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a b s t r a c t

We calculate q-dimension of kth Cartan power of fundamental representation Λ0, corre-
sponding to affine root of affine simply laced Kac–Moody algebras, and show that in the
limit q → 1, and with natural renormalization, it is equal to universal partition function of
Chern–Simons theory on three-dimensional sphere.
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1. Introduction

In this note we present an observation, which provides another type of well-known connection of Chern–Simons theory
and Kac–Moody affine algebras. We postpone discussion of this observation to Conclusion, and below in Section 1 first
consider partition function of Chern–Simons theory on three-dimensional sphere [1].We present it in the special (universal)
form [2,3], then in Section 2 calculate the q-dimension [4] of highest weight representationwith highest weight kΛ0, k ∈ Z+

of affine Kac–Moody algebras, and in Section 3 show that these expressions have coinciding integrands and coincide exactly
after natural renormalization of latter in q → 1 limit. In Conclusion we also discuss possible applications.

2. Universal representation of partition function of Chern–Simons theory on 3d sphere

Partition function of Chern–Simons theory on 3d sphere was first calculated in [1] to be S00 element of the matrix of
modular transformations. In [2] it was represented in universal form:

F =
d
2
ln(y/t) +

∫
∞

0

dx
x

f (x/y) − f (x/t)
ex − 1

(1)

where d is dimension of gauge group:

d =
(α − 2t)(β − 2t)(γ − 2t)

αβγ
, (t = α + β + γ ) (2)
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and f (x) is character of adjoint representation, restricted on Weyl line:

χad(xρ) = f (x) (3)

f (x) =
sinh(x α−2t

4 )
sinh(x α

4 )
sinh(x β−2t

4 )

sinh(x β

4 )

sinh(x γ−2t
4 )

sinh(x γ

4 )
(4)

where Weyl line xρ in the root space is one-dimensional subspace along Weyl vector ρ, which is the sum of fundamental
weights of a given simple Lie algebra. Vogel’s (or universal) parameters α, β, γ correspond to different simple Lie algebras
according to Vogel’s table [5]. Finally, y = κ + t is shifted in a standard way Chern–Simons coupling constant κ , appearing in
front of Chern–Simons action. Note also that, as usual in universal formulae, they are written with arbitrary normalization
of invariant bilinear form in corresponding simple Lie algebra. In the so-called minimal normalization, when the square of
long root is equal to 2, we recover usual formulae, e.g. for Chern–Simons theory κ becomes an integer coupling k (level). As
shown in [3], expression (1) makes sense for values of universal parameters out of Vogel’s table, also. Particularly, it contains
non-perturbative corrections to the Gopakumar–Vafa partition function of dual topological string.

Introducing q = ex, we have

f (x) =

(
q

α−2t
4 − q−

α−2t
4

)(
q

β−2t
4 − q−

β−2t
4

)(
q

γ−2t
4 − q−

γ−2t
4

)
(
q

α
4 − q−

α
4

)(
q

β
4 − q−

β
4

)(
q

γ
4 − q−

γ
4

) , x = ln q. (5)

We transform expression for free energy by introduction of function F (x):

F (x) = f (x) − d (6)

which is O(x2) at x → 0, so integrals below converge. Cancellation in the last lines of (7) and correspondingly representation
(8) are first observed in [3].

F =
d
2
ln(y/t) +

∫
∞

0

dx
x

F (x/y)
ex − 1

−

∫
∞

0

dx
x

F (x/t)
ex − 1

= (7)

d
2
ln(y/t) +

∫
∞

0

dx
x

F (x)
exy − 1

−

∫
∞

0

dx
x

F (x)
ext − 1

=

d
2
ln(y/t) +

∫
∞

0

dx
x
F (x)

(
1

exy − 1
−

1
ext − 1

)
=

d
2
ln(y/t) +

1
2

∫
∞

−∞

dx
x
F (x)

(
1

exy − 1
−

1
ext − 1

)
=

d
2
ln(y/t) +

1
2

∫
R+

dx
x
f (x)

(
1

exy − 1
−

1
ext − 1

)
−

1
2

∫
R+

dx
x
d
(

1
exy − 1

−
1

ext − 1

)
=

1
2

∫
R+

dx
x
f (x)

(
1

exy − 1
−

1
ext − 1

)
where R+ is slight deformation of R (real line of variable x), bypassing singularity at zero from above (equally well we might
use contour R−, since residue at x = 0 is zero due to even integrand). So finally we have

F =
1
2

∫
R+

dx
x
f (x)

(
1

exy − 1
−

1
ext − 1

)
. (8)

This expression will be compared with the purely representation-theory object, calculated below in Section 3.

3. q-dimension of kΛ0 representation of Kac–Moody algebras

In this section we calculate so-called q-dimension of special representations of affine Kac–Moody algebras, dual to
untwisted ones.

Basic objects in definition of affine Kac–Moody algebra g(A) are two linearly independent sets: that of simple rootsαi ∈ h∗

(h∗ is an (l + 2)-dimensional root space) and coroots α∨

i ∈ h (h is an (l + 2)-dimensional Cartan subalgebra), i = 0, 1, . . . , l,
and (l + 1) × (l + 1) generalized Cartan matrix A of rank lwith matrix elements aij. One of the basic relations is

⟨α∨

i , αj⟩ = aij, i, j = 0, 1, . . . , l. (9)

For references to affine Kac–Moody algebras see e.g. [4,6], our notations exactly follow those of [4].
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Consider highest-weight representation V of affine Kac–Moody algebra g(A) with highest weight Λ ∈ h∗ [4]. Weight
spaces decomposition of V is

V = ⊕
λ≤Λ

Vλ. (10)

Defining degree of weight λ = Λ −
∑

ikiαi, ki ∈ Z+ in V as

deg(λ) = deg(Λ −

∑
i

kiαi) =

∑
i

ki (11)

one introduce principal gradation ([4], §10.10) of V:

V = ⊕
j≥0

Vj (12)

Vj = ⊕
λ:deg λ=j

Vλ (13)

where sum is over non-negative integers j, and define q-dimension of V :

dimq(Λ) =

∑
j≥0

(dim Vj)qj =

∑
λ

(dimVλ)qdegλ. (14)

The product representation of dimq(Λ) can be derived ([4], 10.10.1) from general Kac–Weyl formula for characters and
is given by

dimq(Λ) =

∏
α∈∆∨

+

(
1 − q⟨Λ+ρ,α⟩

1 − q⟨α,ρ⟩

)mult(α)

(15)

where ρ ∈ h∗ is defined by relations

⟨ρ, α∨

i ⟩ = 1, i = 0, . . . , l (16)

⟨ρ, d⟩ = 0 (17)

and product is over α ∈ ∆∨
+
- positive roots of dual Kac–Moody algebra. Here d is defined [4] as an arbitrary element of h

satisfying ⟨α0, d⟩ = 1, ⟨αi, d⟩ = 0, i = 1, . . . , l.
We would like to consider representations with Λ proportional to fundamental weight of the affine root: Λ → λk =

kΛ0, k ∈ Z+, where Λ0 is defined by relations

⟨Λ0, α
∨

i ⟩ = 0, i = 0, 1, . . . , l (18)

⟨Λ0, d⟩ = 0 (19)

ρ can be represented as

ρ = ρ̄ + h∨Λ0 (20)

where h∨ is dual Coxeter number and ρ̄ is orthogonal projection of ρ on the Cartan subspace of roots of underlying simple Lie
algebra (which is linear span of αi, i = 1, 2, . . . , l), i.e. essentially the Weyl vector of underlying simple Lie algebra, Dynkin
diagram of which is obtained by removing 0th node of initial Dynkin diagram of affine Kac–Moody algebra.

We consider from now on simply-laced untwisted affine algebras, i.e. ÂD̂Ê algebras. Roots of untwisted algebras can be
described as follows. Real roots (hence of multiplicity one) for affine Kac–Moody algebra are given by {α+nδ|α ∈

◦

∆, n ∈ Z},
imaginary roots are {nδ|n ∈ Z, n ̸= 0}, with multiplicity l. Here δ =

∑l
i=0aiαi,

◦

∆ = ∆
⋂ ◦

h∗,
◦

h∗ is linear span of α1, . . . , αl.
As is clear from the above, we need these roots not for initial g(A), but for dual algebra g(AT ). Then real roots are

{α + nK |α ∈

◦

∆∨, n ∈ Z}, imaginary roots are {nK |n ∈ Z, n ̸= 0}, with multiplicity l. Here

K =

l∑
i=0

a∨

i α∨

i (21)

is central element of initial affine Kac–Moody algebra g(A). Positive roots are those with n > 0 in above formulae, and, at
n = 0 in the case of real roots, those with α > 0.

For calculation of q-dimension we need ⟨λk + ρ, α⟩ = ⟨ρ̄ + (k + h∨)Λ0, α⟩. We have ⟨Λ0, α⟩ = 0 for α ∈

◦

∆∨, and
⟨Λ0, K ⟩ = 1, since α∨

0 = 1 for all algebras. Now we can calculate all contributions into (15).
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Contribution of positive real roots with n = 0 is 1, since numerator and denominator cancel. Contribution of remaining
positive real roots is

Π1 =

∏
n=1,2,...

∏
α∈

◦

∆∨

(
1 − q⟨ρ̄,α⟩+(k+h∨)n

1 − q⟨ρ̄,α⟩+h∨n

)
. (22)

Contribution of positive imaginary roots is

Π2 =

∏
n=1,2,...

(
1 − q(k+h∨)n

1 − qh∨n

)l

. (23)

Altogether q-dimension is

dimq(λk) = Π1Π2. (24)

Let us transform this in a way, similar to the well-known transformation of Chern–Simons partition function in the proof
of its duality with topological string. We have k + h∨

= y, h∨
= t, x = ln q:

lnΠ1 =

∑
n=1,2,..., α∈

◦

∆∨

(
ln
(
1 − qyn+⟨ρ̄,α⟩

)
− ln

(
1 − q⟨ρ̄,α⟩+tn))

= (25)

∑
p=1,2,...,n=1,2,..., α∈

◦

∆∨

1
p

(
qptn+p⟨ρ̄,α⟩

− qpyn+p⟨ρ̄,α⟩
)

lnΠ2 =

∑
n=1,2,...

(
l ln
(
1 − qyn

)
− l ln

(
1 − qtn

))
= (26)

∑
p=1,2,...,n=1,2,...

l
p

(
qptn − qpyn

)
.

Altogether:

ln(Π1Π2) =

∑
p=1,2,...,n=1,2,...

1
p

(
qptn − qpyn

)⎛⎜⎝l +
∑
α∈

◦

∆∨

qp⟨ρ̄,α⟩

⎞⎟⎠ (27)

ln(Π1Π2) =

∑
p=1,2,...,n=1,2,...

1
p

(
qptn − qpyn

)
f (px) = (28)

∑
p=1,2,...

1
p

(
1

1 − qpt
−

1
1 − qpδ

)
f (px)

where in the last lines, only, we assume the algebra is of ÂD̂Ê type.
Here parameter x = ln q and function f (px) =

(
l +

∑
α∈

◦

∆∨
qp⟨ρ̄,α⟩

)
are those already defined in (3), (4) and (5).

Particularly, function f (.) is the character of underlying simple Lie algebra (on theWeyl line), so universal parametersα, β, γ ,
corresponding to given Kac–Moody algebra of ÂD̂Ê type, appear to be those for underlying simple Lie ADE algebra.

So, we obtain for q-dimension of representation with λk = kΛ0 the following expression:

ln dimq(λk) =

∑
p=1,2,...

1
p

(
1

1 − qpt
−

1
1 − qpy

)
f (px) = (29)

∑
p=±1,±2,...

1
2p

(
1

1 − qpt
−

1
1 − qpy

)
f (px) (30)

since the summand is even function of p.

4. Partition function of Chern–Simons on 3d sphere as renormalized dimension

Evidently, (30) is the finite sum approximation of the integral:

1
2

∫
∞

−∞

dx
x
f (x)

(
1

exy − 1
−

1
ext − 1

)
. (31)
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This is our main observation: integrand in (31) (i.e. the summand in (30))coincides exactly with that in the integral
representation of Chern–Simons free energy (8), taken in the minimal normalization of universal parameters.

The limit of finite sum to continuous integral corresponds to the limit q → 1.
This integral diverges due to singularity at x = 0. It can be renormalized by slight deformation of integration contour

from real axis R to R+ or R−. Then we get exactly partition function of Chern–Simons theory on 3d sphere (8).

5. Conclusion

Above we found exact relation between Chern–Simons theory’s partition function on 3d sphere and q-dimension of
certain representation of corresponding affine Kac–Moody algebra. Namely, integrand in universal integral representation
of Chern–Simons’ free energy (8) coincides with summand in the infinite sum (30), representing logarithm of q-dimension.
In the limit q → 1 finite sum becomes integral, although divergent one, which however coincides with (8) after arbitrary
small deformation of integration contour around point x = 0.

This simultaneous regularization and renormalization by deformation of integration contour is in general agreement
with regularization of plethystic sums, suggested in e.g. ([7], 5.10), since both lead to answers in terms of multiple Barnes’
gamma functions andmultiple sine functions, see for Chern–Simons theory [2,8,9,3], for supersymmetric Yang–Mills theory
e.g. [7,10].

It is interesting, that integral representation (8), which proves its relevance in establishing non-perturbative duality of
Chern–Simons theorywith topological strings [3], appears to be relevant in establishing direct connectionwith q-dimensions
theory of affine Kac–Moody algebras, also.

There are several possible directions of research, in connection with this observation.
One of them may be calculation of q-dimension for other highest-weight representations. On the Chern–Simons theory

side, possible partition functions to be compared are those for Chern–Simons theory on different (‘‘simple’’) 3d manifolds:
3d torus, spheres product, etc. As a (trivial) example one can consider manifold S1 × S2. Its Chern–Simons partition function
is 1, which coincides with character and q-dimension of a trivial representation of affine Kac–Moody algebra. We also
calculate q-dimension of the representation with highest weightm0Λ0 +

∑l
i=1Λimi, where Λi, i = 0, 1, ..l are fundamental

weights of untwisted simply-laced affine Kac–Moody algebra and mi, i = 0, 1, ..l are integers such that mi, i = 1, ..l give a
decomposition of highest-weight of adjoint representation of underlying simple Lie algebra w.r.t. its fundamental weights.
Level of this representation is k = m0 + 2, and we again denote y = k + t . Then its q-dimension is the product of three
factors: one is equal to q-dimension already calculated (and coinciding with partition function of Chern–Simons theory on
3d sphere), (30), second one is q-dimension of corresponding simple Lie algebra, which does not depend on coupling y, and
finally logarithm of the third one is∑

p=1,2,...

1
p

1
1 − q−py (χad(px(ρ + θ )) − f (px)) (32)

where χad(px(ρ + θ )) is character of adjoint representation on the line x(ρ + θ ), where θ is the highest-weight of
adjoint representation. If instead of θ we take an arbitrary positive weight λ, we shall obtain the same formula (32)
for q-dimension with λ instead of θ . The question is whether one can interpret q → 1 limit of (32), after appropriate
regularization/renormalization, as free energy of Chern–Simons theory on some three-dimensional manifold, normalized
by the partition function on 3d sphere.

Another direction is the following. Taking into account that initial quantity for partition function of Chern–Simons theory
on 3d sphere is given by purely Lie-algebraic quantity S00 [1], we obtain some (strange) connection of this and the other
purely Lie-algebraic expression - q-dimension of representation kΛ0. This last quantity, however, has an advantage that it
can be generalized to Kac–Moody algebras other than affine ones. One can have inmind ‘‘extended’’G++ and ’’very extended’’
G+++ Kac–Moody algebras [11–13], such as E10, E11, etc. They are suggested as part of description ofM-theory, very different
from known established approaches. Dynkin diagrams of extended algebras G++ can be obtained [13] from affine ones,
denoted in this notation as G+ (i.e. extension of simple Lie algebra G), by addition of one node, connected to affine node by
simple line. In the same way, Dynkin diagram of very extended algebra G+++ appears to be the similar extension of diagram
for extended algebra G++. So, in each step we have a special node, which probably will play a role of affine node, i.e. one
can take corresponding highest-weight fundamental representation and calculate its q-dimension by general formula (15),
valid for any Kac–Moody algebra. The problem is in that there is no complete description of all roots of these extended
Kac–Moody algebras. This does not allow us to carry on calculations similar to those in the present paper, however, one can
calculate some approximation to q-dimension of given extended or very extended algebra, since roots on the first few levels
are completely classified.
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