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a b s t r a c t

We study twistor forms on products of compact Riemannianmanifolds and show that they
are defined by Killing forms on the factors. Themain result of this note is a necessary step in
the classification of compact Riemannian manifolds with non-generic holonomy carrying
twistor forms.
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1. Twistor forms on Riemannian manifolds

A twistor p-form on a Riemannian manifold (Mn, g) is a smooth section ψ of ΛpT ∗M whose covariant derivative only
depends on its differential dψ and codifferential δψ . More precisely, ψ satisfies the equation

∇X ψ =
1

p + 1
X y dψ −

1
n − p + 1

X [ ∧ δψ, (1)

for all vector fields X , where X [ denotes the metric dual of X .
If the p-formψ is in addition coclosed (i.e. δψ = 0), then it is called a Killing p-form. We denote byT(M),K(M) andP(M)

the spaces of twistor, Killing and parallel forms onM respectively. Notice that T(M) is preserved by Hodge duality, and that
the Hodge dual of a Killing form is a closed twistor form. For a comprehensive introduction to twistor forms, see [8].

A few years ago, a program of classification of twistor forms on compact manifolds was started. By the de Rham
decomposition theorem, every simply connected Riemannian manifold is a Riemannian product of irreducible manifolds.
Moreover, the Berger–Simons holonomy theorem (see [2], p. 300) implies that any simply connected irreducible Riemannian
manifold is either symmetric or has holonomy SOn, Um, SUm, Spk, Spk·Sp1, G2 or Spin7. Killing forms on symmetric spaces
were studied in [1]. Twistor forms on Kähler manifolds (covering the holonomies Um, SUm, and Spk) were described in [4],
and Killing forms on quaternion-Kähler manifolds (holonomy Spk·Sp1) or Joyce manifolds (holonomies G2 or Spin7) were
studied in [5,9] respectively. In Theorem 2.1 below, we prove that the general case (twistor forms on a Riemannian product
of compact manifolds) reduces to the study of Killing forms on the factors. By the discussion above, besides the case of
generic holonomy (SOn), all other cases are fully understood.
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2. The main result

LetM = M1×M2 be the Riemannian product of two compact Riemannianmanifolds (M1, g1) and (M2, g2) of dimensions
m and n respectively. We denote by πi the projection πi : M → Mi. From (1) it is clear that π∗

i (K(Mi)) ⊂ K(M), so the space

K0(M) := π∗

1 (K(M1))+ π∗

2 (K(M2))+ P(M)

is a subspace of K(M). For later use, we give the following description of π∗

i (K(Mi)):

π∗

1 (K(M1)) = {u ∈ K(M) | ∇Xu = 0, ∀X ∈ TM2} (2)

and

π∗

2 (K(M2)) = {u ∈ K(M) | ∇Xu = 0, ∀X ∈ TM1}. (3)

The aim of this note is to prove the following result:

Theorem 2.1. Every twistor form on M is a sum of forms of the following types: parallel forms, pull-backs of Killing forms on M1
or M2, and Hodge duals of them. In other words, T(M) = K0(M)+ ∗K0(M).

Proof. Since K0(M) ⊂ K(M) ⊂ T(M) and ∗T(M) = T(M), we clearly have K0(M)+ ∗K0(M) ⊂ T(M). It remains to prove
the reverse inclusion. Let us define the differential operators

d1 =

m∑
i=1

e[i ∧ ∇ei , d2 =

n∑
j=1

f [j ∧ ∇fj ,

where {ei} and {fj} denote local orthonormal basis of the tangent distributions to M1 and M2. Using the Fubini theorem, we
easily see that the adjoint operators to d1 and d2 are

δ1 = −

m∑
i=1

eiy∇ei , δ2 = −

n∑
j=1

fjy∇fj .

The following relations are straightforward:

dM = d1 + d2, δM = δ1 + δ2, (d1)2 = (d2)2 = (δ1)
2

= (δ2)
2

= 0,
0 = d1d2 + d2d1 = δ1δ2 + δ2δ1, 0 = d1δ2 + δ2d1 = δ1d2 + d2δ1.

The vector bundleΛpM decomposes naturally as

ΛpM ∼= ⊕
p
i=0Λ

i,p−iM,

whereΛi,p−iM ∼= ΛiM1 ⊗ Λp−iM2. Obviously, d1 and δ1 mapΛi,p−iM toΛi+1,p−iM andΛi−1,p−iM respectively, and d2 and
δ2 mapΛi,p−iM toΛi,p−i+1M andΛi,p−i−1M respectively.

With respect to the above decomposition, every p-form can be written u = u0 + · · · + up, where ui ∈ ΛiM1 ⊗ Λp−iM2.
From now on, uwill denote a twistor p-form u ∈ T(M), with 1 ≤ p ≤ n + m − 1. The twistor equation reads

∇Xu =
1

p + 1
Xy(d1u + d2u)−

1
m + n − p + 1

X ∧ (δ1u + δ2u), ∀X ∈ TM. (4)

By projection onto the different irreducible components of ΛpM , (4) can be translated into the following two systems of
equations:

∇Xuk =
1

p + 1
Xy(d1uk + d2uk+1)−

1
m + n − p + 1

X ∧ (δ1uk + δ2uk−1), ∀X ∈ TM1, (5)

and

∇Xuk =
1

p + 1
Xy(d1uk−1 + d2uk)−

1
m + n − p + 1

X ∧ (δ1uk+1 + δ2uk), ∀X ∈ TM2. (6)

Recall that if u is any k-form and {e1, . . . , em} is an orthonormal basis on a manifoldM , then

m∑
i=1

e[i ∧ eiyω = kω. (7)

Taking the wedge product with X [ in (5) and summing over an orthonormal basis of TM1 yields

d1uk =

m∑
i=1

ei ∧ ∇eiuk =
1

p + 1

m∑
i=1

ei ∧ eiy(d1uk + d2uk+1)
(7)
=

k + 1
p + 1

(d1uk + d2uk+1)
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so

(p − k)d1uk = (k + 1)d2uk+1. (8)

Similarly, taking the interior product with X and summing over an orthonormal basis of TM1 yields δ1uk =
m−k+1

m+n−p+1 (δ1uk +

δ2uk−1), thus

(n + k − p)δ1uk = (m − k + 1)δ2uk−1. (9)

We distinguish three cases:
Case I. Suppose that p is strictly smaller thanm and n. For k < p, (8) and (9) imply

δ1d1uk =
k + 1
p − k

δ1d2uk+1 = −
k + 1
p − k

d2δ1uk+1 = −
(k + 1)(m − k)

(p − k)(n + k − p + 1)
d2δ2uk. (10)

Integrating over M yields 0 = d1uk = δ2uk, ∀k < p. Similarly one gets 0 = d2uk = δ1uk, ∀k > 0. Moreover, we have
0 = δ2up = δ1u0 (tautologically), so in particular δ1uk = δ2uk = 0, ∀k. From (5) and (6), together with (2) and (3), we see
that u1, . . . , up−1 ∈ P(M), u0 ∈ π∗

2 (K(M2)) and up ∈ π∗

1 (K(M1)), so u ∈ K0(M).
Case II. Suppose that p is strictly larger thanm and n. Since the Hodge dual ∗u of u is a twistor (m+n−p)-form andm+n−p
is strictly smaller thanm and n, the first case implies that ∗u ∈ K0(M), so u ∈ ∗K0(M).
Case III. If p is a number between m and n, we may suppose without loss of generality that m ≤ p ≤ n. Obviously
um+1 = · · · = up = 0. Using (10) and integrating over M , we obtain that 0 = d1uk = δ2uk for 0 ≤ k ≤ m − 1 and
similarly, 0 = d2uk = δ1uk for 1 ≤ k ≤ m. As before, (5) and (6), together with (2) and (3), show that u1, . . . , um−1 ∈ P(M),
u0 ∈ π∗

2 (K(M2)), and ∗um ∈ π∗

2 (K(M2)). This proves the theorem. �

As an application of this result, we have the following:

Proposition 2.2. Let (Mn, g) be a compact simply connected Riemannian manifold. If M carries a conformal vector field which
is not Killing, then Hol(M) = SOn.

Proof. Assume first that (M, g) = (M1, g1)× (M2, g2) is a Riemannian product with dim(M1), dim(M2) ≥ 1. Then, taking
into account that the isomorphism between 1-forms and vector fields defined by the Riemannianmetricmaps twistor forms
to conformal vector fields and Killing forms to Killing vector fields, Theorem 2.1 implies that every conformal vector field
onM is a Killing vector field. ThusM is irreducible.

Assume next that Hol(M) 6= SOn. From the Berger–Simons holonomy theorem ([2], p. 300), M is either an irreducible
symmetric space (in particular Einstein), or its holonomy group is Um, SUm, Spk, Spk.Sp1, G2 or Spin7. In the first three cases
the manifold is Kähler and in the last three cases it is Einstein. Now, two classical results state that a conformal vector field
on a compact manifold M is already a Killing vector field if M is Kähler (see [3], p. 148) or if M is Einstein and not isometric
to the round sphere (see [6,7]).

The only possibility left is therefore Hol(M) = SOn. �

Example. Take any compact simply connected Riemannian manifold (Mn, g) carrying a Killing vector field ξ and let f be a
function onM such that ξ(f ) is not identically zero. Since L ξ (e2f g) = 2ξ(f )e2f g , ξ is a conformal vector field on (M, e2f g)
which is not Killing. From Proposition 2.2, (M, e2f g) has holonomy SOn.

Corollary 2.3. Let (Mn, g) be a compact simply connected homogeneous Riemannian manifold. Then for every non-constant
function f on M, (M, e2f g) has holonomy SOn.

Proof. Since f is non-constant, there exists x ∈ M such that dfx 6= 0. Killing vector fields on M span the tangent spaces at
each point, so in particular there exist a Killing vector field ξ such that ξ(f ) is not identically zero. The corollary then follows
from the example above. �
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