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a b s t r a c t

String structures have played an important role in algebraic topology, via elliptic genera
and elliptic cohomology, in differential geometry, via the study of higher geometric
structures, and in physics, via partition functions. We extend the description of String
structures from connected covers of the definite-signature orthogonal group O(n) to the
indefinite-signature orthogonal group O(p, q), i.e. from the Riemannian to the pseudo-
Riemannian setting. This requires that we work at the unstable level, which makes the
discussion more subtle than the stable case. Similar, but much simpler, constructions
hold for other noncompact Lie groups such as the unitary group U(p, q) and the
symplectic group Sp(p, q). This extension provides a starting point for an abundance
of constructions in (higher) geometry and applications in physics.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Lie groups play an important role in characterizing symmetries. Picking the appropriate Lie group allows for certain
structures to be unambiguously defined. For example, a Riemannian structure on a manifold requires the principal frame
bundle corresponding to the tangent bundle to have an orthogonal group as a structure group. To talk about orientations
one needs the special orthogonal group, and to properly discuss spinors one needs to lift to the double cover, which is
the Spin group. All of these structures are low degree phenomena which can be encoded uniformly and succinctly via the
Whitehead tower of the orthogonal group (see [26,28,29]).

In algebraic topology, one usually studies the Whitehead tower of the stable orthogonal group (see [28]). In particular,
killing the third homotopy group leads to the stable String group (see [32,33]). There are many constructions and
applications associated with String structures and to the String group in various areas of mathematics and physics. The
following is a sample which is necessarily incomplete. In algebraic topology, String structures play a role of orientation for
elliptic cohomology [1,32,33]. In differential geometry, String connections play a role in geometrically describing bundles
with the String group as a structure group [5,7,24,29,37]. In mathematical physics, conditions for having String structures
arise as anomaly cancellation conditions [15,28,29].

This paper aims to initiate a new angle on the subject. We will be interested in the case of the indefinite orthogonal
group O(p, q), which from a geometric point of view can be viewed as the structure group of the tangent bundle of
a pseudo-Riemannian manifold of dimension n = p + q. As in the Riemannian case, one is interested in considering
oriented and then Spin pseudo-Riemannian manifolds and for that one needs to lift O(p, q) to appropriate groups SO(p, q)
and Spin(p, q), respectively. This involves a lot of subtleties and unlike the Riemannian case, here it is a priori not obvious
which homotopy (sub-)groups to kill in order to get to the appropriate covering group. We spend some time discussing this
before embarking on considering the corresponding indefinite String groups. In geometry and physics, the cases p = 1, 2
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are particularly interesting, as these correspond to the Lorentz group and the conformal group, respectively. We address
all cases, and for the most part there is a natural split into cases p = 1, p = 2 and p ≥ 3.

Another subtle matter in our discussion is that we need to work in the unstable range for the orthogonal groups, that
is with O(n) for finite n, i.e. without taking a limit on the rank as usually is done in the literature. For the Riemannian
case, the Whitehead tower (cf. [28]) would be replaced by one involving finite n

BString(n)

↓↓
BSpin(n)

↓↓

1
2 p1 →→ K (Z, 4)

BSO(n)

↓↓

w2 →→ K (Z/2, 2)

X →→

→→

↗↗

↗↗

BO(n)
w1 →→ K (Z/2, 1) .

(1.1)

where w1 ∈ H1(BO(n);Z/2) and w2 ∈ H2(BSO(n);Z/2) are the universal first and second Stiefel–Whitney classes, while
1
2p1 ∈ H4(BSpin(n);Z) is the universal first Spin characteristic class.

This gives a homotopy theoretical construction of an 8-connected cover (BO(n))⟨8⟩ of the classifying space of O(n).
Having a classifying space points to presence of a group. Indeed, Stolz [32] constructs a topological group Ĝ as an extension

1 −→ Gauge(P) −→ Ĝ −→ Spin(n) −→ 1 , (1.2)

where P → Spin(n) is the PU(H)-principal bundle with H an infinite-dimensional separable Hilbert space such that B̂G
is the 8-connected cover of BO(n). This topological group Ĝ is homotopy equivalent to the String group String(n), defined
via the fibration K (Z, 2) → String(n) → Spin(n), so that String(n) has a group structure. This also has a differentiable
structure [22]. Since then many models of the String group have appeared, each having different desirable features (see
e.g. the appendix of [7] for seven such models). For instance, in one model [22], String(n) is constructed as an extension
as in Eq. (1.2) of Lie groups so that Ĝ has a Fréchet–Lie group structure uniquely determined up to isomorphism. The
presence of such structures allows us to talk about String(n)-principal bundles and String manifolds, regarding String(n)
as a structure group.

Studying the Spin group and its classifying space from the cohomology point of view requires understanding of the
first generator, i.e., the generator in degree three of the cohomology of the Spin group or the generator in degree four
of the corresponding classifying space (see [7,38] for interesting relations between the two). It is known from [34] that
the cohomology ring of BSpin in the stable case is generated by the Spin characteristic classes, the degree four generator
of which is 1

2p1. However, we are interested in the unstable case, and indeed it was shown by McLaughlin [20] that 1
2p1

is also the generator of the cohomology H4(BSpin(n);Z). The lifting of the structure group from Spin(n) to String(n) of a
bundle over a manifold X is then possible when the obstruction 1

2p1(X) vanishes. We will be interested in generalizing
this result to the case of BSpin(p, q).

String structures are interesting from the geometric point of view due to the relation between the Riemannian
geometry of a manifold and characteristic classes associated with String structures on that manifold. The Stolz–Höhn
conjecture says the following: Let X be a smooth closed string manifold of dimension 4k. If X admits a Riemannian metric
with positive Ricci curvature, then the Witten genus φW (X) vanishes.

Homotopy-theoretically, String structures amount to having a String orientation, which in relation to modular forms
gives a corresponding orientation to the spectrum of topological modular forms (tmf), MString → tmf [1]. Conjecturally,
the Witten genus is constructed as an index of a Dirac operator on loop space [42]. This is the String analog to the theorem
on vanishing Â-genus by Lichnerowicz [18] for Spin manifolds: Let X be a smooth closed spin manifold of dimension 2k.
If X admits a Riemannian affine connection with nonnegative and not identically zero Riemannian curvature, then the
Â-genus vanishes.

The Atiyah–Bott–Shapiro map MSpin → KO is constructed using the representations of the Spin groups, and relies
on knowing that for a space X , elements of KO0(X) are represented by vector bundles over X . It gives a KO-theory Thom
isomorphism for Spin-vector bundles, and is a topological expression for the index of the Dirac operator. We hope that
similar questions can be explored in the semi-Riemannian setting.

This paper is organized as follows. We start with a more general setting of the problem that we hope explain some
of the homotopy theoretical constructions encountered here as well as in previous literature. In Sections 2.1 and 2.2, we
describe the Postnikov tower and the Whitehead tower of a space in a manner that is appropriate for applications. Then
in Section 2.3 we provide a variant point of view on the Whitehead tower in way of clarification. Since lifts of indefinite
Lie groups will be determined by their maximal compact subgroups, which are products, we discuss in Section 2.4 useful
conditions on behavior of cohomology of products. The discussion is needed since we work with integral cohomology.
This is applied in Section 2.5 to classifying spaces, where we identify the obstructions and where the fibrations become
fiber bundles. We start with the applications in Section 3. First, in order to make sure we are on firm ground, we discuss
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the indefinite orthogonal groups in Section 3.1, highlighting their unstable homotopy groups. A subtle issue in the non-
vanishing of the fundamental group of the corresponding Spin groups is addressed in Section 3.2. This is used in Section 3.3
to define the indefinite String groups, where we identify the obstructions explicitly by studying the generators of the
classifying space of BSpin(n) in the unstable case. We then show in Section 3.4 how the definitions and constructions
extend to the case of U(p, q) and Sp(p, q), where subtle issues with stability are absent. Finally, in Section 3.5 we describe
relations to twisted structures, and end with highlighting future work that we hope to do.

2. The Postnikov tower, Whitehead tower, and variants

In this section we will provide a careful treatment of the towers arising in co-killing homotopy groups of Lie groups.
The idea is that Postnikov towers arise when killing homotopy groups above a certain degree, while Whitehead towers
arise when killing homotopy groups below a certain degree — hence the term co-killing. We will also provide a variant
tower of higher connected covers, which we demonstrate is equivalent to the latter. We believe that such a treatment,
while certainly known to experts, seems to be missing from existing literature to the best of our knowledge. This technical
treatment, we hope, will be for the benefit of the reader and will make the paper self-contained. Readers not interested
in these details might wish to skip this section.

2.1. The Postnikov tower

We start by recalling the Postnikov tower (see [11,12]). We will take this as our starting point to connect to the
Whitehead tower.

Theorem 2.1 (See [11,12]). Let X be a simple path-connected space with a map α : X → X1, where X1 is the Eilenberg–MacLane
space K (π1(X), 1), that induces an isomorphism on fundamental groups π1(X) → π1(X1). Then there are spaces Xn with maps
αn : X → Xn which induce isomorphisms on homotopy groups πk(X) → πk(Xn) for k ≤ n and πk(Xn) = 0 for k > n with
fibrations pn+1 : Xn+1 → Xn such that αn = pn+1 ◦ αn+1.

Assuming that such αn : X → Xn is given, the space Xn+1 will be defined as the homotopy fiber of a certain map
kn+2

: Xn → K (πn+1(X), n + 2) that is equivalent to the corresponding cohomology class in Hn+2(Xn, πn+1(X)) such that
the induced class α∗

nk
n+2

∈ Hn+2(X, πn+1(X)) is trivial. By the universality of the homotopy fiber Xn+1, one then obtains
the desired map αn+1 : X → Xn+1. These maps are assembled in the following diagram called the Postnikov tower of X:

...

↓↓
Xn

kn+2
→→

pn
↓↓

K (πn+1(X), n + 2)

...

p3

↓↓
X2

k4 →→

p2
↓↓

K (π3(X), 4)

X
α1 →→

α2

↗↗

αn

↗↗

X1
k3 →→ K (π2(X), 3) .

(2.1)

One could see how to choose such a map kn+2
: Xn → K (πn+1(X), n + 2) and how to obtain Xn+1 as the homotopy

fiber explicitly as follows. Let j : C(αn) → K (πn+1(X), n + 2) be the inductive attachment of cells to the cofiber C(αn) to
match the homotopy group of the space K (πn+1(X), n + 2) from the identification πn+2(C(αn)) ∼= πn+1(X) and the fact
that C(αn) is (n + 1)-connected. On the other hand, we have the inclusion Xn ↪→ C(αn) and we take the composite
kn+2

: Xn → K (πn+1(X), n + 2). From the inclusion of the cone C(X) in the cofiber C(αn), χx(t) := j(x, 1 − t) for
(x, 1 − t) ∈ C(X) is in the path space PK (πn+1(X), n + 2). This then makes the outer rectangle part of the following
pullback diagram

X x↦→χx

↘↘

αn

↘↘

αn+1

↘↘
Xn+1

pn+1

↓↓

→→ PK (πn+1(X), n + 2)

ev1
↓↓

Xn
kn+2

→→ K (πn+1(X), n + 2)

(2.2)
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commutative, so that we have the homotopy fiber Xn+1. Here ev1 denotes evaluation at the point 1 of the interval in
the path space. Note that PK (πn+1(X), n + 2) is a homotopy equivalent to a point space so the commutativity of the
diagram implies that the cohomology class α∗

nk
n+2

∈ Hn+2(X; πn+1(X)) is trivial. Therefore, we obtain the map αn+1
which satisfies αn = pn+1 ◦ αn+1 and induces an isomorphism πk(X) → πk(Xn+1) for k ≤ n + 1 and makes Xn+1 have
trivial kth homotopy group for k > n + 2. By inductive application of this process, one obtains the Postnikov tower
of X .

2.2. The Whitehead tower

Next we consider the Whitehead tower, which is in a sense a dual to the Postnikov tower [40,41]. Note that the
Postnikov tower approximates the homotopy groups of X ‘‘from the bottom’’ in the sense that it admits an isomorphism
of lower homotopy groups with higher homotopy groups being killed. One then may seek the dual process of estimating
the homotopy groups of X ‘‘from the top’’, in the sense that lower homotopy groups are killed while higher homotopy
groups are isomorphic to those of X .

Theorem 2.2 (See [41]). Let X be a (path) connected space with a Postnikov tower. Then there are (path) connected spaces
X⟨n⟩ such that πk(X⟨n⟩) = 0 for k ≤ n and maps α̂n : X⟨n⟩ → X that induce isomorphisms πk(X⟨n⟩) → πk(X) for k > n.
Moreover, there is a fibration p̂n+1 : X⟨n + 1⟩ → X⟨n⟩ for each n such that α̂n+1 = α̂n ◦ p̂n+1 with a fiber the based loop space
ΩX⟨n⟩.

From the Postnikov tower of X , we have spaces Xn and maps αn : X → Xn. By taking the homotopy fiber X⟨n⟩ of αn,
we obtain a fibration α̂n : X⟨n⟩ → X that induces isomorphisms πk(X⟨n⟩) → πk(X) for k > n and makes πk(X⟨n⟩) = 0 for
k ≤ n. Since X⟨n + 1⟩ → X factors through X⟨n⟩ naturally as in the diagram

X⟨n + 1⟩
→→

α̂n+1

↘↘

p̂n+1

↘↘

PX⟨n + 1⟩
P(pn+1)

↘↘
X⟨n⟩ →→

α̂n

↓↓

PXn

↓↓
X

αn →→ Xn ,

(2.3)

we obtain a map p̂n+1 : X⟨n + 1⟩ → X⟨n⟩, which can be made into a fibration, up to homotopy equivalence, such that
α̂n+1 = α̂n ◦ p̂n+1. The induced long exact sequence of the fibration p̂n+1 shows that the fiber is homotopy equivalent
to the Eilenberg–MacLane space K (πn+1(X), n). The tower of fibrations thus obtained is a dual version of the Postnikov
tower called the Whitehead tower [40,41]:

...

↓↓
K (πn(X), n − 1) →→ X⟨n⟩

α̂n

↘↘

p̂n
↓↓
...

↓↓
K (π3(X), 2) →→ X⟨3⟩

α̂3

↘↘

p̂3
↓↓

K (π2(X), 1) →→ X⟨2⟩
α̂2

→→

p̂2
↓↓

X⟨1⟩
α̂1 →→ X .

(2.4)
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2.3. A variant view

Each fibration p̂n+1 : X⟨n + 1⟩ → X⟨n⟩ in the Whitehead tower can be regarded as the (n + 1)-connected covering of
X⟨n⟩ and we may ask the ‘‘lifting" question, i.e. under what circumstance can a map M → X⟨n⟩ be lifted to M → X⟨n + 1⟩
as in the commutative diagram

X⟨n + 1⟩

↓↓
M →→

↗↗

X⟨n⟩ .

(2.5)

To answer this question we need the following important property of the sequence of spaces appearing in the Whitehead
tower.

Proposition 2.3. Let X be a connected space. Then there are spaces X⟨n⟩, where X⟨1⟩ := X, with fibrations p̂n+1 : X⟨n+1⟩ →

X⟨n⟩ with fiber K (πn(X), n − 1) such that

πk(X⟨n⟩) ∼=

{
0 for k < n
πk(X) for k ≥ n.

Remark 1. These spaces X⟨n + 1⟩ are constructed as the homotopy fibers of a cohomology class λn ∈ Hn(X⟨n⟩; πn(X))
that induces an isomorphism πn(X⟨n⟩)

∼=
→ πn(X), and a map f : M → X⟨n⟩ is lifted to f̃ : M → X⟨n + 1⟩ if the induced

cohomology class f ∗λn ∈ Hn(M; πn(X)) is trivial.

Thus we have the following diagram that one might call the tower of higher connected covers

...

↓↓
X⟨n⟩

λn →→

qn
↓↓

K (πn(X), n)

...

q3

↓↓
X⟨2⟩

λ2 →→

λ2

↓↓

K (π2(X), 2)

M →→

→→

↗↗

X⟨1⟩
λ1 →→ K (π1(X), 1) .

(2.6)

The construction is an inductive application of the process in the following lemma.

Lemma 2.4 (Killing nth Homotopy Group). Let X be a simply connected space and Y be an (n − 1)-connected space whose
cohomology class λn ∈ Hn(Y ; πn(X)) induces an isomorphism πn(Y ) → πn(X). Then the homotopy fiber Ŷ of λn satisfies

πk (̂Y ) ∼=

{
0 for k = n
πk(Y ) for k ̸= n,

with a fibration q : Ŷ → Y . A map f : M → Y is lifted to f̂ : M → Ŷ with respect to the fibration q when the induced
cohomology class f ∗λn ∈ Hn(M; πn(X)) is trivial.

Proof. We would like to consider the lifting

Ŷ

q

↓↓
M

f̂
↗↗

f →→ Y
λn →→ K (πn(X), n) .

(2.7)
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The result then follows from considering the following pullback diagram

M
f̂

↘↘

f

↘↘

↘↘
Ŷ

q

↓↓

→→ PK (πn(X), n))

ev1

↓↓
Y

λn →→ K (πn(X), n)

(2.8)

and its long exact sequence of homotopy groups and the fact that the path space PK (πn(X), n) is contractible. Here, the
map ev1 is the evaluation map at the point 1 in the path. □

Remark 2. (i) One way of figuring out that a given fibration K (πn(X), n − 1) → X⟨n + 1⟩ → X⟨n⟩ fits in the tower of
higher connected covers is to check that a map f : M → X⟨n⟩ can be lifted up to a map f̂ : M → X⟨n+1⟩ if and only if the
cohomology class f ∗λn ∈ Hn(M; πn(X)) induced by λn which induced the isomorphism of nth-homotopy group vanishes.

(ii) It is convenient to rework the definition in a way making explicit the obstruction problem giving the lift from
X⟨n− 1⟩ to X⟨n⟩. Indeed, the two constructions, namely the Whitehead tower and the tower of higher connected covers,
are equivalent by the homotopy commutative diagram:

X⟨n⟩

↓↓

→→ ∗

↓↓
X⟨n − 1⟩

↓↓

→→ K (πn(X), n)

↓↓

→→ ∗

↓↓
X →→ X⟨n⟩ →→ X⟨n − 1⟩ .

(2.9)

2.4. Computational aspects

We now turn to useful computational aspects of the above constructions. This will also be useful when considering
indefinite Lie groups in Section 3. We would like to determine which classes in Hn(Y ; πn(X)), realized as homotopy classes
of maps Y → K (πn(X), n), induce isomorphisms πn(Y ) ∼= πn(X). We do so by relating the summand Hom(Hn(Y ,Z), πn(X))
in Hn(Y ; πn(X)) via the Hurewicz map πn(Y ) → Hn(Y ,Z). In general, one needs strong assumptions on Y in order for this
to be viable, as the Hurewicz map could be zero. However, under the assumption that Y is (n − 1)-connected, we have
an isomorphism Hn(Y , πn(X)) ∼= Hom(πn(Y ), πn(X)).

Suppose that nth homotopy group of Y is of the form A×B for some abelian groups A and B such that each of Hn(Y ; A)
and Hn(Y ; B) is freely generated by a single generator α and β , respectively. We will denote by (α, 0) and (0, β) the
classes in Hn(Y , A×B) obtained from the corresponding classes in Hn(Y ; A) and Hn(Y ; B) via the canonical homomorphism
A → A × B and B → A × B, respectively. Then α and β induce group homomorphism πn(X) → A and πn(X) → B so that
neither (α, 0) nor (0, β) in Hn(Y ; A×B) can induce an isomorphism πn(Y )

∼=
→ A×B. However, the class in Hn(Y ; A)×Hn(Y ; B)

inducing the isomorphism does exist and is of the form (α̃, β̃) where α̃ = aα ∈ Hn(Y ; A) and β̃ = bβ ∈ Hn(Y ; B) for some
nonzero integers a and b. At any rate, taking Y is (n − 1)-connected, we have an isomorphism

HomZ(πn(Y ), A) × HomZ(πn(Y ), A) −→ HomZ(πn(Y ), A × B) .

On the other hand, still assuming πn(X) ∼= πn(Y ), if Y is homotopy equivalent to the product space Y ′
× Y ′′ and

Hn(Y ; πn(X)) ∼= Hn(Y ′
; πn(X)) × Hn(Y ′′

; πn(X)) (2.10)

then we have the decomposition

Hn(Y ; πn(X)) ∼= Hn(Y ′
; πn(Y ′)) × Hn(Y ′

; πn(Y ′′)) × Hn(Y ′′
; πn(Y ′)) × Hn(Y ′′

; πn(Y ′′)) . (2.11)

This is immediately the case for our spaces, since they are assumed to be (n − 1)-connected.
Assuming further that both abelian groups Hn(Y ′

; πn(Y ′)) and Hn(Y ′′
; πn(Y ′′)) are each cyclic with a single class

generator α′ and α′′, respectively, the cohomology class (α′, α′′) induces the desired isomorphism πn(Y ′
× Y ′′)

∼=
→

πn(Y ′)×πn(Y ′′). Obviously, the cohomology class (α′, α′′) is represented by α′
×α′′

: Y ′
×Y ′′

→ K (πn(Y ′), n)×K (πn(Y ′′), n).
Thus, we have obtained:

Proposition 2.5. For a path-connected and (n − 1)-connected space Y the homotopy fiber Ŷ of λn : Y → K (πn(Y ), n) has
homotopy groups isomorphic to those of Y except πn (̂Y ) = 0, according to the following cases:
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(i) λn = α if α is the only generator of Hn(Y , πn(X)), i.e., we have a homotopy pullback diagram

Ŷ

↓↓

→→ pt

↓↓
Y α →→ K (πn(X), n) .

(ii) λn = (̂α, β̂) if πn(Y ) ∼= A × B and Hn(Y ; A) and Hn(Y ; B) are free with generators α and β , respectively, where α̂ = aα
and β̂ = bβ for some nonzero integers a and b, respectively, i.e.

Ŷ

↓↓

→→ pt

↓↓
Y

(̂α,̂β) →→ K (A × B, n) .

(iii) λn = α′
× α′′ which is equivalent to the map Y ′

× Y ′′
→ K (πn(Y ′), n) × K (πn(Y ′′), n) if Y ≃ Y ′

× Y ′′ where α′, α′′

are the only generators of Hn(Y ′, πn(Y ′)) and Hn(Y ′′, πn(Y ′′)) respectively, and we again have the homotopy pullback
diagram

Ŷ

↓↓

→→ pt

↓↓
Y ′

× Y ′′
α′

×α′′

→→ K (πn(Y ′) × πn(Y ′′), n) .

2.5. Special case: higher connected covers of classifying spaces and obstructions

We will mainly be interested in our spaces being topological groups. Let G be an (n−1)-connected topological group.1
Then BG is a classifying space of G such that πi(BG) = 0 for i ≤ n. By taking the homotopy fiber of the canonical
map BG → K (πn+1(BG), n + 1), we obtain a space B̂G for which πn+1(B̂G) is trivial. Then its loop space Ω B̂G satisfies
πn(Ω B̂G) = 0. Setting Ĝ := Ω B̂G, we get a topological space which is G with πn killed. The immediate consequence of
this observation is the following:

Lemma 2.6. B̂G is weakly homotopy equivalent to B(̂G).

Note that the statement of the lemma can be promoted to a homotopy equivalence provided B(̂G) is taken to be the
usual classifying space of the (group-like) A∞-space Ĝ.

We now consider classification of the corresponding bundles. From the general discussion in previous sections we have
the following results.

Proposition 2.7. Suppose that there is a G-principal bundle over M determined by a classifying map f : M → BG. Then
there exists a map f̂ : M → B̂G providing a Ĝ-principal bundle over the same base M compatible with the bundle f with
respect to the map B̂G → BG if f ∗λn ∈ Hn+1(M, πn(G)) is trivial for some λn ∈ Hn+1(BG; πn(G)) that induces an isomorphism
πn(BG) → πn−1(G).

Remark 3. (i) The condition in Proposition 2.7 is equivalent to saying that f ∗λn factors through a point space up to
homotopy:

M

f

↘↘

↘↘

f̂

↘↘
B̂G →→

↓↓

pt

↓↓
BG

λn →→ K (πn(G), n + 1) .

(2.12)

(ii) We say that the obstruction f ∗λn vanishes or trivialized so that the bundle f is lifted to f̂ . This lifting of f to f̂ is also
called the trivialization of the class λn.

1 Previously we denoted this by G⟨n⟩ but for ease of notation we drop the extra decoration here.
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Indeed, the pullback diagram Eq. (2.8) induces another pullback diagram classifying Ĝ-principal bundles over X .
Denoting the set of isomorphism classes of G-principal bundles over X by BunG(X), we have a pullback diagram

BunĜ(X) →→

↓↓

pt

↓↓
BunG(X) →→ Hn(X; πn−1(G)) .

(2.13)

Inductively, we get a tower of connected covers which is the right side of the diagram:

...

↓↓

...

BG⟨n⟩
↓↓

λn →→ K (πn−1(G), n)

...

q2
↓↓

...

BG⟨2⟩
q1↓↓

λ2 →→ K (π1(G), 2)

BG⟨1⟩
λ1 →→

q0↓↓

K (π0(G), 1)

X →→

→→

↗↗

↗↗

BG
λ0 →→ K (π0(BG), 0) .

(2.14)

More particularly, we will be mainly interested in the case when G⟨n⟩ is an (n − 1)-connected topological group, and
also in the classifying space BG for some topological group G, i.e., X = BG, and its (n−1)-connected cover BG⟨n⟩. We would
like to find an (n − 2)-connected topological group G⟨n − 1⟩ forming part of an (n − 2)-connected cover G⟨n − 1⟩ → G
such that B(G⟨n − 1⟩) is homotopy equivalent to (BG)⟨n⟩.

For relatively low2 n the connected covers O(k)⟨n⟩ are defined as the based loop spaces of the corresponding classifying
spaces in [8,26,29]. It follows from the results of Kan and Milnor that every based loop space has the homotopy type of a
topological group. In the homotopy category of connected CW complexes, there is an equivalence between loop spaces,
topological groups, and associative H-spaces (see [13, Ch. 4]). Rationally, there is essentially a unique multiplication on
the connected covers of the orthogonal group [30, Prop. 3].

We have the homotopy pullback diagram

B̂G⟨n⟩ →→

↓↓

pt

↓↓
BG⟨n⟩ →→ K (πn(G), n + 1)

(2.15)

and the fibration

K (πn(G), n) −→ B̂G⟨n⟩ −→ BG⟨n⟩ . (2.16)

Having a homotopy pullback diagram such as (2.15) is equivalent to saying that B̂G⟨n⟩ is the homotopy fiber of
BG⟨n⟩ → K (πn(G), n + 1), hence equivalent to saying that B̂G⟨n⟩ → BG⟨n⟩ → K (πn(G), n + 1) is a homotopy fiber
sequence.

Next, setting Ĝ⟨n − 1⟩ = Ω(B̂G⟨n⟩) we have B(̂G⟨n − 1⟩) ≃ B̂G⟨n⟩, and this Ĝ⟨n − 1⟩ fits into the diagram

Ĝ⟨n − 1⟩ →→

↓↓

pt

↓↓
G⟨n − 1⟩ →→ K (πn(G), n) ,

(2.17)

which induces a fibration with fiber K (πn(G), n − 1)

K (πn(G), n − 1) −→ Ĝ⟨n − 1⟩ −→ G⟨n − 1⟩ . (2.18)

2 The arguments work rationally for any k [8,30]. However in the integration from algebras to groups in the L∞ setting for the orthogonal case,
one encounters difficulty for the Z/2 groups in the homotopy groups of O. So our discussions work fully for String and Fivebrane, which is more
than what we need for this paper. For the complex/unitary case, the homotopy groups are torsion-free and so no such difficulties arise.
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Since K (πn(G), n − 1) has a group structure, then this induces (2.16) as a fiber bundle. In fact, this will a principal fiber
bundle, the point being that the homotopy fiber of a map to a connected space X is actually an ΩX-principal bundle with
the structure group an actual topological group representing the homotopy type of the loop space ΩX .

For example, for the case n = 1, we have Ĝ = Spin(m) defined in terms of Clifford algebra to be the double cover of
G = SO(m), m ≥ 3.

Let G be an n-connected topological group with n ≥ 2. If πn+1(G) = A, then there is a model for the Eilenberg–MacLane
space K (A, n) with the structure of a topological abelian group which forms part of an extension of topological abelian
groups

1 −→ K (A, n) −→ Ĝ
ρ

−−→ G −→ 1 .

Moreover, ρ̂ : Ĝ → G is a principal K (A, n)-bundle. This can be proved similarly to the n = 2 case in [32], by choosing a
model for K (A, n) as an abelian topological group and letting P → G denote the principal K (A, n)-bundle classified by the
fundamental class of Hn+1(G, A). Then define Ĝ as in [32] so that we have a short exact sequence of topological groups

1 −→ Gauge(P) −→ Ĝ −→ G −→ 1 .

where Gauge(P) is the gauge group of the bundle P . Similarly to [32] one can show that the canonical evaluation
homomorphism Gauge(P) → K (A, n) is a homotopy equivalence. In summary, we have:

Proposition 2.8. The fibrations in the Whitehead tower (hence also the tower of connected covers) of a Lie group are principal
fiber bundles.

Note that a detailed treatment of the Whitehead tower in the rational case is given in [30], where the group structures
are also identified.

3. Applications

3.1. Special orthogonal groups SO(n) and SO(p, q)

We now concentrate on the orthogonal group and its connected covers. We start with the definite signature and then
work our way to indefinite signatures. Starting with the former, we have the statement that identifies when the shift in
rank is inconsequential

πi(O(n)) ∼= πi(O(n + 1)) for 0 < i ≤ n − 2 . (3.1)

Note that according to Kervaire [14], this cannot be improved in general as π6(SO(7)) ∼= 0, while π7(SO(7)) ∼= Z. The
following isomorphism shows that the special orthogonal group SO(n) has the same homotopy groups as the orthogonal
group O(n) in positive degrees

πi(SO(n)) =

{
0 for i = 0
πi(O(n)) for i ≥ 1.

(3.2)

We also note the following low degree identifications, which are often useful in calculations and applications: O(1) ∼= S0,
SO(2) ∼= S1, SO(3) ∼= RP3, while SO(4) is the double cover of SO(3) × SO(3), i.e., SO(4) ∼= (S3 × S3)/Z2. Note that
Spin(4) ∼= S3 × S3.

Collecting all the above observations and results gives the following table of unstable homotopy groups of lower
dimensional orthogonal groups (see e.g. [14]):

O(1) O(2) O(3) O(4) O(5) O(6) O(7) O(8) O(9)
π0 Z/2 Z/2 Z/2 Z/2 Z/2 Z/2 Z/2 Z/2 Z/2

π1 0 Z Z/2

π2 0 0 0 0
π3 0 0 Z Z × Z Z
π4 0 0 Z/2 Z/2×Z/2Z/2 0
π5 0 0 Z/2 Z/2×Z/2Z/2 Z 0
π6 0 0 Z/12 Z/12 ×

Z/12
0 0 0 0

π7 0 0 Z/2 Z/2×Z/2Z Z Z Z × Z Z

where the boxed entries indicate that the corresponding homotopy groups are being stabilized.
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We now consider the corresponding classifying spaces. We know that the first cohomology H1(BO(n),Z/2) ∼= Z/2 is
generated by the first Stiefel–Whitney class w1, so that we may pullback w1 : BO(n) → K (Z/2, 1) to obtain a 0-connected
cover, say G, of O(n):

BG →→

↓↓

pt

↓↓
X

f →→

f̂
↗↗

BO(n)
w1 →→ K (Z/2, 1) .

(3.3)

We also know that the special orthogonal group SO(n) has the same homotopy groups as G so we may regard the
connected identity component SO(n) of O(n) as the 0-connected cover G. The pattern continues to the Spin group and
beyond, as in [28].

Next, consider our main object which is the indefinite orthogonal group O(p, q). This has a maximal compact subgroup
O(p)×O(q). The inclusion SO(p)×SO(q) ↪→ SO(p, q) is a homotopy equivalence by the Cartan decomposition of noncompact
Lie groups, i.e. the homeomorphism from SO(p, q) → SO(p) × SO(q) × Rpq.

With this observation, we can reduce the problem of connected covers in this indefinite signature setting to essentially
two copies of the problem in the definite signature case. From the results in the previous section, we may pullback
w1 × w1 : BO(p) × BO(q) → K (Z/2, 1) × K (Z/2, 1) to obtain the 0-connected cover G:

BG(p, q) →→

↓↓

pt

↓↓
X

f
→→

f̂
↗↗

BO(p, q)
w1×w1 →→ K (Z/2 × Z/2, 1) .

(3.4)

We have G(p, q) ≃ SO(p) × SO(q) and this is homotopy equivalent to the identity component SO(p, q)0 of SO(p, q),
so we may also take G = SO(p, q)0 and denote this by ŜO(p, q) for notational consistency. Note that SO(1) ≃ pt and
ŜO(1, n) ≃ SO(n) so that we do not have to consider the case when n = 1 in killing its higher homotopy groups.

On the other hand, we have the following.

Definition 3.1. The twisted covering, denoted by S̃O(p, q), is the pullback:

BS̃O(p, q)

↓↓

→→ BO(q)

w1

↓↓
BO(p)

w1 →→ K (Z/2, 1).

(3.5)

3.2. Indefinite Spin groups

The next step in going from SO(n) to Spin(n) by taking a double cover, or killing the fundamental group, leads to the
isomorphism

πi(Spin(n)) =

{
0 for i ≥ 2
πi(O(n)) for i ≥ 3.

(3.6)

Note the following useful isomorphisms in low degrees: Spin(2) ∼= U(1), Spin(3) ∼= SU(2), Spin(5) ∼= Sp(2), and
Spin(6) ∼= SU(4).

We next consider the indefinite orthogonal group SO(p, q) and kill the first homotopy group π1. Here there are two
case, depending on whether one of the factors p or q is greater than 1. Thus we would like to kill the fundamental group
of either SO(1, n) ≃ O(n)⟨1⟩ ≃ SO(n) or SO(p, q) ≃ O(p, q)⟨1⟩ for p, q ≥ 2. An important distinction with the definite case
is that the maximal compact subgroup of SO(p, q) is SO(p) × SO(q), signaling that connectedness involves more than just
the usual Z/2.

Remark 4. (i) The group Spin(p, q) is defined to be the double cover of SO(p, q) in a slightly nontrivial way, namely
the cover corresponding to the diagonal Z/2 inside Z/2 × Z/2. This diagonal Z/2 is formed of a pair of elements,
where the first corresponds to the kernel of Spin(p) → SO(p) and the second to Spin(q) → SO(q). For example,
Spin(2, 2) ∼= SL(2,R) × SL(2,R). See [2,17,35,36,43].

(ii) The condition for having a Spin(p, q) structure from a SO(p, q) structure is the separate vanishing of two second
Stiefel–Whitney classes wi

2, i = 1, 2 (see [31] for details).
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Rationally, the cohomology ring of the special orthogonal group is given as

H∗(BSO(n);Q) ∼=

{
Q

[
p1, p2, . . . , p[

n
2 ]

]
, n odd,

Q
[
p1, p2, . . . , p n

2
, e

]
/
(
p n

2
− e2

)
, n even,

(3.7)

where pi are the Pontrjagin classes in degree 4i and e is the Euler class in degree n. The result on the odd case is what
one expects, while the even case introduces a new generator. When considering the integral case, this generator persists
and, in addition, we will have other generators arising from integral lifts of the Steifel–Whitney classes, i.e. arising from
applying the Bockstein on monomials in even Stiefel–Whitney classes. Since we are interested in degree four generators,
the latter will not be of relevance to us.

We know that H2(BSO(n);Z/2) ∼= Z/2 with the second Stiefel–Whitney class w2 as its generator. For n = 2, the integral
cohomology of BSO(2) is isomorphic to Z with a single generator3

√
p1 such that

√
p1

√
p1 = p1 ∈ H4(BSO(2);Z) by the

result of Brown on the integral cohomology ring of BSO(n) [4]. In general, in the integral cohomology of BSO(n) the square
e2 of the Euler class is the same as the Pontrjagin class in degree 4n. So for n = 1, we have a generator of degree 2 given
by e =

√
p1. One can also view this as a first Chern class if one identifies SO(2) with U(1) and hence BSO(n) with CP∞,

whose cohomology is given as H∗(CP∞
;Z) ∼= Z[x], with |x| = 2.

Therefore, we obtain a 1-connected cover G(n) of SO(n) for n ≥ 3, and G(2) of SO(2), respectively, by taking pullbacks:

BG(n)

↓↓

→→ pt

↓↓
X →→

↗↗

BSO(n)
w2
→→ K (Z/2, 2) ,

BG(2)

↓↓

→→ pt

↓↓
X →→

↗↗

BSO(2) √
p1
→→ K (Z, 2) .

(3.8)

We know that the spin group Spin(n) is homotopy equivalent to G(n) for n ≥ 3. However, Spin(2) and G(2) do not agree
since Spin(2) ∼= S1 is not simply connected.

Definition 3.2. The homotopic (definite) spin group, denoted by Ŝpin(n), is the 1-connected cover of SO(n) for all n ≥ 2 so
that Ŝpin(n) ≃ Spin(n) and Ŝpin(2) ≃ G(2).

In fact, as far as killing higher homotopy groups is concerned, G(2) is trivial and we do not have to consider the case
with n = 2 in the process.

Next, in order to kill π1 of SO(p, q), we consider three cases: When p = q = 2, when either p or q is equal to 2, and
when both p and q are greater than 2.

Definition 3.3. The Spin groups in the above three cases will be the pullbacks in the following diagrams for p, q ≥ 3:

BG(2, 2) →→

↓↓

pt

↓↓
BSO(2, 2) √

p1×
√
p1
→→ K (Z × Z, 2),

BG(2, q) →→

↓↓

pt

↓↓
BSO(2, q) √

p1×w2

→→ K (Z × Z/2, 2),

BG(p, q) →→

↓↓

pt

↓↓
BSO(p, q)

w2×w2
→→ K (Z/2 × Z/2, 2).

To justify this, we need to consider the cohomology groups. For that, we first need some calculations.

Lemma 3.4. The following table gives the homology groups with integral coefficient Hk(BSO(n);Z) for k = 0, 1 and 2:

n = 1 n = 2 n ≥ 3
H0 Z Z Z
H1 0 0 0
H2 0 Z Z/2

Proof. SO(1) ∼= {1} and so this case has trivial homology in nonzero degrees. Since SO(2) ∼= S1, we have BSO(2) ∼= CP∞.
We know that

Hk(CPn
;Z) =

{
Z, if 0 ≤ k ≤ 2n and k is even,

0, otherwise.

3 Here we are calling the generators
√
p1 as these square to the first Pontrjagin class. At the level of Z/2 coefficients, this is reminiscent of

relations such as w2
2 ≡ p1 mod 2. In fact, this generator is the Euler class.



H. Sati and H.-b. Shim / Journal of Geometry and Physics 140 (2019) 246–264 257

so by using the direct limit Hk(CP∞
;Z) = lim

−→n
Hk(CPn

;Z), we obtain

Hk(CP∞
;Z) =

{
Z, for k even,

0, for k odd.

For n ≥ 3, we know

πk(BSO(n)) ∼= πk−1(SO(n)) =

{
0, if k = 1
Z/2, if k = 2.

Hence, Hk(BSO(n);Z) follows from the Hurewicz theorem. □

In order not to worry about homotopy groups in degree zero, we work with ŜO(p, q), the connected cover of SO(p, q).

Proposition 3.5. For p, q ≥ 2, there is an isomorphism

H2(BŜO(p, q);Z) ∼= H2(BSO(p);Z) × H2(BSO(q);Z).

Proof. For any positive integer p and q, the Künneth formula gives

H2(BSO(p) × BSO(q);Z) ∼= hom(H2(BSO(p) × BSO(q);Z),Z)

⊕ Ext1Z(H1(BSO(p) × BSO(q);Z),Z) .

Now the homology groups inside the hom and Ext factors on the right hand side are calculated as

H2(BSO(p) × BSO(q);Z) ∼= (
⨁
r+s=2

Hr (BSO(p);Z) ⊗Z Hs(BSO(q);Z))

⊕ (
⨁
r+s=1

TorZ1 (Hr (BSO(p);Z),Hs(BSO(q);Z)))

∼=

⎧⎪⎪⎨⎪⎪⎩
0, if p = 1, q > 2 or p > 2, q = 1,
Z, if p = 1, q = 2 or p = 2, q = 1,
Z ⊕ Z ∼= H2(BSO(p);Z) ⊕ H2(BSO(p);Z), if p, q = 2
Z/2 ⊕ Z/2 ∼= H2(BSO(p);Z) ⊕ H2(BSO(p);Z), if p, q ≥ 3,

and

H1(BSO(p) × BSO(q);Z) ∼= (
⨁
r+s=1

Hr (BSO(p);Z) ⊗Z Hs(BSO(q);Z))

⊕ (
⨁
r+s=0

TorZ1 (Hr (BSO(p);Z),Hs(BSO(q);Z)))

= 0 ,

since H1(BSO(n);Z) is trivial from Lemma 3.4. □

3.3. Indefinite String groups

In this section we take as our starting point the indefinite Spin group Spin(p, q). We emphasize that there is a subtlety
here in that this group is not simply connected for general p and q. In fact, the maximal compact subgroup of Spin(p, q) is
Spin(p)× Spin(q)/{(1, 1), (−1, −1)}. The group Spin(p, q) itself is the diagonal 2-fold cover of the 4-fold cover of SO(p, q).
For p ≥ q, the fundamental group is given as

π1(Spin(p, q)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{0} (p, q) = (1, 1) or (1, 0) ,

{0} p > 2, q = 0, 1 ,

Z (p, q) = (2, 0) or (2, 1) ,

Z × Z (p, q) = (2, 2) ,

Z p > 2, q = 2 ,

Z/2 p, q > 2 .

(3.9)

In order to define indefinite String structure properly we need to take as a starting point a simply-connected group.
Therefore, we should start from the simply-connected cover of Spin(p, q), which is what we do below. Note, however,
that one can define variants of String structures without requiring this. The resulting structure would be analogous to the
case of p1-structures (see [25,27] for various analogous structures in the definite case).

We next kill the next nontrivial homotopy groups, namely π3, of the relevant Spin group Spin(p, q). Note that at this
stage if either p or q is less than 3 then the corresponding factor in the decomposition Spin(p)×Spin(q) will not be seen in
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the process. So we will consider mainly two cases: Spin(n) ≃ Ŝpin(1, n) ≃ Ŝpin(2, n) ≃ O(n)⟨3⟩ and Ŝpin(p, q) ≃ O(p, q)⟨3⟩
for p, q ≥ 3.

When p, q ≥ 3, the maximal compact subgroup of the 1-connected cover O(p, q)⟨1⟩ is O(p)⟨1⟩ × O(q)⟨1⟩ which is
homotopy equivalent to Spin(p) × Spin(q). Hence, O(p, q)⟨1⟩ is homotopy equivalent to Spin(p) × Spin(q). In fact, since
O(1)⟨1⟩ and O(2)⟨1⟩ are just a point space and contractible space respectively, we still can say that O(p, q)⟨1⟩ is homotopy
equivalent to O(p)⟨1⟩ × O(q)⟨1⟩.

Next we would like to consider cohomology. Here the cohomology groups and rings of the orthogonal and Spin groups
in the unstable range are quite subtle [3,4,6,16]. However, we will only need the degree four group. Indeed, MacLaughlin
has shown [20] that the fourth cohomology group is H4(BSpin(n);Z) ∼= Z and is generated by 1

2p1. Note that this can also
be deduced from other means, for instance, from the calculations presented by Kono [16] and Benson and Wood [3].

We now get back to the construction of indefinite String structures. We obtain a 3-connected cover G(n) for n ≥ 3 by
taking homotopy pullbacks, contrasting two cases:

BG(n) →→

↓↓

pt

↓↓
BSpin(n ̸= 4)

1
2 p1 →→ K (Z, 4)

BG(4) →→

↓↓

pt

↓↓
BSpin(4)

( 12 p1, 12 p1) →→ K (Z × Z, 4) .

(3.10)

Here, the map ( 12p1,
1
2p1) : BSpin(4) → K (Z×Z, 4) is equivalent to the map 1

2p1×
1
2p1 : BSpin(3)×BSpin(3) → K (Z×Z, 4)

through the accidental isomorphism Spin(4) ∼= Spin(3)× Spin(3). Consequently, any classifying map4 f : X → BŜpin(3, 3)

can be decomposed into a pair f = (f1, f2) with f1, f2 : BSpin(3) → K (Z, 4). Recall also that for any classifying map

f : X → BŜpin(p, q) can be decomposed into (f1, f2) : X → BŜpin(p) × BŜpin(q), due to the homotopy equivalence of the
target spaces. Hence we can use the additive and multiplicative notations interchangeably.

In order to kill π3 of Ŝpin(p, q), we take the pullbacks according to the following procedure.

Definition 3.6. The String groups in the indefinite case are defined as the loop spaces of the corresponding classifying
spaces, which in turn are defined via the following pullbacks:

(i) for p, q ≥ 5

BŜtring(p, q) →→

↓↓

pt

↓↓
BŜpin(p, q)

1
2 p1×

1
2 p1 →→ K (Z × Z, 4) ;

(3.11)

(ii) for p = 4, q ≥ 5,

BŜtring(4, q) →→

↓↓

pt

↓↓
BŜpin(4, q)

( 12 p1×
1
2 p1)×

1
2 p1 →→ K (Z × Z × Z, 4) ;

(3.12)

(iii) and for p = q = 4,

BŜtring(4, 4) →→

↓↓

pt

↓↓
BŜpin(4, n)

( 12 p1×
1
2 p1)×( 12 p1×

1
2 p1) →→ K (Z × Z × Z × Z, 4) .

(3.13)

Note that we can also consider variants of String structures associated to the non-simply connected groups Spin(p, q).

Definition 3.7. A (p1, p′

1)-structure is a lift from BSpin(p, q) to the classifying space obtained by killing the fourth
homotopy group.

These are analogs of a p1-structure, where the lower homotopy groups are not necessarily killed. See [25–27] for
extensions and applications.

Of course, we need to establish a decomposition of the corresponding cohomology groups. This in turn will require
taking homomorphisms with homology. To that end, we start with the following:

4 Here a hat on the group indicates that we are taking the simply connected cover.
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Lemma 3.8.

H4(BSpin(p) × BSpin(q);Z) ∼=

{ H4(BSpin(q);Z) for any q if p = 1,
H4(BSpin(p);Z) for any p if q = 1,
H4(BSpin(p);Z) ⊕ H4(BSpin(q);Z) if p, q ≥ 2.

Proof. The Künneth formula for homology gives the following identity:

H4(BSpin(p) × BSpin(q);Z) ∼=
( ⨁
r+s=4

Hr (BSpin(p);Z) ⊗Z Hs(BSpin(q);Z)
)

⊕
( ⨁
r+s=3

TorZ1 (Hr (BSpin(p);Z),Hs(BSpin(q);Z))
)
.

Since Hs(BSpin(q);Z) = 0 for s = 1, 2, 3, the only nontrivial term in Tor is

TorZ1 (H3(BSpin(p);Z),H0(BSpin(q);Z)).

This is also trivial for p ≥ 2. Moreover, when p = 1, we have TorZ1 (Z/2,Z) and this is trivial since Z is torsion-free.
The direct sum term on the right hand side of the above Künneth formula has only two nontrivial factors: H0(BSpin(p);

Z) ⊗ H4(BSpin(q);Z) and H4(BSpin(p);Z) ⊗ H0(BSpin(q);Z). When p ≥ 2, these two are isomorphic to Z ⊕ Z ∼= Z. At this
stage, there seems to be several routes to take. We have the isomorphisms

H0(BSpin(p);Z) ⊗ H4(BSpin(q);Z) ∼= H4(BSpin(q);Z),
H4(BSpin(p);Z) ⊗ H0(BSpin(q);Z) ∼= H4(BSpin(p);Z).

On the other hand, when p = 1, we have H4(BSpin(1);Z) = 0. So the only nontrivial term is now H0(BSpin(p);Z) ⊗

H4(BSpin(q);Z) ∼= H4(BSpin(q);Z). □

We will also need to calculate the Ext-term.

Lemma 3.9.

Ext1Z(H3(BSpin(p) × BSpin(q);Z),Z) ∼=

{
Z/2 if p = 1or q = 1,
0 if p, q ≥ 2.

Proof. First, we need to compute H3(BSpin(p) × BSpin(q);Z) and we use the Künneth formula:

H3(BSpin(p) × BSpin(q);Z) ∼=
( ⨁
r+s=3

Hr (BSpin(p);Z) ⊗Z Hs(BSpin(q);Z)
)

⊕
( ⨁
r+s=2

TorZ1 (Hr (BSpin(p);Z),Hs(BSpin(q);Z))
)
.

The Tor term is trivial since Hs(BSpin(q);Z) = 0 or Z, and Z is torsion-free. The only nontrivial factor in the first term on
the right hand side is H3(BSpin(p);Z) ⊗ H0(BSpin(q);Z). This is zero for p ≥ 2 since H3(BSpin(p);Z) = 0. On the other
hand, if p = 1, we have H3(BSpin(1);Z) = Z/2 and the result follows from the relation Z/2 ⊗ Z ∼= Z/2. □

We are now ready to calculate the degree four cohomology groups.

Proposition 3.10. For any p, q ≥ 2, we have

H4(BSpin(p) × BSpin(q);Z) ∼= H4(BSpin(p);Z) ⊕ H4(BSpin(q);Z) .

For the lower dimensional case, we have

H4(BSpin(1) × BSpin(q);Z) ∼= H4(BSpin(q);Z) .

Proof. The Künneth formula for cohomology asserts that

H4(BSpin(p) × BSpin(q);Z) ∼= hom(H4(BSpin(p) × BSpin(q);Z),Z)

⊕ Ext1Z(H3(BSpin(p) × BSpin(q);Z),Z) .

When p = 1, by the above lemmas, we have

H4(BSpin(1) × BSpin(q);Z) ∼= hom(H4(BSpin(q);Z) ⊕ Z/2)
∼= H4(BSpin(1);Z) × H4(BSpin(q);Z) .
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Here, we used the fact that finite products and finite coproducts coincide in the additive category. When p ≥ 2, we have

H4(BSpin(p) × BSpin(q);Z) ∼= hom(H4(BSpin(p);Z) ⊕ H4(BSpin(q);Z),Z)
∼= hom(H4(BSpin(p);Z),Z) × hom(H4(BSpin(q);Z),Z)
∼= H4(BSpin(p);Z) × H4(BSpin(q);Z) .

For p = 2, we have H4(BSpin(2);Z) ∼= H4(CP∞
;Z) ∼= Z, so that H4(BSpin(2);Z) ∼= Z.

The maximal compact subgroup of G = Spin(p, q) is K = Spin(p) × Spin(q)/(Z/2). Therefore, G and K are weakly
homotopy equivalent to each other so that they are in fact homotopy equivalent, since the usual cohomology is
represented by the Eilenberg–MacLane spaces in a sense that Hn(X; A) ∼= [X, K (A, n)], where A is a coefficient group
(or an integer ring) and X is arbitrary topological space. From the following short exact sequence

1 −→ Z/2 −→ Spin(p) × Spin(q) −→ (Spin(p) × Spin(q))/(Z/2) −→ 1

and the fact that Hn(Z/2;Z) = 0 for any n, we obtain the desired isomorphism H4(BSpin(p, q);Z) ∼= H4(BSpin(p) ×

BSpin(q);Z). □

3.4. String structure associated to indefinite unitary and symplectic groups

The indefinite unitary group. Let U(p, q) denote the group of matrices of linear isometries of the pseudo-Hermitian space
Cp,q of signature p, q. The special indefinite unitary group SU(p, q) = U(p, q) ∩ SL(p + q,C) is the subgroup of U(p, q)
consisting of matrices of determinant 1.

The following table lists the homotopy groups of the unitary group [14] (see [19,23] for explicit generators).

U(1) U(2) U(3) U(4) U(5) U(6)
π1 Z Z Z Z Z Z
π2 0 0 0 0 0 0
π3 0 Z Z Z Z Z
π4 0 Z/2 0 0 0 0
π5 0 Z/2 Z Z Z Z
π6 0 Z/12 Z/6 0 0 0
π7 0 Z/2 0 Z Z Z

Remark 5. (i) The indefinite unitary group admits a Cartan decomposition U(p, q) ∼= U(p)×U(q)×Cpq, so that – as in the
case of the orthogonal group – the cohomology is determined by the maximal compact subgroup K = U(p) × U(q). This
gives rise to two cohomology classes, one from each factor in K , except when p or q is equal to 1, in which case there is
only one class in real degree four, namely c2 for the complementary nontrivial factor in U(1, q) or U(p, 1).

(ii) All the unitary groups have nontrivial fundamental group, isomorphic to Z. The universal covering groups of the
indefinite unitary group and the special indefinite unitary group are denoted Ũ(p, q) and S̃U(p, q), respectively. Note that
the latter is also a subgroup of the former.

(iii) As far as π3 is concerned, the groups are already in the stable range. This makes the discussion much simpler than
in the orthogonal case.

(iv) The cohomology rings of classifying spaces of the unitary group and the special unitary group with integral
coefficients are generated by the Chern classes ci in degree 2i and has a considerably simpler form than the orthogonal
case, i.e.

H∗(BU(n);Z) ∼= Z[c1, c2, c3, . . . , cn] ,

H∗(BSU(n);Z) ∼= Z[c2, c3, . . . , cn] .

String structures associated to the unitary group are considered in constructions associated to elliptic cohomology,
such as in [1]. Similarly, we have:

Definition 3.11. A String structure on a space X with an indefinite unitary structure, i.e. with a map f : X → BÛ(p, q) is
defined via the following lifting diagram to a map f̃

(i) for p, q ≥ 2

BŜtring(U(p, q))

↓↓
X

f →→

f̃

→→

BÛ(p, q) ≃ BÛ(p) × BÛ(q)
c2×c′2 →→ K (Z × Z, 4) ≃ K (Z, 4) × K (Z, 4) ,

where c2, c ′

2 : (E, E ′) ↦→ (c2(E), c ′

2(E
′)) are the representatives in degree 4 of each of the factor maps;
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(ii) for p = 1

BŜtring(U(1, q))

↓↓
X

f →→

f̃

→→

BÛ(1, q) ≃ ×BÛ(q)
c′2 →→ K (Z, 4) ,

since BÛ(1) ≃ ∗. Similarly for q = 1 with a class c2 corresponding to the first factor.

The following is immediate from the definition.

Proposition 3.12. (i) String(U(p, q)) and String(SU(p, q)) structures are classified by a pair of classes (c2, c ′

2), where c2 and c ′

2
are the generators in degree 4 of BU(p) and BU(q), respectively.

(ii) When either p = 1 or q = 1, we only have one generator as an obstruction for String(U(p, q)).

The indefinite symplectic group. The indefinite symplectic group Sp(p, q), also known and the indefinite quaternionic
unitary group U(p, q;H), can be defined as the isometry group of a nondegenerate quaternionic Hermitian form in Hn.

Remark 6. (i) The indefinite symplectic group admits a Cartan decomposition Sp(p, q) ∼= Sp(p) × Sp(q) × Hpq, so
that again the cohomology is determined by the maximal compact subgroup K = Sp(p) × Sp(q), giving rise to two
cohomology classes. Furthermore, due to the relatively large dimension, there are no degenerate cases here. For instance,
Sp(1, 1) ∼= Sp(1) × Sp(1) ∼= S3 × S3.

(ii) The symplectic group is simply connected, so there are no issues with the starting point to define a corresponding
String structure.

(iii) πi(Sp(n)) is in the stable range already for i ≤ 4n + 1. Therefore, we are in the stable range for any value of n
when considering the third homotopy group. The homotopy groups of the symplectic groups are computed by Mimura
and Toda (see [21]).

(iv) The cohomology ring of the classifying space of the symplectic group is generated by the symplectic Pontrjagin
classes pHi of degree 4i,

H∗(BSp(n);Z) ∼= Z[pH1 , pH2 , . . . , pHn ] . (3.14)

(v) Under the identification Sp(1) ∼= SU(2), pH1 is equal to −c2.

Definition 3.13. A String structure for the indefinite symplectic group Sp(p, q) on a space X with classifying map
f : X → BŜp(p, q) is defined as the lifting f̃ in the diagram

BŜtring(Sp(p, q))

↓↓
X

f →→

f̃

→→

BŜp(p, q) ≃ BŜp(p) × BŜp(q)
pH1 ×p′H

1 →→ K (Z × Z, 4) ≃ K (Z, 4) × K (Z, 4) ,

where pH1 × p
′H
1 : (E, E ′) ↦→ (pH1 (E), p

′H
1 (E ′)) are the representatives in degree 4 of each of the factor maps.

As in the unitary case, it follows directly from the definition that we have the following.

Proposition 3.14. String structures associated with the indefinite symplectic group are classified by a pair of symplectic
Pontrjagin classes (pH1 , p

′H
1 ), where the first and second are generators of H4(BSp(p);Z) and H4(BSp(q);Z), respectively.

3.5. Relation to twisted structures

We have seen that indefinite structures are determined homotopically by their maximal compact subgroups that are
products of two compact Lie groups. The obstruction encountered involves two characteristic classes, one from each of
these factor group. It is then natural to investigate how the two ‘composite structures’ might interact. There is another
instance where a pair of cohomological structures interact in this context, namely twisted structures [25–27,29,39], to
which we now explore possible connections.

We have seen that a G-principal bundle f : X → BG with a topological group G that is homotopy equivalent to G′
×G′′

can be lifted to a Ĝ-principal bundle, where Ĝ has the same homotopy type as that of G except that πn killed, when
both obstruction classes f ∗

1 α′ and f ∗

2 α′′ in Hn+1(X; πn(G′
× G′′)) vanish. That is, the outer square in the following diagram
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commutes up to homotopy:

X

↘↘ →→

f=(f1,f2)

↘↘

B̃G

↓↓

→→ pt

↓↓
B(G′

× G′′)
α′

×α′′

→→ K (πn(G′
× G′′

n−1), n + 1) .

(3.15)

Instead of requiring both obstructions f ∗

1 α′ and f ∗

2 α′′ to vanish simultaneously, we may want to relax this condition to
just the vanishing of the difference

f ∗

1 α′
− f ∗

2 α′′
= 0 ∈ Hn+1(X; πn(G′

× G′′)). (3.16)

Now suppose the two groups G′ and G′′ have the same homotopy groups in degree n, i.e. we have πn(G′) ∼= πn(G′′).
Denoting this isomorphism group by πn, we take the pullback G̃0 as the following diagram:

G̃0 →→

↓↓

BG′′

α′′

↓↓
BG′ α′

→→ K (πn, n + 1) .

(3.17)

Suppose that G̃ := ΩG̃0 has a topological group structure. Given f1 : X → BG′ and f2 : X → BG′′ classifying G′- and
G′′-principal bundles over X , respectively, there is a universal G̃-principal bundle over X if f ∗

1 α′ is homotopic to f ∗

2 α′′

which is equivalent to the condition

f ∗

1 α′
− f ∗

2 α′′
= 0 ∈ Hn+1(X; πn) . (3.18)

Diagrammatically, the condition is equivalent to requiring that there be a homotopy h as indicated in the diagram:

X

↘↘

f1

↘↘

f2

↘↘
B̃G →→

↓↓

BG′′

α′′

↓↓

h

←↙
BG′ α′

→→ K (πn, n + 1) .

(3.19)

All of this motivates the following definition:

Definition 3.15. Suppose that we have two topological groups G′ and G′′ with homotopy groups π ′
n := πn(G′) and π ′′

n :=

πn(G′′) respectively. Moreover, suppose that we have given cohomology classes α′
∈ Hn+1(BG′

; π ′
n) and α′′

∈ Hn+1(BG′′
; π ′′

n )
and a group homomorphism ϕ : π ′′

n → π ′
n. Then we have the homotopy group G̃ as in the previous argument, and for

two G′- and G′′-structures over X given by f1 and f2, the induced G̃-structure over X is said to be twisted in favor of G′:

X

↘↘

f1

↘↘

f2

↘↘
B̃G →→

↓↓

BG′′

ϕ◦α′′

↓↓
BG′ α′

→→ K (πn, n + 1) .

(3.20)

Remark 7. The twisted construction has natural motivations arising from physics, as presented by Sati–Schreiber–
Stasheff [29]. For instance, the Green–Schwarz anomaly condition [9,10]

1
2p1(TX) − ch2(E) = 0 ∈ H4(X;Z) , (3.21)
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where ch2(E) is the second Chern character of a bundle E which reduces to the second Chern class c2(E) is equivalent to
existence of a homotopy H3 in the following diagram, with π3(SU(n)) ∼= π3(Spin(n)) ∼= Z for n ≥ 3 except 4,

X

TX
↓↓

E →→ BSU(n)

c2
↓↓

H3

←↙
BSpin(n)

1
2 p1

→→ K (Z, 4) .

(3.22)

The homotopy H3 exhibits the B-field as a twisted gerbe, whose twist is the difference class 1
2p1(TX)−c2(E). Our definition

above extends this to the indefinite signature case. What we have in our current context is what might essentially be
viewed as a twisted String structure, in the sense of [29,39], where the twist itself arises from a Spin bundle, where the
two are the two parts in the composite maximal compact subgroup of Spin(p, q).

Remark 8. We have only two cases to consider for the twisted coverings:

BS̃pin(2, 2) →→

↓↓

BSO(2)

√
p1
↓↓

BSO(2)
√
p1 →→ K (Z, 2)

and BS̃pin(p, q) →→

↓↓

BSO(q)

w2

↓↓
BSO(p)

w2 →→ K (Z/2, 2)

for p, q ≥ 3.

Similarly to the previous cases, we can construct twisted coverings:

Definition 3.16. The twisted covering indefinite String groups are defined as

BŜtring(p, q) →→

↓↓

BString(q)

1
2 p1
↓↓

BString(p)
1
2 p1 →→ K (Z, 4)

, BŜtring(4, 4) →→

↓↓

BString(4)

1
2 p1×

1
2 p1

↓↓
BString(4)

1
2 p1×

1
2 p1 →→ K (Z × Z, 4) .

It would be very interesting to extend the definitions and constructions that we presented in this paper for String
structures to include ‘pseudo-Riemannian versions’ of Fivebrane [28,29] and Ninebrane structures [26]. This might require
considerable calculations. We believe that it would also be worthwhile to explore geometric applications to gerbes, loop
spaces, parallel transport, Chern–Simons theories, and stacky constructions, just to name a few. We hope to explore these
topics elsewhere. Our initial goal was to get to these topics directly. However, we realized that seemingly straightforward
matters are in fact much more subtle than meets the eye, so we believe it is worth addressing those first in this paper to
provide firm ground from which to pursue further constructions.
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