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In this article we generalize a theorem by Palais on the rigidity of compact group
actions to cotangent lifts. We use this result to prove rigidity for integrable systems
on symplectic manifolds including systems with degenerate singularities which are
invariant under a torus action.
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1. Introduction

In [20] Palais proved that two close compact Lie group actions on a compact manifold are equivalent in the sense
that there exists a diffeomorphism conjugating both actions. This rigidity result comes hand-in-hand with other classical
stability results à la Mather–Thom for differentiable maps in the 60s and 70s for which stability yields equivalence of
close maps (see for instance [12] and [21]).

Symplectic manifolds provide a natural landscape to test stability ideas as among the classical actions of Lie groups on
symplectic manifolds the ones admitting a moment map stand out. These are Hamiltonian actions where the group action
can be read off from a mapping µ : M −→ g∗ where g is the Lie algebra of the Lie group.

In [14] it was proved that C2-close symplectic actions on a compact symplectic manifold are equivalent in the sense that
ot only the actions are conjugated by a diffeomorphism but this diffeomorphism also preserves the symplectic form. The
roof in [14] (see also [16]) uses the path method requiring differentiability of degree 2 as the diffeomorphism yielding the
quivalence comes from integration of a time-dependent vector field. Generalizations of this result can be easily achieved
or Hamiltonian actions in the symplectic context. In the more general Poisson context technical complications occur due
o the lack of a general path method in Poisson geometry and fine Nash–Moser techniques come to the rescue to prove
igidity of Hamiltonian actions of semisimple Lie groups of compact type on Poisson manifolds as proven in [16] (see
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also [5] for Poisson Lie group actions on Poisson manifolds). Those results can be obtained either globally (for compact
manifolds) or semilocally (in the neighbourhood of a compact submanifold which is invariant by the group actions).

The lift of Lie group actions to the cotangent bundle, naturally equipped with a canonical symplectic form, provides
natural examples of Hamiltonian actions. Non-compactness of cotangent bundles leaves the study of equivalence of actions
out of the radar of the compact case and needs to be re-examined with fresh eyes. In this note we analyse the case of
cotangent lifted actions where we can easily prove the equivalence of Hamiltonian actions on non-compact manifolds
(cotangent bundles) by lifting the diffeomorphism of Palais from the base. This simple idea allows to reduce the required
degree of differentiability by 1 from the case of compact group actions on compact symplectic manifolds. We present a
new result on rigidity of lifted actions, which can be thought as an extension of Palais rigidity Theorem to the cotangent
lift of an action of a compact group. It has the advantage of being useful at the level of the cotangent bundle, which is a
non-compact manifold, in contrast with the compactness required for the manifold in the original Palais Theorem.

Cotangent lifted actions may, a priori, seem a small class of actions to consider, however this class includes the wide
class of regular integrable systems as we proved in [9]. The action–angle coordinate theorem for integrable systems can be
rephrased (see [9]) as follows: any integrable system is equivalent in a neighbourhood of a Liouville torus to the integrable
system given by the cotangent lift of translations of this torus to T ∗(Tn).

In this sense group actions turn out to be useful tools to understand integrable systems. But what happens with
ingularities of integrable systems? As a consequence of the cotangent lift result above and rigidity theorem for cotangent
ifts, it follows that integrable systems whose singularities are only of regular and of elliptic type are rigid inside the
ntegrable class. Some of these results can be reproved using normal form theorems for the integrable system and the
ymplectic forms. However, our technique reveals to be useful also when there are no normal forms known for degenerate
ingularities invariant by circle actions. We end up this article by proving a rigidity result for a class of degenerate
ingularities of integrable systems.
Organization of this article: In Section 2 we give the definitions of closeness and rigidity and we present some known

results on rigidity. We recall the definition of the cotangent lift of a Lie group action and we briefly describe the main
results on semilocal classification of non-degenerate singularities of integrable Hamiltonian systems. In Section 3 we
state and prove Theorem 3.2, a result on rigidity of the cotangent lift of a close action of a compact Lie group on a
compact manifold. Finally, in Sections 4 and 5 we give applications of Theorem 3.2 to integrable Hamiltonian systems
which have non-degenerate singularities (see Theorem 5.6) for which stability and infinitesimal stability à la Mather hold
(see Remark 2.24) and a class of degenerate singularities for which no normal form theorem is known.

2. Preliminaries

In this article manifolds and maps are assumed to be C∞ unless otherwise stated. The notation follows [6] and [15].

2.1. Rigidity theorems

Following Palais in [19], we recall the definition of Ck-close actions.

Definition 2.1. Let f , g : M −→ N be two smooth maps between smooth manifolds of dimension m and n, respectively.
Suppose that (x1, . . . , xm) is a coordinate system for K ⊂ M compact and (y1, . . . , yn) is a coordinate system for V ⊂ N .
Suppose that f (K ) ⊂ V and g(K ) ⊂ V . Then, f and g are Ck-close maps, for k ≥ 0, if there exists an ε > 0 such that
yi ◦ f (p) − yi ◦ g(p)| < ε for p ∈ K and i = 1, . . . , n and⏐⏐⏐ ∂ r (yi ◦ f )

∂xj1 · · · ∂xjr
(p) −

∂ r (yi ◦ f )
∂xj1 · · · ∂xjr

(p)
⏐⏐⏐ < ε,

for p ∈ K , r ≤ k, i = 1, . . . , n and jα = 1, . . . ,m.

For Lie group actions the definition of closeness is the natural one, considering that the source space is the product of
two smooth manifolds, hence a smooth manifold. We recall now the definition of rigidity of a group action.

Definition 2.2 (Rigid Action). Let a Lie group G act smoothly on a manifold M and let ρ : G×M −→ M denote this action.
The action ρ is rigid if for every smooth one-parameter family of actions ρt of G on M there exists a one-parameter family
of diffeomorphisms ht : M −→ M which conjugate ρ to ρt for all t in a small interval (−ε, ε) ⊂ R.

Richard Palais already proved in [20] an important rigidity result, the existence of a diffeomorphism that conjugates
C1-close actions of a compact Lie group on a compact manifold.

Theorem 2.3 (Palais). Let G be a compact Lie group and M a compact manifold. Let ρ1, ρ2 : G × M −→ M be two actions
which are C1-close. Then, there exists a diffeomorphism ϕ of class C1 that conjugates ρ1 and ρ2, making them equivalent. This
diffeomorphism belongs to the arc-connected component of the identity.
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In the case of the manifold being symplectic, Palais Theorem was extended to the following theorem to obtain that
the diffeomorphism conjugating the two close symplectic actions is a symplectomorphism. This was proved by Miranda
(see [14] or [16]).

Theorem 2.4 (Miranda). Let G be a compact Lie group and (M, ω) a compact symplectic manifold. Let ρ1, ρ2 : G × M −→ M
be two symplectic actions which are C2-close. Then, there exists a symplectomorphism ϕ that conjugates ρ1 and ρ2, making
them equivalent.

In the proof of Theorem 2.4, the diffeomorphism given by Palais Theorem is used, together with the Moser path method
and a de Rham homotopy operator, to prove that the symplectic structure is equivariantly preserved.

2.2. The cotangent lift of a group action

The cotangent bundle of a smooth manifold can be naturally equipped with a symplectic structure in the following
way. Let M be a differential manifold and consider its cotangent bundle T ∗M . There is an intrinsic canonical linear form
λ on T ∗M defined pointwise by

⟨λp, v⟩ = ⟨p, dπpv⟩, p = (m, ξ ) ∈ T ∗M, v ∈ Tp(T ∗M),

where dπp : Tp(T ∗M) −→ TmM is the differential of the canonical projection at p. In local coordinates (qi, pi), the form is
written as λ =

∑
i pi dqi and is called the Liouville 1-form. Its differential ω = dλ =

∑
i dpi ∧ dqi is a symplectic form on

T ∗M .

Definition 2.5. Let ρ : G × M −→ M be a group action of a Lie group G on a smooth manifold M . For each g ∈ G, there
is an induced diffeomorphism ρg : M −→ M . The cotangent lift of ρg , denoted by ρ̂g , is the diffeomorphism on T ∗M given
by

ρ̂g (q, p) := (ρg (q), ((dρg )∗q)
−1(p)), (q, p) ∈ T ∗M

which makes the following diagram commute:

T ∗M T ∗M

M M

π

ρ̂g

ρg

π

Given a difeomorphism ρ : M −→ M , its cotangent lift preserves the canonical form λ as the simple following
omputation shows. At a point p = (m, ξ ) ∈ T ∗M:

λp = (dπ )∗pξ =

= (dπ )∗p(dρ)
∗

m

(
(dρ)∗m

)−1
ξ =

= (d(ρ ◦ π ))∗p
(
(dρ)∗m

)−1
ξ =

= (d(π ◦ ρ̂))∗p
(
(dρ)∗m

)−1
ξ =

= (dρ̂)∗p(dπ )
∗

ρ̂(p)

(
(dρ)∗m

)−1
ξ =

= (dρ̂)∗pλρ̂(p),

where we have used the definitions of the Liouville 1-form and the cotangent lift and the fact that ρ ◦ π = π ◦ ρ̂. Then,
the canonical 1-form is preserved by ρ̂.

As a consequence:

ρ̂∗(ω) = ρ̂∗(dλ) = d(ρ̂∗λ) = dλ = ω.

So, the cotangent lift ρ̂g preserves the Liouville form and the symplectic form of T ∗M and we conclude the following
standard result in the theory of cotangent lifts:

Lemma 2.6. The induced diffeomorphism ρ̂g preserves the form λ and, hence, preserves the symplectic form ω.

The following two examples contain the explicit computations and expressions of simple cotangent lifts which indeed
give rise to hyperbolic and focus–focus pieces respectively of an integrable system with non-degenerate singularities (as
we will see in the next subsection).
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Example 2.7. Consider the action of (R,+) on R given by:

ρ : R × R −→ R
(t, q) ↦−→ e−tq

nd the induced an action ρt : R −→ R. The differential of ρt at a point q ∈ R is:

(dρt )q : TqR −→ TqR
p ↦−→ e−tp

Then, ((dρt )∗q)
−1 acts as p ↦−→ etp, and the cotangent lift ρ̂t associated to the group action ρt , in coordinates (q, p) of

T ∗R is exactly:

ρ̂ : T ∗R −→ T ∗R(
q
p

)
↦−→

(
e−tq
etp

)

Example 2.8. Consider the action of a rotation and a radial dilation on R2 given by:

ρ : (S1 × R) × R2
−→ R2

((θ, t),

(
x1
x2

)
) ↦−→ ρθ,t

(
x1
x2

)
= e−t

(
cos θ sin θ

− sin θ cos θ

)(
x1
x2

)
The differential of the induced action ρθ,t at a point x = (x1, x2) is the following linear map:

dρθ,t : TxR2
−→ TxR2(

y1
y2

)
↦−→ e−t

(
y1 cos θ + y2 sin θ

−y1 sin θ + y2 cos θ

)
Then, ((dρθ,t )∗)−1 acts as:(

y1
y2

)
↦−→ et

(
cos θ sin θ

− sin θ cos θ

)(
y1
y2

)
And the cotangent lift ρ̂θ,t associated to the group action is:

ρ̂θ,t : T ∗R2
−→ T ∗R2⎛⎜⎝x1

x2
y1
y2

⎞⎟⎠ ↦−→

⎛⎜⎝ e−t (x1 cos θ + x2 sin θ )
e−t (−x1 sin θ + x2 cos θ )
et (y1 cos θ + y2 sin θ )
et (−y1 sin θ + y2 cos θ )

⎞⎟⎠
The cotangent lift of a Lie group G on a manifold M , which is an action on (T ∗M, ωT∗M ), is automatically Hamiltonian

(see for instance [7]). This makes the cotangent lift a natural and powerful tool for the formulation of integrable systems,
specially in the context of mechanics.

2.3. Semilocal description of non-degenerate singularities in integrable Hamiltonian systems

A Hamiltonian system is completely integrable if it is defined by n first integrals in involution with respect to the
Poisson bracket. Completely integrable Hamiltonian systems are closely related to Lagrangian foliations through the
following result.

Proposition 2.9. Let f1, . . . , fn be n functions such that {fi, fj} = 0,∀i, j. Suppose that dpf1 ∧ · · · ∧ dpfn ̸= 0 at a point p ∈ M.
Then, the distribution generated by the Hamiltonian vector fields D = ⟨Xf1 , . . . , Xfn⟩ is involutive and the leaf through p is a
Lagrangian submanifold.

The dynamics of an integrable system F = (f1, . . . , fn) is explained by the Arnold–Liouville–Mineur Theorem at the
regular points, namely, at the points of the manifold where the differential dF = (df1, . . . , dfn) is not singular.

Theorem 2.10 (Arnold–Liouville–Mineur). Let (M2n, ω) be a symplectic manifold. Let f1, . . . , fn be functions on M which are
functionally independent (i.e. df1 ∧ · · · ∧ dfn ̸= 0) on a dense set and which are pairwise in involution. Assume that m is a
regular point of F = (f1, . . . , fn) and that the level set of F through m, which we denote by Fm, is compact and connected.

Then, Fm is a torus and on a neighbourhood U of Fm there exist R-valued smooth functions (p1, . . . , pn) and R/Z-valued
smooth functions (θ , . . . , θ ) such that:
1 n
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(1) The functions (θ1, . . . , θn, p1, . . . , pn) define a diffeomorphism U ≃ Tn
× Bn.

(2) The symplectic structure can be written in terms of these coordinates as

ω =

n∑
i=1

dθi ∧ dpi.

(3) The leaves of the surjective submersion F = (f1, . . . , fs) are given by the projection onto the second component Tn
× Bn,

in particular, the functions f1, . . . , fs depend only on p1, . . . , pn.

The functions pi are called action coordinates; the functions θi are called angle coordinates.

The Arnold–Liouville–Mineur Theorem was restated by Kiesenhofer and Miranda in [9] revealing that at a semilocal
level the regular leaves are equivalent to a completely toric cotangent lift model.

Theorem 2.11. Let F = (f1, . . . , fn) be an integrable system on a symplectic manifold (M, ω). Then, semilocally around a
regular Liouville torus, the system is equivalent to the cotangent model (T ∗Tn)can restricted to a neighbourhood of the zero
section (T ∗Tn)0 of T ∗Tn.

At the singular points, the degeneracy of dF determines in general how difficult it is to understand the dynamics, and
for the case of non-degenerate singular points there are powerful results. The following definitions give the precise details
of these concepts.

Definition 2.12. A point p ∈ M2n is a singular point of an integrable Hamiltonian system given by F = (f1, . . . , fn) if
the rank of dF = (df1, . . . , dfn) at p is less than n. The singular point p has rank k and corank of n − k if rank(dF )p =

rank
(
(df1)p, . . . , (dfn)p

)
= k.

Definition 2.13. Let g be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra of g that is self-normalizing,
i.e., if [X, Y ] ∈ h for all X ∈ h, then Y ∈ h. If g is finite-dimensional and semisimple over an algebraically closed field of
characteristic zero, a Cartan subalgebra is a maximal abelian subalgebra (a subalgebra consisting of semisimple elements).

Definition 2.14. Let (M2n, ω) be a symplectic manifold with an integrable Hamiltonian system of n independent and
commuting first integrals f1, . . . , fn. Consider a singular point p ∈ M of rank 0, i.e. (dfi)p = 0 for all i. It is called a non-
degenerate singular point if the operators ω−1d2f1, . . . , ω−1d2fn form a Cartan subalgebra in the symplectic Lie algebra
sp(2n,R) = sp(TpM, ω).

Remark 2.15. The operators ω−1d2fi, where dfi is the Hessian of fi, associate a function to the Hessian by visualizing the
Hessian as a quadratic form H(u, v) and taking the symplectic dual of the function obtained. A good reference for details
of the algebraic construction of the Cartan subalgebra is [1].

The classification of non-degenerate critical points of the moment map in the real case was obtained byWilliamson [23].
In the complex case, all the Cartan subalgebras are conjugate and hence there is only one model for non-degenerate critical
points of the moment map.

Theorem 2.16 (Williamson). For any Cartan subalgebra C of sp(2n,R), there exist a symplectic system of coordinates
(x1, . . . , xn, y1, . . . , yn) in R2n and a basis f1, . . . , fn of C such that each of the quadratic polynomials fi is one of the following:

fi = x2i + y2i for 1 ≤ i ≤ ke
fi = xiyi for ke + 1 ≤ i ≤ ke + kh{
fi = xiyi+1 − xi+1yi
fi+1 = xiyi + xi+1yi+1

for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The three types are called elliptic, hyperbolic and focus–focus, respectively.

Remark 2.17. Notice that the focus–focus components always go by pairs. Because of Theorem 2.16, the triple (ke, kh, kf )
at a singular point it is an invariant. It is also an invariant of the orbit of the integrable system through the point [24].

If p is a non-degenerate singularity of the moment map F , it is characterized by four integer numbers, the rank k of
the singularity and the triple (ke, kh, kf ). By the way they are defined, they satisfy k + ke + kh + 2kf = n, where n is the
number of degrees of freedom of the integrable system.

The following is a result of Eliasson [4] and Miranda and Zung [13,15,18].

Theorem 2.18 (Smooth Local Linearization). Given an smooth integrable Hamiltonian system with n degrees of freedom on
a symplectic manifold (M2n, ω), the Liouville foliation in a neighbourhood of a non-degenerate singular point of rank k and
Williamson type (ke, kh, kf ) is locally symplectomorphic to the model Liouville foliation, which is the foliation defined by the
basis functions of Theorem 2.16 plus ‘‘coordinate functions’’ f = x for i = k + k + 2j + 1 to n.
i i e h



6 P. Mir and E. Miranda / Journal of Geometry and Physics 157 (2020) 103847

r
t

R
d
v
f
t

R
s
o
f

T
W

w

F

M
a
p
t
f
c

Fig. 1. In the neighbourhood of an orbit of rank 1 and Williamson type (0, 1, 0), the return map corresponding to the flow of circle action can give
ise to two different behaviours. After one turn, the point can return to itself or it can return to its ‘‘opposite’’ branch (twisted hyperbolic case), and
his defines a Z/2Z action. The twisted hyperbolic case is described in this picture.

emark 2.19. The theorem states the existence of a semilocal symplectomorphism between foliations with a non
egenerate singularity of rank k and the same parameters (ke, kh, kf ). One could think that functions are also preserved
ia a symplectomorphism, but it is not possible to guarantee this statement when hk ̸= 0 as one can add up analytically
lat terms on different connected components (see counterexample in [13]). In general one needs more information about
he topology of the leaf to conclude (see Fig. 1).

emark 2.20. Because of Theorem 2.18, if one considers the Taylor expansions of F = (f1, . . . , fn) at the non-degenerate
ingular point in a canonical coordinate system and removes all terms except for linear and quadratic, the functions
btained remain commuting and define a Liouville foliation that can be considered as the linearization of the initial
oliation F given by f1, . . . , fn, to which it is symplectomorphic.

The description of non-degenerate singularities at the semilocal level is completed with the following two results.

heorem 2.21. [Model in a Covering] The manifold can be represented, locally at a non-degenerate singularity of rank k and
illiamson type (ke, kh, kf ), as the direct product

Mreg
×

k
· · · × Mreg

× Mell
×

ke
· · · × Mell

× Mhyp
×

kh
· · · × Mhyp

× M foc
×

kf
· · · × M foc

here:

• Mreg is a ‘‘regular block’’, given by

f = x,

• Mell is an ‘‘elliptic block’’, representing the elliptic singularity given by

f = x2 + y2,

• Mhyp is an ‘‘hyperbolic block’’, representing the hyperbolic singularity given by

f = xy,

• M foc is a ‘‘focus-focus block’’, representing the focus–focus singularity given by{
f1 = x1y2 − x2y1
f2 = x1y1 + x2y2.

or the first three types of blocks the symplectic form is ω = dx∧dy, while for the focus–focus block it is ω = dx1∧dy1+dx2∧dy2.

In the case of a smooth system (defined by a smooth moment map), a similar result was proved and described by
iranda and Zung in [18]. It summarizes some previously results proved independently and fixes the case where there
re hyperbolic components (kh ̸= 0), because in this case the result is slightly different and it has to be taken the semidirect
roduct in the decomposition. As opposite to the case where there are only elliptic and focus–focus singularities, in which
he base of the fibration of the neighbourhood is an open disc, if there are hyperbolic components the topology of the
ibre can become complicated. The reason is essentially that for the smooth case a level set of the form {xiyi = ε} is not
onnected but consists of two components.
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Theorem 2.22 (Miranda–Zung). Let V = Dk
×Tk

×D2(n−k) with coordinates (p1, . . . , pk) for Dk, (q1(mod1), . . . , qk(mod1)) for
k, and (x1, y1, . . . , xn−k, yn−k) for D2(n−k) be a symplectic manifold with the standard symplectic form

∑
dpi∧dqi+

∑
dxj∧dyj.

et F be the moment map corresponding to a singularity of rank k with Williamson type (ke, kh, kf ). There exist a finite group
, a linear system on the symplectic manifold V/Γ and a smooth Lagrangian-fibration-preserving symplectomorphism φ from
neighbourhood of O into V/Γ , which sends O to the torus {pi = xi = yi = 0}. The smooth symplectomorphism φ can be
hosen so that via φ, the system-preserving action of a compact group G near O becomes a linear system-preserving action of
on V/Γ . If the moment map F is real analytic and the action of G near O is analytic, then the symplectomorphism φ can

lso be chosen to be real analytic. If the system depends smoothly (resp., analytically) on a local parameter (i.e. we have a local
amily of systems), then φ can also be chosen to depend smoothly (resp., analytically) on that parameter.

In this case, the so-called twisted hyperbolic component can arise (see Fig. 1), and the group of all linear moment maps
reserving symplectomorphisms of the linear direct model of Williamson type (ke, kh, kf ) is isomorphic to

Tk
× Tke × (R × Z/2Z)kh × (R × T1)kf .

To end this section, we recall a related result which highlights the importance of considering the symplectomorphism
t the level of the Lagrangian fibration induced by the Hamiltonian vector fields of the integrable system. Assume that
M, ω) is a symplectic manifold with a non-degenerate singularity of Williamson type (ke, kh, kf ). Assume that the foliation
at the singularity is the linear foliation defined by F = ⟨X1, . . . , Xn⟩, where the vector fields Xi are the linear Hamiltonian

ector fields corresponding to the basis functions of Theorem 2.16. Namely, Xi are the vector fields induced by ιXiω = −dfi,
hat is:

• Xi = −yi ∂∂xi + xi ∂∂yi for elliptic components,
• Xi = −xi ∂∂xi + yi ∂∂yi for hyperbolic components,
• Xi = −xi ∂∂xi + yi ∂∂yi − xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
and

Xi+1 = xi+1
∂
∂xi

+ yi+1
∂
∂yi

− xi ∂
∂xi+1

− yi ∂
∂yi+1

for focus–focus components.

hen, the following theorem holds.

heorem 2.23 (Miranda [13]). Let ω be a symplectic form defined in a neighbourhood of the singularity at p for which the
oliation F is Lagrangian. Then, there exists a local diffeomorphism φ : (U, p) −→ (φ(U), p) such that φ preserves the foliation
nd φ∗(

∑
i dxi ∧ dyi) = ω, where xi, yi are local coordinates on (φ(U), p).

For completely elliptic singularities (of rank 0 and Williamson type (ke, 0, 0)) Theorem 2.23 was proved by Eliasson [4].
When he ̸= 0, the foliation given by the hyperbolic components is preserved but the components of the moment map are
not necessarily preserved (for more details see [13]).

Remark 2.24. All the theorems above can be understood in the language of Mather [12] and Thom [21] as stability
theorems for the integrable systems.

In [17] we studied the infinitesimal stability of integrable systems. The theorem above can be seen,in the spirit of
Mather, as an infinitesimal stability implies stability theorem.

3. Equivalence of close lifted actions

We state and prove some results on symplectic equivalence of lifted close actions of a compact group on a compact
manifold. We start proving a proposition on the equivalence at the level of cotangent lift given equivalence at the base. It is
clear that if two symplectic actions are close, so are their fundamental vector fields. In Proposition 3.1 we prove that if two
actions are C1-equivalent, so are their cotangent lifts, and we define explicitly the diffeomorphism that conjugates them.
With the same idea, and since any cotangent lifted action is Hamiltonian, we prove that if two actions are C1-equivalent,
hen the moment maps induced by their cotangent lifts are also equivalent.

roposition 3.1. Let G be a Lie group and let M be a smooth manifold. Let ρ1, ρ2 : G × M −→ M be two actions which
are C1-equivalent via a conjugation through a diffeomorphism ϕ. Let ρ̂1, ρ̂2 be the cotangent lifts of ρ1, ρ2, respectively. Then,
ˆ1 and ρ̂2 are C1-equivalent via the conjugation through ϕ̂. The moment maps induced by ρ̂1, ρ̂2, denoted respectively by
µ1, µ2 : T ∗M −→ g∗, are equivalent via the conjugation through ϕ̂ as µ2 = µ1 ◦ ϕ̂.

Proof. Assume ρ1, ρ2 : G×M −→ M are two C1-equivalent Lie group actions. Let ϕ be the C1-diffeomorphism conjugating
the two actions, i.e, let ϕ be a diffeomorphism such that ρ1 ◦ϕ = ϕ ◦ρ2. Differentiating both sides, the following equality
is obtained:
dρ1,ϕ(q) ◦ dϕq = dϕρ2(q) ◦ dρ2,q.
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Transposing and inverting the latter equality on both sides, we get the following relation:

((dρ1,ϕ(q))∗)−1
◦ ((dϕq)∗)−1(p) = ((dϕρ2(q))

∗)−1
◦ ((dρ2,q)∗)−1(p),

hich shows that ((dϕ)∗)−1 is exactly the conjugation between ((dρ1,ϕ(q))∗)−1 and ((dρ2,q)∗)−1.
We define now ϕ̂(q, p) := (ϕ(q), ((dϕq)∗)−1(p)), which is a diffeomorphism and can be thought as the cotangent lift of

. Consider the cotangent lift of the actions ρ1 and ρ2, i.e. ρ̂1 and ρ̂2. By definition, ρ̂i(q, p) = (ρi(q), ((dρi,q)∗)−1(p)). Then,
t is clear that ρ̂1 ◦ ϕ̂ = ϕ̂ ◦ ρ̂2, and we conclude that the cotangent lifts of the actions are equivalent on the cotangent
undle via conjugation by ϕ̂, which is precisely the cotangent lift of the diffeomorphism ϕ that conjugates ρ1 and ρ2 on
he base.

The cotangent lift of the action ρ̂i is a Hamiltonian action with moment map µi : T ∗M ↦−→ g∗ given by

⟨µi(p), X⟩ := ⟨λp, X#
|p⟩ = ⟨p, X#

|π (p)⟩,

here p ∈ T ∗M, X ∈ g, X# is the fundamental vector field of X generated by the ρ̂i action and λ is the Liouville 1-form
n T ∗M .
The diffeomorphism ϕ̂ is defined by

ϕ̂(q, p) := (ϕ(q), ((dϕq)∗)−1(p))

nd satisfies ρ̂1 ◦ ϕ̂ = ϕ̂ ◦ ρ̂2. On the other hand, by Lemma 2.6 the Liouville one-form is invariant under the lifted actions,
.e. ρ̂∗

i λ = λ for i = 1, 2, and it is also invariant under the diffeomorphism ϕ̂ by Lemma 2.6.
Through the following computation:

⟨µ2(p), X⟩ = ⟨λp, X#
2 |p⟩ =

= ⟨λp,
d
dt

(
ρ̂2(exp(−tX), p)

)
|t=0⟩ =

= ⟨λp,
d
dt

(
ϕ̂−1(ρ̂1(exp(−tX), ϕ̂(p)))

)
|t=0⟩ =

= ⟨λϕ̂(p),
d
dt

(
ρ̂1(exp(−tX), ϕ̂(p))

)
|t=0⟩ =

= ⟨λϕ̂(p), X#
1 |ϕ̂(p)⟩ =

= ⟨µ1(ϕ̂(p)), X⟩ = ⟨µ1 ◦ ϕ̂(p), X⟩,

here we have used that ϕ̂−1
◦ ρ̂1 ◦ ϕ̂ = ρ̂2. Observe that the fundamental vector fields and the actions are ϕ̂-related. If

ne of the fundamental vector fields is Hamiltonian in the ξ direction (the one given by µ1), so is the second (the one
iven by µ1 ◦ ϕ̂). We conclude that the moment maps are equivalent. □

Now we prove a theorem that can be thought as the cotangent lifted version of Theorem 2.4.

heorem 3.2. Let G be a compact Lie group and M a compact smooth manifold. Let ρ1, ρ2 : G × M −→ M be two actions
which are C1-close. Let ρ̂1, ρ̂2 : G × (T ∗M, ω) −→ (T ∗M, ω) be the cotangent lifts of ρ1, ρ2, respectively. Then, there exists a
ymplectomorphism that conjugates ρ̂1 and ρ̂2, thus making them equivalent.

emark 3.3. Notice that the actions have to be C1-close. Compared with the symplectic version of Palais rigidity Theorem
Theorem 2.4), where they have to be C2-close, one degree of differentiability is gained here.

roof. Let G be a compact Lie group and M a compact smooth manifold. Let ρ1, ρ2 : G × M −→ M be two actions and
ssume that they are C1-close. By Theorem 2.3, there exists a diffeomorphism ϕ that conjugates ρ1 and ρ2.
Consider ρ̂1, ρ̂2 : G × (T ∗M, ω) −→ (T ∗M, ω), the cotangent lifts of ρ1 and ρ2, respectively. By Proposition 3.1, the

iffeomorphism ϕ̂ conjugates ρ̂1 and ρ̂2. To prove that the actions ρ̂1 and ρ̂2 are not only equivalent, but also symplectically
quivalent, we need to check that ϕ̂ preserves the symplectic form. By Lemma 2.6, it preserves the canonical 1-form λ of
∗M and, hence, it preserves the symplectic form ω. □

. Application to integrable systems with non-degenerate singularities

Results of the previous section, namely show a natural way of applying the result of rigidity of the lifted actions to the
ategory of Hamiltonian systems. Theorem 3.2 guarantees, for instance, that the compact orbits of two C1-close integrable
ystems on a symplectic manifold are equivalent at the level of the cotangent lift.
An immediate corollary of Palais rigidity Theorem is the following. Consider two integrable systems in a compact

ymplectic manifold (M, ω) given by F = (f1, . . . , fn) and F̂ = (f̂1, . . . , f̂n), respectively. Let X1, . . . , Xn and X̂1, . . . , X̂n be
he corresponding associated vector fields (those induced by ιXiω = −dfi). If, for each i = 1, . . . , n, the flow ψi of Xi is
lose to the flow ψ̂ of X̂ , and all of them are actions of a compact group (case of toric manifolds), then the two integrable
i i
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systems are equivalent, i.e.,there exists a diffeomorphism ϕ that conjugates F and F̂ . This equivalence can even be pictured
in terms of the Delzant theorem looking at the corresponding Delzant polytopes [3].

In the same direction, a straightforward consequence of Theorem 3.2 at the semilocal level in a neighbourhood of a
compact orbit is the following:

Theorem 4.1. Let F = (f1, . . . , fn) : (M2n, ω) → Rn and F̂ = (f̂1, . . . , f̂n) : (M2n, ω) → Rn be two smooth maps defining two
ntegrable systems. Suppose that the singularities of F and F̂ are non-degenerate and a combination of only regular and elliptic
omponents (with compact orbits) i.e., that each singularity of rank k ̸= n has Williamson type (n − k, 0, 0). Assume that, for
all 1 ≤ i ≤ n, fi and f̂i are C2-close. Then, for each c ∈ Im(F ) ⊂ Rn:

(1) there exists ĉ ∈ Im(F̂ ) ⊂ Rn that is close to c, and
(2) there exists a symplectomorphism φc that makes the neighbourhoods of the leaves Λc = F−1(c) and Λ̂ĉ = F̂−1(ĉ)

equivalent. Namely, there exists φc defined in a neighbourhood of Λc such that φc ◦ F = F̂ ◦ φc and φ∗
c (ω) = ω.

Remark 4.2. Observe that for elliptic and regular components the connected components of the leaves equal the orbits.

Proof. By closeness between F and F̂ , for each c ∈ Im(F ) ⊂ Rn there exists ĉ ∈ Im(F̂ ) ⊂ Rn that is close to c and
such that ĉ is a singular value of F̂ if and only if c is a singular value of F . Closeness between F and F̂ (together with
non-degeneracy) guarantees that the number of elliptic components at the singularity x ∈ F−1(c) is the same as the
number of elliptic components at y ∈ F̂−1(ĉ).

Now, in view of Theorem 2.21, and since in this case the singularities are the product of only regular and elliptic types,
if we prove the existence of the symplectomorphism for the case of a regular value and for the case of a complete elliptic
singularity we will be finished.

If c is a regular value of F , by the Arnold–Liouville–Mineur Theorem the neighbourhood of the leaf Λc is diffeomorphic
to the cotangent bundle of the Liouville torus. The same applies to the neighbourhood of the leaf Λ̂ĉ . The action on T ∗Tn is
the cotangent lift of a compact torus action and then, by Theorem 3.2, there exists a symplectomorphism φc conjugating
F and F̂ on the respective leaf neighbourhoods.

Now suppose c is a non-degenerate singular value of F and x ∈ F−1(c) is a completely elliptic singularity. Consider the
action given by the joint flow, which in this case is locally free and has a unique fixed point, the singularity x. By means of
the joint flow we identify the action as a torus action (see [18]) and we can apply Theorem 2.4 to obtain rigidity between
a neighbourhood of Λc and Λ̂ĉ . □

Remark 4.3. In the case of a regular point, another way of proving symplectic rigidity is using the normal form of the
moment map, since there is only one local model, which is the one given by the Arnold–Liouville–Mineur Theorem.

Remark 4.4. We do not require that the Williamson type of the non-degenerate singularities of F and F̂ is the same, only
that they both are combination of regular and elliptic types (in both cases the orbits coincide with the leafs). Notice that
if F̂ is close enough to F , the elliptic components of a singularity of F will remain elliptic in the associated singularity
of F̂ , and the regular components can become neither hyperbolic nor focus–focus, so compactness of actions and, hence,
rigidity, is guaranteed without having to impose the same Williamson type.

These consequences do not go beyond results that are already known concerning rigidity of integrable systems.
Nevertheless, Theorem 3.2 can be used in the same context of integrable systems to prove a slightly more ambitious
result.

5. Application to S1-invariant degenerate singularities

Consider the following example of a very simple integrable system.

Example 5.1. Let f = (x2 + y2)k, with k ≥ 2, be the moment map of an integrable system in (R2, ωst = dx ∧ dy). It is
a completely solvable system, it has an isolated degenerate singularity at the origin, the flows of the Hamiltonian vector
field lie in concentric circles, and the singularity is a stable centre. Since it is a degenerate singularity, we cannot apply
directly normal form theorems. Nevertheless, we know that, the system is invariant with respect to the S1 action and
therefore we can use another system (which is non-degenerate) associated to the circle action for which there exists a
normal form, which in fact is x2 + y2 and corresponds to an elliptic singularity.

In order to conclude we need a normal form result for circle actions. We first recall the general symplectic slice theorem
and then apply it in the case of a fixed point of a circle action.

Theorem 5.2 (Guillemin–Sternberg [8], Marle [11]). Let (M, ω,G) be a symplectic manifold together with a Hamiltonian group
action. Let z be a point in M such that Oz is contained in the zero level set of the momentum map. Denote by Gz the isotropy
group and Oz by the orbit of z. There is a G-equivariant symplectomorphism from a neighbourhood of the zero section of the

∗
undle T G ×Gz Vz equipped with the above symplectic model to a neighbourhood of the orbit Oz .



10 P. Mir and E. Miranda / Journal of Geometry and Physics 157 (2020) 103847

l

t
n

T

µ

R

G

L

b
a

Recall from Bochner’s linearization theorem that in a neighbourhood of a fixed point of an action we can always
inearize the group action.

Applying Theorem 5.2 to the circle action case with a fixed point and applying Bochner’s theorem we obtain
he classical Marle–Guillemin–Sternberg which gives a local normal form for the moment map of circle actions in a
eighbourhood of a fixed point of the action.

heorem 5.3 ([8,10,11]). Let (M2n, ω) be a symmplectic manifold endowed with an S1-Hamiltonian action and let p be
a fixed point for this action. Then there exist local coordinates (x1, y1, . . . , xn, yn) such that ω =

∑n
i=1 dxi ∧ dyi and

(x) =
∑n

i=1 ci(x
2
i + y2i ).

emark 5.4. The constants cj can be interpreted as weights of the circle action.

The last conclusion of the example is summarized the following lemma, which is an easy consequence of the
uillemin–Marle–Sternberg Theorem.

emma 5.5. Consider a 2-dimensional integrable system which has an S1-invariant degenerate singularity. Then, locally it is
function of the quadratic normal form of elliptic type.

Proof. By Guillemin–Marle–Sternberg theorem (Theorem 5.3), the moment map of an S1-action with a fixed point is a
sum of squares in its normal form. Since it is a 2-dimensional system and because of Noether’s theorem, one can take
coordinates x, y in a neighbourhood of the singularity in such a way that the moment map can be written as

f = φ(x2 + y2). □

Consider now R4 with coordinates (x1, y1, x2, y2) and with the standard symplectic form ωst = dx1 ∧ dy1 + dx2 ∧ dy2.
Consider the three following Hamiltonian functions:

F =(f1, f2) =
(
x21 + y21, x

2
2 + y22

)
(5.1)

G =(g1, g2) =
(
(x21 + y21)

2, x22 + y22
)

(5.2)

H =(h1, h2) =
(
(x21 + y21)

2, (x22 + y22)
2) (5.3)

The three integrable systems have an isolated singularity at the origin, but only in the system given by F it is non-
degenerate. By the way, this system is the model of the two uncoupled harmonic oscillators and its level sets are
2-dimensional invariant tori. The same level sets appear in the other two systems, but Theorem 4.1 can be directly applied
to state rigidity only in the first system, since it has a single non-degenerate singularity of elliptic type (it is already in
normal form), while in the others the singularity is degenerate. Observing the system given by G, though, one can see that
the second component produces an invariant S1 action. This S1 symmetry allows for a symplectic reduction of the system,
making it decrease from a 4-dimensional to a 2-dimensional. In this new system, the singularity is still degenerate, but
following the idea in Example 5.1 one can find its non-degenerate elliptic normal form. Then, Theorem 4.1 can be applied
to obtain rigidity of the reduced system, understanding rigidity as equivalence of close systems. It is not difficult to see
that, then, the original system is also rigid.

In view of this procedure, we have the following result.

Theorem 5.6. Consider an integrable system in a symplectic manifold (M, ω) given by F = (f1, . . . , fn). Suppose that if p ∈ M
is a singularity of F , it is isolated, there are no other singularities in its F-level set, and it is:

• either non-degenerate of regular or elliptic type, or
• degenerate of the following type: f1, . . . , fn−1 have a non-degenerate singularity of elliptic type at p, fn has a degenerate

singularity at p and fn is S1-invariant.

Then the system is rigid at the neighbourhood of each compact leaf Λc = F−1(c) ⊂ M.

Proof. In all the regular leaves or in the leaves containing non-degenerate singularities, Theorem 4.1 already gives rigidity.
At any singular leaf containing a degenerate singularity, there exist (n − 1) S1-invariant actions that commute so we can
perform a series of (n−1) symplectic reductions successively to reduce the system to a 2-dimensional system, which has
a degenerate singularity corresponding to the singularity of fn. At this point, the moment map of the reduced integrable
system still gives an S1-invariant action which has a moment map fn and because of Theorem 5.3 the function fn can
e put in the quadratic normal form corresponding to the elliptic singularity. Then, again by Theorem 4.1, the system
ssociated to fn is rigid at the neighbourhood of the leaf. Because of by Lemma 5.5 the function fn is a smooth function

of fn = H(fn) of fn and thus rigidity also holds for fn and by reconstruction from the initial integrable system (f1, . . . , fn)
in a neighbourhood of a compact leaf. □

Theorem 5.6 states semiglobal rigidity in the very particular case of systems with degenerate singularities that are
non-degenerate in (n−1) components of the moment map and have an S1-invariant action in the degenerate component.
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Remark 5.7. From a dynamical point of view, the results included in this paper can be understood as a weak KAM theorem
where Hamiltonian perturbations occur in the subclass of integrable systems. It would be interesting to explore the weak
analogues for focus–focus singularities which can be seen as a cotangent lift as shown in Example 2.8. Those singularities
are infinitesimally stable [17] and stable (see for instance [2,22]) however it is not possible to follow the guidelines above
due to the lack of compactness of the group S1 × R.
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