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a b s t r a c t

We present a uniform description of SU(3)-structures in dimension 6 as well as G2-
structures in dimension 7 in terms of a characterising spinor and the spinorial field
equations it satisfies.We apply the results to hypersurface theory to obtain newembedding
theorems, and give a general recipe for building conical manifolds. The approach also
enables one to subsume all variations of the notion of a Killing spinor.
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1. Introduction

This paper is devoted to a systematic and uniformdescription of SU(3)-structures in dimension 6, aswell as G2-structures
in dimension 7, using a spinorial formalism. Any SU(3)- or G2-manifold can be understood as a Riemannian spin manifold
of dimension 6 or 7, respectively, equipped with a real spinor field φ or φ̄ of length one. Let us denote by ∇ the Levi-Civita
connection and its lift to the spinor bundle. We prove that an SU(3)-manifold admits a 1-form η and an endomorphism field
S such that the spinor φ solves, for any vector field X ,

∇Xφ = η(X)j(φ)+ S(X) · φ,

where j is the Spin(6)-invariant complex structure on the spin representation space ∆ = R8 realising the isomorphism
Spin(6) ∼= SU(4). In a similar vein, there exists an endomorphism S̄ such that the spinor φ̄ of a G2-manifold satisfies the
even simpler equation

∇X φ̄ = S̄(X) · φ̄.
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We identify the characterising entities η, S, and S̄ with certain components of the intrinsic torsion and use them to describe
the basic classes of SU(3)- and G2-manifolds by means of a spinorial field equation. For example, it is known that nearly
Kähler manifolds correspond to S = µ Id and η = 0 [1], and nearly parallel G2-manifolds are those with S̄ = λ Id [2],
since the defining equation reduces then to the classical constraint for a Riemannian Killing spinor. If S or S̄ is symmetric
(and, in dimension 6, additionally η = 0), this is the equation defining generalised Killing spinors, which are known to
correspond to half-flat structures [3] and cocalibrated G2-structures [4]. For all other classes, Theorems 3.13 and 4.8 provide
new information concerning φ and φ̄. To mention but one example, we shall characterise in Theorem 3.7 Riemannian spin
6-manifolds admitting a harmonic spinor of constant length. Theorem 4.8 states the analogue fact for G2-manifolds.

We begin by reviewing algebraic aspects of the dimensions 6 and 7—and explain why it is more convenient to use, in
the former case, real spinors instead of complex spinors. In Section 3 we carefully relate the various geometric quantities
cropping up in special Hermitian geometry, with particular care regarding: the vanishing or (anti-)symmetry of S, η, the
intrinsic torsion, induced differential forms and Nijenhuis tensor, Lee and Kähler forms, and the precise spinorial PDE for
φ. We introduce a connection well suited to describe the geometry, and its relationship to the more familiar characteristic
connection. The same programme is then carried out in Section 4 for G2-manifolds. The first major application of this set-up
occupies Section 5: our results can be used to study embeddings of SU(3)-manifolds in G2-manifolds and describe different
types of cones (Section 6). The latter results complement the first and last author’s work [5]. This leads to the inception of
a more unified picture relating the host of special spinor fields occurring in different parts of the literature: Riemannian
Killing spinors, generalised Killing spinors, quasi-Killing spinors, Killing spinors with torsion etc. What we show in Section 7
is that all those turn out to be special instances of the characterising spinor field equations for φ and φ̄ that we started with,
and although looking, in general, quite different, these equations can be drastically simplified in specific situations.

The pattern that emerges here clearly indicates that the spinorial approach is not merely the overhaul of an established
theory. Our point is indeed that it should be used to describe efficiently these and other types of geometries, like SU(2)- or
Spin(7)-manifolds, and that it providesmore information than previously known. Additionally, the explicit formulas furnish
a working toolkit for understanding many different concrete examples, and for further study.

2. Spin linear algebra

The real Clifford algebras in dimensions 6, 7 are isomorphic to End(R8) and End(R8)⊕ End(R8) respectively. The spin
representations are real and 8-dimensional, so they coincide as vector spaces, andwedenote this common space by∆ := R8.
By fixing an orthonormal basis e1, . . . , e7 of the Euclidean space R7, one choice for the real representation of the Clifford
algebra on∆ is

e1 = +E18 + E27 − E36 − E45, e2 = −E17 + E28 + E35 − E46,
e3 = −E16 + E25 − E38 + E47, e4 = −E15 − E26 − E37 − E48,
e5 = −E13 − E24 + E57 + E68, e6 = +E14 − E23 − E58 + E67,
e7 = +E12 − E34 − E56 + E78,

where the matrices Eij denote the standard basis elements of the Lie algebra so(8), i. e. the endomorphisms mapping ei to ej,
ej to −ei and everything else to zero.

We begin by discussing the 6-dimensional case. Albeit real, the spin representation admits a Spin(6)-invariant complex
structure j : ∆ → ∆ defined be the formula

j := e1 · e2 · e3 · e4 · e5 · e6.

Indeed, j2 = −1 and j anti-commutes with the Clifford multiplication by vectors of R6; this reflects the fact that Spin(6) is
isomorphic to SU(4). The complexification of∆ splits,

∆⊗R C = ∆+
⊕∆−,

a consequence of the fact that j is a real structure making (∆, j) complex-(anti)-linearly isomorphic to either ∆±, via
φ → φ ± i · j(φ). Any real spinor 0 ≠ φ ∈ ∆, furthermore, decomposes∆ into three pieces,

∆ = Rφ ⊕ R j(φ)⊕ {X · φ : X ∈ R6
}. (2.1)

In particular, j preserves the subspaces {X · φ : X ∈ R6
} ⊂ ∆, and the formula

Jφ(X) · φ := j(X · φ)

defines an orthogonal complex structure Jφ on R6 that depends on φ. Moreover, the spinor determines a 3-form bymeans of

ψφ(X, Y , Z) := −(X · Y · Z · φ, φ)

where the brackets indicate the inner product on∆. The pair (Jφ, ψφ) defines an SU(3)-structure on R6, and any such arises
in this fashion from some real spinor. In certain cases this is an established construction: a nearly Kähler structure may be
recovered from the Riemannian Killing spinor [1], for instance. All this can be summarised in the known fact that SU(3)-
structures on R6 correspond one-to-one with real spinors of length one (modZ2),

SO(6)/SU(3) ∼= P(∆) = RP7.
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Example 2.1. Consider the spinor φ = (0, 0, 0, 0, 0, 0, 0, 1) ∈ ∆ = R8. With the basis chosen on p. 2, then, Jφ andψφ read

Jφe1 = −e2, Jφe3 = e4, Jφe5 = e6, ψφ = e135 − e146 + e236 + e245,

where e135 = e1 ∧ e3 ∧ e5 &c. Throughout this article ei indicate tangent vectors and one-forms indifferently.
Below we summarise formulas expressing the action of Jφ and ψφ , whose proof is an easy exercise in local coordinates

and so omitted.

Lemma 2.2. For any unit spinors φ, φ∗ and any vector X ∈ R6

ψφ · φ = −4 · φ, ψφ · j(φ) = 4 · j(φ), ψφ · φ∗
= 0 if φ∗

⊥ φ, j(φ),
(X ψφ) · φ = 2 X · φ, Jφφ = 3 j(φ), Jφ (j(φ)) = −3φ.

In dimension 7 the space∆ does not carry an invariant complex structure akin to j. However, we still have a decomposition.
If we take a non-trivial real spinor 0 ≠ φ ∈ ∆, we may split

∆ = Rφ ⊕ {X · φ : X ∈ R7
}, (2.2)

and we can still define a 3-form

Ψφ(X, Y , Z) := (X · Y · Z · φ, φ).

It turns out thatΨφ is stable (its GL(7)-orbit is open), and its isotropy group inside GL(7,R) is isomorphic to the exceptional
Lie group G2 ⊂ SO(7). Thus we recover the renowned fact that there is a one-to-one correspondence between positive
stable 3-forms Ψ ∈ Λ3R7 of fixed length and real lines in∆:

SO(7)/G2 ∼= P(∆) = RP7.

In analogy to Lemma 2.2, here are formulas to be used in the sequel.

Lemma 2.3. Let Ψφ be a stable three-form on R7 inducing the spinor φ, and suppose φ∗ is a unit spinor orthogonal to φ. Then

Ψφ · φ = 7φ, Ψφ · φ∗
= −φ∗, (X Ψφ) · φ = −3X · φ.

Remark 2.4. The existence of the unit spinor φ on M6 is a general fact. Any 8-dimensional real vector bundle over a 6-
manifold admits a unit section, see e. g. [6, Ch. 9, Thm. 1.2]. Consequently, an oriented Riemannian 6-manifold admits a spin
structure if and only if it admits a reduction from Spin(6) ∼= SU(4) to SU(3). The argument also applies to Spin(7)- and
G2-structures, and was practised extensively in [2, Prop. 3.2].

The power of the approach presented in this paper is already manifest at this stage. Consider a 7-dimensional Euclidean
space Ū equipped with a G2-structure Ψ ∈ Λ3Ū . The latter induces an SU(3)-structure on any codimension-one subspace
U , which may be defined in two ways. One can restrict Ψ to U , so that the inner product V Ψ with a normal vector V
defines a complex structure on U . But it is much simpler to remark that both structures, on Ū and U , correspond to the same
choice of the real spinor φ ∈ ∆.

3. Special Hermitian geometry

The premises now in place, an SU(3)-manifold will be a Riemannian spin manifold (M6, g, φ) equipped with a global
spinor φ of length one. We always denote its spin bundle by Σ and the corresponding Levi-Civita connection by ∇ . The
induced SU(3)-structure is determined by the 3-form ψφ , while the 2-form ω(. , .) = g(. , J.) defines the underlying U(3)-
structure. From now onwards we will drop the symbol for the Clifford product, so X · φ will simply read Xφ.

Definition 3.1. By decomposition (2.1) there exist a unique one-form η ∈ T ∗M6 and a unique section S ∈ End(TM6) such
that

∇Xφ = η(X)j(φ)+ S(X)φ. (3.1)

We call S the intrinsic endomorphism and η the intrinsic 1-form of the SU(3)-manifold (M6, g, φ); this terminology will be
fully justified by Proposition 3.3.

Recall that the geometric features ofM6 are captured [7] (see also [8] and [9]) by the intrinsic torsion Γ which, under

Λ2T ∗M6 ∼= so(6) = su(3)⊕ su(3)⊥,

becomes a one-form with values in su(3)⊥. For instance, nearly Kähler manifolds are those almost Hermitian manifolds for
which Γ , identified with ∇ω ∈ Λ1

⊗ su(3)⊥, is skew: ∇Xω(X, Y ) = 0, ∀ X, Y . The aim is to recover the various SU(3)-
classes (complex, symplectic, lcK. . . ) essentially by reinterpreting the intrinsic torsion using S and η. Besides ψφ , we have a
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second, so-to-speak fundamental 3-form

ψ
J
φ(X, Y , Z) := ψφ(JX, JY , JZ) = −ψφ(JX, Y , Z) = −(XYZφ, j(φ)),

which gives the imaginary part of a Jφ-holomorphic complex 3-form (the real part being ψφ). As a first result, we prove
that the intrinsic torsion can be expressed through S and ψ J

φ , while η is related to ∇ψ
J
φ—thus generalising the well-known

definition of nearly Kähler manifolds cited above.

Lemma 3.2. The intrinsic endomorphism S and the intrinsic 1-form η are related to ∇ω and ∇ψ
J
φ through (X, Y , Z any vector

fields)

(∇Xω)(Y , Z) = 2ψ J
φ(S(X), Y , Z) and 8 η(X) = −(∇Xψ

J
φ)(ψφ).

Proof. We immediately find η = (∇φ, j(φ)). Since j can be thought of as the volume form, it is parallel under ∇ and we
conclude

∇X (j(φ)) = j∇Xφ = jS(X)φ + jη(X)j(φ) = −S(X)j(φ)− η(X)φ.

With ω(X, Y ) = −(Xφ, Yj(φ))we get

−∇Xω(Y , Z) = X(Yφ, Zj(φ))− (∇XYφ, Zj(φ))− (Yφ,∇XZj(φ))
= (Y∇Xφ, Zj(φ))+ (Yφ, Z∇X j(φ)) = (YS(X)φ, Zj(φ))− (Yφ, ZS(X)j(φ))

= −2ψ J
φ(S(X), Y , Z).

Similarly, we compute

∇X (ψ
J
φ)(ψφ) = −X(ψφφ, j(φ))+ (∇Xψφφ, j(φ))

= −(ψφS(X)φ, j(φ))+ (ψφφ, S(X)j(φ))− η(X)(ψφ j(φ), j(φ))+ η(X)(ψφφ, φ)
= 2η(X)(ψφφ, φ) = −8η(X).

This finishes the proof. �

To understand the role of the pair (S, η) better we shall employ the SU(3)-connection

∇
n
XY = ∇XY − Γ (X)(Y ), (3.2)

given by the Levi-Civita connection∇ minus the intrinsic torsion, see [7,9].We shall always use only one symbol for covariant
derivatives on the tangent bundle and their liftings to the spinor bundleΣ , whence for any spinor φ∗

∇
n
Xφ

∗
= ∇Xφ

∗
−

1
2
Γ (X)φ∗.

Proposition 3.3. The intrinsic torsion of the SU(3)-structure (M6, g, φ) is given by

Γ = Syψφ −
2
3
η ⊗ ω

where Syψφ(X, Y , Z) := ψφ(S(X), Y , Z).

Proof. The spinor φ is parallel for ∇
n, as Stab(φ) = SU(3), so ∇Xφ =

1
2Γ (X)φ. By Lemma 2.2 we know that ωφ = −3j(φ),

hence

∇Xφ = S(X)φ + η(X)j(φ) =
1
2
(S(X)yψφ)φ −

1
3
η(X)ωφ.

Since (Xyψφ)(Y , JφZ) = (Xyψφ)(JφY , Z)we see that Xyψφ ∈ su(3)⊥, and as ω ∈ su(3)⊥ the 1-form Syψφ −
2
3η⊗ ω is the

intrinsic torsion of the spin connection. �

Notation 3.4. The original approach to the classification of U(3)-manifolds in [10] was by the covariant derivative of the
Kähler form. In analogy to their result, one calls the seven ‘basic’ irreduciblemodules of an SU(3)-manifold theGray–Hervella
classes. Throughout this paper they will be indicated χ+

1 , χ
−

1 , χ
+

2 , χ
−

2 , χ3, χ4, χ5; for simplicity we often will write
χj, χj̄ for χ

+

j , χ
−

j respectively, and shorten χ+

1 ⊕ χ−

2 ⊕ χ4 to χ12̄4, &c. In [3] the Gray–Hervella classes of SU(3)-manifolds
were derived in terms of the components of the intrinsic torsion, while their identification with the covariant derivatives of
the Kähler form and of the complex volume form may be found in [11].

The following result links the intrinsic endomorphism S and the intrinsic 1-form η (and thus the spinorial field equation
(3.1)) directly to the Gray–Hervella classes χi.
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Lemma 3.5. The basic classes of an SU(3)-structure (M6, g, φ) are determined as follows, where λ,µ ∈ R:

Class Description Dimension

χ1 S = λ Jφ , η = 0 1
χ1̄ S = µ Id, η = 0 1
χ2 S ∈ su(3), η = 0 8
χ2̄ S ∈ {A ∈ S20T

∗M|AJφ = JφA}, η = 0 8
χ3 S ∈ {A ∈ S20T

∗M|AJφ = −JφA}, η = 0 12
χ4 S ∈ {A ∈ Λ2(R6)|AJφ = −JφA}, η = 0 6
χ5 S = 0, η ≠ 0 6

In particular, the class is χ1̄2̄3 if and only if S is symmetric and η vanishes, recovering a result of [4].

3.1. Spinorial characterisation

The description of SU(3)-structures in terms of φ is the main result of this section. To start with, we discuss geometric
quantities that pertain the SU(3)-structure and how they correspond to φ. Denote by D the Riemannian Dirac operator.

Lemma 3.6. The χ4 component of the intrinsic torsion of an SU(3)-manifold is determined by

δω(X) = 2[(Dφ, Xj(φ))− η(X)],

and in particular δω = 0 is equivalent to (Dφ, Xj(φ)) = η(X). The Lee form is given by

θ(X) = δω ◦ J(X) = 2(Dφ, Xφ)− 2η ◦ J(X).

Proof. We have

(∇Xω)(Y , Z) = (ZY∇Xφ, j(φ))+ (ZYφ,∇X j(φ)) = −2(YZ∇Xφ, j(φ))− 2g(Y , Z)η(X),

leading to

δω(X) = −


i

(∇eiω)(ei, X) =


i

(∇eiω)(X, ei)

= −2


i

((Xei∇eiφ, j(φ))− g(X, ei)η(ei))

= −2(XDφ, j(φ))− 2η(X) = 2(Dφ, Xj(φ))− 2η(X). �

We consider the space of all possible types T ∗M6
⊗ φ⊥

∋ ∇φ, where φ⊥
= Rj(φ) ⊕ {Xφ | X ∈ TM6

} is the orthogonal
complement of φ. The Clifford multiplication restricts then to a map

m : T ∗M6
⊗ φ⊥

→ Σ .

Let π : Spin(6) → SO(6) be the usual projection. For any h ∈ Spin(6)we have

m(π(h)η ⊗ hφ∗) = hηh−1hφ∗
= hm(η ⊗ φ∗)

andm is Spin(6)-equivariant and thus SU(3)-equivariant. Comparing the dimensions of the modules appearing in (2.1) and
the ones of Lemma 3.5 we see that χ22̄3 ⊂ Ker (m), and using

Dφ = 6λj(φ) for S = λJφ and Dφ = −6µφ for S = µId

we find correspondences

χ1 → Rj(φ) and χ1̄ → Rφ,
together with (Dφ, j(φ)) = 6λ and (Dφ, φ) = −6µ.

Let us look at χ45 closer: recall that {Jφeiφ, φ, j(φ)}, i = 1, . . . , 6 is a basis of Σ for some local orthonormal frame ei,
hence

Dφ =

6
i=1

(Dφ, Jφeiφ)Jφeiφ + (Dφ, φ)φ + (Dφ, j(φ))j(φ).

With Lemma 3.6 we conclude that

Dφ =

6
i=1

 1
2δω(ei)+ η(ei)


eij(φ)+ 6λj(φ)− 6µφ =

 1
2δω + η


j(φ)+ 6λj(φ)− 6µφ.

Therefore, as image ofm, the component R6 ofΣ is determined by δω + 2η. This line of thought immediately proves
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Theorem 3.7. A 6-dimensional Riemannian spin manifold (M, g) carries a unit spinor φ lying in the kernel of the Dirac operator

Dφ = 0

if and only if it admits an SU(3)-structure of class χ22̄345 with the restriction δω = −2η.
The ‘complementary’ torsion components χ1 and χ1̄ are determined by the scalars

λ =
1
6
(Dφ, j(φ)) = −

1
6
tr(JφS) and µ = −

1
6
(Dφ, φ) =

1
6
tr(S).

One cannot but notice that harmonic spinors can exist on manifolds whose class is the opposite to that of nearly Kähler
manifolds. The consequences of this observation remain – at this stage – to be seen, and will be addressed in forthcoming
work.

The linear combination χ4 + 2χ5 vanishing in the theorem also shows up (up to a choice of volume) in [12] and plays a
role in supersymmetric compactifications of heterotic string theory.

Example 3.8. Consider the Lie algebra g = span{e1, . . . , e6} with structure equations

d⃗ = (e34 + 2e35, e45, 0, 0, 0, e51 + e23)

in terms of the Chevalley–Eilenberg differential dβ(ei, ej) = β[ej, ei],∀β ∈ g. Since the structure constants are rational
the corresponding 1-connected Lie group G contains a co-compact latticeΛ. We consider the spin structure on M6

= G/Λ
determined by choosing φ = (1, 1, 0, 0, 0, 0, 0, 0). This gives us

S = −
1
4


0 0

−2 0
0 1 −1 0
1 0 0 −1

−1 0 0 −1
0 1 1 0

 , η = −
1
2
e1

and it is not hard to see that Dφ = 0. The structure is of class χ22̄345, and the presence of component nr. 5 is reflected in the
non-vanishing η.

Notation 3.9. Recalling Lemma 3.5 we decompose the intrinsic endomorphism into

S = λ Jφ + µ Id + S2 + S34

where Jφ commutes with S2, anti-commutes with S34, and both S2 and JφS2 are trace-free.

The next results discusses the Nijenhuis tensor NJ(X, Y ) = 8Re [X1,0, Y 1,0
]
0,1, whose vanishing tells that M is a complex

manifold. The customary trick in a Riemannian setting is to view it as a three-tensor N(X, Y , Z) = g(NJ(X, Y ), Z) by
contracting with the metric.

Lemma 3.10. The χ11̄22̄ component is controlled by the Nijenhuis tensor

N(X, Y , Z) = −2[ψ J
φ((JφS + SJφ)X, Y , Z)− ψ

J
φ((JφS + SJφ)Y , X, Z)].

Therefore if the class is χ11̄345, the Nijenhuis tensor reads

N(X, Y , Z) = 8[λψ J
φ(X, Y , Z)− µψφ(X, Y , Z)].

Proof. We have g((∇X Jφ)Y , Z) = −(∇Xω)(Y , Z), and from Lemma 3.2

N(X, Y , Z) = −(∇Xω)(JφY , Z)+ (∇Yω)(JφX, Z)− (∇JφXω)(Y , Z)+ (∇JφYω)(X, Z)

= 2[−ψ J
φ(SX, JφY , Z)+ ψ

J
φ(SY , JφX, Z)− ψ

J
φ(SJφX, Y , Z)+ ψ

J
φ(SJφY , X, Z)]

= 2[−ψ J
φ((JφS + SJφ)X, Y , Z)+ ψ

J
φ((JφS + SJφ)Y , X, Z)].

Furthermore for S = λJφ + µId + S34 we have

JφS + SJφ = Jφ(S34 + λJφ + µId)+ (S34 + λJφ + µId)Jφ = −2λId + 2µJφ,

as claimed. �

Eventually, χ11̄34 depends on dω in the following way:

Lemma 3.11. Retaining Notation 3.9 we have

dω(X, Y , Z) = 6λψφ(X, Y , Z)+ 6µψ J
φ(X, Y , Z)+ 2

XYZ
S ψ

J
φ(S34(X), Y , Z).
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Table 3.1
Correspondence of SU(3)-structures and spinorial field equations (see Theorem 3.13).

Class Spinorial equations

χ1 ∇Xφ = λXj(φ) for λ ∈ R
χ1̄ ∇Xφ = µXφ for µ ∈ R
χ2 (JφY∇Xφ, φ) = −(Y∇JφXφ, φ), (Y∇Xφ, j(φ)) = +(X∇Yφ, j(φ)), λ = η = 0
χ2̄ (JφY∇Xφ, φ) = −(Y∇JφXφ, φ), (Y∇Xφ, j(φ)) = −(X∇Yφ, j(φ)), µ = η = 0
χ3 (JφY∇Xφ, φ) = +(Y∇JφXφ, φ), (Y∇Xφ, j(φ)) = +(X∇Yφ, j(φ)), η = 0
χ4 (JφY∇Xφ, φ) = +(Y∇JφXφ, φ), (Y∇Xφ, j(φ)) = −(X∇Yφ, j(φ)), η = 0
χ5 ∇Xφ = (∇Xφ, j(φ))j(φ)
χ11̄ ∇Xφ = λXj(φ)+ µXφ
χ22̄ (JφY∇Xφ, φ) = −(Y∇JφXφ, φ), λ = µ = 0 and η = 0
χ22̄5 (JφY∇Xφ, φ) = −(Y∇JφXφ, φ) and λ = µ = 0
χ11̄22̄ (JφY∇Xφ, φ) = −(Y∇JφXφ, φ) and η = 0
χ11̄22̄5 (JφY∇Xφ, φ) = −(Y∇JφXφ, φ)

χ22̄3 Dφ = 0 and η = 0
χ11̄22̄3 (Dφ, Xφ) = 0 and η = 0
χ11̄22̄34 (∇Xφ, j(φ)) = 0
χ22̄35 (Dφ, Xj(φ)) = η(X) and λ = µ = 0
χ11̄22̄35 (Dφ, Xj(φ)) = η(X)
χ34 (JφY∇Xφ, φ) = (Y∇JφXφ, φ) and η = 0
χ345 (JφY∇Xφ, φ) = (Y∇JφXφ, φ)

χ22̄345 λ = µ = 0
χ1̄2̄3 (X∇Yφ, φ) = (Y∇Xφ, φ) and η = 0

Proof. We have dω(X, Y , Z) =
XYZ
S (∇Xω)(Y , Z), and the fact that

XYZ
S ψ

J
φ(S2(X), Y , Z) vanishes corresponds to dω = 0 in

χ22̄5. �

To attain additional equations in terms of φ, thus completing the picture, we need one last technicality.

Lemma 3.12. The intrinsic tensors (S, η) of a Riemannian spin manifold (M6, g, φ) satisfy the following properties:

S, Jφ commute ⇐⇒ (JφY∇Xφ, φ) = −(Y∇JφXφ, φ),

S, Jφ anti-commute ⇐⇒ (JφY∇Xφ, φ) = (Y∇JφXφ, φ),

S is symmetric ⇐⇒ (X∇Yφ, φ) = (Y∇Xφ, φ),
S is skew-symmetric ⇐⇒ (X∇Yφ, φ) = −(Y∇Xφ, φ).

Proof. As (JφS(X)φ, Yφ) = (SJφ(X)φ, Yφ) if and only if (JφY∇Xφ, φ) = −(Y∇Jφ (X)φ, φ), the first two equivalences are clear.
Since both φ, j(φ) are orthogonal to Yφ, for any Y ∈ TM6, we obtain

g(S(X), Y ) = (∇Xφ, Yφ) and g(X, S(Y )) = (∇Yφ, Xφ)

and hence the remaining formulas. �

Theorem 3.13. The classification of SU(3)-structures in terms of the defining spinor φ is contained in Table 3.1, where

η(X) := (∇Xφ, j(φ))

and λ =
1
6 (Dφ, j(φ)), µ = −

1
6 (Dφ, φ) (as of Theorem 3.7).

Proof. We first prove that λ andµ inχ1 andχ1̄ are constant. Inχ1 wehave S = λJφ and thus∇X (φ+j(φ)) = −λX(φ+j(φ)).
Since a nearly Kähler structure (type χ11̄5) is given by a Killing spinor [1], the function λmust be constant. In the case χ1̄ the
spinors φ and j(φ) themselves are Killing spinors with Killing constants µ, −µ.

We combine the results of Lemma 3.12 as follows. By Lemma 3.5, a structure is of type χ2 if S is skew-symmetric, it
commutes with Jφ , and the trace of JφS and η vanish. The first statement of Lemma 3.12 gives us the condition for S and Jφ to
commute, and the last states that skew-symmetry is equivalent to (X∇Yφ, φ) = −(Y∇Xφ, φ), under which condition the
equation (JφY∇Xφ, φ) = −(Y∇JφXφ, φ) is equivalent to

(Y∇Xφ, j(φ)) = (X∇Yφ, j(φ)).

The other classes can be calculated similarly, making extensive use of Lemmas 3.6, 3.12. �

It makes little sense to compute all possible combinations (in principle, 27), so we listed only those of some interest. Others
can be inferred by arguments of the following sort. Suppose we want to show that class χ124 has (X∇Yφ, φ) = −(Y∇Xφ, φ)
and η = 0 as defining equations. ¿From Lemma 3.5 we know χ124 is governed by the skew-symmetry of S, and at the same
time η controls χ5, whence the claim is straightforward. Another example: assume we want to show that

3λψφ(X, Y , Z)+ 3µψ J
φ(X, Y , Z)+

XYZ
S (YZ∇Xφ, j(φ))+

XYZ
S η(X)g(Y , Z) = 0
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is an alternative description of χ11̄22̄5. ¿From Lemma 3.11 we know that dω = 6λψφ + 6µψ J
φ defines that class, so we

conclude by using dω(X, Y , Z) =
XYZ
S (∇Xω)(Y , Z) and the first equality in the proof of Lemma 3.6.

Remarks 3.14. (i) The proof above shows that the real Killing spinors of an SU(3)-structure of class χ11̄ (with Killing
constants ±|λ|) necessarily have the form φ ± j(φ) in case χ1, and φ, j(φ) in case χ1̄. Now notice that a rotation of φ
to φ cosα + j(φ) sinα, for some function α, affects the intrinsic tensors as follows:

S  S cos(2α)+ Jφ ◦ S sin(2α), η  η + dα.

The χ5 component varies, and χ±

i , i = 1, 2 change, too [3].
In class χ1̄23 we have the constraintDφ = f φ, so φ is an eigenspinor with eigenfunction f . (One can alter φ so to have it in

χ11̄22̄3.) Therefore, if we are after a Killing spinor (class χ11̄), the eigenfunction f necessarily determines the fifth component
η = −dα. In Section 6 we will treat cases where f = h is a constant map.

(ii) It is fairly evident (cf. [3]) that the effect of modifying S  JS is to exchange χ+

j and χ−

j , j = 1, 2, whilst the
other components remain untouched. As such it corresponds to a π/2-rotation in the fibres of the natural circle bundle
RP7

−→ CP3.

Example 3.15. The twistor spacesM6
= CP3, U(3)/U(1)3 of the self-dual Einsteinmanifolds S4 andCP2 are very interesting

from the spinorial point of view. As is well known, both carry a one-parameter family of metrics gt compatible with two
almost complex structures ΩK,ΩnK, in such a way that in a suitable, but pretty standard normalisation (M6, g1/2,ΩnK) is
nearly Kähler and (M6, g1,ΩK) is Kähler [13]. The two almost complex structures differ by an orientation flip on the two-
dimensional fibres. Here is a short and uniform description of both instances. We choose the spin representation used in
[14, Sect. 5.4], whereby the Riemannian scalar curvature of gt is

Scalt = 2c(6 − t + 1/t)

where c is a constant (equal to 1 for CP3 and c = 2 for U(3)/U(1)3, due to an irrelevant yet nasty factor of 2 in standard
normalisations). Using an appropriate orthonormal frame the orthogonal almost complex structures read

ΩK
= e12 − e34 − e56, ΩnK

= e12 − e34 + e56.

There exist two linearly independent and isotropy-invariant real spinors φε in∆ (ε = ±1), which define global spinor fields
on the two spaces. On can prove directly that the φε induce the same Jφ , corresponding toΩnK, and also the 3-forms

ψε := ψφε = ε(e135 + e146 − e236 + e245) =: εΨ .

When t = 1/2, φε are known to be Killing spinors. For a generic t ≠ 0 let us define the symmetric endomorphisms
Sε : TM6

→ TM6

Sε = ε
√
c · diag

√
t

2
,

√
t

2
,

√
t

2
,

√
t

2
,
1 − t

2
√
t
,
1 − t

2
√
t


.

An explicit calculation shows that φε solve

∇Xφε = Sε(X) φε,

making them generalised Killing spinors. In particular, Sε are the intrinsic endomorphisms and η = 0; observe that Sε
commute with ΩnK due to their block structure. By Lemma 3.5 the SU(3)-structure defined by φε is therefore of class χ1̄2̄
for t ≠ 1/2, and reduces to class χ1̄ when t = 1/2.

The spinors φε are eigenspinors of the Riemannian Dirac operator D with eigenvalues 6µ = trSε = ε
√
c t+1

√
t
; they

coincide, as they should, with the limiting values of Friedrich’s general estimate [15]when t = 1/2, and Kirchberg’s estimate
for Kähler manifolds [16] for t = 1.

A further routine calculation shows that

∇eiΩ
nK

=

−
√
ctJeiyΨ 1 6 i 6 4

−

√
c (1 − t)

√
t

JeiyΨ i = 5, 6.

Hence, we conclude that ∇XΩ
nK

= −2JSε(X)yψε holds, as it should by Lemma 3.2.
Let us finishwith a comment on the Kähler structures (t = 1). Kirchberg’s equality is attained in odd complex dimensions

by a pair of so-called Kählerian Killing spinors, basically φ1, φ−1 [17]. These, however, do not induceΩK, rather the ‘wrong’
almost complex structureΩnK. Thismeans two things: first, the Kähler structure cannot be recovered from the twoKählerian
Killing spinors; secondly, it reflects the fact that the Killing spinors do not define a ‘compatible’ SU(3)-structure. For the
projective space this stems from our description of CP3 as SO(5)/U(2), on which there is no invariant spinor inducingΩK.
In the other case the reason is that every almost Hermitian structure on the flag manifold is SU(3)-invariant [18].
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3.2. Adapted connections

Let (M6, g, φ) be an SU(3)-manifold with Levi-Civita connection ∇ . As we are interested in non-integrable structures,
∇φ ≠ 0, we look for a metric connection that preserves the SU(3)-structure. The canonical connection defined in (3.2) is one
such instance.

The space of metric connections is isomorphic to the space of (2, 1)-tensors Ag
:= TM6

⊗ Λ2(TM6) by ∇̃XY = ∇XY +

A(X, Y ). Define the map

Ξ : TM6
⊕ End(TM6) → Ag , (η, S) → −Syψφ +

2
3
η ⊗ ω

where S, η are the intrinsic tensors of the SU(3)-structure on M6. Then ∇
n
XY := ∇XY + Ξ(η, S) is a metric connection on

M6, and we get

∇
n
Xφ = ∇Xφ − ψφ

1
2 (S(X), ., .) · φ +

1
3η(X)ω · φ

= S(X) · φ + η(X)j(φ)− S(X) · φ − η(X)j(φ) = 0

by Lemma 2.2, showing that ∇
n is an SU(3)-connection. The space Ag splits under the representation of SO(n) (see

[19, p. 51] and [20]) into

Ag
= TM6

⊕Λ3(TM6)⊕ T ,

whose summands are referred to as vectorial, skew-symmetric and cyclic traceless connections. A computer algebra system
calculates the mapΞ at one point and gives

Lemma 3.16. The ‘pure’ classes of an SU(3)-manifold M6 correspond to ∇
n in:

Class of M6 χ11̄ χ22̄ χ3 χ4 χ5

Type of∇n Λ3 T Λ3
⊕ T TM6

⊕Λ3
⊕T TM6

⊕Λ3
⊕T

The projection to the skew-symmetric part of the torsion given in the previous lemma generates the so-called characteristic
connection ∇

c . This is a metric connection that preserves the SU(3)-structure and additionally has the same geodesics as ∇ .
If an SU(3)-manifold admits such a connection, we know from [21] that the χ22̄ part of the intrinsic torsion vanishes.

We are interested in finding out whether and when an SU(3)-manifold (M6, g, φ) admits a characteristic connection,
that is to say when

∇
cψφ = 0.

Any connection doing thatmust be the (unique) characteristic connection of the underlying U(3)-structure, so to begin with
the SU(3)-class must necessarily be χ11̄345. What is more,

Lemma 3.17. Given an SU(3)-manifold (M6, g, φ), a connection with skew torsion ∇̃ is characteristic if and only if it preserves
the spinor φ.

Proof. Obvious, but just for the record:∇c is an SU(3)-connection, and SU(3) = Stab(φ) forces φ to be parallel. Conversely,
if φ is ∇̃-parallel, the connection must preserve any tensor arising in terms of the spinor, like ω and ψφ , cf. Lemma 3.2. To
conclude, just recall that the characteristic connection is unique [21,22]. �

To obtain the ultimate necessary & sufficient condition we need to impose an additional constraint on χ4, χ5:

Theorem 3.18. A Riemannian spin manifold (M6, g, φ) admits a characteristic connection if and only if it is of class χ11̄345 and
4η = δ ω.

Proof. Let ∇
c be the U(3)-characteristic connection, T its torsion. We shall determine in which cases ∇

cφ = ∇
c j(φ) = 0.

First of all

0 = (∇c
Xω)(Y , Z) = −2(∇c

Xφ, ZYj(φ))− 2g(Y , Z)(∇c
Xφ, j(φ)).

Consequently (∇c
Xφ, ZYj(φ)) = 0 if Y ⊥ Z . But as Y ⊥ Z vary, the spinors YZj(φ) span φ⊥. In conclusion, ∇c is characteristic

for the SU(3)-structure iff (∇c
Xφ, j(φ)) = 0. Now choose a local adapted basis e1, . . . , e6 with Jφei = −ei+1, i = 1, 3, 5.

Using the formula

∇
c
Xφ = ∇Xφ +

1
4
(Xy T )φ
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and ω(X, Y ) = −(XYφ, j(φ)) we arrive at 4η(X) = −(Xy Tφ, j(φ)) = ω(Xy T ) = T (ω, X) = −1/2


T (ei, Jφei, X), and
eventually

4η(X) = −
1
2

6
i=1

T (ei, Jei, X) = −

6
i=1

(∇eiω)(ei, X) = δω(X)

because 0 = (∇c
Xω)(Y , Z) = (∇Xω)(Y , Z)−

1
2 (T (X, JφY , Z)+ T (X, Y , JφZ)). �

The next theorem gives an explicit formula for the torsion of ∇
c . It relies on the computation for the Nijenhuis tensor of

Lemma 3.10.
SupposeM6 is of class χ11̄345, and decompose the intrinsic endomorphism into

S = λJφ + µId + S34,

as explained in Notation 3.9.

Theorem 3.19. Suppose (M6, g, φ) is of class χ11̄345. Then the characteristic torsion of the induced U(3)-structure reads

T (X, Y , Z) = 2λψ J
φ(X, Y , Z)− 2µψφ(X, Y , Z)− 2

XYZ
S ψφ(S34(X), Y , Z).

If η =
1
4δω, T is the characteristic torsion of the SU(3)-structure as well.

Proof. From Lemma 3.11 we infer

dω ◦ Jφ(X, Y , Z) = 6λψ J
φ(X, Y , Z)− 6µψφ(X, Y , Z)+ 2

XYZ
S ψφ(S34(X), Y , Z).

The formula T = N − dω ◦ J (see [21]) together with Lemma 3.10 allows to conclude. �

Remark 3.20. For the class χ11̄, the torsion T c of the characteristic connection is parallel (for nearly Kähler manifolds,
compare [23,24]). For such G-manifolds, the 4-form σT :=

1
2


i(eiyT ) ∧ (eiyT ) encodes a lot of geometric information.

It is indeed equal to dT/2, it measures the non-degeneracy of the torsion, and it appears in the Bianchi identity, the Nomizu
construction, and the identity for T 2 in the Clifford algebra (see [25] where all these aspects are addressed). For the class
χ11̄, an easy computation shows

σT = λ dψ J
φ − µ dψφ = 12(λ2 + µ2) ∗ ω,

thus confirming the statement that σT encodes much of the geometry: it is basically given by the Kähler form.

Example 3.21. Take the real 6-manifoldM = SL(2,C) viewed as the reductive space

SL(2,C)× SU(2)
SU(2)

= G/H

with diagonal embedding. Let g, h be the Lie algebras of G and H , and set g = h ⊕ m, so that

m = {(A, B) ∈ g | A − Āt
= 0, trA = 0, B + B̄t

= 0, trB = 0}.

The almost complex structure

J(A, B) = (iA, iB)

defines a U(3)-structure of class χ3, see [24]. The characteristic connection ∇
c

= ∇ +
1
2T preserves a spinor φ, so ∇

c is
also characteristic for the induced SU(3)-structure, which is of class χ35. By Theorem 3.18 we have η = 0, so actually the
SU(3)-class is χ3. But then φ is harmonic.

The following result shows that this reflects a more general fact:

Corollary 3.22. Whenever ∇
c exists,

φ ∈ KerD ⇐⇒ Tφ = 0 ⇐⇒ the SU(3)-class is χ3.

Proof. By Lemma 3.17, φ is ∇
c-parallel; since the Riemannian Dirac operator and the Dirac operator Dc of ∇

c are related
by Dc

= D +
3
4T , the first equivalence follows. The equivalence of the first and the last statement is a direct consequence of

Theorems 3.7, 3.18. �

Example 3.21 satisfies Tφ = 0, as shown in [24], so the first condition should be employed if more convenient. This example
also shows that there exist SU(3)-structures different from type χ11̄5 (namely, χ3) whose torsion is parallel.
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4. G2 geometry

Let (M7, g, φ) be a Riemannian manifold with a globally defined unit spinor φ, inducing a G2-structure Ψφ and the cross
product ×:

Ψφ(X, Y , Z) := (XYZφ, φ) =: g(X × Y , Z).

We recall two standard properties (see [26] or [5]):

Lemma 4.1. The cross product and the 3-form Ψφ satisfy the identities

(1) (X × Y )φ = −XYφ − g(X, Y )φ
(2) ∗Ψφ(V ,W , X, Y ) = Ψφ(V ,W , X × Y )− g(V , X)g(W , Y )+ g(V , Y )g(W , X).

Motivated by the fact that {Xφ | X ∈ TM7
} = φ⊥, cf. (2.2), we have

Definition 4.2. There exists an endomorphism S of TM7 satisfying

∇Xφ = S(X)φ (4.1)

for every tangent vector X onM7, called the intrinsic endomorphism of (M7, g, φ).

Lemma 4.3. The intrinsic endomorphism S satisfies

(∇VΨφ)(X, Y , Z) = 2 ∗ Ψφ(S(V ), X, Y , Z).

Proof. We calculate

(∇VΨφ)(X, Y , Z) = (XYZ∇Vφ, φ)+ (XYZφ,∇Vφ)

= (XYZS(V )φ, φ)− (S(V )XYZφ, φ)
= 2(XYZS(V )φ, φ)− 2g(S(V ), Z)g(X, Y )+ 2g(S(V ), Y )g(X, Z)− 2g(S(V ), X)g(Y , Z).

With Lemma 4.1 we get

2 ∗ Ψφ(S(V ), X, Y , Z)
= −2[(XY (Z × S(V ))φ, φ)− g(X, Z)g(S(V ), Y )+ g(X, S(V ))g(Y , Z)]
= 2(XYZS(V )φ, φ)− 2g(Z, S(V ))g(X, Y )+ 2g(X, Z)g(S(V ), Y )− 2g(X, S(V ))g(Y , Z). �

Proposition 4.4. The intrinsic torsion of the G2-structure Ψφ is

Γ = −
2
3
SyΨφ

where SyΨφ(X, Y , Z) := Ψφ(S(X), Y , Z).

Proof. Immediate from Lemma 2.3, for 1
2Γ (X)φ = ∇Xφ = S(X)φ = −

1
3 (S(X)yΨφ)φ. �

To classify G2-structures one looks at endomorphisms of R7

End(R7) = R ⊕ S20R7
⊕ g2 ⊕ R7,

where S20R7 denotes symmetric, traceless endomorphisms of R7. The original approach to the classification of G2-structures
by Fernández–Gray [26] was by the covariant derivative of the 3-form Ψφ . In [9] it was explained how the intrinsic torsion
of G2-manifolds can be identified with End(R7), thus yielding an alternative approach to the Fernández–Gray classes. The
following result links the intrinsic endomorphism (and thus the spinorial field equation (4.1)) directly to the Fernández–Gray
classes.

Lemma 4.5. G2-structures fall into four basic types:

Class Description Dimension

W1 S = λ Id 1
W2 S ∈ g2 14
W3 S ∈ S20R7 27
W4 S ∈ {VyΨφ | V ∈ R7

} 7

In particular, S is symmetric if and only if S ∈ W1 ⊕ W3 and skew iff it belongs in W2 ⊕ W4.
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Table 4.1
Correspondence of G2-structures and spinorial field equations (see Theorem 4.8).

Class Spinorial equation

W1 ∇Xφ = λXφ
W2 ∇X×Yφ = Y∇Xφ − X∇Yφ + 2g(Y , S(X))φ
W3 (X∇Yφ, φ) = (Y∇Xφ, φ) and λ = 0
W4 ∇Xφ = XVφ + g(V , X)φ for some V ∈ TM7

W12 ∇X×Yφ = Y∇Xφ− X∇Yφ+ g(Y , S(X))φ− g(X, S(Y ))φ− λ(X × Y )φ
W13 (X∇Yφ, φ) = (Y∇Xφ, φ)

W14 ∃V ,W ∈ TM7: ∇Xφ = XVWφ − (XVWφ, φ)φ
W23 Sφ = 0 and λ = 0, or Dφ = 0
W24 (X∇Yφ, φ) = −(Y∇Xφ, φ)

W34 3(Xφ,∇Yφ)− 3(Yφ,∇Xφ) = (Sφ, XYφ) and λ = 0
W123 (Sφ, Xφ) = 0, or Dφ = −7λφ
W124 (Y∇Xφ, φ)+ (X∇Yφ, φ) = −2λg(X, Y )
W134 3(Xφ,∇Yφ)− 3(Yφ,∇Xφ) = (Sφ, XYφ)− 7λg(X, Y )
W234 λ = 0

4.1. Spin formulation

By identifying TM7 ∼= φ⊥ we obtain the isomorphism T ∗M7
⊗ TM7 ∼= T ∗M7

⊗ φ⊥, given explicitly by

η ⊗ X → η ⊗ Xφ.

This enables us to describe the tensor product directly, through φ.
As in the SU(3) casewewill shortenW1⊕W3⊕W4 toW134 and so on. The restricted Clifford productm : T ∗M7

⊗φ⊥
→ ∆

decomposes the space W1234, as prescribed by the next result.

Theorem 4.6. Let (M7, g, φ) be a Riemannian spin manifold with unit spinor φ. Then φ is harmonic

Dφ = 0

if and only if the underlying G2-structure is of class W23.

Proof. First of all, the spin representation splits as∆ = Rφ ⊕ φ⊥
= W14, so we may write the intrinsic-torsion space as

TM7
⊗ φ⊥

= ∆⊕ W23.

Yet themultiplicationm is G2-equivariant, so Kerm = {


ij aijei ⊗ ejφ | (aij) ∈ S20R7
} = W23, and the assertion follows from

the definition of D = m ◦ ∇ . �

Lemma 4.7. In terms of φ the module W24 depends on
1
2δΨφ(X, Y ) = (Xφ,∇Yφ)− (Yφ,∇Xφ)+ (Dφ, XYφ)+ g(X, Y )(Dφ, φ).

Proof. To prove the claim we simply calculate, in some orthonormal basis e1, . . . , e7,

δΨφ(X, Y ) = −


(∇eiΨφ)(ei, X, Y ) = −


[(XYei∇eiφ, φ)+ (XYeiφ,∇eiφ)]

= −(XYDφ, φ)−


[−2g(ei, Y )(Xφ,∇eiφ)+ 2g(ei, X)(Yφ,∇eiφ)+ (eiXYφ,∇eiφ)]

= 2(Dφ, XYφ)+ 2(Xφ,∇Yφ)− 2(Yφ,∇Xφ)+ 2g(X, Y )(Dφ, φ). �

At this point the complete picture is at hand.

Theorem 4.8. The basic classes of G2-manifolds are described by the spinorial field equations for φ as in Table 4.1. Here,
λ := −

1
7 (Dφ, φ) : M → R is a real function, × denotes the cross product relative to Ψφ , and

Sφ :=


i,j

g(ei, S(ej))eiejφ.

Proof. The proof relies on standard properties, like the fact that S is symmetric if and only if (X∇Yφ, φ) = (Y∇Xφ, φ). It
could be recovered by going through the original argument of [26], but we choose an alternative approach.

For W1 there is actually nothing to prove, for the given equation is nothing but the Killing spinor equation characterising
this type of manifolds [27,14].
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The endomorphism S lies in W2 if and only if S(X × Y ) = S(X)× Y + X × S(Y ). Then

∇X×Yφ = (−Y × S(X)+ X × S(Y ))φ
= YS(X)φ + g(Y , S(X))φ − XS(Y )φ − g(X, S(Y ))φ
= Y∇Xφ − X∇Yφ + 2g(S(X), Y )φ.

By taking the dot product with φ we re-obtain that S is skew-symmetric.
For W3 we use Lemma 4.7:

1
2δΨφ(X, Y ) = (Dφ, XYφ)+ g(X, Y )(Dφ, φ)+ (Xφ,∇Yφ)− (Yφ,∇Xφ).

This fact together with tr S = −(Dφ, φ) allows to conclude.
Suppose S ∈ W4. The vector representationR7 is {V × . | V ∈ R7

}, so if S is represented by V we have∇Xφ = (V ×X)φ =

−VXφ − g(V , X)φ = XVφ + g(V , X)φ.
As for the remaining ‘mixed’ types, we shall only prove what is not obvious. For type W12, S is of the form S = λId + S ′,

where S ′
∈ g2. Thus,

∇X×Yφ = λ(X × Y )φ + S ′(X × Y )φ.

The first termmay be rewritten using Lemma 4.1(1), while we deal with the second basically as we did in the pure W2 case.
A clever rearrangement of terms then yields the desired identity.

By [26] a structure is of type W23 if (Dφ, φ) = 0 and 0 =
1
2


i,j δΨφ(ei, ej)Ψφ(ei, ej, X). This is equivalent to

0 =


i,j

[(Dφ, eiejφ)− 7g(ei, ej)λ+ (eiφ, S(ej)φ)− (ejφ, S(ei)φ)](eiejXφ, φ)

= −


i,j

(Dφ, eiejφ)(eiejφ, Xφ)+ 2

i,j

(eiφ, S(ej)φ)(eiejXφ, φ).

As {eiejφ | i, j = 1, . . . , 7} spans∆, we obtain


i,j(φ
∗, eiejφ)eiejφ = 6φ1 + (φ∗, φ)φ. Define

Sφ :=


i,j

g(ei, S(ej))eiejφ

and get 0 = −6(Dφ, Xφ)− 2(Sφ, Xφ). Therefore 3Dφ = −Sφ holds on φ⊥. If λ = 0 we then have

(Sφ, φ) =


g(ei, S(ej))(eiejφ, φ) = −


g(ei, S(ei)) = (Dφ, φ) = 0.

A structure is of type W34 if (Dφ, φ) = 0 and

3δΨφ(X, Y ) =
1
2


i,j

δΨφ(ei, ej)Ψφ(ei, ej, X × Y ).

Due to the calculation above, the right-hand side equals

−6(Dφ, (X × Y )φ)− 2(Sφ, (X × Y )φ) = 6(Dφ, XYφ)− 42g(X, Y )λ+ 2(Sφ, XYφ)+ 2g(X, Y )(Sφ, φ).

As

3δΨφ(X, Y ) = 6(Dφ, XYφ)− 42g(X, Y )λ+ 6(Xφ,∇Yφ)− 6(Yφ,∇Xφ),

the defining equation is equivalent to

3(Xφ,∇Yφ)− 3(Yφ,∇Xφ) = (Sφ, XYφ)− 7g(X, Y )λ

and if λ = 0 we get 3(Xφ,∇Yφ)− 3(Yφ,∇Xφ) = (Sφ, XYφ).
As for W124, note that S satisfies (Y∇Xφ, φ) + (X∇Yφ, φ) = −2g(X, Y )λ if it is skew. If symmetric, instead, it satisfies

the equation iff g(X, S(Y )) = g(X, Y )λ, i. e. if S = λ Id. �

Remark 4.9. The spinorial equation for W4 defines a connection with vectorial torsion [28]. This is a G2-connection, since
φ is parallel by construction.

4.2. Adapted connections

Let (M7, g, φ) be a 7-dimensional spin manifold. As usual we identify (3, 0)- and (2, 1)-tensors using g . The prescription

∇
n

:= ∇ +
2
3
SyΨφ
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defines a natural G2-connection, since (XyΨφ)φ = −3Xφ, Ψφφ = 7φ and Ψφφ∗
= −φ∗,∀φ∗

⊥ φ. Abiding by Cartan’s
formalism, the set of metric connections is isomorphic to

R7
Λ1R7

⊕ (R ⊕ R7
⊕ S20R7)  

Λ3R7

⊕ (g2 ⊕ S20R7
⊕ R64)  

T

under G2, and this immediately yields the analogous statement to Lemma 3.16:

Lemma 4.10. The ‘pure’ classes of a G2-manifold (M7, g, φ) correspond to ∇
n in:

Class of M7 W1 W2 W3 W4

type of∇n Λ3 T Λ3
⊕T TM7

⊕Λ3

Connections of type T are rarely considered, although calibrated G2-structures (W2) have an adapted connection of this
type [29].

Among G2-connections there exists atmost one connection∇
c with skew-symmetric torsion T c . Thereforewemaywrite

S = λ Id + S3 + S4 ∈ W1 ⊕ W3 ⊕ W4

with S3 ∈ S20TM
7 and S4 = VyΨφ for some vector V .

Proposition 4.11. Let (M7, g, φ) be a G2-manifold of type W134. The characteristic torsion reads

T c(X, Y , Z) = −
1
3

XYZ
S Ψφ((2λId + 9S3 + 3S4)X, Y , Z).

Proof. Consider the projections

T ∗M7
⊗ g⊥

2
κ

−→ Λ3(T ∗M7)
Θ

−→ T ∗M7
⊗ g⊥

2

Ψφ(SX, Y , Z)
κ

−→
1
3

XYZ
S Ψφ(SX, Y , Z), T

Θ
−→


i

ei ⊗ (eiy T )g⊥
2
.

A little computation shows that the composite Θ ◦ κ is the identity map, with eigenvalues 1, 0, 2/9, 2/3 on the four
summands Wi. But from [21] we know that if −2Γ = Θ(T ) for some 3-form T , then T is the characteristic torsion. �

5. Hypersurface theory

Let (M̄7, ḡ, φ) be a G2-manifold andM6 a hypersurface with transverse unit direction V

TM̄7
= TM6

⊕ ⟨V ⟩ . (5.1)

By restriction the spinor bundle Σ̄ of M̄7 gives a Spin(6)-bundleΣ overM6, and so the Clifford multiplication · ofM6 reads

X · φ = VXφ

in terms of the one on M̄7 (whose symbol we suppress, as usual). This implies, in particular, that any σ ∈ Λ2kM6
⊂ Λ2kM̄7

of even degree will satisfy σ · φ = σφ. This notation was used in [30] to describe almost Killing spinors (see Section 7).
Caution is needed because this is not the same as X · φ = Xφ described in Section 2 for comparing Clifford multiplications.

The second fundamental form g(W (X), Y ) of the immersion (W is the Weingarten map) accounts for the difference
between the two Riemannian structures, and in Σ̄ we can compare

∇̄Xφ = ∇Xφ −
1
2
VW (X)φ.

A global spinor φ on M̄7 (a G2-structure) restricts to a spinor φ on M6 (an SU(3)-structure). The next lemma explains how
both the almost complex structure and the spin structure are, essentially, induced by φ and the unit normal V .

Lemma 5.1. For any section φ∗
∈ Σ and any vector X ∈ TM6

(1) Vφ∗
= j(φ∗)

(2) VXφ = (JφX)φ.

Proof. The volume form σ7 satisfies σ7φ∗
= −φ∗ for any φ∗

∈ Σ . Therefore Vj(Xφ) = σ7(Xφ) = −Xφ. �

This lemma is, at the level of differential forms, prescribing the rule VyΨφ = −ω.



I. Agricola et al. / Journal of Geometry and Physics 98 (2015) 535–555 549

Proposition 5.2. With respect to decomposition (5.1) the intrinsic G2-endomorphism of M̄7 has the form

S̄ =


JφS −

1
2
JφW ∗

η ∗∗


(5.2)

where (S, η) are the intrinsic tensors of M6, Jφ the almost complex structure, W the Weingarten map of the immersion.

Proof. This result was first proved in [4] using the Cartan–Kählermachinery. Our argument is much simpler: the definitions
imply ∇Xφ = VS(X)φ + η(X)Vφ, and invoking Lemma 5.1 we infer ∇̄Xφ = ∇Xφ −

1
2VW (X)φ = JφS(X)φ −

1
2 JφW (X)φ +

η(X)Vφ. �

The starred terms in (5.2) should point to the half-obvious fact that the derivative ∇Vφ cannot be reconstructed from S and
η. As a matter of fact, later we will show that the bottom row of S̄ is controlled by the product (∇φ, Vφ), so that the entry
∗∗ vanishes when ∇Vφ = 0.

Now we are ready for the main results, which explain how to go from M6 to M̄7 (Theorem 5.4) and backwards
(Theorem 5.5). The run-up to those requires a preparatory definition.

Recall that the Weingarten endomorphismW is symmetric if the SU(3)-structure is half-flat (Lemma 3.5). Motivated by
this

Definition 5.3. We say that a hypersurfaceM6
⊂ M̄7 has

(0) type zero ifW is the trivial map (meaning ∇̄ = ∇),
(I) type one ifW is of class χ1̄,
(II) type two ifW is of class χ2̄,
(III) type three ifW is of class χ3.

Due to the freedom in choosing entries in (5.2), we will take the easiest option (probably also the most meaningful one,
geometrically speaking) and consider only embeddings where ∇Vφ = 0.

Theorem 5.4. Embed (M6, g, φ) in some (M̄7, ḡ, φ) as in (5.1), and suppose the G2-structure is parallel in the normal direction:
∇̄Vφ = 0.

Then the classes Wα of (M̄7, ḡ, φ) depend on the column position (the class of M6) and the row position (theWeingarten type
of M6) as in the table

χ1 χ1̄ χ2 χ2̄ χ3 χ4 χ5

0 W13 W4 W3 W2 W3 W24 W234
I W134 W4 W34 W24 W34 W24 W234
II W123 W24 W23 W2 W23 W24 W234
III W13 W34 W3 W23 W3 W234 W234

Proof. Let A be an endomorphism of R6 and θ a covector. Then Ā =


JφA 0
θ 0


is of type W4 iff θ = 0 and A is a multiple of

the identity, since Jφ is given by g(X, JφY ) =
1
2Ψφ(V , X, Y ).

With similar, easy arguments one shows that the type of Ā =


JφA 0
θ 0


is determined by the class of the intrinsic tensors

(A, θ) on M6 in the following way:

(A, θ) ∈ χ1 χ1̄ χ2 χ2̄ χ3 χ4 χ5

(JφA, θ) ∈ χ1̄ χ1 χ2̄ χ2 χ3 χ4 χ5

Ā ∈ W13 W4 W3 W2 W3 W24 W234

Now the theorem can be proved thus: consider for example (S, η) of class χ3 on a hypersurface of type I. Then

JφS 0
η 0


has

class W3, and since W is a multiple of the identity

JφW 0
0 0


has class W4. This immediately gives S̄ =


JφS −

1
2
JφW 0

η 0


, so

the class of the G2-structure is W34. All other cases are analogous. �

With that in place we can now do the opposite: start from the ambient space (M̄7, ḡ, φ) and infer the structure of its
codimension-one submanifoldsM6. By inverting formula (5.2) we immediately see

S = −Jφ S̄

TM6 +

1
2
W , η(X) = g(S̄X, V )

for any X ∈ TM6. The next, final result on hypersurfaces can be found, in a different form, in [31, Sect. 4].
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Theorem 5.5. Let (M̄7, ḡ, φ) be a Riemannian spin manifold of class Wα . Then a hypersurface M6 with normal V ∈ TM̄7 carries
an induced spin structure φ: its class is an entry in the matrix below that is determined by the column (Weingarten type) and row
position (Wα)

W1 W2 W3 W4

0 χ1 χ1245 χ1235 χ145
I χ11 χ1245 χ11235 χ145
II χ12 χ1245 χ12235 χ1245
III χ13 χ12345 χ1235 χ1345

Proof. In order to proceed as in Theorem 5.4, we prove that the class of an endomorphism Ā =


JφA ∗

θ ∗


on R7 determines

the class of (A, θ) on R6 in the following way:

Ā ∈ W1 W2 W3 W4

(A, θ) ∈ χ1 χ1245 χ1235 χ145

If Ā ∈ W1 we have Ā = λ Id and hence θ = 0 and A = λJφ .
If Ā ∈ W2 then JφA is skew-symmetric, and A has type χ124.

If Ā is of type W3 it follows S̄ =


JφA η

η −tr(JφA)


for some symmetric JφA. Therefore JA is of type χ123, implying the type

χ123 for A.
Suppose Ā ∈ W4, so there is a vector Z such that g(X, ĀY ) = Ψφ(Z, X, Y ), whence

(XYZφ, φ) = (ĀYφ, Xφ)

for every X, Y ∈ R7. Restrict this equation to X, Y ∈ R6 and put Z = λV + Z1, Z1 ∈ R6. Then JφA = λJφ + A1 with
(XYZ1φ, φ) = (A1Yφ, Xφ). Since A1 is skew we have

g(X, A1JφY ) = (Z1XJφYφ, φ) = (Z1XVYφ, φ) = −(Z1YVXφ, φ)
= −(Z1YJφXφ, φ) = −g(Y , A1JφX) = −g(X, JφA1Y ),

so A1Jφ = −JφA1 and A1 has type χ4. Eventually, JφA ∈ χ14. �

The above table explains why we cannot have a W1-manifold if the derivative of φ along V vanishes. Moreover, in case
∇Vφ = 0 the χ5 component disappears everywhere, simplifying the matter a little.

Theorems 5.4 and 5.5 amend a petty mistake in [3, Thm 3.1] that was due to a (too) special choice of local basis.

6. Spin cones

We wish to explain how one can construct G2-structures, of any desired class, on cones over an SU(3)-manifold. The
recipe, which is a generalisation of the material presented in [5], goes as follows.

As usual, start with (M6, g, φ) with intrinsic torsion (S, η). Choose a complex-valued function h : I → S1 ⊂ C defined
on some real interval I . Setting

φt := h(t)φ := Re h(t)φ + Im h(t)j(φ)

gives a new family of SU(3)-structures on M6 depending on t ∈ I , and j(φ)t = j(φt) = h(t)j(φ). The product of a
complex number a ∈ C with an endomorphism A ∈ End(TM) is defined as aA = (Re a)A + (Im a)JφA. Then h(A(X)φ∗) =

(hA)(X)φ∗
= A(X)h̄φ∗ for any spinor φ∗. The first observation is that the intrinsic torsion of (M6, g, φt) is given by (h2S, η)

(cf. Remarks 3.14(ii), with f = h constant on M6), because

∇Xφt = h∇Xφ = h(S(X) · φ)+ hη(X)j(φ)
= (hS)(X) · (h̄hφ)+ η(X)j(φ)t = (h2S)(X) · φt + η(X)j(φ)t .

If we rescale the metric conformally by some positive function f : I → R+, we may consider

M6
t := (M6, f (t)2g, φt).

Note that M6 and M6
t have the same Levi-Civita connection and spin bundle Σ , but distinct Clifford multiplications · , ·t ,

albeit related by X · φ∗
=

1
f (t)X ·t φ

∗,∀φ∗. As

∇Xφt = h2S(X) · φt + η(X)j(φ)t =
h2
f S(X) ·t φt + η(X)j(φ)t ,

the intrinsic torsion ofM6
t gets rescaled as ( h

2

f S, η).
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Definition 6.1. The metric cone

(M̄7, ḡ) = (M6
× I, f (t)2g + dt2)

equipped with spin structure φ̄ := φt will be referred to as the spin cone overM6. The article [5] considered a version of this
construction where f (t) = t .

The Levi-Civita connection ∇̄
t of the cone reads

∇̄XY = ∇XY −
f ′(t)
f (t)

ḡ(X, Y )∂t

for X, Y ∈ TM6, whence the Weingarten map isW = −
f ′

f Id. Furthermore,

∇̄∂t φ̄ = ∇̄∂t hφ = h′φ = −ih′j(φ) = −i
h′

h
hVφ = −i

h′

h
V φ̄.

To sum up, the intrinsic torsion of M̄7 is encoded in

S̄ =

h2

f
JφS +

f ′

2f
Jφ 0

η −i h
′

h

 .
By decomposing S = λJφ + µId + R ∈ χ1 ⊕ χ1̄ ⊕ χ22̄345, the upper-left term in the matrix S̄ can be written as

−λIm h2
+ µRe h2

+ f ′/2
f

Jφ −
λRe h2

+ µIm h2

f
Id +

Re h2

f
JφR −

Im h2

f
R.

Let us see what happens for specific choices of hypersurface structure.
Suppose we require M̄7 to be a nearly integrable G2-manifold (class W1): since S̄ is then a multiple of the identity, we

need h′/h to be constant, so h(t) = exp(i(ct + d)), c, d ∈ R. The easiest instance of this situation is the following:

The sine cone. Start with an SU(3)-manifold (M6, g, φ) of type χ1̄ with S = −
1
2 Id. The choice h = eit/2 produces a cone

(M6
× (0, π), sin(t)2g + dt2, eit/2φ)

for which S̄ =
1
2 Id. This construction was introduced in [32], see also [33,34].

Cones of pure class. To obtain other classes of G2-manifolds we start this time by fixing the function h = 1, so that φ̄ = φ
and

S̄ =

µ+
1
2 f

′

f
Jφ −

λ

f
Id +

1
f
JφR 0

η 0

 ,
and only now we prescribe the SU(3)-structure.

(a) TakeM6 to be χ12, say S = µ Id + R, and µ < 0 constant: the cone

(M6
× R+, 4µ2t2g + dt2, φ)

has S̄ =


−

1
2µt

JφR 0

0 0


, and so it carries a calibrated G2-structure (class W2).

(b) On M6 of type χ123 with µ < 0 constant, we can build the same cone as in (a), but now the resulting G2-structure will
be balanced (class W3).

(c) Take a χ1̄-manifold (S = µ Id). Since

k(t)Jφ 0

0 0


is of type W4 irrespective of the map k(t), the cone

(M6
× I, f (t)2g + dt2, φ)

is always W4, since R and λ vanish. When µ < 0, the special choice f (t) = −2µt will additionally give S̄ = 0. This
Ansatz was used in [35] to manufacture a parallel G2-structure (trivial class {0}) on the cone.

Other choices of SU(3)-class on M6 and functions h, f will allow, along these lines, to construct any desired G2-class on a
suitable cone.
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7. Killing spinors with torsion

Let (M̄7, ḡ, φ) be a G2-manifoldwith characteristic connection ∇̄
c and torsion T̄ , and suppose (M6, g, φ) is a submanifold

of type I or III such that Vy T̄ = 0, cf. (5.1). The latter equation warrants that T̄ restricts to a 3-form onM6; observe that the
condition is more restrictive than assuming ∇̄Vφ = 0, which implies only (Vy T̄ )φ = 0.

We decompose the Weingarten mapW = µ Id + W3 with JW3 = −W3J and prove

Lemma 7.1. The differential form

L(X, Y , Z) := −
XYZ
S ψφ(W3(X), Y , Z)− µψφ(X, Y , Z)

satisfies (Xy L)φ = −2W (X)φ.

Proof. In an arbitrary orthonormal basis e1, . . . , e6 the torsion is −


i(eiy T )su(3)⊥ ⊗ ei = 2Γ , where (eiy T )su(3)⊥ denotes
the projection of eiyT under so(6) → su(3)⊥. It is not hard to see that the maps

T ∗M6
⊗ su(3)⊥

κ
−→ Λ3(T ∗M6)

Θ
−→ T ∗M6

⊗ su(3)⊥

Syψφ −
2
3
η ⊗ ω

κ
−→

1
3

S (Syψφ −
2
3
η ⊗ ω), T

Θ
−→


i

ei ⊗ (eiy T )su(3)⊥

satisfy Θ ◦ κ|χ3 =
1
3 Idχ3 and Θ ◦ κ|χ1 = Idχ1 . But since SU(3) is the stabiliser of φ, for any R ∈ Λ3T ∗M6 we have

R(X) φ = Θ(R)(X) φ, so

(Xy L) φ = −(ψφyW ) φ = −2W (X) φ,

proving the lemma. �

For X ∈ TM6 we have

0 = ∇̄
c
Xφ = ∇̄Xφ +

1
4 (Xy T̄ )φ = ∇Xφ +

1
4 (Xy T̄ ) φ −

1
2W (X) φ.

So if we define

T := T̄|M6 + L,

then ∇
c

:= ∇ + T is characteristic for (M6, g, φ). This means that if M̄7 and M6 admit characteristic connections, their
difference must be L.

Definition 7.2. Consider the one-parameter family of metric connections

∇
s
:= ∇ + 2sT

passing through ∇
c at s = 1/4 and ∇ at the origin. A spinor φ∗ is called a generalised Killing spinor with torsion (gKST) if

∇
s
Xφ

∗
= A(X) φ∗

for some symmetric A : TM6
→ TM6. This notion captures many old acquaintances: taking s = 0 will produce generalised

Killing spinors (without torsion) [30,36], and quasi-Killing spinors on Sasakimanifolds for special A [37]. Killing spinors with
torsion correspond to A = Id, s ≠ 0 [38], while ordinary Killing spinors arise of course from s = 0 and A = Id [15,14]. Our
treatment intends to subsume all these notions into one and shed light on the mutual relationships.

Example 7.3. In view of Lemma 4.5, any cocalibrated G2-manifold (classW13) is defined by a gKS. For example, the standard
G2-structure of a 7-dimensional 3-Sasakimanifold is cocalibrated, and indeed the canonical spinor is generalised Killing [39].

Suppose that φ∗, restricted toM6, is a gKST. Then at any point ofM6

∇̄
s
Xφ

∗
= ∇̄Xφ

∗
+ s(Xy T̄ )φ∗

= ∇Xφ
∗
+ s(Xy T̄ )φ∗

−
1
2VW (X)φ

∗

= ∇
s
Xφ

∗
+ s(Xy (T̄ − T ))φ∗

−
1
2VW (X)φ

∗

= V (A −
1
2W )(X)φ

∗
− s(Xy L)φ∗.

Picking A =
1
2W annihilates the first term, so we are left with ∇̄

s
Xφ

∗
= −s(Xy L)φ∗. Conversely, any ∇̄

s-parallel spinor on
M̄7 satisfies

0 = ∇̄
s
Xφ

∗
= ∇

s
Xφ

∗
+ s(Xy (T̄ − T )) φ∗

−
1
2W (X) φ

∗.

To sum up,
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Theorem 7.4. Let (M̄7, ḡ, φ) be a G2-manifold with characteristic connection ∇̄
c and torsion T̄ . Take a hypersurface M6

⊂ M̄7

of type one or three such that Vy T̄ = 0. Then
(1) (M6, g = ḡ|TM6 , φ) is an SU(3)-manifold with characteristic connection ∇ + T̄ + L;
(2) any solution φ∗ on M̄7 to the gKST equation ∇

s
Xφ

∗
=

1
2W (X) φ

∗ on M6 must satisfy

∇̄
s
Xφ

∗
= −s(Xy L)φ∗

;

(3) vice versa, if φ∗ is ∇̄
s-parallel on M̄7, it solves

∇
s
Xφ

∗
= −sXy (T̄ − T ) φ∗

+
1
2
W (X) φ∗.

Example 7.5. Given (M6, g)we build the twisted cone

(M̄7
:= M6

× R, ḡ := a2t2g + dt2)

for some a > 0. From the submanifoldM6 ∼= M6
×{

1
a } ⊂ M̄7 we can only infer the Clifford multiplication of M̄7 at points of

M6
×{

1
a }. Therefore we consider, as in Section 6, the hypersurfaceM6

t := (M6, a2t2g) ∼= M6
×{

t
a } ⊂ M̄7. At any point inM6

t

the spinor bundles of M6
t and M̄7 are the same and can be identified with the spinor bundle of M6. Hence X φ∗

=
1
at ∂tXφ

∗.
Since themetric ofM6

t is just a rescaling of that ofM6, the Levi-Civita connections∇ coincide. For the Riemannian connection
∇̄ on M̄7 we have

∇̄Xφ
∗

= ∇Xφ
∗
+

1
2t
∂tXφ∗

= ∇Xφ
∗
+

a
2
X φ∗,

as W (X) = −
1
t X . Therefore the submanifolds M6

t are of type I, and one can determine the possible structures using
Theorems 5.4, 5.5. Any 2-form σ onM6 is a 2-form on M̄7 with ∂ty σ = 0, and in addition

σ · φ∗
= a2t2σφ∗

for any spinor φ∗.
Let φ be an SU(3)-structure on M6 and consider the G2-structure on M̄7 given by φ. Then ∂tyΨφ = −a2t2ω. If M6 has

characteristic connection ∇
c with torsion T ,

0 = ∇
c
Xφ = ∇Xφ +

1
4 (Xy T ) φ = ∇̄Xφ −

a
2X φ +

1
4 (Xy T ) φ

= ∇̄Xφ −
a
4 (Xyψφ) φ +

1
4 (Xy T ) φ = ∇̄Xφ +

1
4 (Xy (T − aψφ)) φ

= ∇̄Xφ +
1
4 (Xy a

2t2(T − aψφ))φ,

showing that T̄ = a2t2(T − aψφ) is the characteristic torsion of M̄7.
Given a ∇̄

s-parallel spinor φ∗

0 = ∇̄Xφ
∗
+ s(Xy T̄ )φ∗

= ∇Xφ
∗
+

a
2X φ

∗
+

s
a2t2

(Xy T̄ ) φ∗

= ∇Xφ
∗
+

a
2X φ

∗
+ s(Xy (T − aψφ)) φ∗

= ∇
s
Xφ

∗
+

a
2X φ

∗
− as(Xyψφ) φ∗,

from which

∇
s
Xφ

∗
− as(Xyψφ) φ∗

= −
a
2X φ

∗.

Consider the differential form on M̄7

ψ̄φ(X, Y , Z) := a3t3ψ−(X, Y , Z) for X, Y , Z ∈ TM6 and ∂tyψ̄φ = 0.

For a Killing spinor solving ∇
s
Xφ

∗
= −

a
2X φ

∗ we then have

0 = ∇
s
Xφ

∗
+

a
2X φ

∗
= ∇Xφ

∗
+

a
2X φ

∗
+ s(Xy T ) φ∗

= ∇̄Xφ
∗
+ sa2t2(Xy T )φ∗

= ∇̄Xφ
∗
+ sa3t2(Xyψφ)φ∗

+ s(Xy T̄ )φ∗.

Consequently

0 = ∇̄
s
Xφ

∗
+

s
t
(Xy ψ̄φ)φ∗.

Example 7.6. Let (M7, g, ξ , η, ψ) be an Einstein–Sasakimanifoldwith Killing vector ξ , Killing 1-form η and almost complex
structure ψ on ξ⊥. The Tanno deformation (t > 0)

gt := tg + (t2 − t)η ⊗ η, ξt :=
1
t
ξ, ηt := tη
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has the property that (M7, gt , ξt , ηt , ψ) remains Sasaki for all values of t . Call ∇gt the Levi-Civita connection of (M, gt , ξt ,
ηt , ψ) and T gt the characteristic torsion of the almost contact structure (a characteristic connection exists since themanifold
is Sasaki). Becker-Bender proved [40, Thm. 2.22] the existence of a Killing spinor with torsion for

∇
gt
X + ( 1

2t −
1
2 )(XyT

gt ).

Quasi Killing spinors [41] are special instances of Definition 7.2 and produce gKST on the deformed Sasaki manifold
(M7, gt , ξt , ηt , ψ). As proved in [40], in this example generalised Killing spinorswith torsion and Killing spinorswith torsion
are the same. Since the A of a gKS is symmetric, the G2-structure given by this spinor is cocalibrated (W13).

Example 7.7. In [38] it was proved that on a nearly Kähler manifold the sets of ∇
c-parallel spinors, Riemannian Killing

spinors, and Killing spinors with torsion coincide.

To conclude, the different existing notions of (generalised) Killing spinors (with torsion) are far from being disjoint and are
best described, at least in dimensions 6 and 7, using the characterising spinor of the underlying G-structure as presented in
this article.

Remark 7.8. At last note that the sign of the Killing constant may be reversed by choosing j(φ∗) instead of φ∗.
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