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In [13], [17] and [29], we introduced the category of colored supermanifolds (Zn
2-

supermanifolds or just Zn
2-manifolds (Zn

2 =Z2 × . . . ×Z2 (n times))), explicitly described 
the corresponding Zn

2-Berezinian and gave first insights into Zn
2-integration theory. The 

present paper contains a detailed account of parts of the Zn
2-differential calculus and of 

the Zn
2-variants of the trilogy of local theorems, which consists of the inverse function 

theorem, the implicit function theorem and the constant rank theorem.
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0. Introduction

Loosely speaking, colored supermanifolds, also referred to as Zn
2-supermanifolds or just Zn

2-manifolds (Zn
2 = Z×n

2 ), are 
‘manifolds’ for which the structure sheaf has a Zn

2-grading and the commutation rules for the local coordinates come 
from the standard scalar product of Zn

2 (see [8,10,11,9,13–15,17,29] for details). This is not just a trivial or straightforward 
generalization of the notion of a standard supermanifold, as one has to deal with formal coordinates that anticommute with 
other formal coordinates, but are themselves not nilpotent. Due to the presence of formal variables that are not nilpotent, 
formal power series in the formal parameters are used rather than polynomials.

The motivation to introduce and study Zn
2-geometry comes from various sources. First, Zn

2-gradings (n ≥ 2) can be found 
in the theory of parastatistics (see for example [21–23,35]) and in relation to an alternative approach to supersymmetry 
[33]. ‘Higher graded’ generalizations of the super Schrödinger algebra (see [1]) and the super Poincaré algebra (see [6]) have 
appeared in the literature. Furthermore, such gradings appear in the theory of mixed symmetry tensors as found in string 
theory and some formulations of supergravity (see [7]). It must also be pointed out that quaternions and more general 
Clifford algebras can be understood as Zn

2-graded Zn
2-commutative algebras (see [2,3,27,28]). Finally, any ‘sign rule’ can be 

interpreted in terms of a Zn
2-grading (see [13]).

The theory of Zn
2-geometry is currently being developed. Although the available results include the Zn

2-Berezinian (see 
[17]) and low dimensional Zn

2-integration theory (see [29]), many foundational questions remain. The present paper deals 
with parts of the Zn

2-differential calculus and contains the trilogy of local theorems, which consists of the inverse function 
theorem, the implicit function theorem and the constant rank theorem. These Zn

2-geometric results are formally similar to 
their super-geometric counterparts, but their proofs are often subtler. On the other hand, integration on Zn

2-manifolds turns 
out to be fundamentally different from integration on supermanifolds. The novel aspect of integration on Zn

2-manifolds is 
integration with respect to the non-zero degree even parameters.

It is worth noting that the concept of the functor of points is crucial in Zn
2-geometry. The functor of points has been 

used informally in Physics as from the very beginning. It is actually of importance in the contexts where there is no good 
notion of point as in super- and Zn

2-geometry and in algebraic geometry. For instance, homotopical algebraic geometry 
(over differential operators) [31,32,19,20] is completely based on the functor of points approach. In Zn

2-geometry, we are 
particularly interested in functors of �-points, i.e., functors of points from appropriate locally small categories C to a functor 
category whose source is not the category C op but the category G of Zn

2-Grassmann algebras �. However, functors of 
points that are restricted to the very simple test category G are fully faithful only if we replace the target category of the 
functor category by a subcategory of the category of sets. Examples of categories C whose functors of �-points are fully 
faithful contain the categories of Zn

2-manifolds, linear Zn
2-manifolds, Zn

2-graded vector spaces (zero degree rules functor), 
the category of Zn

2-Lie groups... [8,9]. In the case of Zn
2-manifolds, for example, the target category of the functor category 

is the category of Fréchet manifolds over commutative Fréchet algebras.
For various sheaf-theoretical notions we will draw upon Hartshorne [24, Chapter II] and Tennison [30]. There are several 

good introductory books on the theory of supermanifolds including Bartocci, Bruzzo & Hernández-Ruipérez [4], Bernstein, 
Leites, Molotkov & Shander [5], Carmeli, Caston & Fioresi [12], Deligne & Morgan [18], Leites [25] and Varadarajan [34]. For 
categorical notions we will be based on Mac Lane [26].

1. Preliminaries

In this section, we will fix the notation used throughout the article and recall some basic definitions and results. For 
further details we refer the reader to the first two articles of this series on Zn

2-graded geometry [13], [14], as well as 
previous (resp., follow up) papers of the authors on Zn

2-graded algebra [17], [16] (resp., Zn
2-integration [29]), and references 

therein.

1.1. Zn
2-superalgebra

In the sequel, K always denotes a field of characteristic 0. In our notation, Zn
2 =Z2 × · · · ×Z2 (n-times).

A Zn
2-graded algebra A (over K), is a K-algebra of the form A = ⊕γ ∈Zn

2
Aγ (decomposition into K-vector spaces), in 

which the multiplication respects the Zn
2-degree, i.e., Aα · Aβ ⊂ Aα+β . In the following, we will always assume algebras to 

be associative and unital (1 ∈ A0). If in addition, for any pair of homogeneous elements a ∈ Aα and b ∈ Aβ ,

ab = (−1)〈α,β〉 ba , (1.1)

where 〈 , 〉 denotes the usual scalar product, then the algebra A is said to be Zn-commutative.
2
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Examples 1.1. Supercommutative algebras are the simplest examples (n = 1). As shown in [27,28], the quaternion algebra H
(and more generally any Clifford algebra C�k) can be seen as a Zn

2-commutative algebra for n = 3 (respectively, n = k + 1). 
For this, it suffices to associate appropriate degrees to the generators, e.g.,

deg(i) = (0,1,1) , deg(j) = (1,0,1) ( and thus deg(k) = (1,1,0) ).

A Zn
2-commutative algebra A has of course an underlying parity, given by

Zn
2 	 γ = (γ1, . . . , γn) 
→ γ̄ :=

n∑
k=1

γk ∈Z2 .

In other words, degrees γ in Zn
2 are divided into even (γ̄ = 0̄) and odd (γ̄ = 1̄), which induces the analogous subdivision of 

the homogeneous elements of A (labeled in the same way as even or odd).
Note that, following the generalized sign rule (1.1), every odd-degree element of A is nilpotent, as it is familiar in 

supergeometry. However, the higher Zn
2-case (n ≥ 2), is essentially different from the super case, as nonzero degree elements 

are not necessarily nilpotent – more precisely, all even nonzero degree elements are not nilpotent.
Analogously to the definition of Zn

2-commutative algebras, other notions of linear algebra are straightforwardly inferred. 
In this way, Zn

2-graded modules over a Zn
2-commutative algebra A and degree-preserving A-linear maps between them 

form an abelian category Zn
2Mod(A), which naturally admits a symmetric monoidal structure ⊗A (see, e.g., [20, Section 2.1]), 

with braiding given by

c gr
V W : V ⊗A W → W ⊗A V

v ⊗ w 
→ (−1)〈deg(v),deg(w)〉w ⊗ v ,

for homogeneous elements v and w . This structure is also closed, as for every W ∈ Zn
2Mod(A), the functor − ⊗A W :

Zn
2Mod(A) → Zn

2Mod(A) has a right-adjoint HomA(W , −) : Zn
2Mod(A) → Zn

2Mod(A), i.e., for any graded A-modules V , U , 
there is a natural isomorphism

HomA(V ⊗A W , U ) 
 HomA(V ,HomA(W , U )) .

As one can readily verify, the internal hom HomA(V , W ) is the graded A-module which consists of all A-linear maps � :
V → W . These may shift the Zn

2-degree of the elements by a fixed γ ∈Zn
2, i.e.,

�(V α) ⊂ W α+γ ,

for all α ∈Zn
2. The latter constitute the γ -part Homγ

A (V , W ) of HomA(V , W ). Hence, contrary to the case of modules over 
a classical commutative algebra, the internal hom HomA differs from the categorical hom HomA , since this latter contains 
only 0-degree A-linear maps. In other words, HomA(V , W ) = Hom0

A(V , W ).

1.2. Zn
2-supermanifolds and morphisms

The basic objects of our study are smooth Zn
2-supermanifolds. Aside from the usual commuting coordinates (denoted in 

the following with the letter x), they present also different “types” of “formal” coordinates ξ (corresponding to the different 
nonzero degrees in Zn

2) which may commute or anticommute, following the generalized sign rule (1.1). It is important to 
note that, contrary to superspaces (case n = 1), even coordinates may anticommute, odd coordinates may commute, and, as 
already mentioned, even nonzero degree coordinates are not nilpotent.

To keep track of these differences in a local coordinate system of a Zn
2-supermanifold, we have to introduce some more 

notation.
Using the underlying parity we fix a standard order of the elements of Zn

2: first the even degrees ordered lexicographi-
cally, then the odd ones also ordered lexicographically. For example,

Z2
2 = {(0,0), (1,1), (0,1), (1,0)} .

So, when we will refer to γ j ∈ Zn
2 \ {0}, the j-th nonzero degree of Zn

2, we will always mean with respect to this standard 
order. We may thus write ξγ j to specify that the considered formal coordinates are of degree γ j ∈ Zn

2 \ {0}. Then, a tuple 
q = (q1, . . . , qN) ∈ RN (where N := 2n − 1) provides all the information on the Zn

2-graded variables ξ : there is a total 
of |q| := ∑N

k=1 qi graded variables ξa , among which qi of degree γi ∈ Zn
2 \ {0}, denoted by ξai

γi (1 ≤ ai ≤ qi , 1 ≤ i ≤ N). 
For simplicity, the variables ξ are also considered to be ordered by degree. Hence, throughout this article, a system of 
coordinates of a Zn

2-superspace will be denoted in different ways, depending on the level of distinction needed: either u
(no distinction between coordinates), (x, ξ) (considering only the zero/nonzero degree subdivision) or (x, ξγ j ) (considering 
the full Zn

2-degree subdivision).
We are now ready to recall the definition of a Zn-supermanifold.
2
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Definition 1. A locally Zn
2-ringed space is a pair (M, OM) of a topological space M and a sheaf of Zn

2-commutative R-algebras 
over it, such that at every point m ∈ M the stalk OM,m is a local graded ring.

A (smooth) Zn
2-supermanifold of dimension p|q is a locally Zn

2-ringed space (M, OM) which is locally isomorphic to a Zn
2-

superdomain (Rp, C∞
Rp [[ξ ]]). Local sections of this latter are formal power series in the Zn

2-graded variables ξ and smooth 
coefficients

C∞(U )[[ξ ]] :=
⎧⎨⎩

∞∑
α∈NN

fα(x)ξα | fα ∈ C∞(U )

⎫⎬⎭ .

Morphisms between Zn
2-supermanifolds are simply morphisms of Zn

2-ringed spaces, i.e., pairs (φ, φ∗) : (M, OM) →
(N, ON ) of a continuous map φ : M → N and a sheaf morphism φ∗ : ON → φ∗OM , i.e., a family of algebra morphisms 
which are compatible with restrictions and are defined for any open V ⊂ N by

φ∗
V : ON(V ) → OM(φ−1(V )) .

We denote the category of Zn
2-supermanifolds and morphisms between them by Zn

2Man.

Remark 1.2. In the following, we will use M both to denote the Zn
2-supermanifold (M, OM) and its base space, preferring 

the classical notation |M| for this latter when confusion can arise. And analogously we denote by φ the morphism (φ, φ∗)
and its base morphism, writing |φ| for the latter whenever necessary. Moreover, when considering sheaves, like, e.g., OM , 
we omit the underlying topological space M , if this space is clear from the context.

Remark 1.3. Let us stress that the base M corresponds to the degree zero coordinates (and not to the even degree coor-
dinates), and let us mention that it can be proven that the topological base space M carries a natural smooth manifold 
structure of dimension p, that the continuous base map φ : M → N is in fact smooth, and that the morphisms

φ∗
m : Oφ(m) → Om, m ∈ M

between stalks induced by a morphism φ : M → N of Zn
2-supermanifolds respect the unique homogeneous maximal ideals 

of the local graded rings Oφ(m) and Om .

1.3. J -adic topology and Hausdorff completeness

Let I be a homogeneous ideal of a Zn
2-graded (unital) ring R , K an R-module. The collection of sets {x + Ik K }∞k=0, 

where x runs over all elements of K , is readily seen to be a basis for a topology on K , called the I-adic topology. It follows 
immediately from the definition that the I-adic topology is translation-invariant with respect to the additive group structure 
of K .

The following lemma is standard but we give its proof for completeness.

Lemma 1.4. Let I be a homogeneous ideal of R, and let f : K → L be an R-module morphism. Then f is I-adically continuous.

Proof. Let y be any element of L. Since the sets y + Ik L constitute a basis for the I-adic topology of L, it suffices to prove 
that f −1(y + Ik L) is I-adically open in K for all k. As f is an R-morphism, f (Ik K ) ⊂ Ik L. Thus f −1(y + Ik L) is the union of 
the open sets x + Ik K where x runs over all elements of f −1(y + Ik L), hence it is open. �

The I-adic topology on R makes R into a topological ring, i.e., a ring such that the addition and multiplication maps R ×
R → R are continuous, when R × R is endowed with the product topology. We will check the continuity of multiplication; 
continuity of addition is similar. Denote the multiplication map by μ, and let y be an element of R; then

μ−1(y + Ik) =
⋃

(a,b)∈μ−1(y+Ik)

(
a + Ik

)
×

(
b + Ik

)
.

The sets (a + Ik) × (b + Ik) are open in the product topology on R × R , hence μ−1(y + Ik) is open, proving continuity of μ.

Definition 2. Let I be a homogeneous ideal of R . The ring R is Hausdorff complete in the I-adic topology if the canonical 
ring morphism p : R → lim←−k∈N R/Ik is an isomorphism.

We next deal with convergence in the I-adic topology.
4
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Definition 3. Let I be a homogeneous ideal of R , and let ai be a sequence of elements of R . The sequence ai is an I-adic 
Cauchy sequence if for each non-negative integer n there exists l such that a j − ak ∈ In for all j, k ≥ l. The sequence ai
converges I-adically if there exists a ∈ R such that for each non-negative integer n, there exists l such that ai − a ∈ In for all 
i ≥ l.

Evidently these definitions may be extended to the I-adic topology on an R-module M in a natural way. The following 
proposition is standard.

Proposition 1.5. Let R be a Zn
2-graded ring and I a homogeneous ideal. Suppose R is I-adically Hausdorff complete. Then a sequence 

ai is I-adically Cauchy if and only if it converges I-adically to a unique limit in R.

Proof. The fact that a convergent sequence is Cauchy is straightforward, so we prove the converse. If ai is a Cauchy se-
quence, it yields a well-defined element [a]k in R/Ik for each k. Indeed, since ai ≡ a j mod Ik for i, j sufficiently large, we 
define [a]k to be the equivalence class of ai for i large enough. Noting that

lim←−k∈N R/Ik = {(b0,b1,b2, . . . ) ∈
∏
k≥0

R/Ik : bk = fkl(bl),k ≤ l} ,where fkl : R/Il 	 r + Il 
→ r + Ik ∈ R/Ik ,

the [a]k define a unique element a′ of lim←−k∈N R/Ik . Since p is an isomorphism, this element can be identified with the 
corresponding element a of R . It is then directly verified that a is a limit of the sequence ai . To prove uniqueness of the 
limit, suppose ai converges to ã. Then a − ã = (a − ai) + (ai − ã) lies in Ik for all k, since ai converges to a and to ã. But 
since p is an isomorphism, its kernel ∩∞

k=0 Ik vanishes, whence a = ã. �
A similar proposition is true for I-adically Hausdorff complete R-modules.
Canonically associated to any Zn

2-graded algebra R is the homogeneous ideal J of R generated by all homogeneous 
elements of R having nonzero Zn

2-degree. If f : R → S is a morphism of Zn
2-graded algebras, then f ( J R) ⊂ J S . The J -adic 

topology plays a fundamental role in Zn
2-supergeometry.

Indeed, the preceding notions can be sheafified. For a Zn
2-supermanifold M , we have an ideal sheaf J , defined by

J (U ) = 〈 f ∈ O(U ) : f is of nonzero Zn
2-degree〉 .

The ideal sheaf J defines a J -adic topology on the structure sheaf O of M . If F is a sheaf of O-modules, there is 
an analogous J -adic topology on F . Throughout this paper, all statements about sheaves of topological O-modules (e.g., 
saying a sheaf is Hausdorff complete) will refer to this J -adic topology.

As shown in [13,14], many basic results valid for smooth Z2-supermanifolds also hold for Zn
2-supermanifolds. For in-

stance, the underlying (base, or reduced) space M of a Zn
2-supermanifold admits a structure of smooth manifold C∞

M , and 
there is a projection ε :OM → C∞

M of sheaves such that J = kerε.
The obstacle, in the higher Zn

2-case, represented by the loss of the nilpotency of J (a fundamental fact in supergeome-
try), is compensated by the Hausdorff completeness of the J -adic topology on OM :

Proposition 1.6 (Proposition 6.9 in [13]). Let M be a Zn
2-supermanifold. Then OM is J -adically Hausdorff complete as a sheaf of 

Zn
2-commutative algebras, i.e., the canonical sheaf morphism

p : OM → lim←−k∈N OM/J k

is an isomorphism.

1.4. Functor of points

Similar to what happens in classical Z2-supergeometry, a Zn
2-supermanifold M is not fully described by its topological 

points in |M|. To remedy this defect, we broaden the notion of “point”, as was suggested by Grothendieck in the context of 
algebraic geometry.

More precisely, set V = {z ∈ Cn : P (z) = 0} ∈ Aff, where P denotes a polynomial in n indeterminates with complex 
coefficients and Aff denotes the category of affine varieties. Grothendieck insisted on solving the equation P (z) = 0 not 
only in Cn , but in An , for any algebra A in the category CA of commutative (associative unital) algebras (over C). This leads 
to an arrow

SolP : CA 	 A 
→ SolP (A) = {a ∈ An : P (a) = 0} ∈ Set ,

which turns out to be a functor
5
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SolP 
 HomCA(C[V ],−) ∈ [CA,Set] ,

where C[V ] is the algebra of polynomial functions of V . The dual of this functor, whose value SolP (A) is the set of A-points 
of V , is the functor

HomAff(−, V ) ∈ [Aff op,Set] ,

whose value HomAff(W , V ) is the set of W -points of V .
The latter functor can be considered not only in Aff, but in any locally small category, in particular in Zn

2Man. We thus 
obtain a covariant functor (functor in •)

• = Hom(−,•) : Zn
2Man 	 M 
→ M = HomZn

2Man
(−, M) ∈ [Zn

2Man
op,Set] .

As suggested above, the contravariant functor Hom(−, M) (we omit the subscript Zn
2Man) (functor in −) is referred to as 

the functor of points of M . If S ∈Zn
2Man, an S-point of M is just a morphism πS ∈ Hom(S, M). One may regard an S-point 

of M as a ‘family of points of M parameterized by the points of S ’. The functor • is known as the Yoneda embedding. 
For any underlying locally small category C (here C = Zn

2Man), the functor • is fully faithful, what means that, for any 
M, N ∈Zn

2Man, the map

•M,N : Hom(M, N) 	 φ 
→ Hom(−, φ) ∈ Nat(Hom(−, M),Hom(−, N))

is bijective (here Nat denotes the set of natural transformations). It can be checked that the correspondence •M,N is natural 
in M and in N . Moreover, any fully faithful functor is automatically injective up to isomorphism on objects: M 
 N implies 
M 
 N . Of course, the functor • is not surjective up to isomorphism on objects, i.e., not every functor X ∈ [Zn

2Man
op, Set]

is isomorphic to a functor of the type M . However, if such M does exist, it is, due to the mentioned injectivity, unique 
up to isomorphism and it is called ‘the’ representing Zn

2-supermanifold of X . Further, if X, Y ∈ [Zn
2Man

op, Set] are two 
representable functors, represented by M, N respectively, a morphism or natural transformation between them, provides, 
due to the mentioned bijectivity, a unique morphism between the representing Zn

2-supermanifolds M and N . It follows 
that, instead of studying the category Zn

2Man, we can just as well focus on the functor category [Zn
2Man

op,Set] (which 
has better properties, in particular it has all limits and colimits).

2. Tangent sheaf, tangent space, and tangent map

2.1. Tangent sheaf

The following definition is standard:

Definition 4. Let f ∈ O(U ). We denote by W f the open subset of U made of all points m ∈ U such that the restriction 
f |V = 0 for some neighborhood V of m. The support of f is the closed subset of U defined by supp( f ) := U\W f .

Let now U be an open subset of a Zn
2-supermanifold M . We consider the set DerR(O(U )) of Zn

2-graded R-linear 
derivations of O(U ), i.e., of R-linear maps D : O(U ) → O(U ), of all degrees deg(D) ∈ Zn

2, satisfying the graded Leibniz 
rule:

D(ab) = Da · b + (−1)〈deg(D),deg(a)〉a · Db .

Then DerR(O(U )) is a Zn
2-graded O(U )-module, as may readily be verified.

We now show that derivations can be localized.
The existence of partitions of unity on Zn

2-supermanifolds [13, Section 7.4] implies, as usual, the existence of bump 
functions on Zn

2-supermanifolds. This means that, for a Zn
2-supermanifold M , a point m ∈ M , and an open neighborhood V

of m, there is a function ϕ ∈ O0(M) such that supp(ϕ) ⊂ V and ϕ = 1 on an open neighborhood of m. The proof of this 
statement is standard.

Lemma 2.1. Let M be a Zn
2-supermanifold, D : O(M) → O(M) a global derivation, and U an open subset of M. Then there exists a 

unique derivation D|U :O(U ) →O(U ) such that D|U (g|U ) = (Dg)|U for any g ∈O(M). This derivation D|U has the same degree as 
D.

Proof. Since we wish to localize D , we must first show that D is a local operator, i.e., that if h|V = 0, then Dh|V = 0 for any 
open V . This result is of course a direct consequence of the existence of bump functions. Indeed, suppose m ∈ V and choose 
a bump function ϕ ∈ O0(M) around m whose support supp(ϕ) is contained in V and which is 1 in an open neighborhood 
W of m. Then ϕh = 0, whence D(ϕh) = Dϕ · h + ϕ · Dh = 0. As h|W = 0 and ϕ|W = 1, we have that Dh|W = 0. But this is 
true near any point m ∈ V , whence Dh|V = 0.
6
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As a derivation D is thus a local operator, we can define its localization D|U . Suppose f ∈ O(U ) and m ∈ U , and choose 
a bump function ϕ around m. The function h = ϕ f ∈ O(M) [25] agrees with f in some open neighborhood V of m in U . 
By the above discussion, the function (Dh)|V is independent of the choice of h that agrees with f on V and depends only 
on f . The same argument allows to see that the functions (Dh)|V , which are defined on a cover of U by open subsets V , 
piece together to define a unique function on U , which we denote by D|U f ∈ O(U ) and whose degree is deg(D) + deg( f ). 
This procedure defines an operator D|U : O(U ) → O(U ), which is readily seen to be a graded derivation from the fact that 
D is. The uniqueness of D|U is a straightforward consequence of our proof. Further, it follows from the definition of D|U

that D|U (g|U ) = (Dg)|U . �
Hence, given V ⊂ U , we may define a restriction morphism ρU V : DerR(O(U )) → DerR(O(V )) by assigning to any 

derivation X on U the unique derivation X |V on V given by the preceding lemma. It is readily checked that the ρU V so 
defined satisfy the axioms for the restriction morphisms of a sheaf of Zn

2-graded O-modules. We denote this sheaf by 
DerRO. It is endowed with the J -adic topology associated to the decreasing filtration

DerRO ⊃ J · DerRO ⊃ J 2 · DerRO ⊃ . . .

of Zn
2-graded O-modules. This topology makes DerRO a sheaf of Zn

2-graded topological O-modules. Indeed, the just 
defined restriction maps are continuous. The usual argument goes through here: since ρU V (J k(U ) · DerR(O(U ))) ⊂ J k(V ) ·
DerR(O(V )), the preimage ρ−1

U V (D V +J k(V ) · DerR(O(V ))), where D V ∈ DerR(O(V )), is the union of the 
U +J k(U ) ·
DerR(O(U )), where 
U ∈ DerR(O(U )) runs through this preimage.

Definition 5. The tangent sheaf T M of a Zn
2-supermanifold M with structure sheaf O is the sheaf of Zn

2-graded topological 
O-modules

T M(U ) := DerR(O(U ))

with the restriction morphisms ρU V defined above. The sections in T M(U ) are referred to as vector fields on U .

The next property of derivations will be crucial in much of what follows:

Proposition 2.2. Any derivation in DerR(O(U )) over any open U ⊂ M is J (U )-adically continuous.

Remark 2.3. Just as the ideal sheaf J induces the J -adic topology on the algebra sheaf O (the ideal J (U ) induces the 
J (U )-adic topology on the algebra O(U ) – for any open U ⊂ M), the stalk Jm implements the Jm-adic topology on 
the stalk Om – for any m ∈ M . We can of course consider the derivations DerROm . As for DerR(O(U )), any derivation 
in DerROm is Jm-adically continuous. For any X ∈ DerR(O(U )) its continuity implies that if a sequence of sections 
fk ∈ O(U ) tends J (U )-adically to a section f ∈ O(U ), then X fk tends J (U )-adically to X f . A similar statement holds at 
the level of stalks.

Proof. For X ∈ DerR(O(U )) and k ∈ N \ {0}, we have X(J k(U )) ⊂ J k−1(U ). Indeed, the case k = 1 is vacuously true. 
Suppose X(J k(U )) ⊂ J k−1(U ) for some k. Any element of J k+1(U ) is a finite sum of elements of the form ab, with 
a ∈J (U ) and b ∈J k(U ). Then

X(ab) = Xa · b + (−1)〈deg(X),deg(a)〉a · Xb ∈ J k(U ) .

Let now g ∈O(U ). Again the fact that X(J k+1(U )) ⊂J k(U ) implies that X−1(g +J k(U )) is the union of the J (U )-adically 
open sets f +J k+1(U ), where f runs over all elements of X−1(g +J k(U )), so that X−1(g +J k(U )) is open. �
Proposition 2.4. The real Zn

2-graded vector space T M(U ) of vector fields on U carries a Zn
2-graded Lie algebra structure, which is 

given by the Zn
2-graded Lie bracket

[X, Y ]( f ) := X(Y f ) − (−1)〈deg(X),deg(Y )〉Y (X f ),

for homogeneous X, Y ∈ T M(U ) and any f ∈O(U ).

Indeed, it is straightforwardly checked that the above defines an R-bilinear degree respecting operation [− , −], which 
is Zn

2-graded antisymmetric and satisfies the Zn
2-graded Jacobi identity.

Proposition 2.5. Let M be a Zn
2-supermanifold of dimension p|q. Then T M is a locally free rank p|q sheaf of Zn

2-graded topological 
O-modules. More precisely, if u = (ui) is a coordinate system on an open set U , the partial derivatives (∂ui ) form an O(U )-basis of 
T M(U ).
7
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Remark 2.6. Consequently, the stalk (T M)m at any m ∈ M is a free Om-module of rank p|q with induced basis 
([

∂ui

]
m

)
.

Proof. That the ∂ui are O(U )-linearly independent is readily checked. To show that they span T M(U ), let D be a derivation 
on U . Set ab := Dub and D ′ := D − ∑

b ab∂ub . Since D ′ is a graded derivation that vanishes on the ub , we get D ′ P = 0 for 
any polynomial P in the ub . By J (U )-continuity, it follows that D ′P = 0 for any polynomial section in the sense of [13], 
i.e., for any section in O(U ) of the form

P =
∑

|μ|≥0

Pμ(x)ξμ ,

where μ is a multi-index and Pμ(x) is a polynomial in the zero-degree coordinates xi (apply Remark 2.3 to the sequence 
Pk obtained by taking in the sum P only the terms |μ| ≤ k). Let now f ∈O(U ) and let m be any point in U . By polynomial 
approximation [13, Theorem 6.10], for any k there exists a polynomial section P such that [ f ]m − [P]m ∈ mk

m , where mm

denotes the unique homogeneous maximal ideal of Om . Applying D ′ to f − P , we see that [D ′ f ]m lies in mk−1
m for every 

k, hence [D ′ f ]m = 0. Since m ∈ U was arbitrary, D ′ f = 0 for any function f ∈ O(U ), i.e., D = ∑
b ab∂ub . The point is here 

that the induced derivation D ′
m sends mk

m to mk−1
m , what can be proven by induction on k using the fact that D ′( f g) =

(D ′ f )g ± f D ′ g . Indeed, to show that the induction starts for k = 2, it suffices to choose f , g ∈ mm , and, to show that the 
statement holds for k + 1 if it holds for k ≥ 2, it suffices to choose f ∈ mm, g ∈mk

m . �
Corollary 2.7. The sheaf of modules T M is Hausdorff complete. Likewise, at every point m ∈ M, the stalk (T M)m is Hausdorff complete.

Proof. By Proposition 2.5, for any coordinate set U , T M(U ) is a free O(U )-module of finite rank. Since the structure sheaf 
O is J -adically Hausdorff complete, we can conclude. �
2.2. Tangent space and tangent map

Definition 6. Let M be a Zn
2-supermanifold and let m ∈ M . The tangent space to M at m, denoted Tm M , is the Zn

2-super 
R-vector space DerR,m Om of graded R-linear derivations Om →R.

Proposition 2.8. Let X be a vector field defined in a neighborhood of m. Then X induces a tangent vector X |m to M at m. If X is 
homogeneous, the degree of X |m is the same as that of X.

Proof. A vector field X : O(U ) → O(U ) defined in a neighborhood U of m induces a graded derivation Xm : Om → Om at 
the stalk level such that if X is homogeneous, Xm has the same degree as X . Let εm :Om → C∞

m be the algebra morphism (of 
degree 0) induced by the algebra morphism εU :O(U ) → C∞(U ) and let evm : C∞

m →R be the evaluation algebra morphism 
(of degree 0) at m. We set

(X |m)[ f ]m := (evm ◦ εm ◦ Xm)[ f ]m . (2.1)

It is readily verified that X |m :Om →R has all the announced properties. �
As with the tangent sheaf, if dim(M) = p|q then dim(Tm M) = p|q. Indeed, given a coordinate system (xi, ξa) centered at 

m, the tangent vectors 
(
∂xi |m, ∂ξa |m

)
at m, induced by the coordinate vector fields following (2.1), are a basis for Tm M . As in 

the case of the tangent sheaf, this is proven by polynomial approximation.

Remark 2.9. It is worth remembering that X |m[ f ]m = (ε X f )(m). Since the evaluation at m of X f ∈ O(U ) is meaningless, 
we often just write X |m[ f ]m = (X f )(m) or even X |m[ f ]m = X f |m . In particular, if u = (x, ξ), we have

∂ub |m[ f ]m = (ε ∂ub f )(m) = ∂ub f |m .

We may compare the geometric fiber of the tangent sheaf at a point m with the tangent space at m defined above.

Proposition 2.10. Let m ∈ M be a point, mm the maximal ideal of Om. Then,

Tm M 
 (T M)m/ (mm · (T M)m)

as Zn
2-super R-vector space.

Proof. This follows by unraveling the proof of the previous proposition. �

8



T. Covolo, S. Kwok and N. Poncin Journal of Geometry and Physics 168 (2021) 104302
Definition 7. Let ψ : M → N be a morphism of Zn
2-supermanifolds such that ψ(m) = n for some point m ∈ M . The tangent 

map of ψ at m is the morphism of Zn
2-super vector spaces dψm : Tm M → Tn N defined by

dψm(v)([ f ]n) = v(ψ∗
m([ f ]n)) ,

for all v ∈ Tm M and [ f ]n ∈ON,n .

It follows directly from this definition that

Proposition 2.11. Let ψ : M → N and φ : N → S be two morphisms of Zn
2-supermanifolds. Then, for any point m ∈ |M|,

d(φ ◦ ψ)m = dφ|ψ |(m) ◦ dψm . (2.2)

2.3. Chain rule and modified Jacobian

We now establish the chain rule for Zn
2-supermanifolds and use it to relate the tangent map to the Zn

2-graded Jacobian 
matrix.

Proposition 2.12. Let U p|q, V r|s be Zn
2-superdomains, with coordinates ua, vb respectively. Let ψ : U p|q → V r|s be a morphism of 

Zn
2-supermanifolds. Then,

∂ψ∗( f )

∂ua
=

∑
b

∂ψ∗(vb)

∂ua
ψ∗

(
∂ f

∂vb

)
for any f ∈O(V r|s).

Proof. Let f ∈O(V r|s),

D( f ) := ∂ψ∗( f )

∂ua
, D ′( f ) :=

∑
b

∂ψ∗(vb)

∂ua
ψ∗

(
∂ f

∂vb

)
,

and consider the graded derivation D − D ′ . Clearly, D − D ′ annihilates all polynomials in the coordinate functions vb , as 
it is a graded derivation. By Proposition 2.2, D − D ′ annihilates all polynomial sections on V r|s . Let f ∈ O(V r|s) and m be 
any point in V r|s . By polynomial approximation [13, Thm. 6.10], for any k there exists a polynomial section P such that 
[ f ]m − [P]m ∈ mk

m . Since this is true for any k, we see that [(D − D ′) f ]m = 0, and since m ∈ V r|s was arbitrary, we conclude 
that (D − D ′) f = 0. �

In particular, this implies that

dψm (∂ua |m) =
∑

b

(
∂uaψ∗(vb)|m

)
∂vb ||ψ |(m) ,

so that the tangent map of ψ at m is the linear map characterized in the bases of its source and target tangent spaces 
induced by the coordinates u and v respectively, by the block-diagonal Zn

2-graded matrix

Jψ,m :=
(
∂ua vb|m

)
ba

. (2.3)

Note that, as in supergeometry, we simply wrote v = v(u) instead of ψ∗(v). The preceding result is a consequence of the 
above definitions and conventions, provided one remembers that εm and ψ∗

m commute [13] and that evm ψ∗
m = ev|ψ |(m) . As 

for the statement that Jψ,m is block-diagonal, note that if a non-diagonal block is non-zero, there exists a derivative ∂ua vb , 
with deg(vb) �= deg(ua), which contains a term without formal parameter. Hence, the corresponding term in vb contains 
the unique parameter ua and its degree is thus deg(vb) = deg(ua), what is a contradiction.

When considering the counterpart of (2.2) in matrix form, we remark that an additional sign appears. Indeed, for Zn
2-

morphisms ψ : M → N and φ : N → S , which read locally respectively as v = v(u) around m and w = w(v) around |ψ |(m), 
one has

∂ub wa =
∑

c

∂ub vc ∂vc wa =
∑

c

(−1)〈deg(ub)+deg(vc),deg(vc)+deg(wa)〉∂vc wa ∂ub vc .

To absorb the redundant sign, we must consider the following
9
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Definition 8. The Zn
2-graded Jacobian matrix of a local Zn

2-morphism ψ between Zn
2-domains U and V , given by v = v(u), 

is the degree 0 graded matrix

Jacψ :=
(
(−1)〈deg(vb)+deg(ua),deg(ua)〉∂ua vb

)
ba

. (2.4)

We then have the following familiar result.

Proposition 2.13. The graded Jacobian matrix of a composition of morphisms is the product of the graded Jacobians of the individual 
morphisms, i.e.,

Jacψ◦φ = Jacψ · Jacφ ,

or, more precisely,

Jacψ◦φ = φ∗( Jacψ) · Jacφ

Remark 2.14. Notice again that the Jacobian matrix Jacψ of a Zn
2-morphism ψ is the usual Jacobian matrix with an extra 

sign that depends on the considered entry (see Equation (2.4)). On the other hand, the matrix Jψ,m of the tangent map 
dψm of a Zn

2-morphism ψ is the usual Jacobian matrix with derivatives that are (projected onto the base by ε and then) 
evaluated at m (see Equation (2.3)). As mentioned already above, the projection transforms the Jacobian matrix into a block-
diagonal one. Observe that the difference in sign between Jacψ and Jψ,m disappears for the diagonal blocks (see Equation 
(2.4)). Therefore, the matrix Jψ,m can be viewed as the (projection and) evaluation at m of the matrix Jacψ :

Jψ,m = Jacψ

∣∣
m =

⎛⎜⎜⎜⎝
Bγ0

Bγ1

. . .

Bγ2n−1

⎞⎟⎟⎟⎠ , Bγi =
(
∂ua vb|m

)
ba

, with deg(ua) = deg(vb) = γi ∈Zn
2 . (2.5)

Moreover, the coordinates u and v are ordered according to the standard ordering, so that the γi ∈Zn
2 are ordered similarly, 

i.e., they run first through the even degrees ordered lexicographically, then through the odd ones ordered also lexicographi-
cally.

3. Products of Zn
2-supermanifolds

The category of Zn
2-supermanifolds admits finite products:

Proposition 3.1. Let Mi, i ∈ {1, 2}, be Zn
2-supermanifolds. Then there exists a Zn

2-supermanifold M1 × M2 and Zn
2-morphisms πi :

M1 × M2 → Mi (with underlying smooth manifold |M1 × M2| = |M1| × |M2| and with underlying smooth morphisms |πi| : |M1| ×
|M2| → |Mi | given by the canonical projections), such that for any Zn

2-supermanifold N and Zn
2-morphisms f i : N → Mi , there exists 

a unique morphism h := 〈 f1, f2〉 : N → M1 × M2 making the diagram

N

M1 × M2 M1

M2

f1

f2

h=〈 f1, f2〉

π1

π2

commute.

Of course, such a product is unique up to unique isomorphism.

Proof. See [11]. �
Corollary 3.2. The category Zn-Man admits finite products.
2

10
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4. Local forms of morphisms

4.1. Inverse function theorem

We begin with the Zn
2-analogue of the inverse function theorem, which plays as fundamental a role in Zn

2-supergeometry 
as the classical version does in ungraded geometry.

Theorem 4.1. Let φ : M → N be a morphism of Zn
2-supermanifolds, and m ∈ |M| be a point. Then the following are equivalent:

(1) dφm is invertible,
(2) there exist coordinate charts U about m and V about |φ|(m) such that φ|U : U → V is a Zn

2-diffeomorphism.

Proof. That φ being a Zn
2-diffeomorphism around m implies invertibility of dφm is an easy consequence of the chain rule.

Now let us suppose that dφm is invertible. In particular, this implies dim(M) = dim(N). As the statement is local, we may 
assume from the beginning that M and N are Zn

2-superdomains U p|q and V p|q respectively, and that m = 0. Let μ ∈Zn
2\{0}

and let (x, ξ) and (y, η) be coordinates on U and V . In order to keep track of the Zn
2-degrees of the coordinates, we have 

introduced in Section 1 the notation ξk
μ to indicate a coordinate of Zn

2-degree μ.
By the Chart Theorem for Zn

2-supermanifolds [13, Thm. 6.8], we have:

φ∗(yr) = f r
0(x) +

∑
|P |≥2

deg(ξ P )=0

f r
P (x) ξ P , (4.1)

φ∗(ηs
μ) =

∑
|Q |≥1

deg(ξ Q )=μ

gs
Q (x) ξ Q =

qμ∑
k=1

gs
E (μ,k)(x) ξk

μ + . . . (4.2)

where, for μ the i-th nonzero degree in Zn
2 following the standard order, E (μ, k) = (0, . . . , 1, . . . , 0) with 1 at the entry 

q1 + . . . + qi−1 + k. Then, recalling the matrix form of the differential of φ at m (2.5), the hypothesis that the differential be 
invertible is equivalent to the assumption that the block matrices

B0 =

⎛⎜⎜⎜⎝
∂ f 1

0
∂x1 . . .

∂ f 1
0

∂xp

...
...

∂ f p
0

∂x1 . . .
∂ f p

0
∂xp

⎞⎟⎟⎟⎠ and Bμ =

⎛⎜⎜⎝
g1
E (μ,1) . . . g1

E (μ,qμ)

...
...

g
qμ

E (μ,1) . . . g
qμ

E (μ,qμ)

⎞⎟⎟⎠
are invertible for all μ ∈Zn

2\{0}. By the classical inverse function theorem, there exists an open neighborhood of 0 (m = 0) 
in U , such that the { f i

0} define new coordinates of degree 0, denoted by ̃x (we will denote this neighborhood by U , thus 
shrinking the original U (and V ) if necessary). Furthermore, using the invertible matrices Bμ we can also change the 
coordinates of each nonzero degree μ, by

ξ̃a
μ :=

∑
b

ga
E (μ,b)(x) ξb

μ ,

finally obtaining a new system of coordinates (̃x, ̃ξ ) near the considered point.
Reading the morphism φ, see (4.1) and (4.2), in the new coordinates (̃x, ̃ξ ) and identifying these with the original 

coordinates (x, ξ) to simplify notation, we get

φ∗(yr) = xr +
∑

|P |≥2

f̃ r
P (x) ξ P = xr + Sr(x, ξ) ,

φ∗(ηs
μ) = ξ s

μ +
∑

|Q |≥2

g̃s
Q (x) ξ Q = ξ s

μ + �s
μ(x, ξ) ,

where Sr(x, ξ), �s
μ(x, ξ) ∈J 2(U ) (in view of the identification, we have V = U ).

Define now a Zn
2-morphism ψ : V p|q → U p|q by setting

ψ∗(xi) = yi ∈ O0(U ) and ψ∗(ξ j
μ) = η

j
μ ∈ Oμ(U ) .

The Zn
2-morphism ψ ◦ φ : U p|q → U p|q is characterized by the pullbacks

φ∗(ψ∗(xi)) = xi + Si(x, ξ) and φ∗(ψ∗(ξ j
μ)) = ξ

j
μ + �

j
μ(x, ξ) .
11
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For any Zn
2-function h(x, ξ) = ∑

α hα(x)ξα ∈O(U ), the pullback by ψ ◦ φ is

(φ∗ ◦ ψ∗)(h(x, ξ)) =
∑
α

hα(x + S)(ξ + �)α =
∑
α

∑
β

1

β! (∂
β
x hα)(x) Sβ(x, ξ) (ξ + �)α ,

where Sβ(x, ξ) ∈J 2|β|(U ). Notice that

(ξ + �)α = ξα + Sα(x, ξ) and
∑
β

. . . = hα(x) +
∑
|β|≥1

Sαβ(x, ξ) ,

where Sα(x, ξ) ∈J |α|+1(U ) and Sαβ(x, ξ) ∈J 2|β|(U ). Hence,

(φ∗ ◦ ψ∗)(h(x, ξ)) = h(x, ξ) +
∑
α

hα(x)Sα(x, ξ) +
∑
α

∑
|β|≥1

Sαβ(x, ξ) ξα +
∑
α

∑
|β|≥1

Sαβ(x, ξ)Sα(x, ξ) .

If now h(x, ξ) ∈ J k(U ) (k ≥ 0), i.e., if |α| ≥ k, then the four terms of the right hand side of the preceding equation belong 
to J k(U ), J k+1(U ), J k+2(U ), and J k+3(U ), respectively. This implies that

(φ∗ ◦ ψ∗)(h(x, ξ)) = h(x, ξ) +S(h(x, ξ)) ,

with S(h(x, ξ)) ∈ J k+1(U ). Hence, we have a degree 0 linear map (not a Zn
2-morphism)

S : O(U ) → J (U ) ⊂ O(U ) ,

such that S :J k(U ) →J k+1(U ), for all k ≥ 1. Define now

ι∗ =
∞∑

k=0

(−1)kSk = id−S+S2 − . . .

For any F ∈ O(U ), the successive terms F , SF , S2 F , ... of ι∗(F ) are elements of O(U ), J (U ), J 2(U ), ... This means that 
they are formal power series with at least 0, 1, 2, ... parameters. It follows that the series of series ι∗(F ) is itself a formal 
power series in the ξ -s with coefficients in the smooth functions of the base U . Indeed, whatever the monomial ξα , the 
coefficients of the terms of S� F with � ≥ |α| + 1 cannot contribute to the coefficient of ξα , which is thus a finite sum of 
base functions. Therefore ι∗ is a map

ι∗ : O(U ) → O(U ) .

Further, it is clear that (φ∗ ◦ ψ∗) ◦ ι∗ = ι∗ ◦ (φ∗ ◦ ψ∗) = id, so that ι∗ is a Zn
2-graded unital algebra endomorphism of O(U ). 

Such an algebra morphism defines a unique Zn
2-morphism ι : U p|q → U p|q [11]. Since φ∗ ◦ (ψ∗ ◦ ι∗) = id the Zn

2-morphism 
λ := ι ◦ ψ is a left inverse of the Zn

2-morphism φ: λ ◦ φ = id. In view of Proposition 2.11, we find that dλ|φ|(m) ◦ dφm = id, 
so that dλ|φ|(m) is invertible. Applying the result we just proved to λ, we find a local left inverse ϕ of λ: ϕ ◦ λ = id, hence, 
ϕ = φ and φ is a local Zn

2-diffeomorphism. �
4.2. Implicit function theorem

As a corollary of the inverse function theorem on Zn
2-manifolds, one can prove the implicit function theorem.

Corollary 4.2 (Implicit Function Theorem). Let U := U p|q, V := V r|s and W := W r|s be Zn
2-domains with coordinates

(U , u = (x, ξμ)), (V , v = (y, ημ)) and (W , w = (z, θμ)) .

Let

φ : U × V → W

be a Zn
2-morphism and let u0 ∈ |U |, v0 ∈ |V | and w0 := |φ|(u0, v0) ∈ |W |. Assume the graded submatrix

J := ∂vφ
∗(w)|(u0,v0)

of Jacφ |(u0,v0) is invertible. Then, it exists a unique Zn
2-morphism

ψ : U × W → V

defined in a neighborhood of (u0, w0) (we shrink the original domains if needed), such that
12
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|ψ |(u0, w0) = v0 (4.3)

and

φ ◦ 〈πU×W
1 ,ψ〉 = πU×W

2 . (4.4)

Obviously πU×W
1 and πU×W

2 refer to the first and second projections of the product U × W . The morphism 〈πU×W
1 , ψ〉

is the unique Zn
2-morphism from U × W to U × V that is defined by πU×W

1 and by ψ . In the ungraded context, Equation 
(4.4) reads φ(u, ψ(u, w)) = w . If we fix w setting w = φ(u0, v0), we get

φ(u, v) = φ(u0, v0) ⇔ v = ψ(u) .

Proof. Set χ := 〈πU×V
1 , φ〉. This Zn

2-morphism χ : U × V → U × W is defined by

χ∗(u) = u and χ∗(w) = φ∗(w) .

By direct computation, we have that Jacχ |(u0,v0) is a block-diagonal matrix (see (2.5)) with blocks

B0 =
(

I 0
∂xφ

∗(z)|(u0,v0) ∂yφ
∗(z)|(u0,v0)

)
and Bμ =

(
I 0

∂ξμφ∗(θμ)|(u0,v0) ∂ημφ∗(θμ)|(u0,v0)

)
.

Note that the block-diagonal matrix formed by the blocks ∂yφ∗(z)|(u0,v0) and ∂ημφ∗(θμ)|(u0,v0) (μ ∈Zn
2 \ {0}) is nothing but 

the graded matrix J , which is by assumption invertible. Thus, Jacχ is invertible at (u0, v0) and by Theorem 4.1 this implies 
that χ admits an inverse defined on a neighborhood of (u0, w0),

χ−1 : U × W → U × V .

The Zn
2-morphism ψ : U × W → V defined by ψ := πU×V

2 ◦ χ−1, has the properties described in the claim. Indeed, on 
the one hand, we have |ψ |(u0, w0) = v0. On the other hand, the morphism 〈πU×W

1 , ψ〉 is characterized by

πU×V
1 ◦ 〈πU×W

1 ,ψ〉 = πU×W
1 and πU×V

2 ◦ 〈πU×W
1 ,ψ〉 = ψ .

Since, by definition of χ ,

πU×W
1 = πU×V

1 ◦ χ−1 and πU×W
2 = φ ◦ χ−1 ,

and, by definition of ψ ,

ψ = πU×V
2 ◦ χ−1 ,

we get

〈πU×W
1 ,ψ〉 = χ−1 ,

and

φ ◦ 〈πU×W
1 ,ψ〉 = πU×W

2 .

It remains to prove uniqueness of ψ . Assume there is a morphism ω : U × W → V that has the properties (4.3) and (4.4). 
If we prove that ∂wω∗(v)|(u0,w0) is invertible, then the argument used above for φ implies that 〈πU×W

1 , ω〉 is invertible, so 
that its inverse satisfies the characterizing properties of χ :

〈πU×W
1 ,ω〉 = 〈πU×V

1 , φ〉−1 .

Further, by definition of 〈πU×W
1 , ω〉, we have necessarily:

ω = πU×V
2 ◦ 〈πU×V

1 , φ〉−1 .

Invertibility of ∂wω∗(v)|(u0,w0) is a consequence of (4.4) and the facts(
πU×W

2

)∗
(w) = w, 〈πU×W

1 ,ω〉∗(u) = u and 〈πU×W
1 ,ω〉∗(v) = ω∗(v) .

Indeed, using Equation (4.4) and Proposition 2.13, we get

(0 I) = (
∂uφ∗(w) ∂vφ

∗(w)
) |(u0,v0) ·

(
I 0

∂uω
∗(v) ∂wω∗(v)

)
|
(u0,w0)

.

It follows that

∂wω∗(v)|(u ,w ) = ∂vφ∗(w)|−1 . �
0 0 (u0,v0)

13
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4.3. Immersions and submersions

Definition 9. A Zn
2-morphism φ : M → N is an immersion (resp., a submersion) at a point m ∈ |M|, if its tangent map at this 

point dφm is injective (resp., surjective).

Since this condition is a local property, we can replace φ in the tangent map by its restriction φ : U → V , where U = U p|q
and V = V r|s are Zn

2-domains with coordinate systems u = (x, ξμ) and v = (y, θμ), respectively, and such that m ∈ |U | and 
|φ|(m) ∈ |V |.

The differential dφm is a linear map between Zn
2-graded vector spaces, which is represented by a block-diagonal matrix 

(Bγ )γ (see (2.5)) in gl0(r|s × p|q, R). Hence, it can be seen as a collection of 2n classical linear maps between real vector 
spaces represented by the classical real matrices Bγ , γ ∈ Zn

2. Thus, dφm is injective (resp., surjective) if and only if each 
of these classical linear maps is injective (resp., surjective), i.e., the rank of each Bγ is equal to the number of its columns 
(resp., rows). It is then legitimate to define the rank of dφm as the collection of the ranks of its diagonal blocks, so that we 
can rephrase the above as:

• φ is an immersion at m if and only if rank(dφm) = p|q,
• φ is a submersion at m if and only if rank(dφm) = r|s.

We have moreover the following results:

Proposition 4.3. Let φ : M → N be a Zn
2-morphism, M of dimension p|q and N of dimension r|s, m a point of M.

(1) Let p ≤ r and q j ≤ s j , for all j. The map φ is an immersion at m if and only if there exists Zn
2-charts (U , (x, ξμ)) around m and 

(V , (y, θμ)) around |φ|(m) ∈ |N|, such that φ|U : U → V has the form

φ∗
V (yi) =

{
xi if 1 ≤ i ≤ p

0 if p + 1 ≤ i ≤ r
and φ∗

V (θa
μ) =

{
ξa
μ if 1 ≤ a ≤ qμ

0 if qμ + 1 ≤ a ≤ sμ
,

for all μ ∈Zn
2 \ {0}. Here we denote by qμ the entry of q corresponding to the degree μ, and analogously for sμ.

(2) Let p ≥ r and q j ≥ s j , for all j. The map φ is a submersion at m if and only if it exists Zn
2-charts (U , (x, ξμ)) around m and 

(V , (y, θμ)) around |φ|(m) ∈ |N|, such that φ|U : U → V has the form

φ∗
V (yi) = xi , 1 ≤ i ≤ r and φ∗

V (θa
μ) = ξa

μ , 1 ≤ a ≤ sμ , (4.5)

for all μ ∈Zn
2 \ {0}.

In other words, φ is an immersion (resp., a submersion) at m if and only if in a neighborhood of m and |φ|(m) there 
exist coordinates in which φ is the canonical linear injection (resp., linear projection).

Proof. The proofs of the two claims (1) and (2) are analogous. For the sake of completeness, we will describe here the proof 
for the submersion property (2).

First, given a morphism φ, such that φ|U : U → V is defined by (4.5), one directly verifies that dφm is of the form

dφm 


⎛⎜⎜⎜⎝
I 0

I 0
. . .

I 0

⎞⎟⎟⎟⎠ ∈ gl0(r|s × p|q,R) ,

which is of rank r|s. Thus, φ is a submersion at m.
For the converse, let us consider Zn

2-charts (V , (y, θμ)) of N around |φ|(m) and (U , (x, ξμ)) of M around m (with 
|U | ⊂ |φ|−1(|V |)). In the following we consider φ|U : U → V . Up to reordering of the coordinates, we can assume that the 
sub-blocks (

∂x j φ
∗(yi)

∣∣∣
m

)
i, j=1,...,r

of the diagonal block B0 (4.6)

and
(
∂
ξb
μ
φ∗(θa

μ)

∣∣∣
m

)
a,b=1,...,sμ

of the diagonal blocks Bμ , (4.7)

are invertible matrices. Let us consider the Zn
2-superdomain Rp−r|q−s and relabel its coordinates as (yr+i , θ sμ+aμ

μ ), 1 ≤ i ≤
p − r and 1 ≤ aμ ≤ qμ − sμ . Thanks to the fundamental theorem of Zn

2-morphisms [13, Theorem 6.8], we can construct a 
morphism ψ : U → V ×Rp−r|q−s by setting
14
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ψ∗(yi) =
{

φ∗(yi) if 1 ≤ i ≤ r

xi if r + 1 ≤ i ≤ p
,

and, for all μ ∈Zn
2 \ {0},

ψ∗(θa
μ) =

{
φ∗(θa

μ) if 1 ≤ a ≤ sμ
ξa
μ if sμ + 1 ≤ a ≤ qμ

.

Note that, by construction, we have φ|U = π V ×Rp−r|q−s

1 ◦ ψ . By hypothesis (4.6), (4.7), dψm is invertible and so by Theo-
rem 4.1 ψ is a local diffeomorphism. Hence, there are subdomains U ′ ⊂ U around m, V ′ ⊂ V around |φ|(m), and W ′ ⊂Rp−r , 
such that ψ : U ′ → V ′ × W ′ is a diffeomorphism. Considering the new coordinates on U ′ given by x̃i := ψ∗(yi) and 
ξ̃a
μ := ψ∗(θa

μ), the claim (2) or (4.5) follows. �
4.4. Constant rank theorem

Let φ : M → M ′ be a Zn
2-morphism of Zn

2-manifolds of dimension p|q and p′|q′ , respectively. Let m ∈ |M|, let V be a 
Zn

2-chart of M ′ around |φ|(m) ∈ |M ′|, and let U be a Zn
2-chart of M around m, such that |U | ⊂ |φ|−1(|V |) ⊂ |M|. We can 

restrict φ to a Zn
2-morphism φ : U → V . Let r ∈ N and s = (sμ)μ∈Zn

2\{0} , with r ≤ min(p, p′) and sμ ≤ min(qμ, q′
μ), for all 

μ ∈Zn
2 \ {0}.

Definition 10. The (graded) Jacobian matrix Jacφ ∈ gl0(p′|q′ × p|q , O(U )) is said to be of constant rank r|s, if there exist 
G1 ∈ GL0(p′|q′, O(U )) and G2 ∈ GL0(p|q , O(U )), such that

G1 Jacφ G2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ir 0
0 0

Is1 0
0 0

. . .

IsN 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.8)

Notice that we defined the concept of constant rank for the Jacobian matrix of a Zn
2-morphism φ written in Zn

2-charts 
(U , ψ1) and (V , ψ ′

1) around m and |φ|(m), respectively. The coordinate Zn
2-diffeomorphism ψ1 : U → U (resp., ψ ′

1 : V → V) 
allowed us to identify the open Zn

2-submanifold U of M (resp., V of M ′) with the Zn
2-domain U (resp., V), so that we got 

ψ1 
 id (resp., ψ ′
1 
 id). In other words, we actually defined the notion of constant rank for the Jacobian matrix of

φ1 := ψ ′
1φ ψ−1

1 .

Remark 4.4. If we choose new coordinate diffeomorphisms ψ2 : U → U and ψ ′
2 : V → V (we could also consider ψ ′

1 : V 1 →
V1 and ψ ′

2 : V 2 → V2, and similarly for ψ1 and ψ2), the Jacobian matrix of φ2 := ψ ′
2φ ψ−1

2 has constant rank r|s if and only 
if this holds for the Jacobian matrix of φ1.

Indeed, assume for instance that Equation (4.8) is satisfied for Jacφ2
. Since ψ := ψ1ψ

−1
2 : U → U (resp., ψ ′−1 := ψ ′

2ψ
′−1
1 :

V → V) is a Zn
2-diffeomorphism, its tangent map is invertible in U (resp., in V), i.e.,

ε( Jacψ) (resp., ε( Jacψ ′−1))

is invertible over C∞(U) (resp., over C∞(V)). The proof of Proposition A.1, see Appendix A, implies that

G2 := Jacψ ∈ GL0(p|q,O(U)) (resp., G1 := Jacψ ′−1 ∈ GL0(p′|q′,O(V))) .

The existence of G−1
1 such that G−1

1 G1 = G1G−1
1 = I, implies that

(φ1ψ)∗(G1) ∈ GL0(p′|q′,O(U)) .

Using ψ ′−1φ1ψ = φ2, we get

(ψ−1)∗
(
G1 (φ1ψ)∗(G1)

)
Jacφ1

(ψ−1)∗
(
G2 G2

) =
(ψ−1)∗

(
G1 (φ1ψ)∗(G1) ψ∗( Jacφ ) G2 G2

) =

1

15
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(ψ−1)∗
(
G1 Jacφ2

G2
)
,

so that Jacφ1
has constant rank r|s.

Remark 4.5. When evaluating Equality (4.8) at a point m, this equality remains valid (see Appendix A, Proposition A.1). 
Hence, if Jacφ is of constant rank r|s (in the sense of Definition 10), then dφm 
 Jacφ |m ∈ gl0(p′|q′ × p|q, R) is a block-
diagonal matrix of rank r|s (in the sense of Subsection 4.3). As in the super case, the converse is not true.

Theorem 4.6 (Constant rank theorem for Zn
2-supermanifolds). Let φ : M → M ′ be a morphism of Zn

2-manifolds, of respective dimen-
sions p|q and p′|q′ , and let m be a point in |M|. Then the following are equivalent:

(1) In a neighborhood of m, the Jacobian matrix Jacφ is a graded matrix of constant rank r|s.
(2) In a neighborhood U of m, φ may be written as the composite of a submersion φ1 : U → W at m and an immersion φ2 : W → V

at |φ1|(m).

Remark 4.7. In view of Proposition 4.3, (2) implies that there exist coordinate charts (U , (x, ξμ)) near m and (V , (y, ημ))

near |φ|(m), in which the morphism φ writes as

φ∗(yi) =
{

xi , if 1 ≤ i ≤ r

0 , if r + 1 ≤ i ≤ p′ and φ∗(ηa
μ) =

{
ξa
μ , if 1 ≤ a ≤ sμ

0 , if sμ + 1 ≤ a ≤ q′
μ

.

Proof of Theorem 4.6. That (2) implies (1) clearly follows from Remark 4.7. The converse is more involved: first one needs 
to construct a submersion φ1 and an immersion φ2, and then prove equality between their composite � := φ2 ◦ φ1 and the 
original morphism φ.

Since the statement is local, we may restrict ourselves as before to consider a morphism φ : U → V of Zn
2-domains with 

coordinates

u = (x, ξμ) and v = (y, ημ) .

We assume that m ∈ |U | has coordinates m 
 x = 0 (centered Zn
2-chart). In the following, we often distinguish between the 

first (r, sμ) coordinates or components, and the remaining ones. We then write

(u′, u′′) = (x′, x′′, ξ ′
μ, ξ ′′

μ) and (v ′, v ′′) = (y′, y′′, η′
μ,η′′

μ) .

We use similar notation for base morphisms, for instance for |φ| : |U | ⊂Rp → |V | ⊂Rp′
, and write

|φ| = (|φ|′, |φ|′′) ,

where |φ|′ (resp., |φ|′′) are the r first (the p′ − r remaining) R-valued component-functions of |φ|.
Let us assume that Jacφ has constant rank r|s near the point m. Thus, the block-diagonal matrix dφm = Jacφ |m is of rank 

r|s, see Remark 4.5. Up to reordering of the coordinates, we may assume that the subblocks of dφm that are invertible are

∂x′φ∗(y′)|m and ∂ξ ′
μ
φ∗(η′

μ)|m , (4.9)

for all μ ∈Zn
2 \ {0}.

We denote by (z, ζμ) the coordinates of the Zn
2-domain Rr|s and denote by W the open Zn

2-subdomain of Rr|s with 
base |W | = {y′ | ∃y′′ : (y′, y′′) ∈ |V |}. Let

φ1 : U → W

be the morphism of Zn
2-domains defined by

φ∗
1(z) = φ∗(y′) ∈ (

O0(|U |))×r
and φ∗

1(ζμ) = φ∗(η′
μ) ∈ (

Oμ(|U |))×sμ
, (4.10)

for all μ ∈Zn
2 \ {0}. We have

|φ1| = ε(φ∗
1(z)) = ε(φ∗(y′)) = |φ|′ : |U | → |W | .

By (4.9), the differential of φ1 at m has rank r|s, and so φ1 is a submersion at this point. By the proof of the second item of 
Proposition 4.3, shrinking the domain U near m if necessary, we can define new coordinates (̃x, ̃ξμ) (changing the first r|s
coordinates, i.e., ̃x′′ = x′′ and ̃ξ ′′

μ = ξ ′′
μ) such that the morphism φ1 writes as

φ∗
1(z) = x̃′ and φ∗

1(ζμ) = ξ̃ ′
μ . (4.11)
16
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Let us now consider the morphism of Zn
2-domains

ψ : W → U

defined by{
ψ∗(̃x′) = z

ψ∗(̃x′′) = 0
and

{
ψ∗(̃ξ ′

μ) = ζμ

ψ∗(̃ξ ′′
μ) = 0

. (4.12)

Let us denote by U ′ the Zn
2-subdomain of U defined by the equations

x̃′′ = 0 and ξ̃ ′′
μ = 0 (considering all nonzero degrees μ) ,

see Remark 4.9. Notice that the coordinates (̃x′, ̃x′′, ̃ξ ′
μ, ̃ξ ′′

μ) of m are (̃x′, 0, 0, 0), so that, with some minor abuse of notation, 
we have m ∈ |U ′|. The morphisms φ1 and ψ actually implement a Zn

2-diffeomorphism between U ′ and W . Indeed, the 
Zn

2-morphism φ̃1 : U ′ → W , defined by

φ̃∗
1(z) := φ∗

1(z) = x̃′ and φ̃∗
1(ζμ) := φ∗

1(ζμ) = ξ̃ ′
μ ,

and the Zn
2-morphism ψ̃ : W → U ′ , defined by

ψ̃∗(̃x′) := ψ∗(̃x′) = z and ψ̃∗(̃ξ ′
μ) := ψ∗(̃ξ ′

μ) = ζμ , (4.13)

are inverses. In the following, we use the identification

U ′ 
 W . (4.14)

The composite Zn
2-morphism

φ2 := φ ◦ ψ : W → V

pulls the first coordinates (y′, η′
μ) back to

φ∗
2(y′) = z and φ∗

2(η′
μ) = ζμ . (4.15)

One checks, by direct computation of the differential of φ2 at |φ1|(m), that φ2 is an immersion at this point. By the first 
item of Proposition 4.3, shrinking V near |φ2|(|φ1|(m)) if necessary, we can find new coordinates (̃y, ̃ημ) (changing the last 
p′ − r|q′ − s coordinates, i.e., ỹ′ = y′ and η̃′

μ = η′
μ) such that the morphism φ2 writes as

φ∗
2 (̃y′) = z , φ∗

2 (̃y′′) = 0 , φ∗
2(η̃′

μ) = ζμ , and φ∗
2(η̃′′

μ) = 0 . (4.16)

It remains now to show equality between the original morphism φ and the composite � := φ2 ◦ φ1 in a neighborhood 
of m. By the fundamental theorem of Zn

2-morphisms [13][Theorem 6.8], it suffices to prove the equality around m of the 
Zn

2-functions φ∗ (̃v) and �∗ (̃v), for all coordinates ṽ on V .
On the one hand, it follows from Equations (4.16) and (4.10) that

�∗(̃y′) = φ∗
1(φ∗

2 (̃y′)) = φ∗(̃y′) .

On the other hand, since

φ∗(̃y′′) =
∑
α,β

fα,β (̃x′, x̃′′) ξ̃ ′αξ̃ ′′β ,

we get, using (4.16), (4.14), (4.13), and (4.12),

�∗(̃y′′)|U ′ = φ∗
1(φ∗

2 (̃y′′))|U ′ = 0 = φ∗
2 (̃y′′) = ψ∗(φ∗(̃y′′)) =

∑
α

fα,0(̃x′,0) ξ̃ ′α = φ∗(̃y′′)|U ′ .

The same argument holds for the nonzero degree coordinates η̃′
ν , ̃η′′

ν :

�∗(̃y)|U ′ = φ∗(̃y)|U ′ and �∗(η̃ν)|U ′ = φ∗(η̃ν)|U ′ . (4.17)

We still need to “extend” these equalities to U . This extension will be based on Lemma 4.8. It thus suffices to prove that 
the conditions (4.22) are satisfied for each pair (�∗ (̃yi), φ∗(̃yi)) and for each pair (�∗(η̃a

ν), φ∗(η̃a
ν)).

We first compute the derivatives of �∗ (̃y), �∗(η̃ν) ∈ O(U ) with respect to x̃′′ and ξ̃ ′′
μ . Setting ũ′′ = (̃x′′, ̃ξ ′′

μ) and w =
(z, ζ ), and recalling that ṽ = (̃y, ̃ην), we obtain, with a slight abuse of notation,
17
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(D) := ∂ũ′′�∗(̃v) = ∂ũ′′φ∗
1(φ∗

2 (̃v)) =
∑

k

∂ũ′′φ∗
1(wk) φ∗

1

(
∂wkφ

∗
2 (̃v)

) =:
∑

k

∂ũ′′(1) φ∗
1

(
∂wk (2)

)
.

If ̃v = ỹ′′ or ̃v = η̃′′ , then (2) = 0, so (D) = 0. If ̃v = ỹ′ (resp., ̃v = η̃′), then (2) = z (resp., (2) = ζ ), so (D) = ∂ũ′′̃ x′ = 0 (resp., 
(D) = ∂ũ′′ ξ̃ ′ = 0). Hence, all the derivatives of interest vanish for �∗ .

As for φ∗ , let us recall that all pullbacks of target coordinates are formal power series in the source nonzero degree 
coordinates with smooth coefficients with respect to the source zero degree coordinates. In view of Equations (4.10) and 
(4.11), we have in particular

φ∗(̃y′) = x̃′ and φ∗(η̃′
μ) = ξ̃ ′

μ .

The Jacobian matrix of φ thus reads

Jacφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ir 0 0 0 . . . 0 0
�11 •11 �12 •12 . . . �12n •12n

0 0 Is1 0 . . . 0 0
�21 •21 �22 •22 . . . �22n •22n

...
...

...
...

. . .
...

...

0 0 0 0 . . . IsN 0
�2n1 •2n1 �2n2 •2n2 . . . �2n2n •2n2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ gl0(p′|q′ × p|q;O(U )) . (4.18)

By assumption Jacφ is of constant rank r|s near m – whatever the coordinates considered, see Remark 4.4. Hence, there 
exist invertible degree-zero matrices G1,G2 of Zn

2-functions, such that G1 Jacφ G2 is of the form (4.8), i.e., of the form (4.18)

with all �i j and •i j equal to zero. Recall that the matrices G−1
1 and G2 have the standard block-decomposition. Moreover, in 

view of the decomposition of coordinates into ′ and ′′ coordinates, we can decompose each block-row (resp., block-column) 
into a ′ and a ′′ row (resp., column). For instance, the ′ ′′ subblocks are the subblocks Bij .⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 B11 A12 B12 . . . A12n B12n

C11 D11 C12 D12 . . . C12n D12n

A21 B21 A22 B22 . . . A22n B22n

C21 D21 C22 D22 . . . C22n D22n

...
...

...
...

. . .
...

...

A2n1 B2n1 A2n2 B2n2 . . . A2n2n B2n2n

C2n1 D2n1 C2n2 D2n2 . . . C2n2n D2n2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.19)

In particular,

Jacφ G2 = G−1
1 (G1 Jacφ G2)

has all its ′′ columns equal to 0. To see this, compute G−1
1 (G1 Jacφ G2), i.e., apply G−1

1 = (4.19) to (4.18) with � = • = 0, 
and compute more precisely any ′′ column. Now compute Jacφ G2, i.e., multiply (4.18) and G2 = (4.19), and compute more 
precisely any ′ ′′ subblock – which we know to be zero. It follows that in G2 all the subblocks Bij vanish, so that we get 
from Proposition A.1 that all subblocks Dii are invertible. Compute finally in Jacφ G2 any ′′ ′′ subblock k� – which we know 
to be zero. The result is 

∑2n

i=1 •ki Di� = 0, for any k, �, i.e.,

(•k1,•k2, . . . ,•k2n ) D := (•k1,•k2, . . . ,•k2n )

⎛⎜⎜⎜⎝
D11 D12 . . . D12n

D21 D22 . . . D22n

...
...

. . .
...

D2n1 D2n2 . . . D2n2n

⎞⎟⎟⎟⎠ = 0 ,

for any k. Since D is invertible, again due to Proposition A.1, it follows that •k� = 0, for all k, �, so that the ′′ columns of 
Jacφ in (4.18) do all vanish. This means exactly that, for any ṽ and any ũ′′ , the derivative ∂ũ′′φ∗(̃v) = 0 and thus coincides 
with the corresponding derivative ∂ũ′′�∗ (̃v).

It follows that all the pullbacks φ∗ (̃v) and �∗ (̃v) coincide on some neighborhood of m (see Lemma 4.8 below), so that 
φ = φ2 ◦ φ1 on this neighborhood. �
Lemma 4.8. Let U be a Zn

2-domain with r + k|s + l coordinates

u = (x, ξ) = (x′, x′′, ξ ′, ξ ′′) .
18
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Consider the Zn
2-subdomain U ′ of U defined by the equations

x′′ = 0 and ξ ′′ = 0 . (4.20)

If two Zn
2-functions f1, f2 on U are such that

f1|U ′ = f2|U ′ (4.21)

and

∂x′′ f1 = ∂x′′ f2 and ∂ξ ′′ f1 = ∂ξ ′′ f2 , (4.22)

then f1 and f2 coincide on some neighborhood of U ′ .

Remark 4.9. Let us be more precise regarding the Zn
2-subdomain U ′ of U defined by (4.20). Its base manifold is

|U ′| = {x′ : (x′,0′′) ∈ |U |} ⊂ Rr ,

whereas its structure sheaf is

O|U ′|(−) = C∞
|U ′|(−)[[ξ ′]] .

There is a natural embedding ρ : U ′ → U given by{
ρ∗(u′) = u′

ρ∗(u′′) = 0
.

Then, for any f ∈O(U ) =O|U |(|U |), we set f |U ′ := ρ∗( f ) ∈O(U ′) =O|U ′|(|U ′|). If f = f (x′, x′′, ξ ′, ξ ′′), then

f |U ′ = f (x′,0, ξ ′,0) .

Proof of Lemma 4.8. The Zn
2-function f = f1 − f2 ∈O(U ) reads

f = f (x′, x′′, ξ ′, ξ ′′) =
∑
α,β

fα,β(x′, x′′)ξ ′αξ ′′β ( fα,β ∈ C∞(|U |)) .

By J (U )-adic continuity of derivations, any partial derivative of the power series f is given by deriving term by term. When 
taking into account the second equation of (4.22), we get, for any b ∈ {1, . . . , |l|},

0 = ∂ξ ′′b f =
∑
α,β

±βb fα,β(x′, x′′)ξ ′αξ ′′β−eb ,

where eb is vector number b of the canonical basis of R|l| . This implies that

fα,β = 0 , for all α and for all β �= 0 . (4.23)

When taking into account the first equation of (4.22), we obtain

0 = ∂x′′ f =
∑
α,β

∂x′′ fα,β ξ ′αξ ′′β ,

i.e., we see that, in some neighborhood |U ′|ε := {(x′, x′′) ∈ |U | : x′ ∈ |U ′|, x′′ 
 0} of |U ′|,
fα,β(x′, x′′) = fα,β(x′,0), for all α,β . (4.24)

Combining (4.23) and (4.24), we finally get

f =
∑
α

fα,0(x′, x′′)ξ ′α =
∑
α

fα,0(x′,0)ξ ′α = f (x′,0, ξ ′,0) = f |U ′ = 0 ,

in |U ′|ε , in view of (4.21). �
Appendix A

A.1. Linear algebra over Hausdorff-complete Zn
2-commutative rings

In this section, we will work exclusively with Zn
2-commutative rings which are Hausdorff-complete in the J -adic 

topology, where J denotes the (proper) homogeneous ideal of R generated by the elements of nonzero degree γi ∈ Zn
2, 

i ∈ {1, . . . , N}, N = 2n − 1.
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A.1.1. Rank of a linear map
We begin with the following criterion for invertibility of a square degree zero matrix.

Proposition A.1. Let R be a J -adically Hausdorff-complete Zn
2-commutative ring, and let T ∈ gl0(p|q, R) be a degree zero square p|q

matrix with entries in R, written in the standard block format

T =
⎛⎜⎝ T00 . . . T0N

...
. . .

...

T N0 . . . T N N

⎞⎟⎠ .

The matrix T is invertible if and only if Tii is invertible for all i.

In this work, we are of course mainly interested in the case R = O(U ) and J =J (U ).

Proof. The Zn
2-graded ring morphism ε : R → R/ J induces a map

ε̃ : gl0(p|q, R) 	 T 
→ ε̃(T ) ∈ Diag(p|q, R/ J ),

where ε̃(T ) is the block-diagonal matrix with diagonal blocks ε̃(Tii) (with commuting entries). Notice that ε̃(T ) is invertible 
if and only if all ε̃(Tii) are invertible. In this case, the inverse (ε̃(T ))−1 is the block-diagonal matrix with diagonal blocks 
(ε̃(Tii))

−1.
Clearly, if T is invertible over R , i.e., if there is a matrix T −1 such that T T −1 = T −1T = I, then ε̃(T ) is invertible over 

R/ J . More precisely, since ε is a ring morphism, we have

ε̃(T )ε̃(T −1) = ε̃(T −1)ε̃(T ) = ε̃(I) ,

so that ε̃(T −1) = (ε̃(T ))−1.
Conversely, assume that ε̃(T ) is invertible over R/ J . Its inverse is a block-diagonal matrix with diagonal blocks made 

of elements in R/ J , i.e., elements of the type ε(r) with r in degree zero. Hence, there is a (block-diagonal) zero-degree 
matrix Y over R , such that ε̃(Y )ε̃(T ) = ε̃(T )ε̃(Y ) = ε̃(I), or, equivalently, such that Y T = I + Z L and T Y = I + Z R , with 
Z L, Z R ∈ gl0(p|q, J ). By Hausdorff-completeness, the matrix I + Z , for Z = Z L or Z = Z R , is invertible with inverse

(I + Z)−1 = I +
∑
k≥1

(−Z)k ∈ gl0(p|q, R) .

It follows that T −1
L T := (I + Z L)

−1Y T = I, that T T −1
R := T Y (I + Z R)−1 = I, and that T −1

L = T −1
L T T −1

R = T −1
R , so that T is 

invertible over R , with inverse T −1
L = T −1

R .
Finally T is invertible if and only if ε̃(T ) is invertible, if and only if ε̃(Tii) is invertible for all i, if and only if Tii is 

invertible for all i. �
References

[1] N. Aizawa, J. Segar, Z2 ×Z2 generalizations of N = 2 super Schrödinger algebras and their representations, J. Math. Phys. 58 (11) (2017) 113501, 14.
[2] H. Albuquerque, S. Majid, Quasialgebra structure of the octonions, J. Algebra 220 (1999) 188–224.
[3] H. Albuquerque, S. Majid, Clifford algebras obtained by twisting of group algebras, J. Pure Appl. Algebra 171 (2002) 133–148.
[4] C. Bartocci, U. Bruzzo, D. Hernández Ruipérez, The Geometry of Supermanifolds, Mathematics and Its Applications, vol. 71, Kluwer Academic Publishers 

Group, Dordrecht, 1991, xx+242 pp.
[5] J. Bernstein, D. Leites, V. Molotkov, V. Shander, Seminars of Supersymmetries. vol. 1. Algebra and Calculus, MCCME, Moscow, 2013 (in Russian, the 

English version is available for perusal).
[6] A.J. Bruce, On a Zn

2-graded version of supersymmetry, Symmetry 11 (1) (2019) 116.
[7] A.J. Bruce, E. Ibarguengoytia, The graded differential geometry of mixed symmetry tensors, Arch. Math. 55 (2) (2019) 123–137.
[8] A.J. Bruce, E. Ibarguengoytia, N. Poncin, The Schwarz-Voronov embedding of Zn

2-manifolds, SIGMA 16 (2020) 002, 47.
[9] A. Bruce, E. Ibarguëngoytia, N. Poncin, Linear Zn

2 - manifolds and linear actions, SIGMA 17 (2021), 58 pp., to appear.
[10] A.J. Bruce, N. Poncin, Functional analytic issues in Zn

2-geometry, Rev. Unión Mat. Argent. 60 (2) (2019) 611–636.
[11] A. Bruce, N. Poncin, Products in the category of Zn

2-manifolds, J. Nonlinear Math. Phys. 26 (3) (2019) 420–453.
[12] C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society 

(EMS), Zürich, 2011.
[13] T. Covolo, J. Grabowski, N. Poncin, The category of Zn

2-supermanifolds, J. Math. Phys. 57 (7) (2016) 073503, 16.
[14] T. Covolo, J. Grabowski, N. Poncin, Splitting theorem for Zn

2-supermanifolds, J. Geom. Phys. 110 (2016) 393–401.
[15] T. Covolo, S. Kwok, N. Poncin, The Frobenius theorem for Zn

2-supermanifolds, arXiv:1608 .00961 [math .DG].
[16] T. Covolo, J.-P. Michel, Determinants over graded-commutative algebras: a categorical viewpoint, Enseign. Math. 62 (3) (2014).
[17] T. Covolo, V. Ovsienko, N. Poncin, Higher trace and Berezinian of matrices over a Clifford algebra, J. Geom. Phys. 62 (11) (2012) 2294–2319.
[18] P. Deligne, J.W. Morgan, Notes on supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: a Course for Mathematicians, vol. 1, 2, 

Princeton, NJ, 1996/1997, Amer. Math. Soc., Providence, RI, 1999, pp. 41–97.
[19] G. Di Brino, D. Pistalo, N. Poncin, Koszul-Tate resolutions as cofibrant replacements of algebras over differential operators, J. Homotopy Relat. Struct. 

13 (4) (2018) 793–846.
20

http://refhub.elsevier.com/S0393-0440(21)00148-0/bibA4A2AB059FFF7F84A6935DC5599731F7s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibBAB15AED78F81E42031400CC3FA5FE42s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib2E226586C9A3FB0FAD431001956ACF44s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibAE2A2E984BAA48A617C94B543043081Ds1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibAE2A2E984BAA48A617C94B543043081Ds1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibA339A75E5C3C1E9DD9B1550C853E3EF7s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibA339A75E5C3C1E9DD9B1550C853E3EF7s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib711CC3C337A1F53B096A0C240E1B3ABFs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib88111440BFF682704F9A68367802D652s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib6DBAEFAED5798244B10B15100A07ED6Cs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib808462DE1E358B2D4A4E5E2A4D82B1D1s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibE8995155476ABFE3B8E6B5AD4FDA88BEs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibFE436F1F9540A6DD15DEE3EA0D0ACC68s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibE89938F6A238AD9F4673D69AF865575Bs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibE89938F6A238AD9F4673D69AF865575Bs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibEEAB52B1D051A91BB434FA5AE6DD8C60s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib9C65E5E929BB2B924FAE141AAAC0112Bs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib70CA9A3F26BD16158317E4582F787208s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib707354872D4E8210A2A573B99721B1FBs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib316E21333B97402165F02ADA8500F64Cs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibF0EF582F7B4E2EE672F787F6983BA980s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibF0EF582F7B4E2EE672F787F6983BA980s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib2D6FF2AEB6C751B7D400A3E1B293C263s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib2D6FF2AEB6C751B7D400A3E1B293C263s1


T. Covolo, S. Kwok and N. Poncin Journal of Geometry and Physics 168 (2021) 104302
[20] G. Di Brino, D. Pistalo, N. Poncin, Homotopical algebraic context over differential operators, J. Homotopy Relat. Struct. 14 (1) (2019) 293–347.
[21] K. Drühl, R. Haag, J.E. Roberts, On parastatistics, Commun. Math. Phys. 18 (1970) 204–226.
[22] H.S. Green, A generalized method of field quantization, Phys. Rev. 90 (1953) 270.
[23] O.W. Greenberg, A.M.L. Messiah, Selection rules for parafields and the absence of paraparticles in nature, Phys. Rev. 138 (2) (1965).
[24] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pp.
[25] D.A. Leites, Introduction to the theory of supermanifolds, Russ. Math. Surv. 35 (1) (1980) 1–64.
[26] S. Mac Lane, Categories for the Working Mathematician, second edition, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
[27] S. Morier-Genoud, V. Ovsienko, Well, papa, can you multiply triplets? Math. Intell. 31 (4) (2009) 1–2.
[28] S. Morier-Genoud, V. Ovsienko, Simple graded commutative algebras, J. Algebra 323 (6) (2010) 1649–1664.
[29] N. Poncin, Towards integration on colored supermanifolds, Banach Cent. Publ. 110 (2016) 201–217.
[30] B.R. Tennison, Sheaf Theory, London Mathematical Society Lecture Note Series, vol. 20, Cambridge University Press, Cambridge, England-New York-

Melbourne, 1975, vii+164 pp.
[31] B. Toën, G. Vezzosi, Homotopical algebraic geometry. I. Topos theory, Adv. Math. 193 (2) (2005) 257–372.
[32] B. Toën, G. Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Am. Math. Soc. 193 (902) (2008), x+224 pp.
[33] V.N. Tolstoy, Super-de Sitter and alternative super-Poincaré symmetries, in: Lie Theory and Its Applications in Physics, 2013, selected papers based on 

the presentations at the 10th international workshop, LT 10, Varna, Bulgaria, June 17–23.
[34] V.S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes in Mathematics, vol. 11, New York University, Courant 

Institute of Mathematical Sciences, New York, 2004, American Mathematical Society, Providence, RI.
[35] W. Yang, S. Jing, A new kind of graded Lie algebra and parastatistical supersymmetry, Sci. China Ser. A 44 (9) (2001) 1167–1173.
21

http://refhub.elsevier.com/S0393-0440(21)00148-0/bib1E39379601167846D0D385E7AA141D1Cs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib55D7D6EFDB26D5ED9AE7D74A6F95D6C0s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib448F6FCE288D87CE5F012197D1BE0EDCs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib02BFFA13A28D3CE6D65447BB95750DA8s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib90F3BB11E6BDBC6174B178CAAB3A6906s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib1103E1F3EA75EC9DC962AE54130732FEs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib0D876B562B84185AD852FFC12FED6814s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibD4B1BF82006FDCAC1107C671CE288D16s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib9D45DED384011B8E9BCD836259143741s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibCBAF0168146DDEB32A5B49B1A766484Fs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib12655E0764BFE56D62AA24D35CDFD8C8s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib12655E0764BFE56D62AA24D35CDFD8C8s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibC452921331E3BC580FE768285811BCE9s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib667DE87A4A5B921E60BA907EC2A0922Bs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib4C703F5558EFCCAF523D14DE7A9C1DBAs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib4C703F5558EFCCAF523D14DE7A9C1DBAs1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibB17F1EE33328B5AAD334541A91D22662s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bibB17F1EE33328B5AAD334541A91D22662s1
http://refhub.elsevier.com/S0393-0440(21)00148-0/bib3EAF7D9FCF2701DD2E417C958BA1D839s1

	Local forms of morphisms of colored supermanifolds
	0 Introduction
	1 Preliminaries
	1.1 Zn2-superalgebra
	1.2 Zn2-supermanifolds and morphisms
	1.3 J-adic topology and Hausdorff completeness
	1.4 Functor of points

	2 Tangent sheaf, tangent space, and tangent map
	2.1 Tangent sheaf
	2.2 Tangent space and tangent map
	2.3 Chain rule and modified Jacobian

	3 Products of Zn2-supermanifolds
	4 Local forms of morphisms
	4.1 Inverse function theorem
	4.2 Implicit function theorem
	4.3 Immersions and submersions
	4.4 Constant rank theorem

	References


