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a b s t r a c t

This paper presents a two-step symplectic geometric approach to the reduction of Hamil-
ton’s equation for open-chain, multi-body systems with multi-degree-of-freedom holo-
nomic joints and constant momentum. First, symplectic reduction theorem is revisited
for Hamiltonian systems on cotangent bundles. Then, we recall the notion of displace-
ment subgroups, which is the class of multi-degree-of-freedom joints considered in this
paper. We briefly study the kinematics of open-chain multi-body systems consisting of
such joints. And, we show that the relative configuration manifold corresponding to the
first joint is indeed a symmetry group for an open-chain multi-body system with multi-
degree-of-freedom holonomic joints. Subsequently using symplectic reduction theorem at
a non-zeromomentum, we express Hamilton’s equation of such a system in the symplectic
reduced manifold, which is identified by the cotangent bundle of a quotient manifold. The
kinetic energy metric of multi-body systems is further studied, and some sufficient condi-
tions are introduced, under which the kinetic energymetric is invariant under the action of
a subgroup of the configuration manifold. As a result, the symplectic reduction procedure
for open-chain, multi-body systems is extended to a two-step reduction process for the
dynamical equations of such systems. Finally, we explicitly derive the reduced dynamical
equations in the local coordinates for an example of a six-degree-of-freedom manipulator
mounted on a spacecraft, to demonstrate the results of this paper.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In order to better understand the behaviour of Hamiltonian and Lagrangian systems, researchers have been trying to find
conserved quantities that are used to integrate a part of dynamical equations, and derive closed-form equations for some
parameters of such systems. For example, Jacobi in 1884 introduced Hamilton–Jacobi equations, which give the necessary
conditions for integrability of a Lagrangian system [1]. Also, Emmy Noether in 1918 in her famous paper [2] proved that any
symmetry of the action functional of a Lagrangian system corresponds to a conserved quantity. This result is an inflection
point in identifying conserved quantities, and its relationwith the reduction of dynamical equations of a system. By reducing
the dynamical equations we mean expressing the differential equations representing a (Lagrangian or Hamiltonian) system
on a manifold whose dimension is less than the original phase space of the system, by quotienting a group action and
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Operators

Lr Left composition/translation by r
Rr Right composition/translation by r
Kr Conjugation by r
Adr Adjoint operator corresponding to r
adξ adjoint operator corresponding to ξ
[ξ, η] Lie bracket or matrix commutator
Tmf Tangent map corresponding to the map f at the element m
T ∗
mf Cotangent map corresponding to the map f at the element m

TmM Tangent space of the manifoldM at the elementm
TM Tangent bundle of the manifoldM
T ∗
mM Cotangent space of the manifoldM at the element m

T ∗M Cotangent bundle of the manifoldM
exp(ξ) Group/matrix exponential of ξ
Lie(G) Lie algebra of the Lie group G
Lie∗(G) Dual of the Lie algebra of the Lie group G
Gµ Coadjoint isotropy group for µ ∈ Lie∗(G)
n Semi-direct product of groups
≪ ·, · ≫ Euclidean metric
∥v∥h Norm of the vector v with respect to the metric h
⟨·, ·⟩ Canonical pairing of the elements of tangent and cotangent space
LX Lie derivative with respect to the vector field X
ξM Vector field on the manifoldM induced by the infinitesimal action of ξ ∈ Lie(G)
ιXΩ Interior product of the differential formΩ by the vector field X
X(M) Space of all vector fields on the manifoldM
Ω2(M) Space of all differential 2-forms on the manifoldM
dΩ Exterior derivative of the differential formΩ

dH Exterior derivative of the function H
M/G Quotient manifold corresponding to a free and proper action of the Lie group G

eliminating the trivial behaviour of the systemor restricting the system to a submanifold of the phase space. In the following,
we first review two existing reduction theories for Hamiltonian and Lagrangian mechanical systems. Then, we report the
reduction methods for multi-body systems, and finally, we state the contributions of this paper.

1.1. Background

1.1.1. Reduction theories
From the geometric point of view, a Hamiltonian system is a vector field X on a symplecticmanifold (M,Ω) (phase space)

that satisfies (coordinate-independent) Hamilton’s equation

ιXΩ = dH,

where ιXΩ is the interior product of the vector field X with the symplectic form Ω , and the function H : M → R is the
Hamiltonian of the system. In this formulation, if H andΩ are invariant under a group action, then there exists a conserved
quantity (momentum) for the Hamiltonian system and we can reduce Hamilton’s equation [3]. In this reduction process, we
have to take care of not only the topology of the phase space and its symplectic structure, but also the Hamiltonian H and its
correspondingHamiltonian vector fieldX . As for the reduction of the phase space alongwith its symplectic structure (M,Ω),
the symplectic reduction theorem byMarsden andWeinstein [4] gives an instruction to find the reduced phase space and its
symplectic structure. In the following, we state this theorem, and report its impact on the geometric mechanics literature.

Let G be a Lie group, andM be the phase space of a system. The symplectic reduction theorem states that in the presence
of a free and proper G-action and an (Ad∗-equivariant) momentum map M : M → Lie∗(G), for any value µ ∈ Lie∗(G) of
the momentum the quotient manifoldMµ := M−1(µ)/Gµ inherits a symplectic formΩµ. Here, Gµ is the coadjoint isotropy
group ofµ,Ωµ is identified by the equality i∗µΩ = π∗

µΩµ, and themaps iµ : M−1(µ) ↩→ M andπµ : M−1(µ) → M−1(µ)/Gµ
are the canonical inclusion andprojectionmaps [4]. The pair (Mµ,Ωµ) is called the symplectic reducedmanifold. This theorem
by Marsden andWeinstein made a huge impact on unifying the reduction methods that had been previously developed for
Lagrangian and Hamiltonian systems, such as classical Routh method and the reduction of Lagrangian systems by cyclic
parameters [5].

For a mechanical system, the phase space is the cotangent bundle of the configuration manifold T ∗Q that admits a
canonical symplectic 2-form, which isΩcan := −dp∧ dq, in coordinates. As the result, (T ∗Q,Ωcan) is a symplectic manifold.
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The Hamiltonian of the mechanical system H : T ∗Q → R comes from a (kinetic energy) metric and a (potential energy)
function on Q. Let G be a Lie group acting properly on the configuration manifold Q. The cotangent lifted action on the
phase space is symplectic. In this case, if the Hamiltonian of the system is also invariant under the cotangent lift of the
G-action, the group G is called the symmetry group of the mechanical system, and the system is called a mechanical system
with symmetry [6,3]. In the reduction process of mechanical systems with symmetry, we should take care of four structures,
i.e., the topology of the phase space, the symplectic structure, the (kinetic energy)metric and the (potential energy) function
of the system.

The phase space of amechanical system T ∗Q also admits a canonical Poisson bracket {·, ·} using the canonical symplectic
form. For a mechanical system with symmetry, suppose that the symmetry group G acts freely and properly on Q, and
so does it on T ∗Q. Clearly, the Poisson bracket is invariant under the cotangent lifted action, i.e., the action is a Poisson
action on (T ∗Q, {·, ·}). The Poisson bracket on T ∗Q descends to a Poisson bracket on the quotient manifold (T ∗Q)/G. This
process, which has been introduced in [3,7], is called Poisson reduction. The major difference between Poisson reduction
and symplectic reduction is the concept of momentum map, which is not necessary for Poisson reduction, and as the
result the induced Hamilton’s equation on the quotient phase space evolves in a bigger space. This approach unifies the
Euler–Poincaré and Lagrange–Poincaré equations for mechanical systems with symmetry [3]. Both of the abovementioned
reduction theories for mechanical systems with symmetry were developed and extended to Lagrangian systems, in the
1990s [8–10].

1.1.2. Dynamical reduction of multi-body systems
An example of a mechanical systemwith symmetry is a free-basemulti-body system, which has been studied in the field

of robotics, aerospace and controls. Vafa and Dubowsky introduce the notion of virtual manipulator [11], and they show that
this approach decouples the system centre of mass translation and efficiently solves for the inverse kinematics [12]. Since
the trivial behaviour of a multi-body system due to momentum conservation is eliminated during a reduction process, the
behaviour of the system is more explicit in the reduced space. The reduction procedures have been helpful for extracting
control laws for spacemanipulators by restricting the dynamical equations to the submanifold of the phase space where the
momentumof the system is constant (and equal to zero). Yoshida et al. investigate the kinematics of free-floatingmulti-body
systems utilizing the momentum conservation law. They derive a new Jacobian matrix in generalized form and develop a
control method based on the resolved motion rate control concept [13,14]. McClamroch et al. also propose an articulated-
body dynamical model for free-floating robots based on Hamilton’s equation, and apply it for adaptive motion control [15].
In the case of underactuated space manipulators, Mukherjee and Chen in [16] show that even if the unactuated joints do
not possess brakes, themanipulator can be brought to a complete rest provided that the systemmaintains zeromomentum.
In [17] an alternative path planningmethodology is developed for underactuatedmanipulators using high order polynomials
as arguments in cosine functions to specify the desired path directly in joint space.

Geometric methods have also been used to reduce the dynamical model of free-base multi-body systems and introduce
effective control laws. For example, in [18,19] Sreenath reduces Hamilton’s equation by SO(2) for free-base planar multi-
body systems with non-zero angular momentum. He uses symplectic reduction theory to first reduce dynamical equations
and then derive a control law for reorienting the free-base system. Chen in his Ph.D. thesis [20] extends Sreenath’s approach
to spatial multi-body systems with zero angular momentum. Duindam and Stramigioli derive Boltzmann–Hamel equations
for multi-body systems with generalized multi-degree-of-freedom (multi-d.o.f.) holonomic and nonholonomic joints by
restricting the dynamical equations to the nonholonomic distribution [21]. This is the first attempt to reduce the dynamical
equations of a generic open-chain multi-body systems with generalized holonomic and nonholonomic joints. Furthermore,
Shen proposes a novel trajectory planning in shape space for nonlinear control of multi-body systems with symmetry
[22–24]. In his work he performs symplectic reduction for zero momentum and assumes multi-body systems on trivial
bundles. Then, in [25] he extends his results to include nonholonomic constraints. Also, in the control community, Olfati-
Saber in his thesis [26] studies the reduction of underactuated Lagrangian mechanical systems with symmetry (with
zero momentum) and its application to nonlinear control of such systems. Further, Bloch and Bullo extract coordinate-
independent nonlinear control laws for holonomic and nonholonomic mechanical systems with symmetry [7,27,28].

1.2. Structure of the paper and statement of contributions

In the robotics community, research on the dynamical reduction of multi-body systems is mostly focused on the cases
where the total linear and angular momentum is zero, the symmetry group of the system is either SO(3) or SO(2), and
the configuration manifold of the system is a trivial bundle of the symmetry group over the shape space. In the real
world applications however, it is impractical to have a system with zero angular and linear momentum. In this paper we
systematically develop a two-step reduction process (based on the symplectic reduction theorem) for dynamical equations
of holonomic open-chain multi-body systems with non-zero momentum. We consider any symmetry group, which is a
subgroup of a Cartesian product of copies of SE(3), and we do not assume that the configuration manifold is a trivial bundle.

The following section gives a brief review of symplectic reduction theory for mechanical systems on cotangent bundles.
In Section 3, we introduce generic multi-d.o.f. joints, and show that for a certain class of multi-d.o.f. joints the configuration
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manifold of the system is indeed diffeomorphic to a Lie group. Then, Lagrangian and Hamiltonian of generic open-
chain multi-body systems are derived in Section 4. The main results of this paper are presented in Section 5, where we
introduce the notion of open-chain multi-body systems with symmetry, and show that the relative configuration manifold
corresponding to the first joint is always a symmetry group for such systems.Wederive the reduced coordinate-independent
dynamical equations of generic open-chain multi-body systems with symmetry in a vector sub-bundle of the cotangent
bundle of theµ-shape space. Subsequently, we find some necessary conditions for a reduced open-chainmulti-body system
to admit a bigger symmetry group, and we repeat the reduction procedure introduced in this section to further reduce the
dynamical equations of these systems. Finally in Section 6, as an example, we reduce the dynamical equations of a six d.o.f.
manipulator mounted on a spacecraft, and Section 7 concludes the paper with some remarks.

2. Symplectic reduction of holonomic Hamiltonian mechanical systems with symmetry

For a mechanical system, the Lagrangian L : TQ → R is defined by L(vq) :=
1
2Kq(vq, vq) − V (q), where ∀q ∈ Q we

have vq ∈ TqQ, and Kq : TqQ × TqQ → R is a Riemannian metric, called the kinetic energy metric, and where V : Q → R
is a smooth function, called the potential energy function. This Lagrangian is hyper-regular, and its corresponding Legendre
transformation FLq : TqQ → T ∗

q Q is equal to the fibre-wise linear isomorphism that is induced by the metric K :

⟨FLq(vq), wq⟩ := Kq(vq, wq). ∀vq, wq ∈ TqQ. (2.1)
As the result, ∀pq ∈ T ∗Q the Hamiltonian H : T ∗Q → R of the system is

H(pq) :=
1
2
Kq(FL−1

q (pq), FL
−1
q (pq))+ V (q), (2.2)

which is the total energy of the mechanical system. We label a Hamiltonian mechanical system by a four-tuple (T ∗Q,Ωcan,
H, K ), whereΩcan ∈ Ω2(T ∗Q) is the canonical 2-form on the cotangent bundle T ∗Q, and H and K are defined as above.

Let G be a Lie group with the Lie algebra Lie(G). Consider an action of G on Q, and denote the action by Φg : Q → Q,
∀g ∈ G. This action induces an action of G on T ∗Q by the cotangent lift ofΦg, which is denoted by T ∗Φg : T ∗Q → T ∗Q.

Lemma 2.1. For every g ∈ G, the map T ∗Φg is a symplectomorphism, i.e., it preservesΩcan [3].

Consider the infinitesimal action of Lie(G) on Q. For any ξ ∈ Lie(G), this action induces a vector field ξQ ∈ X(Q) such
that ∀q ∈ Q,

ξQ(q) =
∂

∂ϵ


ϵ=0


Φexp(ϵξ)(q)


. (2.3)

Denote the fibre-wise linear map corresponding to the infinitesimal action of Lie(G) by φq : Lie(G) → TqQ, where φq(ξ) =

ξQ(q). Likewise, we define ξT∗Q ∈ X(T ∗Q) such that ∀pq ∈ T ∗
q Q,

ξT∗Q(pq) =
∂

∂ϵ


ϵ=0


T ∗

Φexp(ϵξ)(q)
Φexp(−ϵξ)(pq)


. (2.4)

Now, consider the fibre-wise linear mapM : T ∗Q → Lie∗(G), called momentum map, which is defined by

⟨Mq(pq), ξ⟩ := ⟨φ∗

q (pq), ξ⟩ = ⟨pq, ξQ(q)⟩. (2.5)

Lemma 2.2. The map M is an Ad∗-equivariant momentum map corresponding to the cotangent lifted action T ∗Φg. That is,

M ◦ T ∗Φg(pq) = Ad∗

g ◦ M(pq). (2.6)

Proposition 2.3 (Noether’s Theorem). Let H : T ∗Q → R be the Hamiltonian of a Hamiltonian mechanical system. If H is
invariant under the cotangent lifted group action, i.e., H ◦ T ∗Φg(pq) = H(pq), the momentum map M, as defined above, is
constant along the flow of the Hamiltonian vector field X for the Hamiltonian H. That is, ∀ξ ∈ Lie(G) we have LX (⟨M, ξ⟩) = 0.

We call X ∈ X(T ∗Q) a Hamiltonian vector field for the Hamiltonian H , if it satisfies Hamilton’s equation:
ιXΩcan = dH. (2.7)

This equation is a coordinate-independent way of formulating Hamilton’s equation in the language of differential forms,
which is used mostly in the context of geometric mechanics. This equation is equivalent to the familiar form of Hamilton’s
equation in chosen coordinates (q, p) for T ∗Q:

ιXΩcan = ι(q̇,ṗ)(−dp ∧ dq) = q̇dp − ṗdq =
∂H
∂q

dq +
∂H
∂p

dp.

=⇒


ṗ = −

∂H
∂q

q̇ =
∂H
∂p
.

(2.8)
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We define a Hamiltonian mechanical systemwith symmetry to be a five-tuple (T ∗Q,Ωcan,H, K ,G), as above, where the
Hamiltonian H and K are invariant under the cotangent and tangent lifted action of G.

Theorem 2.4 (Symplectic Reduction Theorem [4]). Let µ ∈ Lie∗(G) be a regular value of themomentummapM, and assume that
the action of G on Q is free and proper. Then the quotient manifold (T ∗Q)µ := M−1(µ)/Gµ, where Gµ = {g ∈ G| Ad∗

gµ = µ} is
the coadjoint isotropy group, is a symplectic manifold, called the symplectic reduced space, with the unique symplectic formΩµ

that is identified by the equality T ∗πµ(Ωµ) = T ∗iµ(Ωcan). Here, the maps πµ : M−1(µ) → M−1(µ)/Gµ and iµ : M−1(µ) ↩→
T ∗Q are the canonical projection and inclusion map, respectively.

This theoremwas first stated and proved in a paper by Marsden andWeinstein in 1974 [4], and since then this result has
been extended to non-free actions [29] and almost symplectic manifolds [30]. An almost symplectic manifold is a manifold
equipped with a nondegenerate 2-form. Based on the symplectic reduction theorem, in the presence of a group action that
preserves the symplectic structure and an Ad∗-equivariant momentummap (corresponding to the symmetry group) we say
that the phase space of a Hamiltonian system along with its symplectic 2-form can be reduced to the symplectic reduced
space ((T ∗Q)µ,Ωµ). In order to have a well-defined projection of Hamilton’s equation onto the symplectic reduced space,
the Hamiltonian of the system should be invariant under the group action, as well. Under these hypotheses, Hamilton’s
equation can be written on (T ∗Q)µ as

ιXµΩµ = dHµ, (2.9)

where Hµ is defined by H ◦ iµ = Hµ ◦ πµ and Xµ ◦ πµ = Tπµ(X ◦ iµ).
We say that the Hamiltonian system with symmetry (T ∗Q,Ωcan,H,G) has been reduced to the Hamiltonian system

((T ∗Q)µ,Ωµ,Hµ).
In the theory of cotangent bundle reduction, there exist two equivalent ways to identify the symplectic reduced space

with cotangent bundles and coadjoint orbits [31]:

(i) Embedding version: in which the symplectic reduced space is identified with a vector sub-bundle of the cotangent
bundle of Q := Q/Gµ, called µ-shape space of a Hamiltonian system.

(ii) Bundle version: in which the symplectic reduced space is identified by a (locally trivial) fibre bundle of the coadjoint
orbit through µ over the cotangent bundle of Q := Q/G, namely shape space of the Hamiltonian system.

In this paper, the embedding version of the cotangent bundle reduction is used to write Hamilton’s equation (2.9) in the
cotangent bundle of the µ-shape space, i.e., T ∗Q. Prior to reporting the final result, we introduce a number of necessary
objects.

Consider a Hamiltonian mechanical system with symmetry (T ∗Q,Ωcan, K ,H,G), and ∀g ∈ G denote the action map by
Φg : Q → Q. Assume that the action is free and proper. The quotient manifold Q := Q/G gives rise to the principal bundle
π : Q → Q with the base space Q, and the fibres of the bundle are isomorphic to the group G. A principal connection on
the principal bundle π : Q → Q is a fibre-wise linear map A : TQ → Lie(G), such that A(ξQ(q)) = ξ (∀ξ ∈ Lie(G) and
∀q ∈ Q), and it is Ad-equivariant, i.e., A(TqΦg(vq)) = AdgA(vq) (∀vq ∈ TqQ). Accordingly, for any base element q ∈ Q the
tangent space of Q can be written as the following direct sum

TqQ = ker(Tqπ)⊕ ker(Aq). (2.10)

Note that, V := ker(Tπ) = {ξQ = φ(ξ)| ξ ∈ Lie(G)} is called the vertical vector sub-bundle of TQ, and H := ker(A) is
called the horizontal vector sub-bundle of TQ. As a result, any vq ∈ TqQ can be decomposed into the horizontal and vertical
components such that vq = hor(vq)+ ver(vq), where ver(vq) := φq ◦ Aq(vq) and hor(vq) := vq − ver(vq).

For any q ∈ Q and q := π(q) ∈ Q the restriction of the tangent map Tqπ : TqQ → TqQ to the horizontal subspace of
TqQ, namely Hq, is a linear isomorphism between Hq and TqQ. Therefore, for any vq ∈ TqQ it defines a horizontal lift map
by

hlq(vq) := (Tqπ

Hq
)−1(vq). (2.11)

The choice of the principal connection A is arbitrary; however, for a Hamiltonian mechanical system, we can use the
Legendre transformation, which is induced by the kinetic energy metric K , to define an appropriate principal connection.

For any q ∈ Q consider the linear map Iq : Lie(G) → Lie∗(G), defined by

Iq := φ∗

q ◦ FLq ◦ φq, (2.12)
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such that the following diagram commutes:

Lie(G)

Iq

���
�
�
�
�
�
�

φq // TqQ

FLq

��
Lie∗(G) T ∗

q Q
φ∗
q

oo

Thismap is a linear isomorphism for any q ∈ Q, and it is called the locked inertia tensor. For a Hamiltonianmechanical system
with symmetry ∀ξ, η ∈ Lie(G)we have ⟨Iq(ξ), η⟩ = Kq(ξQ(q), ηQ(q)). The principal connection A can now be chosen to be
the mechanical connection AMech, which can be interpreted as the orthogonal projection with respect to the kinetic energy
metric K , and defined by the following commuting diagram:

TqQ

AMech
q

���
�
�
�
�
�
�

FLq // T ∗
q Q

Mq

��
Lie(G) Lie∗(G)

I−1
q

oo

Therefore, ∀q ∈ Q we have

Aq = AMech
q := I−1

q ◦ Mq ◦ FLq. (2.13)

For any µ ∈ Lie∗(G), let the action of G restricted to the subgroup Gµ = {g ∈ G|Ad∗

gµ = µ} ⊆ G be denoted by
Φ
µ
h : Q → Q (∀h ∈ Gµ). Similarly, for this action we have a principal bundleπ : Q → Q := Q/Gµ. Using the same proce-

dure detailed above, the locked inertia tensor Iµq : Lie(Gµ) → Lie∗(Gµ) and the (mechanical) connectionA
µ
q : TqQ → Lie(Gµ)

(∀q ∈ Q) for the Gµ-action are defined by

Iµq := (φµq )
∗
◦ FLq ◦ φµq , (2.14)

and

Aµ
q := (Iµq )

−1
◦ Mµ

q ◦ FLq, (2.15)

respectively. Here, the map φµq : Lie(Gµ) → TQ corresponds to the infinitesimal Gµ-action, and Mµ
: T ∗Q → Lie∗(Gµ) is

the Ad∗-equivariant momentummap for the cotangent lifted Gµ-action, which are defined based on (2.3) and (2.5). Let the
map iµ : Gµ ↩→ G be the canonical inclusion map. Denote the induced map in the Lie algebras by iµ∗ : Lie(Gµ) ↩→ Lie(G) and
in the dual of the Lie algebras by (iµ)∗ : Lie∗(G) → Lie∗(Gµ). The following diagrams commute:

Lie(G)

φq

!!DD
DD

DD
DD

DD
DD

DD
DD

DD
D

Lie(Gµ)
?�

iµ∗

OO

φ
µ
q // TqQ

Lie∗(G)

(iµ)∗

��
Lie∗(Gµ) T ∗

q Q
(φ
µ
q )

∗

oo

φ∗
q

bbDDDDDDDDDDDDDDDDDDD

Based on these commuting diagrams, we have the following relations:

Iµq = (iµ)∗ ◦ φ∗

q ◦ FLq ◦ φq ◦ iµ
∗

= (iµ)∗ ◦ Iq ◦ iµ
∗
,

Mµ
q = (iµ)∗ ◦ Mq,

Aµ
q = (Iµq )

−1
◦ (iµ)∗ ◦ Mq ◦ FLq = (Iµq )

−1
◦ (iµ)∗ ◦ Iq ◦ Aq.
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For the principal bundle π : Q → Q with the principal connection Aµ, the horizontal and vertical sub-bundles are
Hµ

:= ker(Aµ) and Vµ
:= ker(π) = {ηQ = φµ(η)| η ∈ Lie(Gµ)}, respectively. It is easy to check that Vµ

⊆ V and
H ⊆ Hµ as vector sub-bundles. The horizontal lift map corresponding to the connection Aµ can be defined ashlq(vq) := (Tqπ Hµ

q
)−1(vq),

whereq := π(q) andvq ∈ TqQ.
Now, consider the 1-form αµ := A∗µ ∈ Ω1(Q).

Lemma 2.5. The 1-form αµ takes values inM−1(µ), and it is invariant under Gµ-action.

Proof. Using the definition of the momentum map and principal connection, we have ∀ξ ∈ Lie(G)

⟨M(αµ), ξ⟩ = ⟨αµ, ξQ⟩ = ⟨A∗

qµ, φq(ξ)⟩ = ⟨µ, (Aq ◦ φq)(ξ)⟩ = ⟨µ, ξ⟩.

As the result, αµ ∈ M−1(µ).
Finally, consider the action of an arbitrary element h ∈ Gµ, and denote the action simply by h · q := Φh(q) and h · vq :=

TΦh(vq). Based on the Ad∗-equivariance ofA and the definition ofGµ, one can show that αµ isGµ invariant. For all vq ∈ TqQ,

⟨αµ(h · q), h · vq⟩ = ⟨A∗

h·qµ, h · vq⟩ = ⟨µ,Ah·q(h · vq)⟩

= ⟨µ,Adh−1Aq(vq)⟩ = ⟨Ad∗

h−1µ,Aq(vq)⟩ = ⟨µ,Aq(vq)⟩. �

According to the Cartan Structure Equation [32] ∀Z, Y ∈ X(Q) the exterior derivative of αµ evaluated on Y and Z is equal
to

dαµ(Z, Y ) = ⟨µ, dA(Z, Y )⟩ = ⟨µ,B(Z, Y )+ [A(Z),A(Y )]⟩, (2.16)
where Bq(Zq, Yq) := (dA)q(horq(Zq), horq(Yq)) = −Aq([hor(Z), hor(Y )]q) is the curvature of the connection A, and [·, ·]
in (2.16) corresponds to the Lie bracket in Lie(G).

Lemma 2.6. For all η ∈ Lie(Gµ), the interior product of the 2-form dαµ with ηQ is zero, i.e., ιηQdαµ = 0.

Proof.

ιηQdαµ = LηQ (αµ)− d(ιηQαµ).

The Lie derivative term is zero since αµ is invariant under the Gµ-action (see Lemma 2.5), and the exterior derivative term
is zero since

ιηQαµ =

αµ, ηQ


= ⟨µ,A ◦ φµ(η)⟩ = ⟨µ, η⟩

is a constant function on Q, since A ◦ φµ(η) = η, for all η ∈ Lie(Gµ). �

By this lemma and Lemma 2.5 the 2-form dαµ is basic; hence, a closed 2-form βµ ∈ Ω2(Q) can be uniquely defined by
the relation T ∗π(βµ) = dαµ, and its pullbackΞµ by the cotangent bundle projection πQ : T ∗Q → Q will be a closed 2-form
on T ∗Q,

Ξµ := T ∗πQ(βµ).
Theorem 2.7. There is a symplectic embedding ϕµ : ((T ∗Q)µ,Ωµ) ↩→ (T ∗Q, Ωcan − Ξµ) onto [Tπ(V)]0 ⊂ T ∗Q that covers
the base Q, where Ωcan is the canonical 2-form on T ∗Q and 0 indicates the annihilator with respect to the natural pairing between
tangent and cotangent bundle. The map ϕµ is identified by

⟨ϕµ([γq]µ), Tqπ(vq)⟩ = ⟨γq − αµ(q), vq⟩, (2.17)

∀γq ∈ M−1
q (µ) and ∀vq ∈ TqQ, where [·]µ refers to a class of elements in the quotient manifoldM−1(µ)/Gµ [31].

Based on the above theorem, the inverse of the map ϕµ exists only on [Tπ(V)]0 ⊂ T ∗Q, and it is a diffeomorphism on
this vector sub-bundle. Hence, one may rewrite the reduced Hamilton’s equation (2.9) in [Tπ(V)]0 ⊂ T ∗Q as

ιX (Ωcan − Ξµ) = dH, (2.18)

whereH := Hµ ◦ ϕ−1
µ for ϕ−1

µ : [Tπ(V)]0 → (T ∗Q)µ being the inverse of ϕµ,X ◦ ϕµ = Tϕµ ◦ Xµ, andΞµ can be calculated
as follows. Consider two vector fields Z,Y ∈ X(T ∗Q), denote an element of Q byq := π(q), and ∀αq ∈ T ∗Q define
Zq := TπQZ(αq), Yq := TπQY(αq):

(Ξµ)αq (Z(αq),Y(αq)) =

µ,−Aq([hor(hl(Z)), hor(hl(Y ))]q)+ [Aq(hlq(Zq)),Aq(hlq(Yq))] . (2.19)

If in Theorem 2.7 we assume Gµ = G, whose special examples are when G is Abelian orµ = 0, then themap ϕµ becomes
a symplectomorphism. Under this assumption, since hl = hl and A ◦ hl = 0,Ξµ can be calculated by a simpler formulation

(Ξµ)αq(Z(αq),Y(αq)) =

µ,−Aq([hl(Z),hl(Y )]q) . (2.20)
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3. Kinematics of open-chain multi-body systems

3.1. Rigid body and observer

A 3-dimensional physical space can be modelled mathematically by a 3-dimensional affine space, which is equipped
with a vector space. A rigid body is the closure of a bounded open subset of the affine space. This paper considers N + 1
interconnected rigid bodies Bi’s (i = 0, . . . ,N), each ofwhich is a subset of an affine space Ai.We assume that A0 corresponds
to an inertial observer. Considering two rigid bodies, namely Bi and Bj, a relative pose of Bi with respect to Bj, namely r ji , can
be defined by an isometry between Ai and Aj with respect to the Euclidean metric, i.e., r ji : Ai → Aj. The collection of all
relative poses forms a smooth manifold, denoted by P j

i , which is diffeomorphic to the Lie group SE(3). When i = j this
manifold admits a group structure, and it becomes isomorphic to SE(3), as a group. The elements of P i

i correspond to the
possible coordinate transformations of Ai. To simplify the notation, when i = j only the lower index is used, e.g., Pi := P i

i .
The identity element and the Lie algebra of Pi are denoted by ei and Lie(Pi), respectively. A relative motion of Bi with respect
to Bj is a smooth curve t → r ji (t) ∈ P j

i , and the relative velocity at time t is the vector vji(t) = (dr ji/dt)(t) ∈ Tr ji (t)
P j
i .

3.2. Joints

Given two rigid bodies Bi and Bj, a joint is a mechanism that restricts the relative motion of Bi with respect to Bj, and
specifies a subset Dj

i of TP
j
i . A joint can be time dependent, called rheonomic, or time independent, called scleronomic [33].

A special type of scleronomic joints, which is mostly considered in the literature, is when we have Dj
i ⊆ TP j

i being a dis-
tribution on P j

i that corresponds to admissible directions of the relative velocity of Bi with respect to Bj. We only consider
this category of joints in this paper. We also assume in this paper that the distribution Dj

i is non-singular. If D
j
i is involutive,

i.e. closed under the Lie bracket of vector fields, the joint is called holonomic; otherwise, it is a nonholonomic joint. Based
on the global Frobenius Theorem [34], for a holonomic joint Dj

i identifies a foliation of submanifolds of P j
i . The leaf Q j

i ⊆ P j
i

that contains the initial relative pose of Bi with respect to Bj, r
j
i,0, is called the relative configuration manifold. The manifold

Q j
i is the space of all admissible relative poses of Bi with respect to Bj considering the joint constraints. The dimension of

Q j
i is called the number of degrees of freedom (d.o.f.) of a joint. We then define Qi ⊆ Pi and Qj ⊆ Pj by the left and right

composition of Q j
i by the element r ij,0 ∈ Q i

j , where r ij,0 ◦ r ji,0 = ei and r ji,0 ◦ r ij,0 = ej, i.e., Qi = Lr ij,0(Q
j
i ) and Qj = Rr ij,0

(Q j
i ). These

submanifolds contain the identity element of Pi and Pj that correspond to the initial relative pose of Bi with respect to Bj, i.e.,
r ji,0 ∈ Q j

i .

3.2.1. Holonomic displacement subgroups
For a holonomic joint, we consider the left composed distribution Di := Tr ji

Lr ij (0)(D
j
i) ⊆ TPi, which is involutive on Pi,

and its integral manifold containing ei is Qi ⊆ Pi. The Lie bracket on the Lie algebra Lie(Pi) is defined by the Lie bracket
of left-invariant vector fields on Pi [35]. Therefore, if Di is left-invariant, i.e., Di(ri) = TeiLri(Di(ei)),∀ri ∈ Pi, involutivity of
Di coincides with the closedness of the Lie bracket on Di(ei) as a linear subspace of Lie(Pi), and TeiQi = Di(ei) becomes a
Lie sub-algebra of Lie(Pi). As the result, the integral manifold of Di, denoted by Qi, is a unique di-dimensional connected Lie
subgroup of Pi with the Lie algebra Lie(Qi) = Di(ei) [36].

Definition 3.1. A holonomic joint is called displacement subgroup if the corresponding distribution Di (defined above) on Pi
is left-invariant. That is, Qi, which is diffeomorphic to the relative configuration manifold Q j

i , is a connected Lie subgroup
of Pi.

We identify different types of displacement subgroups by the connected Lie subgroups of SE(3), up to conjugation, which
are tabulated in Table 1 [36]. From this table, we can observe that the displacement subgroups consist of the six lower
kinematic pairs, i.e., revolute, prismatic, helical, cylindrical, planar and spherical joints, and combinations of them. There
also exist other types of holonomic joints, e.g., universal joint and higher kinematic pairs, which are not included in the
category of displacement subgroups.

In this paper, we consider multi-body systems with multi-d.o.f. displacement subgroups, or joints whose relative config-
uration manifolds are diffeomorphic to the (group) multiplication of subgroups of SE(3). That is, Q j

i
∼= Qi =


y1 · · · yni |yk ∈

Yk ⊂ SE(3), k = 1, . . . , ni


∼= Y1 × · · · × Yni , where Yk is a Lie subgroup of SE(3). Examples of this type of joints are the
universal joint and ball bearing joint (without considering the nonholonomic constraints). The relative configuration man-
ifold of the universal joint is diffeomorphic to the (group) multiplication of two rotations (SO(2)) about two perpendicular
axes. And the configurationmanifold of the ball bearing joint is diffeomorphic to the (group) multiplication of R2 and SO(3).
From here on, by holonomic joint we mean a holonomic joint that satisfies the above assumptions.



90 R. Chhabra, M.R. Emami / Journal of Geometry and Physics 89 (2015) 82–110

Table 1
Categories of displacement subgroups.

Dim. Subgroups of SE(3)/displacement subgroups

6 SE(3) = SO(3) n R3 freea

4 SE(2)× R planar + prismaticb

3 SE(2) = SO(2) n R2 planar SO(3) ball (spherical) R3 3-d.o.f. prismatic Hp n R2 2-d.o.f. prismatic + helicalc

2 SO(2)× R cylindricald R2 2-d.o.f. prismatic
1 SO(2) revolute R prismatic Hp helical
0 {e} fixeda

a These two subgroups are the trivial subgroups of SE(3).
b The axis of the prismatic joint is always perpendicular to the plane of the planar joint.
c The axis of the helical joint is always perpendicular to the plane of the 2-d.o.f. prismatic joint.
d The axis of the revolute and prismatic joints are always aligned.

3.3. Open-chain multi-body systems

Let B0, . . . , BN beN+1 rigid bodies and J1, . . . , JN beN holonomic joints, which fall in the category of the joints described
in the previous section.

Definition 3.2. A holonomic open-chain multi-body system MS(N) is the collection of N + 1 bodies connecting to each other
with N holonomic joints, such that there exists a unique path between any two bodies of the multi-body system. In an
open-chain multi-body system, bodies with only one neighbouring body are called extremities.

We can label the bodies in a MS(N) starting from the inertial coordinate frame (ground), B0, outwards. That is, we label
the bodies connected to B0 by joints successively as B1, . . . , BN0 (N0 ≤ N), and we repeat the same procedure for all N0
bodies starting from B1, e.g., all of the bodies connected to B1 by joints are labelled as BN0+1, . . . , BN0+N1 and so on. Thus, we
have


l=0 Nl = N . We number the joints in a MS(N) using the bigger body label, e.g., we label the joint between Bi and Bj,

where i > j, as Ji. Considering the bodies and joints in an open-chain multi-body system as vertices and edges of a graph,
respectively, we can encode the topology of the system in an N × (N + 1)matrix. We label this matrix by GM . The N rows
of this matrix correspond to the joints, J1, . . . , JN , and the columns represent the bodies, B0, . . . , BN . Row i of this matrix
consists of only two non-zero elements corresponding to the two bodies that Ji connects. With the choice of numbering that
was explained above, we define GM as

GM ij =


−1 if Ji connects Bj−1 to Bi
1 if i = j − 1
0 otherwise

.

We have the following properties of the matrix GM .

Corollary 3.1. Let GM j denote the jth column of the matrix GM.
(i) The summation of the columns of the matrix GM is equal to zero, i.e.,

N+1
j=1

GM j =

J1 0
...

...
JN 0

.
(ii) The summation of the rows corresponding to the edges (joints) that connect the vortex (body) Bj to Bi for i > j, has the

following form

 B0 ··· Bj−1 Bj Bj+1 ··· Bi−1 Bi Bi+1 ··· BN
0 · · · 0 −1 0 · · · 0 1 0 · · · 0


.

Denote the transpose of GM by GMT . For all i, j = 1, . . . , (N + 1)
(iii) ((GM)T (GM))ii = the number of neighbouring vortices (bodies) connected to Bi−1.
(iv) If ((GM)T (GM))ij = −1 for i ≠ j, then the vortex (body) Bi−1 is connected to Bj−1, either with the edge (joint) Ji−1 if i > j,

or with the edge (joint) Jj−1 if j > i.

Note that, for any i = 2, . . . , (N + 1), if ((GM)T (GM))ii = 1 then the body Bi−1 is an extremity. The body corresponding
to the kth 1 is called the kth extremity. Accordingly, the path between B0 and the kth extremity is called the kth branch.

Corollary 3.2. Let the row matrix Phi represent the path between the vertex (body) Bi (∀i = 1, . . . ,N) and B0. The jth element
of Phi is equal to 1 if the path crosses the edge (joint) Jj. Then we have

Phi × GM =
 B0 B1 ··· Bi−1 Bi Bi+1 ··· BN

−1 0 · · · 0 1 0 · · · 0

.
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Hence, the matrix of all paths, i.e.,

Ph =

 Ph1
...

PhN


is equal to GM

−1
, where GM is the matrix GM when the first column is removed.

For example, consider the following topology of an open-chain multi-body system

B0
J1 B1

J3

J2

B3
J4 B4

B2

(3.21)

We have

GM =


B0 B1 B2 B3 B4

J1 −1 1 0 0 0
J2 0 −1 1 0 0
J3 0 −1 0 1 0
J4 0 0 0 −1 1

,

Ph =


J1 J2 J3 J4

Ph1 1 0 0 0
Ph2 1 1 0 0
Ph3 1 0 1 0
Ph4 1 0 1 1

.
Since only displacement subgroups and their combinations are considered, the relative configuration manifold

corresponding to the joint Ji is diffeomorphic to the Lie group Qi := Lr0i.0Rr i0,0
Qi, where Qi ∼= Y1 × · · · × Yni is defined in

Section 3.2 and r0i,0 ∈ P0
i is the initial pose of Bi with respect to B0, for i = 1, . . . ,N . Note that, every Qi is a di dimensional

Lie subgroup of

ni-times  
P0 × · · · × P0 ∼=

ni-times  
SE(3)× · · · × SE(3), where di is the number of degrees of freedom of Ji, and D :=

N
i=1 di

is the total number of degrees of freedom of the holonomic open-chain multi-body system. Any state of a MS(N) can be
realized by q := (q1, . . . , qN) ∈ Q := Q1 × · · · × QN , where Q is the configuration manifold. The manifold Q along with
the group structure induced by Qi’s is also a Lie group. Let rcm,i ∈ SE(3) be the initial pose of the centre of mass of Bi with
respect to the inertial coordinate frame. Now, we define the map F : Q → SE(3)× · · · × SE(3) =: P by

F(q) := (q1rcm,1, q1q2rcm,2, . . . , q1 · · · qN rcm,N). (3.22)

Here, if the joint Ji is a combination of displacement subgroups, by qi we mean the multiplication of the elements of the
subgroups of SE(3), i.e., Yi’s. This map determines the pose of the centre of mass of all bodies with respect to the inertial
coordinate frame. Note that, the ith component of this map consists of the joint parameters of all joints that connect B0 to
Bi in the open-chain multi-body system.

For any motion of the open-chain multi-body system, i.e., a curve t → q(t) ∈ Q, the velocity of the centre of mass of the
bodies with respect to the inertial coordinate frame (absolute velocity) is calculated by ṗ :=

d
dt F(q(t)) = TqF(q̇) ∈ TF(q(t))P .

Based onCorollary 3.2,we can explicitlywrite the tangentmap TqF using thematrix Ph. First, we substitute the zero elements
in the matrix Ph by 6 × 6 block matrices of zero. Then, ∀i = 1, . . . ,N we substitute all of the elements in Phi that are equal
to 1 by the linear maps in the following form:

T (Rrcm,i)T (R

r
qr )T (L


l
ql),

where the maps L• : SE(3) → SE(3) and R• : SE(3) → SE(3) are the left and right translation maps on SE(3), respectively.
Here,


l ql and


r qr are the product of some elements of the relative configurationmanifoldsQi ⊆ P0 ∼= SE(3), considered

as elements of SE(3). In order to specify which joints contribute to the left or right translation maps, in Phi we look at the
1s that are on the left or right of the corresponding element, respectively. If there does not exist any element equal to 1 on
left (right), then we put the argument of the left (right) translation map equal to the identity element of SE(3). Finally, TqF
is the right multiplication of the resulting matrix by

Tqι := Tq1 ι1 ⊕ · · · ⊕ TqN ιN =

Tq1 ι1 · · · 0
...

. . .
...

0 · · · TqN ιN

 ,
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where for all i = 1, . . . ,N , ιi : Qi → SE(3) is the canonical inclusion map and T ιi : TQi → TSE(3) is the induced map on
the tangent bundles.

This simple procedure becomes clear in an example. Consider the topology of the system in (3.21), we have

TqF =


TRrcm,1 06×6 06×6 06×6

TRrcm,2TRq2 TRrcm,2TLq1 06×6 06×6
TRrcm,3TRq3 06×6 TRrcm,3TLq1 06×6
TRrcm,4TRq3q4 06×6 TRrcm,4TRq4TLq1 TRrcm,4TLq1q3

 Tqι.

4. Lagrangian and Hamiltonian of an open-chain multi-body system

Asmentioned in Section 2, the Lagrangian of anOpen-chainMulti-body System L : TQ → R is L(vq) =
1
2Kq(vq, vq)−V (q).

In this section, we describe how the Lagrangian L and subsequently the Hamiltonian H of an open-chain multi-body system
is calculated.

Let hi for i = 1, . . . ,N be the left-invariant kinetic energy metric for the rigid body Bi in the open-chain multi-body
system. They induce the metric h := h1 ⊕· · ·⊕ hN on P , which is left-invariant. The kinetic energy metric of an open-chain
multi-body system is defined by K := T ∗F(h), where T ∗F(h) is the pull back of the metric h by the map F . That is, ∀q ∈ Q
and ∀vq, wq ∈ TqQ we have

Kq(vq, wq) = hF(q)

TqF(vq), TqF(wq)


= he


TF(q)LF(q)−1(TqF(vq)), TF(q)LF(q)−1(TqF(wq))


, (4.23)

where e is the identity element of the Lie group P and Lp is the left translation map by an element p ∈ P . Furthermore, we
can simplify the above expression by calculating the following linear map for multi-body systems:

TF(q)LF(q)−1(TqF) =


Adr−1

cm,1
⊕ · · · ⊕ Adr−1

cm,N


Jq


Tq1(Lq−1

1
◦ ι1)⊕ · · · ⊕ TqN (Lq−1

N
◦ ιN)



=


Adr−1

cm,1
· · · 0

...
. . .

...
0 · · · Adr−1

cm,N

Jq


Tq1(Lq−1

1
◦ ι1) · · · 0

...
. . .

...
0 · · · TqN (Lq−1

N
◦ ιN)

 ,
whereJq : Lie(P ) → Lie(P ) is the linearmap that is calculated in the following, similar to TqF in the previous section. In the
matrix Ph, we start with substituting the zero elements by 6 × 6 block matrices of zero. Then, ∀i = 1, . . . ,N we substitute
all of the elements in Phi that are equal to 1 by the linear maps in the form of Ad(r qr )−1 . The map Jq for the example (3.21)
can be calculated as

Jq =


id6 06×6 06×6 06×6

Adq−1
2

id6 06×6 06×6

Adq−1
3

06×6 id6 06×6

Ad(q3q4)−1 06×6 Adq−1
4

id6

 .
In this paper, wherever we consider a non-zero potential energy function it is induced by a constant gravitational field

g in A0, which is defined in Section 3.2 as the 3-dimensional affine space corresponding to the inertial coordinate frame.
Using the Euclidean inner product of R3, which is denoted by ≪ ·, · ≫, the potential energy function for an open-chain
multi-body system is defined as

V (q) :=

N
i=1

≪ mig,O0 − Fi(q)(Oi) ≫, (4.24)

where mi is the mass of the rigid body Bi, and Fi(q) : Ai → A0 is the ith component of the map F that is considered as an
isometry between Ai and A0. The points O0 ∈ A0 and Oi ∈ Ai are the base points for the affine spaces A0 and Ai, where Oi is
located at the centre of mass of Bi.

Subsequently, using the Legendre transformation one can define the HamiltonianH : T ∗Q → R for an open-chainmulti-
body system by

H(pq) := ⟨pq, FL−1
q (pq)⟩ − L(FL−1

q (pq)). (4.25)

Here, we remind the reader that FL : TQ → T ∗Q is the fibre-wise invertible Legendre transformation induced by the kinetic
energymetric, i.e., ∀vq, wq ∈ TqQ, ⟨FLq(vq), wq⟩ = Kq(vq, wq). Accordingly, a holonomic open-chainmulti-body system can
be considered as a Hamiltonian mechanical system described by the four-tuple (T ∗Q,Ωcan,H, K). Here, the metric K and
the Hamiltonian H are defined by (4.23) and (4.25), respectively.
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5. Reduction of holonomic open-chain multi-body systems

Based on the definition of the kinetic energy metric K for a holonomic open-chain multi-body system, we immediately
find the following symmetry for K .

Theorem 5.1. For a holonomic open-chain multi-body system, the action of G = Q1 on Q by left translation on the first
component leaves the kinetic energy metric K invariant. For any g ∈ Gwe denote the action map byΦg : Q → Q such that ∀q =

(q1, . . . , qN) ∈ Q we haveΦg(q) = (gq1, q2, . . . , qN).

Proof. For any g ∈ G, let TΦg : TQ → TQ be the induced action of G on the tangent bundle. For simplicity, ∀q ∈ Q and
∀vq ∈ TqQ we respectively writeΦg(q) and TqΦg(vq) as g · q and g · vq. Then, ∀wq ∈ TqQ we have

Kg·q(g · vq, g · wq) = he


(TF(g·q)LF(g·q)−1)(Tg·qF)(g · vq), (TF(g·q)LF(g·q)−1)(Tg·qF)(g · wq)


= he


(TF(g·q)LF(g·q)−1)(Tq(F ◦ Φg))(vq), (TF(g·q)LF(g·q)−1)(Tq(F ◦ Φg))(wq)


= he


(TF(g·q)LF(g·q)−1)(Tq(L(g,...,g) ◦ F))(vq), (TF(g·q)LF(g·q)−1)(Tq(L(g,...,g) ◦ F))(wq)


= he


(T(g,...,g)F(q)(LF(q)−1 ◦ L(g,...,g)−1))(Tq(L(g,...,g) ◦ F))(vq),

(T(g,...,g)F(q)(LF(q)−1 ◦ L(g,...,g)−1))(Tq(L(g,...,g) ◦ F))(wq)


= he


Tq(LF(q)−1 ◦ F)(vq), Tq(LF(q)−1 ◦ F)(wq)


= he


(TF(q)LF(q)−1)(TqF)(vq), (TF(q)LF(q)−1)(TqF)(wq)


= Kq(vq, wq).

The first equality is based on the definition of the metric K , and the third and fourth equalities are true since the following
diagram commutes.

Q
F //

Φg

��

P

L(g,...,g)

��
Q

F // P �

For the special case of open-chain multi-body systems in space where the potential energy function is equal to zero, this
theorem indicates that the Hamiltonian of the system is also invariant under the cotangent lifted action of G. In general,
there exist joints for which the potential energy function V defined by (4.24) is also invariant under the G-action, e.g., if
Q1 corresponds to a planar joint with the direction of the gravitational field g being perpendicular to the plane of the
joint. For such first joints, the Hamiltonian of the system H becomes invariant under the cotangent lifted action of G. From
here on, we always assume that V is also invariant under the G-action, unless otherwise stated. Accordingly, the five-tuple
(T ∗Q,Ωcan,H, K ,G) with the group action defined in Theorem 5.1 is called a holonomic open-chain multi-body system
with symmetry, which is a mechanical system with symmetry.

For a holonomic open-chain multi-body system with symmetry, the G-action is basically the left translation on Q1.
Therefore, the quotient manifolds Q = Q/G and Q = Q/Gµ are equal to (Q2 × · · · × QN) and (Q1/Gµ × Q2 × · · · × QN),
respectively. We remind the reader that ∀µ ∈ Lie∗(G) the subgroup Gµ ⊆ G is the coadjoint isotropy group corresponding
to G. For any q1 ∈ Q1, letq1 ∈ Q1/Gµ denote the equivalence class corresponding to q1. Indeed, ∀q = (q1, . . . , qN) ∈ Q

the quotient maps π : Q → Q andπ : Q → Q are defined by q := π(q) = (q2, . . . , qN) andq := π(q) = (q1, q2, . . . , qN),
respectively.

For an open-chain multi-body system with symmetry, we then calculate the infinitesimal action of ξ ∈ Lie(G) on Q at
q = (q1, . . . , qN) by

ξQ(q) =
∂

∂ϵ


ϵ=0

(exp(ϵξ)q1, q2, . . . , qN) = (ξq1, 0, . . . , 0).

This relation indicates that the map φ is the right translation of a Lie algebra element on Q1, i.e.,

φq :=


Te1Rq1

0
...
0

 . (5.26)
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Accordingly, based on (2.5)∀pq := (p1, . . . , pN) ∈ T ∗Q themomentummapM : T ∗Q → Lie∗(G) for a holonomic open-chain
multi-body system can be determined by the following calculation,

⟨Mq(pq), ξ⟩ = ⟨(p1, . . . , pN), (ξq1, 0, . . . , 0)⟩ = ⟨p1, ξq1⟩ = ⟨T ∗

e1Rq1p1, ξ⟩.

As the result,

Mq = φ∗

q =

T ∗

e1Rq1 0 · · · 0

. (5.27)

Denote the block components of the kinetic energy tensor K , which is equal to the Legendre transformation in the case of
Hamiltonian mechanical systems, by Kij(q)dqi ⊗ dqj for i, j = 1, . . . ,N . Hence, we have FLq =

N
i,j=1 Kij(q)dqi ⊗ dqj or

equivalently

FLq =

K11(q) · · · K1N(q)
...

. . .
...

KN1(q) · · · KNN(q)

 .
Lemma 5.2. For all q ∈ Q we have the following equality:

FLq =


(T ∗

q1Lq−1
1
)(K 11(q))(Tq1Lq−1

1
) (T ∗

q1Lq−1
1
)(K 12(q)) · · · (T ∗

q1Lq−1
1
)(K 1N(q))

(K 21(q))(Tq1Lq−1
1
) K 22(q) · · · K 2N(q)

...
...

. . .
...

(KN1(q))(Tq1Lq−1
1
) KN2(q) · · · KNN(q)

 ,

where q = π(q) and K ij(q) = Kij((e1, q)).

Proof. By Theorem 5.1, ∀vq, wq ∈ TqQ and q = π(q) ∈ Q we have

Kq(vq, wq) = K(e1,q)(TqΦq−1
1
vq, TqΦq−1

1
wq).

By the definition of Legendre transformation in (2.1), we can rewrite this equation as
FLq(vq), wq


=


FL(e1,q)(TqΦq−1

1
)(vq), TqΦq−1

1
(wq)


=


(T ∗

qΦq−1
1
)FL(e1,q)(TqΦq−1

1
)(vq), wq


.

We prove the equality in the lemma, since we have

TqΦq−1
1

= Tq1Lq−1
1

⊕ idTqQ =


Tq1Lq−1

1
0

0 idTqQ


,

where idTqQ is the identity map on TqQ. �

Based on this lemma we calculate the locked inertia tensor Iq = φ∗
q ◦ FLq ◦ φq for a holonomic open-chain multi-body

system by

Iq = (T ∗

e1Rq1)K11(q)(Te1Rq1) = Ad∗

q−1
1

K 11(q)Adq−1
1
. (5.28)

Consequently, using (2.13) we determine the (mechanical) connection A corresponding to the G-action, for a holonomic
open-chain multi-body system:

Aq = I−1
q ◦ Mq ◦ FLq

= (Adq1)K 11(q)−1(Ad∗

q1)

T ∗

e1Rq1 0 · · · 0
K11 · · · K1N

...
. . .

...
KN1 · · · KNN


= Adq1


Tq1Lq−1

1
K 11(q)−1K 12(q) · · · K 11(q)−1K 1N(q)


=: Adq1


Tq1Lq−1

1
Aq


, (5.29)

where the last line of (5.29) is the consequence of Lemma 5.2, and the fibre-wise linear map A : TQ → Lie(G) is defined by
the last equality.
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According to (2.11), ∀q ∈ Q and ∀vq ∈ TqQ the horizontal lift map hlq : TqQ → TqQ becomes

hlq =


−(Te1Lq1)Aq

idTqQ


,

where q = (q1, q).
Using the decomposition TQ = H ⊕ V introduced in the previous section, we then show that ∀q ∈ Q the map

horq : TqQ → Hq, which maps any vector in the tangent space TqQ to its horizontal component, is

horq = idTqQ − verq = idTqQ − φq ◦ Aq

= idTqQ −


Te1Rq1

0
...
0

Adq1


Tq1Lq−1

1
Aq



=

0 · · · 0 −Te1Lq1Aq
...

...
0 · · · 0 idTqQ

 . (5.30)

We consider the principal bundleπ1 : Q1 → Q1/Gµ to locally trivialize the Lie group Q1. Let Uµ ⊆ Q1/Gµ be an open
neighbourhood ofe1, wheree1 is the equivalence class corresponding to the identity element e1 ∈ Q1. We denote the
map corresponding to a local trivialization of the principal bundle π1 by χ : Gµ × Uµ → Q1. This map can be defined by
embedding Uµ in Q1, for example by using the exponential map of Lie groups. We denote this embedding by χµ : Uµ ↩→ Q1

such that ∀q1 ∈ Q1/Gµ we have χµ(q1) = exp(ζ ) for some ζ ∈ C, where C ⊂ Lie(Q1) is a complementary subspace to
Lie(Gµ) ⊂ Lie(G). Accordingly, ∀h ∈ Gµ we define the mapχ by the equalityχ((h,q1)) := hχµ(q1). It is easy to show that
the map χ is a diffeomorphism onto its image [37]. Using this diffeomorphism, any element q1 ∈ π−1

1 (Uµ) ⊆ Q1 can be
uniquely identified by an element (h,q1) ∈ Gµ × Uµ. As the result, we have q = (q1, q) = (χ((h,q1)), q). Note that, from
now on, for brevity wewrite q = (h,q1, q). Accordingly, by Lemma 5.2, for all q = (h,q1, q) ∈ Gµ×Uµ×Q we can calculate
Aµ as

Aµ
q = Adh


ThLh−1 Aµq  , (5.31)

whereq = π(q) = (q1, q) ∈ Uµ × Q and Aµq : Tq(Uµ × Q) → Lie(Gµ) is calculated by

Aµq :=

KGµ
1 (q)−1KQ1/Gµ

1 (q) KGµ
1 (q)−1KGµ

12 (q) · · · KGµ
1 (q)−1KGµ

1N (q) . (5.32)

Here, according to the local trivialization that we chose we have the following form for the tensor FLq

FLq =



KGµ
1 ((h,q)) KQ1/Gµ

1 ((h,q)) KGµ
12 ((h,q)) · · · KGµ

1N ((h,q))
KGµ
2 ((h,q)) KQ1/Gµ

2 ((h,q)) KQ1/Gµ
12 ((h,q)) · · · KQ1/Gµ

1N ((h,q))
KGµ
21 ((h,q)) KQ1/Gµ

22 ((h,q)) K22((h,q)) · · · K2N((h,q))
...

...
...

. . .
...

KGµ
N1 ((h,q)) KQ1/Gµ

N1 ((h,q)) KN2((h,q)) · · · KNN((h,q))

 ,

where q = (h,q), q1 = χ(h,q1), and we have the following equalities:
KGµ
1 ((h,q)) KQ1/Gµ

1 ((h,q))
KGµ
2 ((h,q)) KQ1/Gµ

2 ((h,q))


= T ∗

(h,q1)χ (K11(χ(h,q))) T(h,q1)χ,
KGµ
12 ((h,q)) · · · KGµ

1N ((h,q))
KQ1/Gµ
12 ((h,q)) · · · KQ1/Gµ

1N ((h,q))


= T ∗

(h,q1)χ K12(χ(h,q)) · · · K1N(χ(h,q)) ,KGµ
21 ((h,q)) KQ1/Gµ

21 ((h,q))
...

...

KGµ
N1 ((h,q)) KQ1/Gµ

N1 ((h,q))
 =

K21(χ(h,q))
...

KN1(χ(h,q))
 T(h,q1)χ.

And, we haveKGµ
1 (q) = KGµ

1 ((eµ,q)),KQ1/Gµ
1 (q) = KQ1/Gµ

1 ((eµ,q)), andKGµ
1i (q) = KGµ

1i ((eµ,q)) for all i = 2, . . . ,N . Here,
eµ ∈ Gµ is the identity element of the Lie group Gµ ⊆ G = Q1.
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Now, for any h ∈ Gµ and ∀q = (h,q1, q) ∈ Gµ × Uµ × Q, we calculate the horizontal lift map hlq : Tq(Uµ × Q) → TqQ
for the principal bundleπ : Q → Q by

hlq =


−(TeµLh)A

µq
idTq1Uµ ⊕ idTqQ


, (5.33)

where idTq1Uµ is the identity map on the tangent space Tq1Uµ. Let µ ∈ Lie∗(G) be a regular value of the momentum map M.
For a holonomic open-chain multi-body system with symmetry, the level set of the momentum mapM at µ becomes

M−1(µ) = {pq = (p1, . . . , pN) ∈ T ∗Q
 p1 = T ∗

q1Rq−1
1
µ} ⊂ T ∗Q.

Furthermore, we determine αµ = A∗µ ∈ Ω1(Q) in the local trivialization by

αµ(q) =

T ∗

(h,q1)L(h,q1)−1

A∗

q


Ad∗

(h,q1)µ =

T ∗

(h,q1)L(h,q1)−1

A∗

q


Ad∗

(eµ,q1)µ, (5.34)

where (h,q1)−1
= χ−1


(χ(h,q1))−1


, by definition. The second equality is true by the definition of themapχ , and because

h ∈ Gµ.

Lemma 5.3. Based on Theorem 2.7, the inverse of the map ϕµ : M−1/Gµ → T ∗Q is defined on [Tπ(V)]0 and in the local
trivialization ∀pq = (p1, p) ∈ T ∗q (Uµ × Q),

ϕ−1
µ (pq) =


T ∗

(h,q1)R(h,q1)−1(µ)

p + A∗

q(Ad
∗

(eµ,q1)µ)

µ

. (5.35)

Proof. First we show thatp ∈ [Tπ(V)]0 if and only ifp1 = 0. For anyp ∈ [Tπ(V)]0 and ∀ξ ∈ Lie(G) = Lie(Q1)we have

⟨(p1, p), Tπ(ξQ)⟩ =

φ∗

q (0,p1, p), ξ  = 
T ∗

e1Rq1(0,p1), ξ  = 0.

The first equality is true based on the definition of ξQ and the local trivialization that is chosen. The second equality is the
consequence of the definition of the map φ in (5.26). Since the above equality should hold for every ξ ∈ Lie(G) and the right
translation map is a diffeomorphism ∀q1 ∈ Q1, we havep1 = 0. Now, based on (5.34) and the definition of the map ϕµ in
Theorem 2.7 we have the desired equation in the lemma. �

Based on the definition of H(pq) := Hµ ◦ ϕ−1
µ (pq) and the above lemma, we calculate H on [Tπ(V)]0 using the local

trivialization:

H(pq) =
1
2


(Ad∗

(eµ,q1)µ, p + A∗

q(Ad
∗

(eµ,q1)µ)), FL−1
(eµ,q1,q)(Ad∗

(eµ,q1)µ, p + A∗

q(Ad
∗

(eµ,q1)µ))

+ V (eµ,q1, q). (5.36)

Now we are ready to state the main result of this section in the following theorem.

Theorem 5.4. Let µ ∈ Lie∗(G) be a regular value of the momentum map M. A holonomic open-chain multi-body system with
symmetry (T ∗Q,Ωcan,H, K ,G) is reduced to a Hamiltonianmechanical system ([Tπ(V)]0 ⊆ T ∗Q, (Ωcan−Ξµ)|[Tπ(V)]0 ,H,K),
where Ωcan is the canonical 2-form on T ∗Q,H is defined by (5.36) andK is a metric on Q such that ∀uq,wq ∈ TqQ we haveKq(uq,wq) = Kq(hlq(uq),hlq(wq)).
Here, in the local coordinates Ξµ is calculated as follows. Let πQ : T ∗Q → Q be the canonical projection map of the cotangent
bundle and let TπQ : T (T ∗Q) → TQ be its induced map on the tangent bundles. For everyαq ∈ T ∗Q and ∀U, W ∈ X(T ∗Q)we
introduceuq = TαqπQ(Uαq) andwq = TαqπQ(Wαq). In the local trivialization, we haveq = (q1, q) ∈ Uµ ×Q,uq = (u1, u) andwq = (w1, w):

(Ξµ)αq(Uαq , Wαq) =


µ,−Adχµ(q1)


[Aqu, Aqw] +


∂Aq

∂q
w


u −


∂Aq

∂q
u

w


+


−Aµqu + (Tχµ(q1)Rχµ(q1)−1)(Tq1χµ)(u1)+ Adχµ(q1)Aqu


,

−Aµqw + (Tχµ(q1)Rχµ(q1)−1)(Tq1χµ)(w1)+ Adχµ(q1)Aqw


, (5.37)

where χµ : Uµ ↩→ Q1 is the embedding that is used to define the local trivialization mapχ .
Finally, in local coordinates we haveX = (̇q1, q̇, ṗ) as a vector field on [Tπ(V)]0. Hamilton’s equation in the vector sub-bundle

[Tπ(V)]0 of the cotangent bundle of µ-shape space reads

ι(̇q1,q̇,ṗ)(−dp ∧ dq − Ξµ) =
∂H
∂p

dp +
∂H
∂q1 dq1 +

∂H
∂q

dq,
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whereΞµ is calculated by (5.37).

Proof. In order to prove (5.37), we start with (2.19):

(Ξµ)αq(Uαq , Wαq) =

µ,−Aq([hor(hl(u)), hor(hl(w))]q)+ [Aq(hlq(uq)),Aq(hlq(wq))] .

Using the local trivialization, we write q = (h,q1, q) ∈ Gµ × Uµ × Q, and accordinglyu = (u1, u) and w = (w1, w). By
(5.33), the horizontal lift ofu and w can be calculated ashlq(uq) = (−(TeµLh)A

µqu,u1, u), hlq(wq) = (−(TeµLh)A
µqw,w1, w),

and using (5.30), the terms hor(hl(u)) and hor(hl(w)) are
horq(hlq(uq)) = (−(T(eµ,e1)L(h,q1))Aqu, u),

horq(hlq(wq)) = (−(T(eµ,e1)L(h,q1))Aqw,w).

Now, by (5.29) we have

Aq(hlq(uq)) = Ad(h,q1)

(T(h,q1)L(h,q1)−1)


−(TeµLh)A

µqu,u1


+ Aqu


. (5.38)

Using the definition of the local trivialization mapχ we have

T(h,q1)L(h,q1)−1


−(TeµLh)A

µqu,u1


= Thχµ(q1)Lχµ(q1)−1h−1


ThRχµ(q1)(−(Te1Lh)A

µqu)+ (Tχµ(q1)Lh)(Tq1χµ)(u1)


= Adχµ(q1)−1(−Aµqu)+ (Tχµ(q1)Lχµ(q1)−1)(Tq1χµ)(u1),

where χµ : Uµ ↩→ Q1 is the embedding map that is defined using the exponential map. Therefore, we have

Aq(hlq(uq)) = Adh


−Aµqu + (Tχµ(q1)Rχµ(q1)−1)(Tq1χµ)(u1)+ Adχµ(q1)Aqu


.

Similarly,

Aq(hlq(wq)) = Adh


−Aµqw + (Tχµ(q1)Rχµ(q1)−1)(Tq1χµ)(w1)+ Adχµ(q1)Aqw


.

Since for all g ∈ G and ξ, η ∈ Lie(G)we have the equality Adg[ξ, η] = [Adgξ,Adgη]:

[Aq(hlq(uq)),Aq(hlq(wq))] = Adh


−Aµqu + (Tχµ(q1)Rχµ(q1)−1)(Tq1χµ)(u1)+ Adχµ(q1)Aqu


,

−Aµqw + (Tχµ(q1)Rχµ(q1)−1)(Tq1χµ)(w1)+ Adχµ(q1)Aqw

.

For all q ∈ Q, to calculate the Lie bracket [hor(hl(u)), hor(hl(w))]q, we express the vector fields hor(hl(u)) and hor(hl(w))
in coordinates:

horq(hlq(uq)) =

−(T(eµ,e1)L(h,q1))Aqu

 ∂

∂(h,q1) + u
∂

∂q

horq(hlq(wq)) =

−(T(eµ,e1)L(h,q1))Aqw

 ∂

∂(h,q1) + w
∂

∂q
.

In any coordinates chosen for Qi (i = 2, . . . ,N), Gµ and Q1/Gµ we have

[hor(hl(u)), hor(hl(w))] =


(T(eµ,e1)L(h,q1))Aqu

 ∂

∂(h,q1) , (T(eµ,e1)L(h,q1))Aqw
 ∂

∂(h,q1)


+


u
∂

∂q
, w

∂

∂q


+


(T(eµ,e1)L(h,q1))Aqw

 ∂

∂(h,q1) , u ∂∂q


−


(T(eµ,e1)L(h,q1))Aqu

 ∂

∂(h,q1) , w ∂

∂q


.
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Based on the definition of the Lie bracket for Lie groups, ∀q ∈ Q the first bracket on the right hand side can be written as
(T(eµ,e1)L(h,q1))Aqu

 ∂

∂(h,q1) , (T(eµ,e1)L(h,q1))Aqw
 ∂

∂(h,q1)


=

(T(eµ,e1)L(h,q1))[Aqu, Aqw]

 ∂

∂(h,q1)
+


(T(eµ,e1)L(h,q1))Aq

∂w

∂(h,q1) (T(eµ,e1)L(h,q1))Aqu
 ∂

∂(h,q1)
−


(T(eµ,e1)L(h,q1))Aq

∂u
∂(h,q1) (T(eµ,e1)L(h,q1))Aqw

 ∂

∂(h,q1) .
The second bracket is equal to

u
∂

∂q
, w

∂

∂q


=


∂w

∂q
u

∂

∂q
−


∂u
∂q
w


∂

∂q
.

We calculate the third bracket as
(T(eµ,e1)L(h,q1))Aqw

 ∂

∂(h,q1) , u ∂∂q


=


∂u

∂(h,q1) (T(eµ,e1)L(h,q1))Aqw


∂

∂q

−


(T(eµ,e1)L(h,q1))


∂Aq

∂q
u

w + (T(eµ,e1)L(h,q1))Aq

∂w

∂q
u


∂

∂(h,q1) .
Similarly, the last bracket can be calculated. Accordingly, using (5.29),

Aq([hor(hl(u)), hor(hl(w))]q) = Ad(h,q1)


[Aqu, Aqw] +


∂Aq

∂q
w


u −


∂Aq

∂q
u

w


.

Finally, knowing that h ∈ Gµ, we have the equation forΞµ in the theorem.
Regarding Hamilton’s equation, we should note that based on Lemma 5.3 the restriction of Ωcan to [Tπ(V)]0 is equal to

−dp ∧ dq, in coordinates. �

Corollary 5.5. Let us assume that Gµ = G, in the above theorem. A holonomic open-chain multi-body system with symmetry
(T ∗Q,Ωcan,H, K ,G) is reduced to a Hamiltonian mechanical system (T ∗Q,Ωcan − Ξµ,H, K), where Ωcan is the canonical 2-
form on T ∗Q,

H(pq) :=
1
2


(µ, p + A∗

qµ), FL
−1
(e1,q)

(µ, p + A∗

qµ)

+ V (e1, q), (5.39)

and K is a metric on Q such that ∀uq, wq ∈ TqQ we have

K q(uq, uq) = Kq(hlq(uq), hlq(wq)).

Here, in the local coordinates Ξµ is calculated by a simpler formulation. Let πQ : T ∗Q → Q be the canonical projection map
of the cotangent bundle and let TπQ : T (T ∗Q) → TQ be its induced map on the tangent bundles. For every αq ∈ T ∗Q and
∀U,W ∈ X(T ∗Q) we introduce uq = TαqπQ(Uαq) andwq = TαqπQ(Wαq). We have

(Ξµ)αq


Uαq ,Wαq


=


µ,−[Aqu, Aqw] −


∂Aq

∂q
w


u +


∂Aq

∂q
u

w


. (5.40)

Finally, in local coordinates we have X = (q̇, ṗ) as a vector field on T ∗Q. Hamilton’s equation in the cotangent bundle of shape
space reads

ι(q̇,ṗ)(−dp ∧ dq − Ξµ) =
∂H
∂p

dp +
∂H
∂q

dq,

whereΞµ is calculated by (5.40).

We show the isotropy groups for different types of displacement subgroups in Table 2. Note that, for different values of
µ ∈ Lie∗(G), the isotropy groups are isomorphic to the groups listed in the table, and the isomorphismmap is conjugation by
an element of SE(3). In this table we consider the configuration manifold of the first joint as a Lie sub-group of SE(3)whose
Lie algebra is a vector space isomorphic to so(3) ⊕ R3, where so(3) is the Lie algebra of SO(3). For any element ξ ∈ se(3),
we call its component in R3 the linear and the one in so(3) the angular component of ξ , where se(3) denotes the Lie algebra
of SE(3).
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Table 2
Displacement subgroups and their corresponding isotropy groups.

Displacement subgroups Gµ (µ = (µv, µω))a

Q1 ∼= G µv ≠ 0, µω ≠ 0 µω ≠ 0, µv = 0 µω = 0, µv ≠ 0 µv = µω = 0

SE(3) SO(2)× R SE(2)× R SO(2)× R SE(3)
SE(2)× R R2(SE(2)× R)b SE(2)× R R2(SE(2)× R)b SE(2)× R
SE(2) R SE(2) R SE(2)
SO(3) SO(2) SO(3)
R3 R3 R3

Hp n R2 R Hp n R2 R Hp n R2

SO(2)× R SO(2)× R SO(2)× R SO(2)× R SO(2)× R
R2 R2 R2

SO(2) SO(2) SO(2)
R R R
Hp Hp Hp

a µv is the linear component and µω is the angular component of the momentum.
b If the linear momentum is in the direction of the allowed direction of rotation in the space.

5.1. Further symmetries of open-chain multi-body systems

In this subsection we introduce a number of sufficient conditions under which the kinetic energy metric of a holonomic
open-chain multi-body system admits further symmetries. That is, the system is invariant (in the sense that was presented
in the previous section) under the action of other groups in addition to the one presented in Theorem 5.1. We investigate
two approaches:

(AP1) Identifying symmetry groups due to left invariance of the kinetic energy metric h on P = SE(3) × · · · × SE(3). See
Section 4 for the definition of the metric h.

(AP2) Identifying symmetry groups by studying the metric K on Q.

5.1.1. Identifying symmetry groups using AP1
As for the approach AP1, we consider the embedding F : Q → P , defined by (3.22), which determines the pose of the

centre of mass of all bodies with respect to the inertial coordinate frame.

F(q) = (q1rcm,1, q1q2rcm,2, . . . , q1 · · · qN rcm,N),

where rcm,i (i = 1, . . . ,N) is the initial pose of a coordinate frame attached to the centre of mass of body Bi with respect to
the inertial coordinate frame, i.e., B0.

For any element (p1,0, . . . , pN,0) ∈ P we define the group actionΘN
(p1,0,...,pN,0)

: P → P by

ΘN
(p1,0,...,pN,0)

(p) := (p1,0p1, (p1,0p2,0)p2, . . . , (p1,0 · · · pN,0)pN),

where p = (p1, . . . , pN) ∈ P . Since the metric h on P is left-invariant, it is also invariant under this action. That is, we
have T ∗ΘN

(p1,0,...,pN,0)
(h) = h. This action induces an action on Q by the embedding F , if and only if the image of the map

F , i.e., F(Q), is invariant under the action ΘN for a Lie subgroup of P . We denote this Lie subgroup by G1 × · · · GN , where
Gi ⊆ SE(3) (i = 1, . . . ,N) is a Lie subgroup of SE(3). Then the induced action on Q, denoted by ΦN

(p1,0,...,pN,0)
: Q → Q, is

defined byΦN
(p1,0,...,pN,0)

:= F−1
◦ΘN

(p1,0,...,pN,0)
◦F , where (p1,0, . . . , pN,0) ∈ G1×· · · GN . Here, F−1

: F(Q) → Q is only defined
on the image of the map F . In order to identify the group G1 × · · · × GN , we impose the condition that F(Q) is invariant
under the action of this group. By the definition of the map F andΘN

(p1,0,...,pN,0)
, we have

ΘN
(p1,0,...,pN,0)

◦ F(q) = (p1,0q1rcm,1, (p1,0p2,0)q1q2rcm,2, . . . , (p1,0 · · · pN,0)q1 · · · qN rcm,N).

The image of F is invariant under the group action if and only if we have the following conditions:

p1,0 ∈ Q1,

q−1
1 p2,0q1 ∈ Q2, ∀q1 ∈ Q1

...

(q1 · · · qN−1)
−1pN,0(q1 · · · qN−1) ∈ QN . ∀q1 ∈ Q1 and · · · and ∀qN−1 ∈ QN−1.
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Hence, the biggest symmetry group G1 × · · · GN that leaves the kinetic energy metric K invariant under the induced action
ΦN is equal to

G1 × · · · GN ={(p1,0, . . . , pN,0)|p1,0 ∈ Q1, p2,0 ∈


q1∈Q1

(q1Q2q−1
1 ), . . . ,

pN,0 ∈


q1∈Q1

···
qN−1∈QN−1

((q1 · · · qN−1)QN(q1 · · · qN−1)
−1)} ⊆ Q1 × · · · × QN .

Noteworthy examples of open-chainmulti-body systemswhose kinetic energymetric K is invariant under the action of this
group include but not limited to the systems with identical multi-degree-of-freedom joints and systems with commutative
joints. In general, this symmetry group may be as small as G1 = Q1, specially when most of the joints are actuated, since
the actuation force can break the symmetry.

5.1.2. Identifying symmetry groups using AP2
For any velocity vector q̇ ∈ TqQ, we denote the left translation of q̇ to Lie(Q) by

τ = (τ1, . . . , τN) := q−1q̇ = (q−1
1 q̇1, . . . , q−1

N q̇N) ∈ Lie(Q).

Now let iτ
j
i (i, j = 0, . . . ,N) be the relative twist of the body Bi with respect to Bj and expressed in the coordinate frame

attached to Bi. In order to determine the kinetic energy of an open-chain multi-body system we need to have the relative
twist of each body Bi with respect to B0 and expressed in a coordinate frame attached to the centre of mass of Bi, i.e.,

iτ 0i (q, τ ) = Adr−1
cm,i


Ad(q2···qi)−1(τ1)+ · · · + Adq−1

i
(τi−1)+ τi


for a sequence of bodies from B0 to Bi [36]. Then the kinetic energy of a multi-body system can be calculated by

1
2
Kq(q̇, q̇) =

1
2

N
i=1

∥
i τ 0i (q, τ )∥

2
he,i
, (5.41)

where hi denotes the left invariant metric corresponding to the body Bi and he,i is its restriction to se(3), and ∥ · ∥he,i refers
to its induced norm on se(3). In the second approach AP2, first the case of a multi-body system with only three bodies and
two joints is investigated in the sequel, and the result is generalized for the case of N bodies.

Let G1 = Q1 and G2 ⊆ Q2 be a Lie subgroup of Q2, and consider the action of G1 × G2 by left translation on the config-
uration manifold Q = Q1 × Q2, i.e., ∀(g1, g2) ∈ G1 × G2 we have (q1, q2) → (g1q1, g2q2) for all q = (q1, q2) ∈ Q. It is easy
to show that under this action the kinetic energy of the system becomes

1
2
K(g1q1,g2q2)(g1q̇1, g2q̇2) =

1
2


∥Adr−1

cm,1
τ1∥

2
he,1

+ ∥Adr−1
cm,2


Ad(g2q2)−1τ1 + τ2


∥
2
he,2


,

where (g1q̇1, g2q̇2) denotes the left translation of the velocity vector (q̇1, q̇2) to (g1q1, g2q2). As it was expected, the kinetic
energy remains invariant under the G1-action. We define the metric h′

2 := Ad∗

r−1
cm,2
(he,2) on se(3) corresponding to the body

B2. Kinetic energy is invariant under the action of G1 × G2 if and only if it is invariant under the infinitesimal action of all
elementsϖ ∈ Lie(G2) at the identity element e2 ∈ G2. Hence, we have the following necessary and sufficient condition for
the metric K to be invariant under the action of G1 × G2 by left translation:

∂

∂ϵ


ϵ=0


1
2
∥Ad(exp(−ϵϖ)q2)−1τ1 + τ2∥

2
h′
2


= h′

2(Adq−1
2

adϖ (τ1),Adq−1
2
τ1 + τ2) = 0 (5.42)

∀q2 ∈ Q2, ∀τ1 ∈ Lie(Q1) and ∀τ2 ∈ Lie(Q2).

The largest Lie sub-algebra of Lie(Q2)whose elements satisfy the above condition is the Lie algebra ofG2, andG2 can be iden-
tified by integrating this Lie sub-algebra on Q2. Noteworthy examples of the systems that admit such a symmetry group are
any two commutative joints, a planar cart with a rotary joint orthogonal to it, and a planar cart moving on a rotating disc.
With similar calculations, we can extend this result to the case of open-chain multi-body systems with N + 1 bodies, and
write the necessary and sufficient condition (5.42) as

N
i=2

h′

i(Ad(q2···qi)
−1adϖ (τ1),Ad(q2···qi)

−1(τ1 + · · · + Ad(q2···qi)τi)) = 0. (5.43)

∀qi ∈ Qi (i = 2, . . . ,N) and ∀τi ∈ Lie(Qi) (i = 1, . . . ,N)

where h′
i := Ad∗

r−1
cm,i
(he,i). Note that, the expression in the parentheses in the second argument of h′

i is the relative twist of Bi

with respect to B0 and expressed in a coordinate frame attached to B1. Based on this condition, we may derive a sufficient
condition for the metric K being invariant under the action of G1 × G2 by left translation.
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Proposition 5.6. For an open-chain multi-body system, the metric K is invariant under the action of G1 × G2, as defined above,
by left translation, if ∀ϖ ∈ Lie(G2) and ∀τ1 ∈ Lie(Q1) we have

adϖ (τ1) = 0.

Similarly, we can derive sufficient conditions for the metric K being invariant under the action of a group in the form of
G1 × · · · × GN by left translation. Here Gi ⊆ Qi is a Lie subgroup of Qi for i = 2, . . . ,N . However, since it is very unlikely
that we have the invariance of K under the action of such a big group, we do not go through the calculations for this most
general case.

Finally, suppose that Bi0 is an extremity of the open-chainmulti-body system. Consider the action ofGi0 as a Lie subgroup
of Qi0 by right translation. The kinetic energy of the system after the action of an element gi0 ∈ Gi0 becomes

1
2
Kqgi0

(q̇gi0 , q̇gi0) =
1
2

N
i=1
i≠i0

∥
iτ 0i ∥

2
hi +

1
2
∥Ad

g
−1
i0

Adrcm,i0
i0τ 0i0∥

2
h′
i0
. (5.44)

The kinetic energy metric is invariant under this action if and only if it is invariant under the infinitesimal action of any
element ϱ ∈ Lie(Gi0) at the identity element.

∂

∂ϵ


ϵ=0


1
2
∥Ad(exp(−ϵϱ))−1(Adrcm,i0

i0τ 0i0)∥
2
h′
i0


(5.45)

= h′

i0(adϱ(Adrcm,i0
i0τ 0i0),Adrcm,i0

i0τ 0i0) = 0, (5.46)

for all i0τ 0i0 , i.e., all admissible relative twists of Bi0 with respect to the inertial coordinate frame and expressed in the same
frame. The largest Lie sub-algebra of Lie(Qi0) that satisfies the above condition is Lie(Gi0), and Gi0 ⊆ Qi0 is identified by
integrating this Lie sub-algebra on Qi0 . Therefore, the kinetic energy K is invariant under the Gi0-action by right translation
on Qi0 if and only if we have the above condition.

5.2. Further reduction of holonomic open-chain multi-body systems

Let N = G2 × · · · GN be a Lie subgroup of Q = Q2 × · · · × QN , i.e., Gi is a Lie subgroup of Qi for i = 2, . . . ,N . We define
the action of N on Q, i.e., Φn : Q → Q, by left translation on Q. For any element n = (n2, . . . , nN) ∈ N we haveΦn(q1, q) = (q1, n2q2, . . . , nNqN).

Hence, the tangent and cotangent lift of the N -action are

TqΦn(vq) =


idTq1Q1

0 · · · 0
0 Tq2Ln2 · · · 0
...

...
. . .

...
0 0 · · · TqN LnN



v1
v2
...
vN



T ∗Φn(q)Φn−1(pq) =


idTq1Q1

0 · · · 0
0 T ∗

n2q2Ln
−1
2

· · · 0
...

...
. . .

...
0 0 · · · T ∗

nN qN Ln
−1
N



p1p2
...pN

 .
Let us assume that the HamiltonianH and themetricK of a reduced holonomic open-chainmulti-body system (T ∗Q, Ωcan−

Ξµ,H,K) are invariant under the cotangent and tangent lift of the N -action, respectively. We also have that for all
ζ ∈ Lie(N ) the infinitesimal generator of the cotangent lifted action ζT∗Q satisfies the following conditions:

ιζT∗QΞµ = 0,

LζT∗QΞµ = 0,

which indicate that the 2-formΞµ is basic with respect to the N -action.
The map corresponding to the infinitesimal N -actionφq : Lie(N ) ⊂ Lie(Q) → TQ is calculated by

φq =


0 · · · 0

Te2(Rq2 ◦ι2) · · · 0
...

. . .
...

0 · · · TeN (RqN ◦ιN)
 ,
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whereιi : Gi ↩→ Qi is the canonical inclusion map for i = 2, . . . ,N . As the result, we define the momentum mapMq : T ∗q Q → Lie∗(N ) by

Mq =φ∗q =

0 T ∗

e2(Rq2 ◦ι2) · · · 0
...

...
. . .

...
0 0 · · · T ∗

eN (RqN ◦ιN)
 .

Now, we have the locked inertia tensorIq : Lie(N ) → Lie∗(N ) and the mechanical connection corresponding to the
N -action Aq : TqQ → Lie(N ) calculated byIq =φ∗q ◦ FLq ◦φq,Aq =I−1q ◦ Mq ◦ FLq,
where, FLq : TqQ → T ∗q Q is the Legendre transformation induced by the metricK :

⟨FLq(vq),wq⟩ := Kq(vq,wq). ∀vq,wq ∈ TqQ.
We use the local trivialization introduced in the previous section to locally trivialize the principal bundle Q → Q/N ,
and find the principal connection Aq : TqQ → Lie(N ) in the form of (5.29). We may also locally trivialize the principal
bundle N → N /Nϑ , where Nϑ is the isotropy group of N for ϑ ∈ Lie∗(N ), and calculate the mechanical connectionAϑq : TqQ → Lie(Nϑ ) corresponding to the principal bundle π : Q → Q := Q/Nϑ using (5.29). Then we calculate the
HamiltonianH : T ∗Q → R by the equalityH := Hϑ ◦ ϕ−1

ϑ , (5.47)

where Hϑ : M−1(ϑ)/Nϑ → R is the induced Hamiltonian on the reduced phase space defined in (2.9), andϕϑ : M−1(ϑ)/
Nϑ → [TπV]

0
⊆ T ∗Q is defined in Lemma 5.3. Here, V ⊂ TQ is the vertical vector sub-bundle for the principal bundleQ → Q/N . Plus, H ⊂ TQ is the corresponding horizontal vector sub-bundle of this principal bundle.

Finally, we are ready to report the main result of this section in the following theorem, by repeating the reduction
procedure detailed in the previous section.

Theorem 5.7. Let ϑ ∈ Lie∗(N ) be a regular value of themomentummapM. Under the above-mentioned assumptions, a reduced
holonomic open-chain multi-body system with symmetry (T ∗Q, Ωcan − Ξµ,H,K ,N ) can be further reduced to a mechanical
system ([TπV]

0
⊆ T ∗Q, Ωcan − Ξµ − Ξϑ ,H,K), in the sense that was introduced in Theorem 5.4. Here, Ωcan is the canonical

2-form on T ∗Q,H is defined by (5.47) andK is a metric on Q such that ∀uq,wq ∈ TqQ we haveKq(uq,wq) = Kq(hlq(uq),hlq(wq)),
whereq := π(q), andhlq : TqQ → Hq is the horizontal lift map for the principal bundleπ : Q → Q. The 2-formΞϑ ∈ Ω2(T ∗Q)
is calculated in the local coordinates by (5.37). Plus, the basic 2-formΞµ ∈ Ω2(T ∗Q) (with respect to the N -action) is projected
to the 2-form Ξµ ∈ Ω2(T ∗Q).

Finally, in local coordinates we haveX = (̇q,̇p) as a vector field on [Tπ(V)]0. Hamilton’s equation in the vector sub-bundle
[Tπ(V)]0 of the cotangent bundle of ϑ-shape space reads

ι(̇q,̇p)(−dp ∧ dq − Ξµ − Ξϑ ) =
∂H
∂p dp +

∂H
∂q dq.

6. Case study

In this section we study the dynamics of an example of a holonomic open-chain multi-body system. We derive the
reduced dynamical equations of a six-d.o.f. manipulator mounted on top of a spacecraft whose configuration is shown in
Fig. 1.

Using the indexing introduced in the previous section and starting with the spacecraft as B1, we first number the bodies
and joints. The following graph shows the topology of the holonomic open-chain multi-body system.

B4

B0
J1 B1

J2 B2
J3 B3

J5

J4

B5
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Fig. 1. A six-d.o.f. manipulator mounted on a spacecraft.

We then identify the relative configurationmanifolds corresponding to the joints of the robotic system. The relative pose
of B1 with respect to the inertial coordinate frame is identified by the elements of the Special Euclidean group SE(3). We
identify the elements of the relative configuration manifold corresponding to the first joint, which is a six-d.o.f. free joint,
by

Q 0
1 =

 r01 =

RY (θY )RX (θX )RZ (θZ )

x
y
z



0 0 0


1


 x, y, z ∈ R, θX , θY , θZ ∈ S1

 ,
where we have

RX (θX ) =

1 0 0
0 cos(θX ) − sin(θX )
0 sin(θX ) cos(θX )


,

RY (θY ) =

 cos(θY ) 0 sin(θY )
0 1 0

− sin(θY ) 0 cos(θY )


,

RZ (θZ ) =

cos(θZ ) − sin(θZ ) 0
sin(θZ ) cos(θZ ) 0

0 0 1


.

The second joint is a three-d.o.f. spherical joint between B2 and B1, and its corresponding relative configuration manifold
is given by

Q 1
2 =

 r12 =

RX (ψX )RY (ψY )RZ (ψZ )

0
l1
0



0 0 0


1


ψX , ψY , ψZ ∈ S1

 .
The third joint is a one-d.o.f. revolute joint between B3 and B2, and its relative configuration manifold is

Q 2
3 =

 r23 =

1 0 0 0
0 cos(ψ1) − sin(ψ1) l2
0 sin(ψ1) cos(ψ1) 0
0 0 0 1

 ∈ SE(3)

ψ1 ∈ S1

 .
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Fig. 2. The coordinate frames attached to the bodies of the robot.

The fourth and fifth joints are one-d.o.f. revolute joints whose axes of revolution are assumed to be the Xi-axis (i = 4, 5).
The relative configuration manifolds of these joints are identified by

Q 3
4 =

 r34 =

1 0 0 c
0 cos(ψ2) − sin(ψ2) l3
0 sin(ψ2) cos(ψ2) 0
0 0 0 1

 ∈ SE(3)

ψ2 ∈ S1

 ,

Q 3
5 =

 r35 =

1 0 0 −c
0 cos(ψ3) − sin(ψ3) l3
0 sin(ψ3) cos(ψ3) 0
0 0 0 1

 ∈ SE(3)

ψ3 ∈ S1

 .
Here, l1, . . . , l5 are defined in Fig. 2, and the distance between J4 and J5 is assumed to be 2c .

We assume that the initial pose of B1 with respect to the inertial coordinate frame r01,0 is the identity element of SE(3).
We have located the coordinate frame attached to B1 on its centre of mass. Hence, inmatrix formwe have r01,0 = rcm,1 = id4,
where id4 is the 4 × 4 identity matrix. For the second body, the initial relative pose with respect to B1 is

r12,0 =

1 0 0 0
0 1 0 l1
0 0 1 0
0 0 0 1

 ,
and we have

rcm,2 =

1 0 0 0
0 1 0 l1 + l2/2
0 0 1 0
0 0 0 1

 .
The initial relative pose of B3 with respect to B2 is

r23,0 =

1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1

 ,
and the relative pose of the centre of mass of B3 with respect to the inertial coordinate frame is

rcm,3 =

1 0 0 0
0 1 0 l1 + l2 + l3/2
0 0 1 0
0 0 0 1

 .
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Here we have assumed that the centre of mass of B2 and B3 is in the middle of the links. For the fourth and fifth bodies we
have (i = 4, 5)

r3i,0 =

1 0 0 ±c
0 1 0 l3
0 0 1 0
0 0 0 1

 ,

rcm,4 =

1 0 0 +c
0 1 0 l1 + l2 + l3 + l4
0 0 1 0
0 0 0 1

 , rcm,5 =

1 0 0 −c
0 1 0 l1 + l2 + l3 + l5
0 0 1 0
0 0 0 1

 ,
where the plus and minus signs correspond to the body B4 and B5, respectively.

With the above specifications of the system we identify the configuration manifold of the holonomic open-chain multi-
body system in this case study by Q = Q1 × · · · × Q5, where

Q1 =

q1 =

RY (θY )RX (θX )RZ (θZ )

x
y
z



0 0 0


1

 ∈ SE(3)

 ,

Q2 =

q2 =

 R

0
l1
0


− R

0
l1
0



0 0 0


1

 ∈ SE(3)

 R = RX (ψX )RY (ψY )RZ (ψZ )

 ,

Q3 =

q3 =

1 0 0 0
0 cos(ψ1) − sin(ψ1) 2(l1 + l2) sin2(ψ1/2)
0 sin(ψ1) cos(ψ1) −(l1 + l2) sin(ψ1)
0 0 0 1

 ∈ SE(3)

 ,

Q4 =

q4 =

1 0 0
0 cos(ψ2) − sin(ψ2) 2(l1 + l2 + l3) sin2(ψ2/2)
0 sin(ψ2) cos(ψ2) −(l1 + l2 + l3) sin(ψ2)
0 0 0 1

 ∈ SE(3)

 ,

Q5 =

q5 =

1 0 0 0
0 cos(ψ3) − sin(ψ3) 2(l1 + l2 + l3) sin2(ψ3/2)
0 sin(ψ3) cos(ψ3) −(l1 + l2 + l3) sin(ψ3)
0 0 0 1

 ∈ SE(3)

 .
In order to calculate the kinetic energy for the system under study, we need to first form the function F : Q → P =

5-times  
SE(3)× · · · × SE(3), which determines the pose of the coordinate frames attached to the centres of mass of the bodies with
respect to the inertial coordinate frame.

F(q1, . . . , q5) = (q1rcm,1, q1q2rcm,2, q1q2q3rcm,3, q1q2q3q4rcm,4, q1q2q3q5rcm,5).

Using (4.23), we can calculate the kinetic energy metric for the open-chain multi-body system. In matrix form we have the
following equation for the tangent map Tq(LF(q)−1F) : TqQ → Lie(P )

Tq(LF(q)−1F) =


Adr−1

cm,1
· · · 0

...
. . .

...
0 · · · Adr−1

cm,5

Jq


Tq1(Lq−1

1
◦ ι1) · · · 0

...
. . .

...
0 · · · Tq5(Lq−1

5
◦ ι5)

 ,
where we have

Jq =


id6 06×6 06×6 06×6 06×6

Adq−1
2

id6 06×6 06×6 06×6

Ad(q2q3)−1 Adq−1
3

id6 06×6 06×6

Ad(q2q3q4)−1 Ad(q3q4)−1 Adq−1
4

id6 06×6

Ad(q2q3q5)−1 Ad(q3q5)−1 Adq−1
5

06×6 id6

 ,
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and where id6 is the 6 × 6 identity matrix. Let us denote the standard basis for se(3) by {E1, . . . , E6}, such that

E1 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , E2 =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E3 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



E4 =

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , E5 =

 0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

 , E6 =

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
Using the introduced joint parameters, we have the following equalities:

Tq1(Lq−1
1

◦ ι1) =

R−1
Z (θZ )R

−1
X (θX )R

−1
Y (θY ) 03×3

03×3

 cos(θZ ) cos(θX ) sin(θZ ) 0
− sin(θZ ) cos(θX ) cos(θZ ) 0

0 − sin(θX ) 1

  ,

Tq2(Lq−1
2

◦ ι2) =


−l1 sin(ψY ) 0 −l1

0 0 0
l1 cos(ψY ) cos(ψZ ) −l1 sin(ψZ ) 0
− cos(ψY ) cos(ψZ ) sin(ψZ ) 0
cos(ψY ) sin(ψZ ) cos(ψZ ) 0

− sin(ψY ) 0 1

 ,

Tq3(Lq−1
3

◦ ι3) =

0 0 l1 + l2 1 0 0

T
,

Tq4(Lq−1
4

◦ ι4) =

0 0 l1 + l2 + l3 1 0 0

T
Tq5(Lq−1

5
◦ ι5) =


0 0 l1 + l2 + l3 1 0 0

T
.

Note that, ∀r0 ∈ SE(3) that is in the following form (R0 ∈ SO(3) and p0 = [p0,1, p0,2, p0,3]T ∈ R3)

r0 =


R0 p0

01×3 1


,

we calculate the Adr0 operator by

Adr0 =


R0 p0R0

03×3 R0


,

where

p0 =

 0 −p0,3 p0,2
p0,3 0 −p0,1

−p0,2 p0,1 0



is a skew-symmetric matrix. We choose the standard basis {E1, . . . , E6} for se(3). For this case study, the left-invariant
metric h = h1 ⊕· · ·⊕h6 onP is identified, in the above basis, by the followingmetrics on the Lie algebras of copies of SE(3)
corresponding to the bodies:

he,i =

miid3 03×3

03×3

jx,i 0 0
0 jy,i 0
0 0 jz,i

 ,
where i = 1, . . . , 5, id3 and 03×3 are the 3× 3 identity and zero matrices, respectively,mi is the mass of Bi, and (jx,i, jy,i, jz,i)
are the moments of inertia of Bi about the X , Y and Z axes of the coordinate frame attached to the centre of mass of Bi.
Note that, we chose this coordinate frame such that its axes coincide with the principal axes of the body Bi. For the body
Bi (i = 2, . . . , 5), since we assume symmetric shapes with Yi-axis being the axis of symmetry, we have jx,i = jz,i. Finally,
in the coordinates chosen to identify the configuration manifold (joint parameters), we have the following matrix form
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for FLq

FLq = T ∗

q (LF(q)−1F)

he,1 · · · 0
...

. . .
...

0 · · · he,5

 Tq(LF(q)−1F) =

K11(q) · · · K15(q)
...

. . .
...

K51(q) · · · K55(q)

 ,
and the kinetic energy is calculated by

Kq(q̇, q̇) =
1
2
q̇TFLqq̇,

where, with an abuse of notation, q̇ is the vector corresponding to the speed of the joint parameters.
We assume zero potential energy for this holonomic open-chain multi-body system, Hence, we have the Hamiltonian of

the system as

H(q, p) =
1
2
pTFL−1

q p,

where p is the vector of generalized momenta corresponding to the joint parameters.
In the following, we derive the reduced Hamilton’s equation for this system, with the initial total momentum µ =

0 µ1 0 µ2 0 0
T

∈ se∗(3) represented in the dual of the standard basis for se(3). That is, the system has a constant
linear momentum in the direction of Y0, equal to µ1, and a constant angular momentum in the direction of X0, equal to µ2.
The kinetic energy (and hence the Hamiltonian) of the multi-body system is invariant under the action of G = Q1 = SE(3).
The isotropy group corresponding to µ is

Gµ =

h =


cos(θY ) 0 sin(θY )

µ2

µ1
sin(θY )

0 1 0 y
− sin(θY ) 0 cos(θY ) −2

µ2

µ1
sin2(θY/2)

0 0 0 1

 ∈ SE(3)

 ,
which is a Lie subgroup of G, and it is isomorphic to SO(2)× R. Now, consider the action of G = SE(3) by left translation on
Q1. Using the joint parameters, ∀(x0, y0, z0, θX,0, θY ,0, θZ,0) ∈ G we have

Φ(x0,y0,z0,θX,0,θY ,0,θZ,0)(q) = (RY (θY ,0)RX (θX,0)RZ (θZ,0)

x y z

T
+

x0 y0 z0

T
, RY (θY ,0)RX (θX,0)RZ (θZ,0)RY (θY )RX (θX )RZ (θZ ), q)

where q = (ψX , ψY , ψZ , ψ1, ψ2, ψ3). We have the principal G-bundle π : Q → Q = Q2 × · · · × Q5, and using the joint
parameters its corresponding principal connection A : TQ → se(3) is defined by (5.29)

Aq =

RY (θY )RX (θX )RZ (θZ )

x
y
z


RY (θY )RX (θX )RZ (θZ )

03×3 RY (θY )RX (θX )RZ (θZ )

Tq1Lq−1
1

Aq


,

where we havex
y
z


=

 0 −z y
z 0 −x

−y x 0


,

Tq1Lq−1
1

=

R−1
Z (θZ )R

−1
X (θX )R

−1
Y (θY ) 03×3

03×3

 cos(θZ ) cos(θX ) sin(θZ ) 0
− sin(θZ ) cos(θX ) cos(θZ ) 0

0 − sin(θX ) 1

  ,
Aq =


K 11(q)−1K 12(q) · · · K 11(q)−1K 1N(q)


,

where K 1i(q) = K1i(e1, q) for i = 1, . . . ,N , and consequently, the horizontal lift map hlq : TqQ → TqQ is

hlq =

−

RY (θY )RX (θX )RZ (θZ ) 03×3

03×3

 cos(θZ ) − sin(θZ ) 0
sin(θZ )/cos(θX ) cos(θZ )/cos(θX ) 0
sin(θZ ) tan(θX ) cos(θZ ) tan(θX ) 1

 Aq

id6

 ,
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where id6 is the 6×6 identity matrix. Then, we use the principal bundleπ : Q → Q/Gµ to introduce the local trivialization

ofG = Q1. The Lie algebra ofGµ as a vector subspace of se(3) is spanned by

E2,

µ2
µ1

E1 + E5

, and a complementary subspace

to this subspace is spanned by {E1, E3, E4, E6}. Now, ∀q1 ∈ Uµ ⊂ Q1/Gµ we introduce the embedding χµ : Uµ ↩→ Q1

χµ(q1) =

RX (θX )RZ (θZ )

x
0
z


01×3 1

 ,
which identifies the elements of Q1/Gµ by elements of an embedded submanifold of Q1, and in the local coordinates its
induced map on the tangent bundles is

Tq1χµ =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 .

Subsequently, we define the local trivialization of the principal bundleπ : Q → Q/Gµ byχ : Gµ × Uµ → Q1

χ((h,q1)) = hχµ(q1),
and its induced map on the tangent bundles (in the local coordinates) is calculated as

T(h,q1)χ =



0

µ2

µ1
+ z


cos(θY )− x sin(θY ) cos(θY ) sin(θY ) 0 0

1 0 0 0 0 0

0 −


µ2

µ1
+ z


sin(θY )− x cos(θY ) − sin(θY ) cos(θY ) 0 0

0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1


,

where we use (y, θY ), (x, z, θX , θZ ), and (x, y, z, θX , θY , θZ ) as the local coordinates for the manifolds Gµ, Q1/Gµ, and Q1,
respectively. Accordingly, we can calculate the map Aµq : T(q1,q)(Uµ × Q) → Lie(Gµ) using the following equalities:

Aµq :=

KGµ
1 (q)−1KQ1/Gµ

1 (q) KGµ
1 (q)−1KGµ

12 (q) · · · KGµ
1 (q)−1KGµ

1N (q) ,
KGµ
1 ((h,q)) KQ1/Gµ

1 ((h,q))
KGµ
2 ((h,q)) KQ1/Gµ

2 ((h,q))


= T ∗

(h,q1)χ (K11(χ(h,q))) T(h,q1)χ,
KGµ
12 ((h,q)) · · · KGµ

1N ((h,q))
KQ1/Gµ
12 ((h,q)) · · · KQ1/Gµ

1N ((h,q))


= T ∗

(h,q1)χ K12(χ(h,q)) · · · K1N(χ(h,q)) .
And, we haveKGµ

1 (q) = KGµ
1 ((eµ,q)),KQ1/Gµ

1 (q) = KQ1/Gµ
1 ((eµ,q)), andKGµ

1i (q) = KGµ
1i ((eµ,q)) for all i = 2, . . . ,N . We

also have the reduced Hamiltonian on [Tπ(V)]0:
H(pq) =

1
2


AdT

(eµ,q1)µ
p + AT

qAd
T
(eµ,q1)µ

T

FL−1
(eµ,q1,q)


AdT

(eµ,q1)µ
p + AT

qAd
T
(eµ,q1)µ


, (6.48)

where

AdT
(eµ,q1)µ =


RT
Z (θZ )R

T
X (θX ) 03×3

−RT
Z (θZ )R

T
X (θX )

x
0
z


RT
Z (θZ )R

T
X (θX )




0
µ1
0
µ2
0
0

 .
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In order to calculate the 2-formΞµ, we compute the following matrices in the local coordinates:

Tχµ(q1)Rχµ(q1)−1(Tq1χµ) =


1 0 0 z sin(θX )
0 0 z −x cos(θX )
0 1 0 −x sin(θX )
0 0 1 0
0 0 0 − sin(θX )
0 0 0 cos(θX )

 ,

Adχµ(q1) =

RX (θX )RZ (θZ )

x
0
z


RX (θX )RZ (θZ )

03×3 RX (θX )RZ (θZ )

 ,
Dq := −Aµq +


Tχµ(q1)Rχµ(q1)−1(Tq1χµ) Adχµ(q1)Aq


,

Fq1 :=


0
µ1
0
µ2
0
0


T

Adχµ(q1) =


µ1 cos(θX ) sin(θZ )
µ1 cos(θX ) cos(θZ )

−µ1 sin(θX )
µ1(z cos(θZ )− x sin(θX ) sin(θZ ))+ µ2 cos(θZ )
−µ1(z sin(θZ )+ x cos(θZ ) sin(θX ))− µ2 sin(θZ )

−µ1x cos(θX )


T

.

Finally, we have the following expression for the 2-formΞµ:

Ξµ =


i<j

6
a=1

Fa


∂Aa

j

∂qi
−
∂Aa

i

∂qj


−


l<k

Ea
lk(A

l
iA

k
j − Al

jA
k
i )


(dqi ∧ dqj)

+


i′<j′


l<k


(µ1E

2
lk + µ2E

4
lk)(D

l
i′D

k
j′ − D l

j′D
k
i′ )

(dqi′ ∧ dqj′)

=:


i′<j′

Υi′j′(q)dqi′ ∧ dqj′ ,
where a, l, k, i, j ∈ {1, . . . , 6} and i′, j′ ∈ {1, . . . , 10}. Here, in the local coordinatesq = (x, z, θX , θZ , ψX , ψY , ψZ , ψ1, ψ2, ψ3),
q = (ψX , ψY , ψZ , ψ1, ψ2, ψ3), and for the standard basis for se(3), i.e., {E1, . . . , E6}, we have

[El, Ek] =

6
a=1

Ea
lkEa,

Fq1 =

6
a=1

Fa(q1)Ea,
Aq =

A1
1(q) · · · A1

6(q)
...

. . .
...

A6
1(q) · · · A6

6(q)

 ,

Dq =

D1
1 (q) · · · A1

10(q)
...

. . .
...

D6
1 (q) · · · D6

10(q)
 .

As the result, in matrix form we have the following reduced equations of motion for the holonomic multi-body system
under study:

̇q1q̇
ṗ

 =




0 −Υ12(q) · · · · · · −Υ110(q)

Υ12(q) 0 −Υ23(q) · · · −Υ210(q)
... · · ·

. . . · · ·
...

Υ19(q) · · · Υ89(q) 0 −Υ910(q)
Υ110(q) · · · · · · Υ910(q) 0



04×6
−id6



06×4 id6


06×6



−1 

∂H
∂q1
∂H
∂q
∂H
∂p


,

whereH is calculated by (6.48).
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7. Conclusions and future work

In this paper we systematically extended the existing reduction procedures for multi-body systems to more general
cases with multi-d.o.f. holonomic joints and non-zero momentum, using the symplectic reduction theorem. Using Lie
group theory, we reviewed the notion of displacement subgroups to introduce a class of multi-d.o.f. joints whose relative
configuration manifolds are diffeomorphic to a subgroup of a Cartesian product of copies of SE(3). We used the symplectic
reduction theorem in geometric mechanics to express Hamilton’s equation in the symplectic reduced manifold, for
holonomicHamiltonianmechanical systems.We then identified the symplectic reducedmanifoldwith the cotangent bundle
of a quotient manifold. Accordingly, we developed a two-step reduction process for the dynamical equations of open-chain
multi-body systems with multi-d.o.f. holonomic joints and non-zero momentum. For such systems, a symmetry group is
indeed the relative configuration manifold corresponding to the first joint. As for the second step, we found some sufficient
conditions, under which the kinetic energy metric is invariant under the action of a subgroup of the configuration manifold.
Finally, we derived the reduced dynamical equations in the local coordinates for an example of a six d.o.f. manipulator
mounted on a spacecraft to illustrate the results of this paper.

The reduction process introduced in this paper can be extended to nonholonomic multi-body systems through the
Chaplygin reduction theorem, which will be the next step of this research.
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