— ) (k 2)) sk, d]s". (31)
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Takingk = 1in(31)givesd = [§, b]. This condition should be implemented over each field.
Indeed, when applied ove;l‘ ,772 J ,0<i <¢q,0<j < pweobtainthé-transformation

of dg{ ™, dif; /,0<i<(q—-1),0<j<(p—1Das

sdpi ™ = (k+ Ddgf;, 0<k=<g-2 32)
1-¢q q +1 1 1-i  —q+i g+1
Sdgy " = —dgy ! = 5= Y lef el + @+ Do (33)
i=1
sdn?* = (k+ Dt 0<k<p-2 (34)
p+1 -~
8d77p 1= —dn —(p+1 Z[q)il ’ n;ﬁr ; 1 (35)

i=1

Actingd = [§, b] on dga;_q and usingp < ¢ we are let with

qg—1
bédgy 1 = [8dpl 9, gf] — 8dn2 T+ (g + 1) Y ldg} . @, 1]
1=1
q
g+1 _
— = 2 el e el (36)
i=1

In order to solve this equation we observe tBta,b;_q is a field of bidegreéq + 2, —¢q),

therefore it can be written aSslwéf =aY? e, wqu 1;“] which substituting or{36)
fixesa = —(¢ + 1)/2 and reduces the last equation to

sdnz~?=(q+1) Z[n L. (37)
i=2
If we suppose thap < g we have&dns_ = 0 and this give 7 _,[ ,<p;’2 1]“’] =0
whichintroduces an unwanted constraintonthe fields. Therefore We should cgonsidgr
Eq. (37)then determme&dnq .1t is straightforward to show that applyinb= [5, b] on
dngfq we will obtain the same equation fmngf". We can also avoid the previous constraint
by settingr;iz‘i = 0, which corresponds to take= 0. These are the zero curvature models
of Section 4
Once we have determined the actiord o the fields and their derivatives we have fixed
the form of the operatorst.l‘i . Itis straightforward to show that the consistency equations
for AX,i > 2:
k
Y AT =0, 2<k<q<D, (38)
i=2

k
DA = g - —thl L k=gl (39)
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k q
1

ZAl o~ lk+l=_§ Z[cpil Lo, g+2<k <D, (40)
i=k—q i=k—q

k . .
YAt =0, 2<k<q=D, (41)
i=2

k
ZA}_’UE:;(J” Z[(pl l’ 77/3 {C'H k :6]+1, (42)
i=2

k

Yo AT = lel L) q+2<k<D (43)
i=k—q i=k—q

are satisfied for this choice af*~".
For convenience we collect below all transformations of our model (withg):

R - Z[fpl Lol 2k 0<k<gq, (44)
bz * = —dy}- Z[wl L, 0=k =g (45)
Z[dwl Lot —dnz . 0<k=<q (46)
k k
bdr]iik — Z[d(pl 17 nk k+l] Z[(pll i dn]( k+l] 0<k< q, (47)
i=0 =
S ¥ =(k+ Dyt 0<k=gq, (48)
sdpi ™" = (k + Ddgty, 0<k<g-2 (49)
2_ —
b, 3 = —dgy " - Z[ e, (50)
_ g+ + 1 —ag—1
ad(pl q— Z[ 1= qu j’], (51)

St =k +Dn it 0<k=<gq (52)
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Sdny ¥ = (k+Ddn . 0<k=<gqg-2 (53)
3 ki . 11
8dn, "] = —dnZ1 — (g +1) Z[wil_’, N1 1 (54)
i=1
q
Sz =—(q+ DY [oi ' fa0] (55)

i=2

Itis important to notice that in the cage= D, Egs. (50), (51), (54) and (5%anish trivially.
In this case, alb transformations of the field derivatives are encode@®) and (53hat
essentially means[ d] = 0. Then, from(31) we haveAl.l" = 0, > 2 and consequently
all consistencyequations (38)—(43yill vanish.

3. Amodel withg=2,D =4

Let
W=c+A+e," (56)
F=¢+v+B, (57)
d=b+d+ A + a7+ 455 (58)

The BRST transformations corresponding to the generalized connection and curvature
equations (3)—(5are given by

bc= —c? + ¢, (59)
bA= —dc— [c, A] + ¥, (60)
boyt = —F —[c.¢3"] + B, 61)
bp = —[c. ¢]. (62)
by = —dp — [c. y] — [A. ¢]. (63)
bB=—dy —[c, B — [4, ] - [¢; ", 8], (64)
the s transformations have the form:
sc=A,  sdc=dA (65)
SA =2¢5%,  SdA= —dpyt - 3[A, 0, 1], (66)
Sp;1 =0,  sdeyt = —3p; 0", (67)
8¢ =, 8de = dy, (68)

S =2B,  dy = —dB—3[A, B] — 3[p, ", ¥, (69)
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§B=0, dB= —3[p,", B] (70)
and theA transformations are given by

Ayte=0 (71)
A A = —3dp;t - 3[A, 01, (72)
Aty =30yt (73)
Ate =0, (74)
A%y =—3dB— 3[4, B] - 3[¢; " v, (75)
A7'B = -3[p, ", Bl (76)
Aytde=0, (77)

AN A= —3[p; ", dA] - 3[4, dg; ], (78)
Aty = —3les ™ dey M, (79)
AyYdp =0, (80)
Aytdy = —3[B,dAl — 3[A, dB] — 3[v. dp; '] — 3le; t ayl, (81)
Ay dB = —3[B, dp, ] — 3¢, t, dB), (82)
A% = 3dp;t + A, 931, (83)
AF?A = 303705 (84)
A%t =0, (85)
A3%¢ = 3dB+ 1[4, Bl + 3[eyt, v, (86)
A3%y = 35 Bl (87)
A3°B =0, (88)

A3%de= jlp;", dA] + 3[4, dg; ], (89)
Agsz = %[goz_l, dgoz_l], (90)
Az%dpyt =0, (91)
A3%d¢ = 3[B, dA] + 3[A, dB] + 3[v, de; '] + 30", dyl, (92)
AF2dy = 3B, dp; ] + Sleyt, dB, (93)
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-2
A3%dB=0, (94)
-3
A,°=0. (95)
Let us consider now the system of descent equations givés).ikiVe can rewrite it in the

form (b+d)é = (d— A)d = Owithd=wi+ w3 +wi+oi+efanda=a, + 432 +4,°
A particular solution is given by

=i+ Q) (96)
with 2=023 + 25 + 23 + 2§ satisfying
b29 = 27125 — 243223 + 34,30, (97)
bggzzgigf—zAg%ﬁ, (98)
b3 =0. (100)
In terms of thes&2’s we have
84 63 2
2: wg + 3|a)1+ 5 25+ 8925 + 29, (101)
8 8% 3 1
wh = 3|w0+ 54 + 8525 + 23, (102)
2 _ & 4 3
w3 = awg + 23, (104)

Here we notice that the cycles exhibited (t01)—-(104)are obtained from2's by the
action ofs. These2's are solutions of the intermediagguations (97)—(100yvhich do not
involve the exterior derivative. It is the combination of theperator and these equations
((97)-(100) that allow us to transform a problem of cohomologybahodulod (6) into

a simple one. In order to solf&01)—(104)we should first determinag, the solution of

bw§ = 0. Our intention is to analyze how the cocyclgT2)¢? (which appears iiil,3])
is modified by the presence of the negative ghost numbergﬁ;’rd the field B, and the
operatorsA,t, A32, A, Therefore we take
wg = Tr(34%). (105)
Then, we obtain2’s solving (97)—(100) Replacing them ii101)—(104)we obtain
o3 =Tr{3B1(c?y — *de+ c[A, ) + 5(B2 — Ba) ($¥ — ¢dO)
+§B3(—c*Y + cPdc— ¢y + pdc— c[A, ¢])
+o(c?de+ cdp + ¢do) + oy + Sedd), (106)
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Tr{361(2c° B — c®dA+ 2A%¢ + 2c[A, ] — c[A, d] + 2c[¢, ', 4]

+2(B2 — Ba) (2B — pdA+ y? — ydo) + 2B3(—2¢°B + PdA— 24%¢

—2¢B + ¢dA — Y2 + ydc — 2¢[A, Y] + c[A, dd — 2c[; L, ¢])

+a1(c?A% = ®B + PdA— c[p; . ¢]) + e2(A%p — B + pdA)

+a3(c?B+cdy 4+ B+ c[A, ¥] + cloyt, 8]

+aa(—c?dA— cdy — pdA — c[A, dd)) + as(Adp+3y? + ¢B— pdA—1dcdo

+ae(—3¥% + ydc— ¢B + ¢dA — Zdcdo + o(c*dA+ cdy + Adg

+¢dA+ yde+ c[A, dd) — 148 + 2¢dA— 1y? + Zydd, (107)

Tr{2B1(3cPdp,* + A%y — SA%de+ c?[A, 9, ] + c[A, B] — 3c[A, dA

+clopt ¥l — 3oyt dd + Algy ™t 6]) + 2B2(5¢dey ™ + ¥B — FydA

— 1Bdc+ Alp,y T, ¢]) + Ba(—3c2dey t + cdB— 2A%y + 3A%dc — L¢dg,t

— 2B+ 2ydA+ 2Bdc— ?[A, 9, Y] — c[A, Bl + 2c[A, dA] — c[p, , ¥

+5clpy ", dd — 3A[w; ", @) + Ba(—30de; * — ¥B — JydA— §Bdc

+dcdA— A[p; L, @]) + Bs(cZoy LA + A + ey 1y — cp, tde— cBA

+cdAA— Adg, ) + Bs(A2dc — ¢, tdg — Bdc+ dcdA

+ B7(A%Y — ¢y *dp—Bdet-dedA + Bg(cdeyt + cdB+ ¢dpyt + c[A, dA]

+clpyt, dd) + Bo(Ady + 29, tdp + wdA+ 2Bdc— 3dcdA)

+a1(—c2dpyt — P[A, 93] — c[A, Bl + c[A, dA] — c[o, *, v]—Alg, *, ¢])

+ a2(A%Y — ¢pdeyt — B + ydA— A[p; L, ¢]) + az(—cdB+ 24%y

+AdY + ¥B + Alpy L, ¢]) + aa(cPdp; + cdB— 2A%dc — Ady

+ pdpyt — YA+ 3c[A, 9,1 + 3c[A, B] — 2c[A, dA] + 3A[p5 L, ¢]

+ 3¢y, ¥l — 2clpyt, dd)) + as(Ady + 29, tdg + ¢dp,t + 3B — ydA

— dedA+ 34[¢5 L, ¢]) + as(—pdey* — 3y B + 2ydA+ 2Bdc— dcdA

—3A[p; %, @) + o(—3c%deyt — ScdB+ A%de+ Ady + ¢, tdg — 2pde,t

+ydA+ Bde— 3c[A, ;1] — 3c[A, Bl + c[A, dA] — 3c[pyt, ¥

+clpy ' dd—3Alp; Y 6D —3¢de, T — B + §YdA+ §Bdc— Alg;, 91},
(108)

Tr2B1(cPp; "9yt + 3A%B — A%dA+ 0,0y ' + c[A%, 0] + [ A, dgy ']

+cloy ™ B+ 2Algy % vl — 1ALy, dd) + 282205 05 Y + vrdey

+2B% — IBdA— Idcdpy ' + 2A[p, ] — $Aleyt dd)

+ Ba(—c2py toyt — 24%B + 2A%dA+ AdB— Yo, Ty te — yde,t — 4B?

+2BdA+ 2dcdp, t — c[A%, Y] — c[A, doy Y] — cloyt, Bl — LAlpy vl
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+3Alg; ", d)) + Ba(39; "0y "d — Ydw, t + 5B — {BAA— jdody,
+dAdA+ ALp, b vl — LALp, t dd) + Bs(2c0, Tyt — cpp tdA
+2cdAp, T — cdpy 1A + A%+ A?B — A2dA— Ay tde+ 20,105t
+2c[A?, ;1 + 2c[, %, Bl + Alpyt, ¥]) + Be(A2dA— ¢, tdy — BdA
—dcdp, * + dAdA— A[g;t, dd) + B7(2A%B — ¢y tdy — BAA— dedpyt
+dAdA+ 2A[p, b, Y] — 3A[¢gl, dd]) + Bs(—3c?p, g, 1 4+ 242dA
+AdB— 3¢, Y0, 1 + ydeyt — 3c[AZ, g5 1] — 3c[(p2_1, B] + 3c[py 1, dA
+ A, L, dd)) + Bo(—6A%B — AdB+ 4, tdy — ydp,* + 4BdA
+3dcdp, * — 3dAdA— 6A[p, %, Y] + 9A[p, *, dd) + a1(—2c%p; gyt
— A?B + A%dA— 2(,02 (7 Yy — 2c[A2, <p2_1] —c[A, d(pz_l] — 2c[g02_1, B]
+clpzt, dA — Alpy . ¥]) + a2(A%B — 205 05 "o — Ydeyt — B? + BdA
— Alg ™, 1/4) + as(—AzB — AdB+ 20, Y05 ' + 05 tdyr + B? + Alp; L y))
+aa(3c%0y toyt + 64%B — 3A%dA+ AdB+ 39, M0y Mo — g5 tdy + ydpy
—BdA+ 3c[A%, 031 + 3c[A, dpy ] + Sclpy T, Bl — Sclpyt, dA]
+6A[p, L, ¥l — 3A[<p2_1, dd)) + as(—342B — JAdB+ 69, 0, 19
+2p5 dyr + Sydeyt + 382 — BdA+ Ldcdp,t — 2dAdA+ 3A[¢, %, v
+3Alpy ", dd) + as(—6¢, *ey ¢ — 3ydp, * — 3B% + 3BdA+ 2dcdp,
— 2dAdA— 6A[p; ", ¥] + 3A[; T, dd) + ya(cPe; tost + 05y
+ c[A2, (p2 N+ clpst, Bl — cloyt, dAD) + y2(—A2B + A%dA
— Alg; 1, ¥] + Alpy b, dd) + y3(2A%B + AdB+ ydg, * — dedp, *
+ 2A[¢2 U] — Algy . dd)) + ya(—AB + 20505 + o5 Yy + B
—BdA+ Aly Y ¥]) + 5(A%B — 93 'dyr — BdA+ dAdA+ Alg; L, ¥]
—2A[p; %, dd) + o(—3c%p5 gyt — 3A%B + A%dA— LAdB— 3051050
+ 5 tdy — Yydpyt + BdA+ dedp, T — 3c[A%, 051 — 3c[A, dp; ]
— 3clpy . Bl — 3A[p; Y ] + 241, * dd) — 305705 ¢ — Ydgy t — 2B
+2BdA+ 3dcdp, t — 3A[py T vl + SA[p; T, dd). (109)
Considered in this form, this previous solution&dr_i does notrelate to any familiar model.
Here, let us consider some specific cases. First, let us consider the twa-ftroomposing

asB = F+ B[5] with F the curvature ofi. In this decomposition, the two-for®should be
introduced in order to maintain the nilpotency of the BRST transformatigiy bfWe have
b2p;t = 0= bB = —[c, B] + [¢, 9, *]. Then, taking8, = 1 with all other parameters

set to zero we obtain ' as

wg = Tr(34%), (110)
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w3 = Tr(py), (111)
w5 =Tr(@F + 3y? + ¢B), (112)
w3 =Ti(YF +¢Dagy "+ ¥B), (113)
@ =TrAF2 + 1B% + FB + ¢, 050 + wDagy . (114)

We observe that the inclusion of additional fields', B in the ladders, and of additional
derivation%il‘i in d modify the previous solutiof¥) of the descent equations. Nonetheless,
(110)—(114¥ktill containsthe terms associated to the Donaldson polynomials. A similar be-
havior has been observed#$j for the case)gl = 0, B # F,which also generates a solution
including additional terms to the Donaldson polynomials. Now, if we look at our general
solution(106)—(109)ve see that they represent a family of solutions parameterized by 21 pa-
rameterss, ..., o) whichwrites as = (1/2)(¢+y+ F)2+((1/2) B?+¢B+y B+ F B+
¢DA¢§1+wDA¢2 +cp2’l<p2’1¢)+(~)(ﬂl, ... ,0).Here, thereis no possibility to choose the
parametersggs, ... , o) in such a way thad reduces to the Donaldson polynomials. From
[5], it seems then that the only cases having a complete agreemer(vy\mhupz_l =0,
B = F that gives the same result 65, andqgl = 0, B = 0 that represents a family of
solutions parameterized by points®# and such that to the origin we have associg®d
i.e.® = (1/2(@+y+F)2+O(a, ... ,a8) With®|(,. . ag=0 = (1/2)(¢p+¥+ F)2. This
solution is interesting because it shows Donaldson generators as a particular case of a more
general expression. Therefore, it may be possible that other extended formulations may ad-
mit, as a limit case, other topological invariants. Nonetheless, up to the analysis of this exam-
ple, itis not known if a choice of higher components ladders would generate a solution of this
type.

The cyclea)g is particularly important since it defines a BRST invariant action:

1 1. .
S= /Tr (EFZ + EB2 + FB+ oy o, 0+ 1/fDA(p21> , (115)

which can be taken as the starting point for a pertubative analysis of our model. This
action incorporates, from the beginning, extra termSpgﬁ, B in addition to the usual
non-gauge fixed TYMT actiori Tr F?2. Thus, in much the same way as it was don2#i,
we may interpret the fieldg, 1 B as part of the additional fields necessary to perform
the gauge fixing of the actiofi Tr F2. If we want to proceed further on finding a fully
gauge fixed action, we will have to introduce other fields (antifields, antighosts) with total
degree different than 0 and 1, which will be accommodated as component fields of other
ladders.

Another application of the model given i6)—(58)is on the description of four-dimen-
sional BF model. In fact, consider the cyol% (109). Letustakenr =1,y = 0,y3 = 1/3,
ya = —(1/2), y5s = —1/6, B2 = 1 with all other parameters equal to zero. Then, we obtain
an invariant action given By

3 Here, we may also interpregl as one of the fields necessary to perform the gauge fixing of the BF action.
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- / g = /Tr(BF +UDAgyt 4 05 w5 e 4 Ble, 93]
+ 20y oyt — oyt F). (116)

which contains the usual term of the BF model. It is important to notice that this derivation
of four-dimensional BF action is based on a pair of connection and curvature |g8agrs
and (57)with the assumption tha # F. In contrast, the usual superfield formulation of
D-dimensional BF models,25] employs a gauge ladder together with a matter ladtier
having the two-formB as its highest component field, i, = B. In Section 4.2ve will
obtain the equivalent of actidii16)for the zero curvature formulation of four-dimensional
BF model.

4. The zero-curvature models

As we have seen, the model presented&eéction 2is based on gauge and curvature
laddersyy, F satisfyingdW+ (1/2)[W, W] = F, dF+[W, F] = 0. As a limit case of this
model we can pose a zero curvature conditfora- O that reduces the previous equations
to dW+ (1/2)[W, W] = 0. Here (44)—(55)become

k

by = Z Lot 0<k=q, (117)
=0
Z[dwl Lo * i, 0<k<gq, (118)
b “ =+ Dgly. 0<k=q (119)
sdpy ™ = (k+ Ddp . 0<k<g-—2 (120)
1-¢q g+1 - 1-i  —q+i
Sd(pq 1= _d(pq - T Z[f/),- ) §0q+1_,‘]v (121)
i=1
— q + 1 —g—1
bdgy " = Z[ et (122)

that agree with the same equations obtained in the non-complete ladder case (i.e. with
q # D) of [7]. In our approach we treat both cages D (referred in[6] as the complete
ladder case) ang # D in the same way, with the fundamental equations given as above.
Indeed, the equations for the complete ladder case are a particular ¢até)e{122when

one takes; = D. Basically, what differs one and another situation is just the definition

of the generahzed derivative that assumes the fdres b + d wheng = D andd =
b+d+ Z o Al  wheng # D. The main role of the operatom1 i i > 2isto avoid
possible constramts that would arise from the zero curvature condltlon in the eage bf
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For example, in the absencenf‘i we would have fron{39) and (40}he two constraints
below

_ 1 o o 9
doyt==>3 lei el 0= D leiT el kzgq+2
i=1 i=k—q
As we have pointed out at the end ®éction 2¢ = D determinesA’™ = 0 and this
explains why these operators are absent in the complete ladder dé&$e of
Let us consider general descent equations of the type

b+ doGtit =0, 0<i<D-1,  bo§tP=0. (123)

This system of descent equations can be solved following the same proce&emioh 3
e.g. writingod = Y9t 0% andA = Y2, A}~ the descent equations assume the
form 0 = (b + &)@ = (d — A)@. A particular solution isv=€’ (w5 TP + 2) with 2 =
P 29T = satisfying

k-1

pRE+DK = (L1 (k — DAL HGGHD 1 Z(_l)i(l- )ALl QGH Dk
i—2
l<k<D. (124)

We note that wheg = D we haves2 = 0 andA = 0, thend = o TP andd = b +d.
WhenG + D = 4, (124)agrees with(97)—(100)

4.1. The Chern—-Simons term

Consider a model witg = 3, D = 3 andF = 0. Let us take the cocycleg such that
b [ @3 = 0. This will be related to the Chern—Simons form. As it was showf6Jnw3

can be obtained by expandiag= e%% = &((1/3)Tr ¢3) and taking the terms with form
degree equal to 3. This results in

1 1 1
s=3 / Tr (AF— §A3> ~5b / Tr(cpz? + Agy Y. (125)

Nonetheless, the presence of the ﬁ@{o1 allow us to consider a more general solution by
introducing on(125)the term

/ (dc:(p2_1+ %AdA). (126)

Then, the action given bgl25) + (126) is also possible and represents a contribution due
to the extra fieldp; *.

4.2. BF system

The D-dimensional BF system can be formulated as a zero curvature system by intro-
ducing two complete laddef6]:
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D
_ 1-i _ D—2—j
w=Y"g.  B=Y 8% (127)
i i=0

whereW is a gauge ladder with total degree 1, which satisfies a zero curvature condition.
The other laddeB has total degreeD — 2) and satisfied B+[W, B] = 0. For the complete
ladder case, we have seen thiat b + d. Let us consider the cage = 4. Here, the gauge

and the matter ladde? are taken as

W=c+A+9;  + 032+ 953, (128)
B=¢+v+ B+ B3+ B} (129)

The BRST transformations for the component fields follow from the equations satisfied by
W andB and are given by

bc= —c?, (130)
bA= —dc—[c, A], (131)
byt = —F —[c. 95", (132)
bp3t = —dpyt —[c. 03" — [A. 931, (133)
bpy® = —dg3t — [, 033 — [A. 037 — 30yt 0511, (134)
bo = —[c, 4], (135)
by = —dp — [c, ¥] — [A, 4], (136)
bB = —dy — [, Bl — [A. y] — [¢5 ", ], (137)
bB;* = —dB—[c, B3'1 — [A, Bl - [¢; " ¥] — 93, 4. (138)

bB,% = —dB;' — [c, By %] — [A, B3' 1 — [y %, Bl = [932, ] — [0, 2. 4. (139)

The BRST transformations fer, ¢, B agree with the ones given {62)—(64) Nonetheless,
sinceWis a connection with zero curvature, the BRST transformations for the components
¢, A, g * differ from (59)—(61)

From[6] we obtain an invariant action as

S= / Tr BdW + W25, (140)

S— / TEBF + yDagyt + 305 16 + Ble. o3 ] + dle. 033 + vic, 932
+¢Dap3% + B3 Dac + B;2c?). (141)

This previous action agrees with the one giver{lii6) except by the presence of higher
components fieldg; 2, ¢33, B3*, B;? that does not enter in the laddefss) and (57)

Conversely, there are also the presence of ternafgérin (116)that do not appear if141),
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those terms being brought by the derivaticszs"', which are absent on the generalized
derivatived = b + d. Both approaches are entirely different since they are based on
ladders that satisfy different equations. As for the general formulation of BF models in
dimensions other tha® = 4, we emphasize that a matter ladd@rsatisfyingdB +

[W, B] = 0, should be used to accommodate the figldit is a particular feature of
four dimensions that we can take the lad@:(57) as the generalized curvature 4#

(56).

5. Mathematical aspects
5.1. BRSTG-operation

In this section we review some basic definitions concerning the structure of graded com-
mutative differential algebras and BR&Toperations. Although our approach is based on
the formalism exposed ii8,9] we will adopt some definitions in a different context.

A Z-graded supercommutative algebisaa structure defined bgA, %) such that: (1)

(A, %) is an algebra in the usual sense (we are considering algebras defined over a field
K that can beR or C), (2) the graded structure is defined by a direct sum decomposition
A = @,z A" such thatd™ « A" ¢ A™" and the supercommutativity stands fot g =
(=)™BxaVa € A", VB € A". From now on we will use the term commutative as
meaning supercommutative. All graded (bigraded) structure to be considered here will be
defined either oveZ or Z+=N U {0}.

A superderivation o4 of degree ks a linear map : A* — A** such thatW(af) =
Ya)B + (—1)"’“001/;3 VYa € A™. We denote the set dfsuperderivations onl asDk(A).
Defining a product between two superderivations4nas the composition map we have
thatD(A) = ) ., D*(A) together with this product becomes a graded algebra.

A graded commutative differential algebima structure defined byA, %, d) with (1)

(A, *)Za graded commutative algebra and {23 superderivation ond of degree 1 such
thatd< = 0.

A G-operationis defined by(A, x,d, I, L) with (1) (A, %, d) a graded commutative
differential algebra and (2) : G — D71(A4), X — Iy andL : ¢ - D°(A4), X —
Lx=[d, Ix] such that[[xﬁy] = Lxly — IyLx andL[X,y] =LxLy—LyLxVX,Y €g.

We extend these two operationsd® A aslx (Y @ o)=Y ® Ixa, Lx(Y @ o)=Y ® Ly«
VX, Ye G Va e A

Given ag-operation over a graded algebdave define aralgebraic connectioon A as
an elemeniw € G ® Al such thatlyw = X ® 1~ X, Lxw = [w, X] VX € G. Given a
G-operation we denote its set of algebraic connections. by

The curvatureof an algebraic connection is an element G ® A? that satisfiesiow +
(1/2)[w, ®] = o. In particular this condition impliedo + [w, 0] = 0, Ixo = 0, Lxo =
[o,X]VX €G.

Givenow; = Z{a,-} eq ® wia" ceG® AL i e N, we definew; - - - wy= Z{a’_} €qy - €q, ®
ot op =) ec® (w1 )¢ € GRAWIth (1 -+ @n) = Y14 Viyoa, @1 O

Now, let us consider bigraded algebras. The definitions will be immediate extensions
from the graded case.
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A bigraded commutative algebia a pair(?; x) such thatr is an algebra that admits a
direct sum decomposition of the type = ea(m,n)emz)’(’"’”) and the product satisfies
Ymm gy ¢ pimtnnts) with commutativity meaning x = (=1)"0+) gy o
Va € A" vB e A", Given a bigraded algebra) = @, 7" defines a
graded structure off, i.e.T = @,z 7".

We also have the same concepsoperderivatioronY": a(r, s)-superderivationis a linear
mapy : T — rmHnnts) with Y(af) = (Ya)p + (1) nggg v e € 700,
We denoteD(Y) = @m.nezxzD™™ (1) = ®,ezD (Y) where the total degree of a
superderivation is given by the sum of its bidegree indices.

A bigraded commutative differential algebra defined ag7; *, d) with (1) (7 *) a
b|graded commutative algebra and (@)a superderivation of total degree &,

d(m 1- m).

A bigradedG-operationis defined as7; , d, 1, L) with (1) (%, %, d) a bigraded com-
mutative differential algebra and (2): G — D (M with Ty = 3°,,., IV ™, and
L:6—>D'Mwith[d, Ix] =Lx =Y, LY ™.

An algebraic connectioron a bigradedj-operationT is an elementy € G ® 11,
d= Y o@y F satisfyinglyd = X ® 1, Lxd = [@, X].

The curvatureof the algebraic connectiah is an elemenp € G ® 72, o= Z 00 ~2 i
such thatl® + (1/2)[®, @] = 8.

This previous definition of bigradag@operation is too general. In the next definition we
will restrict it in order to fit our purposes.

Definition 1 (BRST G-operation). A BRSTG-operation is the structure determined by
(Y, x,d,1,L,o, p) where ()T, *, d,1,L)isag- -operation with

(i) rYm =(0}if m <0orm > Dwith D € N;

D
(ii) d= Y d™tm=pb+d+ Y Al dP=0; (142)
meZ+ i=2
(iii) Iy= Y Iy =1t (143)
meZ
(iv) Ly= Y L{=LLY with L =[d.1] (144)
meZ

and (2)a is an algebraic connection afwith curvaturep.

Theorem 1. For a BRSTG-operation we have

Ixd +dIx = Ly, (145)
Ixb+blx =0, (146)
IxAY 4+ Ay =0 vi>2, (147)
Ixal ™ =0, i#1, (148)

Ixad =X ®1, (149)
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Lyor " =[&r7,X], 0<i<D, (150)
Ix>" =0, 0<i<D, (151)
Lxg7 " =1ef".X], 0=<i=<D. (152)
Proof. This follows immediately fronDefinition 1 O

We extendly, Lx to G® T in the same way as we did for the graded case. Note that our
definition of BRSTG-operation is an extension of that one adoptg@]jrin which we allow
the differentiald to have componenta; * other thand®Y = » andd*? = d. We also
allow the algebraic connection and curvature to contain other component fields in addition
o}, %, 23 o} 03

Finally, we consider aftA) = {¢ € G® A°|Lx& = [£, X]V X € G} that will correspond
later on to the concept of the infinitesimal gauge transformations, af¥{ dtits dual. In
terms of the generators gfwe writeg = )" e, ® £ with §* AP. Here, the spacd’ is
a subalgebra oft, therefore it has a structure off&vector space. The spagk® is then
understood as the space of K-linear mappingst8nGiveng e auf(A) we define

It A— A, o — Igoziz%‘“laa,
Le: A—> A o= Lea=) ((dE) a0 + & L)

and we extend them 9® A asle(X Qo) = X @ Iz, Le(X®a) = X ® Lew. In particular,
they act on the space of algebraic connectidrs G ® A giving
L¢(w) = d§ + [, &], (153)
I:(w) = &. (154)
Itis immediate to check that
IxLew =0, (155)
LyLiw = [Lew, X], (156)

thereforeLsw is not an algebraic connection. We obtain an algebraic connection through
the combinatiom + Lew. HereLgw is interpreted as the infinitesimal gauge transformation
of w. Given an algebraic connectienwe also define

D, . GRA—GR®A, D,=d+]w,...] (157)
and we have :w = D,é. Itis straightforward to derive the following properties:
DyLew = [p, ], (158)

IxDyLiw =0,  LxDy,Lew =[DyLew, X]. (159)
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5.2. An example of bigraded algebr@c, *)

Let us denotdC®? = (1:C — A% L(w) =1 € AVw e C):
Kclmm { F(C x (auf(A)", A™) =~ F(C. \"(@uf*(A4) ® A") ifn >0,

160
F(C x (auf ()", Am) ~ FC, \'(@uP(A) ® A™) ifn<0 (160)

andK= @ mez+xz K™, Here, F(C x (auf(A))", A™) denotes the space oflinear
antisymmetric maps in alit4) with values ind”, and analogousl§F(C x (auf* (A))", A™)
denotes the space aflinear antisymmetric maps in &tit.4) with values inA™.

We write 7, = Yz ) T ® wy With 2 : € — A"(@uf*(A)) if n > 0orz" : ¢ —
/\”(auP(A)) if n < 0andw,, : C - A™. The last sum is done over decomposable
elements(t”, w,,}. Let us introduce a product among elementsFof, /\(auP*(A))) U
F(C, N@uP(A)),

Definition 2. Let n, n’ € N. Given#", %', 7", +™" e F(C, \@uf*(A))) U F(C,
A@uf(A))) we define

%" (Cl)§ %l» e %_n+n’)
. 1 An Anl
- (n + }’l’)l Z €T (CL), ‘i:(rl’ ey EUn)T (Cl), S"fnJrl’ R Ean+n’)’ (161)
O'EPnJrn’
2% (w; ET’ AU §Z+n/)
. 1 A—n * * ya—n' * *
ST 2 Gt @ )T @i L ) (162)
0P,
TR (w3 £, . g _ )=t (0 &, ..., &,_,, T (@)

, , forn’ > n, (163)
PR (=DM kg

A A / . A A /
RTT (w3 81, . G ) =T (w5 81, L, T (@)

/
1 g (=) 3 ez } forn>n'. (164)

Notice that fixing(n’ —n) elementgs, ... , &, ontheright-hand side ¢163)we have

A

2" as an-linear antisymmetric map ofaut°(A4)). For simplicity let us considet* (w) as
adecomposable eleméifth - - - A%, Using the isomorphisiiinear(/\" (autf(A)), K) ~
FautO(A4) x - - - xaut9(A), K) (the rhs denoting the spacesfinear antisymmetric maps
in auf*(4)) we interpret =" (w; £, ... &% (@) = T (w3 &}, ... E5 05, ...,
07) that is the exact meaning to the rhs(63).

Definition 3. We define a product il as

% K(m,n) % ’C(m’,n’) N ’C(m+n1’,n+n’)
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(), r,';l/,) — T * r,:’l/,if"*%”/ ® (—1)mrfwm A Wy (165)
Theorem 2. (K, %) is a bigraded commutative algebra

Proof. The products satisfieskC?™ x 01D gcmtm'.ntn’) \which makesk=
S(m.meztxz K™ a graded algebra. The produetsatisfiest” x " = (—1)™ 2" x ",
and we have?, x t, = (=)@ +m)n o1 e x is commutative. m

5.2.1. Extending/C, %) to a bigradedg-operation o
Let (A, -, d, I, L) be aZT-gradedj-operation. Define off the mapsi, Ix, Lx VX € G
as

4 : ’C(m,n) — K(m+1,n)

(da%)(w, ;l’ cre gn)zd(aZ(w, é‘l’ cee é‘l’l))5 (166)
7X : ’C(m,n) N ]C(m—l,n)

(Txe) (@5 61, s )= Ix (@ (@3 61, G0, (167)
I:X . K(m,n) —> K(m,n)

(Lxay) (@3 ¢1, s G)=Lx (@ (@; 81,5 8n) (168)

Var € K" and withg;, i = 1,... , n denoting elements of either &at) or auf*(A).
I and L satisfy

7[X,Y] = Lxly — IyLy, (169)
Lixyy=LxLy—LyLx YX,Yeg (170)

and this makesk, =, d, I, L) a bigradedj-operation.

5.3. A particular example of a BRSFoperation:

Let us define the following elements 6f® K:

o PP=E=Y,e,0 € G® F(C x aul(A), A%):

N N
@ HZE 4 Y 0B Ugw) =+ ) 070 (171)
i=1 i=1
o PN=A=3,e,0 A€ GRF(C, AY):
N
AYw)=of + ) Al(Lgw)". A’ € K; 172)
i=1
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e =Y a3 e G F(C x @ulr (At A k > 2:
~a 1-k

(@&, &)
= Yo A AG L E ) ® (Dol 00 L, o)
{i1,...,ik—1}C{1,... ,N}
(173)
o BEp=Y e ®F € G®FCx @ul(A)?2, A0):
e = Y OTAO(E &) @[04, 0,]% (174)
{i1,i2}C{1,...,N}
o =Y =Y, @V € G F(C x (aul(A))t, Ab):
N
V(8 =Y 075 ® (Lyw) (175)
i=1

o MN=B=Y,e,® B € G& F(C, AY):

- - . L 1 . - ,
B*(w) = F(») + Z BY(LgwLg,w)* with F=d + E[A, Al, BV ek:

i,j=1
(176)
o PPH=Y e, @7 € G® F(C x (aul*(A)k2, A, k > 3:
iR €L 8y
- Z Oy A AOy_ oL, 6 ) ® (Lg -+ L, ,wp)
{i1,...,ig—2}C{1,... N}
(177)

V& € auf(A), V& € auf*(A) and forg; € auf(A) ando* € auf*(4),i=1,.... N

The integeN may denote any number of elements oioaJAt) and its dual. In this sense, to
any choice ofV pairs(6;, 6*') we have a specific form fcwl - ﬁlz " given by(171)-(177)

In addition, given a certain flel¢l1 or ’71 " we have associated a finite sequence of fields

Eo Ao

It (178)
(5_)'&_)77’,3_](_) 7712\7N’

each of them defined b§l71)—(177)in terms of the sam@&/ pairs (9;, 0*/) that appear in

o oriF

From(153) (156)we notice that they also satisfy
Ixgi =0, i#1, (179)
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Ixd=X®1, (180)
Lxpi " =[p; 7. X], 0<i<D, (181)
Ixi? =0, 0<i<D, (182)
Lyiiz ="', X], 0<i<D. (183)

Once again, letA, ., d, I, L) be ag-operation and’ C G ® .A* be the space of algebraic
connections o4. We introduce a particular BRSJ-operation as follows.

Definition 4. (#, x,d, 1, L, &, p) is a BRSTG-operation with (1)(H, *,d,1,L) a G-
operation such that

(i) # isthe subalgebra d€ generated byp? ', d@ ", 72, di>"}i=1... n. The graded
structure of’H is obtained from the graded structure &f and we writeH =
DBim.myez+xz H™™ with 7 mm = jcrmm q 3,

(iiy The product inH is defined by the same productAhas given in(165)

(iiiy The differential in# is a mapd : H"™" — H" T Hl= g, HOmInHl=D g =
SPoAY =b +d + 32, A with @2 = 0 andd a superderivation of degree
(1,0) defined ag166) The BRST operator is a superderivation of bidegree (0,1),
b 1™ — M+ defined by(44)—(47) and Al HOmm gy mtin=itD) g
a superderivation of degree (i,1-i) defined a$3t) Wlth 8 given as in(48)—(55)*

(iv) The interior product is given by(167)and the Lie derivative. |s glven by(168)
(2) The algebraic connection and curvature are defined asZ 0<p, ‘andg =

SN o777 From(179)—(183)we obtain thaix® = X ® 1, Lx& = [, X], Ixd = 0,
Lxo = [o, X].

The zero curvature limitis a particular case of the previous construction Whegener-
ated by(@' ", dp''};i—1,.. v and the algebraic connection satisfiés+ (1/2)[®, @] = 0.

6. Thegauge group and the gauge algebra

In this section we review the concepts of gauge group and gauge algebra. Our main
purpose is to set up our notations and give an intuitive development of these concepts.

Letz : P — M beaprincipalfiber bundle with structure grotipLet us denoté the Lie
algebraofG andR = P x G — P, R, : P — P the right action oG on P. ForX € G we

have associated¥ € fﬁjh%) (P), with ]—f&;%) (P) the space of fundamental vector fieldsn
Givenf € F(P, R), X € Fi-0(P) we define(f - X)(p) = f(p)X(p). This tumnsF(-% (P)

into a F(P, R)-module that we denote &S,ng(P). We have the isomorphisni&(P, G) ~
F(P,R) ® G =~ Nund(P) where the second isomorphism is definedA®, R) ® G >
fR®X <« f-X e Rpynd(P).

4 Hered replacesl in the expressions fdr, A, § given in(44)—(55)
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Thegauge groupf P is denoted by; and can be identified in three equivalent ways:=
Aut,(P) > Feq(P, G) = I'(AdP) [23,26] Here,f € Aut,(P) C Diff (P)issuchthatro f =
T, Rg of=fo Rg Y g € G. The group structure of AutP) is defined by the composition
of maps. Nextf € Feq(P, G) is amapf : P — G such thatf(pg) = Ad(g~1) f(p). The
group structure afeq( P, G) is given by pointwise multiplication.f - f')(p) = f(p) f'(p).
Finally, I'(AdP) denotes the space 6f° sections on the adjoint bundfedP = P xaq G
with Ad the adjoint map orG [23,26] In this work we will consider just the first two
identifications.

The 1—1 map between Ayt P) andFeq( P, G) is defined as follows. Givefi € Aut,(P)
we can defing’ € Feq(P, G) [8,23,26]such thatf(p) = pf(p)V p € P.Conversely, given
f € Feq(P, G) we definef € Aut,(P), f = Ro (id, f) with id the identity map orP.
Those two maps allow us to identify AWP) >~ Feq(P, G).

The concept of tangent space on a space of rffjscan be used to define the tangent
space of Aug(P) at f. This will give a definition for the gauge algebra in the same way as
one defines the Lie algebra of a Lie group as the tangent space to the identity. We define
Xy e Tr(Auty(P)) asamapX s : P — Tr(P) suchthatX (p) € Ty (P) with

d
Xr= Eqﬁ, (184)

and

o ¢ € Auty(P) (ile.mod, =7, Rgody = ¢y 0 Ry, o = f);
e ¢, : R — Pis adifferentiable curve it? such thatp,(r) = ¢:(p).

Then we have

d d
ﬂ*Xf(p) = E]T @) ¢[(p) o = ajf(p) o — 07
i.e. Xr(p) € Vip = Ty (1), (m(p) = n(f(p)) = x). Also
- d. d
g A fP dfg(ptp,:o dt¢tpgt:0 (p-g

i.e. Rg*Xf =Xr.

Now, sincef is a 1-1 map we note that# p’ = X (p) € Trp) # Trpy 2 Xr(P),
therefore it is possible to choose a vector figld F19(P) suchthat p € P, X ¢(p) =
EppmX(f(p) Efpy € R), O Xp = (-X)o fwithé € F(P,R),i.e. X € R(P). The
first condition restricts( e ]—'ﬁ;%)(P) and consequently( = (¢ - X) o f € Rqund(P). The
second condition gives( f(p)) Re« X f(p) = E(f(PD)X fpg- Let{E,i = 1,...,dimG} be
a basis forF(-% (P). ThenX = A'¢; andX; = (- X) o f = (& - &) o f with & = Aiz.
We have then characterized.

o Tr(AUt,(P) = {(B - &) o fI& € F(P,R), & € Fir2(P)} with
E(f(P)Rgi(f(p) = ' (f(PY)ei(f(PY).- (185)
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Let us now consider the tangent space on the identity magut, (P). From the previous
develppment we thain that; € T7(Aut,(P)) has the formX; = &'¢; and should satisfy
&' (p)Rgsei(p) = E'(pg)e;(pg). We then have

E(P)Rgxi(p) = & (P)Rgx Rprei(€) = & (D) R puRyxei(€) = Rpi (B (p) Resei(e)),
(186)

& (p9)e;(pg) = & (pQ) Rpgeei(e) = & (PY R pxLgxei(e) = Rpi(E (PY) Lgxei(e)).
(187)

Since the action o5 on P is free we obtainé"(p)Rg*e,-(e) = éi(pg)Lg*e,»(e) and then
ad(g™ b (E (p)ei(e)) = & (pg)e;(e). We then defineFeq( P, G) as the set of elements of this
type, i.e.Feq(P, G) = (& = & ® ¢;|8(pg) = ad(gH&(p), & € F(P,R), e; € G}. This
result defines an isomorphism(Aut,(P)) >~ Feq(P, §) that provides another description
for the gauge algebré.

Here, for the case df;(Aut,(P)) let us find an explicit form for the diffeomorphisms
¢; (184) ConsiderX; = &'¢; = (d/dr)¢,|,—o. Let us take local chartd/,, ) of G and
(Vg, xp) of P interms of which we can Writé;7 (x) = x o R, 0y~ 1(x). We denotey(g) =
X = (xl,; Lo, X, W(g) =x andx(p) = y= (L ..., v, X (p) = y'. We can write
ei(p) = Rpxei(e) = (OR},(x)/0x")|y(e) (8/0Y") | y(p) andé' (p) = (d/dn)y' o exp(t&(p))li=0
then

o d . 3 OR" (x) 9
Xi(p)=¢&(plei(p) = ' o explte(p)) - —
dr o Ox o ay )
_ 9y expE(p))| —| = dz (eXP(tE(p))) (188)
dr P =0 By’ x(p) dr P =0

that suggest us to defige = Rexpz) With ¢, (p)=R(p, (EXp(tE(p)))) = R, (eXp(tE(p))).
(188) agrees with the same expression given in Schiaé for the element<Z; of the
gauge algebra.

7. An explicit realization for H

Let P(M, G) be a principal fiber bundle with structure groGpWe defined=2(P) =
D cz+ 2" (P) = ®,z+A". Considering the interior product and Lie derivative®(P) we

definev X (with G 5 X < X € F-0(P)):

Ix=Iz,  Lx=Lg

that satisfies COﬂditiOh&X,y] = Lxly — IyLx, Lix,y) = LxLy — LyLx VX,Y € g.
Therefore, taking the multiplication of2(P) as the exterior product and the differential
as the exterior derivative it is straightforward to see th@tP), A, d, I, L) becomes a
G-operation.
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A connection onP is an elementy € G ® 2'(P) that satisfiesRiw = ad(g™) -
o(X) = X with ad(g) = Lg.R,-1,. These conditions imply

Lxw = [w, X], Ixo=XQ 1

With the choiceA”="(P) we have that afdtA) is the gauge algebra, i.e. dut) =
Feq(P, G). Indeed, lett € Feq(P, G). Since F(P,G) ~ GQ® 29(P) we can writet =
> .ea ®E.ThenvVX e G, Lx§ = [ X] (see[5]). We have analogue expressions for
Ls . 2(P) — 2(P) (153)andD,, : G ® 2(P) — G® 2(P) (157)
The components of the algebraic connection and the curvature will depend on the as-
signment of at leasV = D linearly independent elements of &®) and its dual adf(P).
Their definition follow the same procedure given(tir1)—(177)and they are functions
(0 <i < g < D,with g € Z and D the spacetime dimension):

E=get e HOY c Fex g, %Py,  A%=§0 e HAO c Fe, 24Py,
g e 1O c Fex gL Q1(P),  ¢0=iie? e HOP c F(ex P, 20(P)),
p=iipt e HEY c Fex gl @i, BU=i® e HEO ¢ Fe, 22(p)),
et e HEZD ¢ F(C x G2, 21(P))

and they generate a bigraded differential algefira: e}(m,,,)eZerzH(”’*”). The algebraic
connection and its curvature are elements:

DeGH=G® HOY g 11O g ... ¢ H1-D),
6eGRH=C® HO2 aHIV g PO g ... ¢ @2 D),

The s operator is g1, —1)-bigraded derivation oft. and € defines homomorphisms:
:goH > gent, €:6aH? > Ge?
t>e&i=d, ¢—>ep=0,

which transforms

~ o &~ . - ~ ~ e s &~ .
be+3[e.d =¢>do+ 3la.@l =2, b +[e.¢]=0>dg+[a.2] =0.

8. Concluding remarks

(1) Our model extends the original TYMT defined for positive ghost number fields to more
general models containing negative ghost number fields as well. The main ideas behind
one and another formulation is to accommodate the fields either as components of a
connection with total degree 1 or as components of a curvature which has total degree 2.
Nonetheless, in the process of obtaining Witten’s action for TYMT as the gauge fixing
of the symmetries of the classical actipfir F A F [2,24] we have to introduce other
fields with total degree other than 1 or 2 that cannot be componentawfF. We can,
however, define other ladders in order to accommodate those fields in the same way as
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it was done ir{6]. For example, for fields with total degreed and 0 it is possible to
introduce two ladders = 3°, 6.1, & = 3", ;" and impose BRST transformations
fromdB+[W, B] = ¥. Then, we can develop our model following the same procedure
of Section 2Other choices of ladders and transformations are possible and will depend
on what type of model one intends to build.

A parallel development that is close to ours, and that presents an equivalent form of
equations (26) and (2,Avas proposed ifL3] in the study of two- and four-dimensional
topological matter. In fact, the operatdysindb satisfying p, b] = d and p,d] = 0
suggest that they are related to the odd generaigrand Q of the topological algebra.
Here, identifyingd = §, ® d¥* <+ G = G, ® d¥* and—b < Q we obtain that

[G, QO] = d, [Q,d] = 0. In addition to these relations, we may have models with
either B, d] = 0 or [, d] # 0 which would correspond td{, d] = 0 or [G, d] # O.

This last possibility, however, does not appear in the topological algebfa3]JoSince

[6,d] = Agl, it may be possible to have topological algebras with extra generators

AF* = 1/K1[8, AZ7K), k = 2,..., D. The existence ifil3] of a set of descendents

fields given by¢ff1)ﬂz...u,, x) = 1/n[Guy. [Gy - - - [Gp,» (0] ... 1] is equivalent to

the imposition of(26) and (27) A quite similar approach was presentedid] in the
study of balanced topological field theory. Despite these analogies, the details behind
one and another formulation are completely differenf2B] we show how to construct
topological algebras for models defined by laddéjsnd (2)and derivativel = b+d.

In particular, by taking the case of two dimensions we also show how teerator
induces a supersymmetry algebra.

It may be possible to interpret our model in terms of equivariant conomology. First,
we introduce the Weil algebr@(G)=S(G*) ® A(G*) where we assum& as the odd
generators of degree 1, apfl as the even generators of degree 2. The differential in
W(G) is defined agly ¢ = — fi.cPc® + ¢, dwe® = — ficP¢°. In the construction of
[29,30] TYMT is understood in terms of the BRST model for equivariant cohomology,
i.e. as a differential algebr@, dg) with B = (W(G) ® £2(M))pasic the subalgebra of
W(G) ® (M) invariant by the actionof, 1+ 1® I, andL, ® 1+ 1® L, (we
denote byl, ® 1 andL, ® 1 the action of the interior derivative and the Lie derivative
on W(G), and 1® I, and 1® L, the respective action of2(M)). The differential is
dp=dw 1+ 1Qdy +c*® L, — ¢* ® I,. Since the generators &fcontain only

the positive ghost number field$ and¢® there is no possibility to introduce negative
ghost number fields irB. A solution would be to replac&(M) by an appropriate
G-algebraB such that¥(G) ® B would accommodate the negative ghost number fields.
In this approach, the BRST operator is considered as the differential in the algebra
B = W(G) ® B[29,31] The problem then reduces to find an appropriate differential for
B sothatit gives the correct transformations for all the fields. The increasing complexity
of the transformations of negative ghost number fields make this program difficult to
be implemented.

We have seen th@tTr¢¥ = 0L dTrA =0 = b+ TrF + ATrFA = 0.

Tr 7V is the Nth Chern class witl¥ given by(2). In the problem of cohomology @
(modulod) (b+ d)$2@2V) = 0, the solution2@™ does not coincide with TEY (unless

A = 0). This is a major difference from the results[@f3] where the Chern class
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Tr 7V (being a solution of descent equations) also belonged to the cohomoldgy of
modulod. In our model, whend, d] # 0, 2@V and TrFY will not agree. A direct
consequence of this was observed in the mod&eaftion 3 as it is explicitly seen in
the differences betwedi10)—(114) and (7)
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