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Abstract

If G is any finite product of compact orthogonal, unitary and symplectic matrix groups, then
Wilson loops generate a dense subalgebra of continuous observables on the configuration space of
lattice gauge theory with structure groGp If G is orthogonal, unitary or symplectic, then Wilson
loops associated to the natural representatiafi afe enough.

This extends a result of Sengupta [Proc. Am. Math. Soc. 1221 (3) (1994) 897] and earlier work
by Durhuus [Lett. Math. Phys. 4 (6) (1980) 515]. In particular, our approach includes the cases of
even orthogonal and symplectic groups.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

On a compact Lie group, the Peter—Weyl theorem asserts that the characters of irreducible
representations generate a dense subalgebra of continuous functions invariant by adjunction.
In lattice gauge theory, configuration spaces are powers of a Lie group on which another
power of the same group acts, according to the geometry of a given graph and in a way
which extends the adjoint action of the group on itself. Peter—Weyl theorem can be adapted
to this situation and the functions that play the role of the characters are spiltetetworks
Despite the fact that spin networks were introduced about 40 years ago in a physical tontext,

E-mail addresslevy@dma.ens.fr (T. &vy).
1 Penrose introduced them for the purposes of quantization of the geometry of spaf@. fBea historical
account.

0393-0440/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.04.003



T. Lévy/Journal of Geometry and Physics 52 (2004) 382—-397 383

their importance in lattice gauge theory has been recognized rather refgntly the

mean time, another set of functions, easier to define, has been used as the standard set of
observables: Wilson loops. However, it is not clear at all a priori that this set is complete,
that is, that Wilson loops generate a dense subalgebra of continuous invariant functions on
the configuration space. Durhuus has provd@jihat it is true when the group is unitary or
special unitary, by giving an algebraic necessary and sufficient condition on the group and
checking that unitary groups satisfy it. Then, Sengupta has proy8pthimat the result holds

for a product of odd orthogonal and unitary groupsn this paper, an approach similar

to that of Sengupta but with a little more classical invariant theory combined with the use
of spin networks allows us to add even orthogonal and symplectic groups to the list and,
hopefully, to clarify the argument.

The problem of completeness of Wilson loops can be expressed in three equivalent ways.
The first one is described above. The second one is more geometrical and consists in asking
whether a connection on a principal bundle is determined up to gauge transformation by
the conjugacy classes of its loop holonomies. The third one, closest to that considered
by Durhuus[3], is more algebraic: is it true that the diagonal conjugacy class of a finite
collection of elements of a compact Lie group is determined by the conjugacy classes of all
possible products one may form with these elements and their inverses? The equivalence of
these questions is discussed&h, and we will make an important use of the equivalence
between the first and the third point of view.

2. Theconfiguration space

Let G be a compact connected Lie group. Ilet= (E, V) be a graph with oriented edges.
By this we mean thaV is a finite set andt another finite set endowed with two mappings
s: E— Vandt: E — V.If e € Eis an edge, we call, respectively, source and target
of e the verticess(e) andz(e). We make the assumption that no vertex is isolated, that is,
S(E)U(E) = V.

Define an action oY on G%, as follows. Forp = (¢,)vey € GY andg = (ge)eck €
GE, set

¢-8=(0-Deleck With (¢ 8)e = ;s 8ePso)-

The configuration space for lattice gauge theorylowith structure groug is the topo-
logical quotient spacé’ﬁ = G"\GF and it can be thought of as a finite-dimensional
approximation of a space of connections modulo gauge transformations.

Example 2.1. Consider the very simple gragh with one single vertex and one single
edge. Thertﬂf1 is just the space of conjugacy classesan

Example 2.2. Choose an integer> 1 and consider the graph). with » edges depicted in
Fig. 1

2 In[8], one finds a mention of the symplectic case, but without proof.
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Fig. 1. The graphd.; andL,.

For this graphG% = G” on whichG"Y = G acts by diagonal conjugation, and we will
call diagonal conjugacy classes G" the points otfr.

Remark 2.3. If I" is a tree, you may check thﬁ? is a single point.

Wilson loops are continuous functions ﬁﬁ or, equivalently, continuous functions &
invariant under the action @". We recall briefly how they are defined.

Let E* denote the set containing twice each edgé& pbnce with its natural orientation
and once with the reversed one. Formally, B&t = E x {+, —}, extend the functions
andr to ET by s(e, +) = s(e), s(e, —) = t(e) and the two similar rules far. A point of
GE determines a point af =" by the rulesg(.. 1) = g. andg.—, = g, *. For the sake of
clarity, we identifye with (e, +) and denotée, —) by ¢e~1. Moreover, we use the notation
e to denote a generic element BF .

A path inI" is a finite sequencg = (e1, ... , e,) of elements ofE* such that(e¢;) =
s(ejy1) foralli = 1,... ,n — 1. Itis a loop based at if #(e,) = s(e1) = v. To a loop
I = (e1,...,e,) One associates a functian: GE — G defined byh;(g) = 8ens -+ > 8ep-

One checks easily that the actiongk GY on G conjugates:; by d)s‘(ell) so that, given
any finite-dimensional representatierof G with charactery,, the function

Wai = xaoh: C& - C

is well defined. It is called a Wilson loop.

Remark 2.4. A wider class of functions can be defined@. Instead of considering one
loop, we can consider several lodps. . . , [, based atthe same point. Then, for any function
f : G" — Cinvariant by diagonal adjunction, that is, such that forgall. .. , g,, & € G,
one hasf(gs, ..., gn) = f(hath ™1, ...  hg,h~1), the function

fo(h[l,...,h[n)ZCIC—;-—>(C

is well defined. In words, the diagonal conjugacy clasggfc), . .. , iy, (¢)) iswell defined
for everyc in the configuration space.
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3. Statement of theresult

In this paper,0(n) andSQ(n) denote, respectively, the groups R andSQ,R. By the
symplectic grougBp(n) we mean the subgro8/(2n) N Sp, C of GLy, C. Itis isomorphic
to the quaternionic unitary groupy (n). The main result is the following.

Theorem 3.1. Let G be afinite product of groups amobtig:), SUn), O(n), SQn), Spn).
LetI” = (E, V) be a graph. Then the algebra generated by the Wilson loops is dense in the
space of continuous functions 6 = G*/G".

Example 3.2. In the case of the graphi, Theorem 3.1is equivalent to the Peter—\Weyl
theorem.

Example 3.3. Consider the case of the graph. Loops inL, are in one-to-one correspon-
dence with words in the letters &* = {¢i?, ... , ¢}, For such a word and given a
pointg = (g1, ... , g,) of GE, let us denote bw(g) the corresponding product in reversed
order of theg;s and their inverses. Observe that, if a Idogrresponds to a word, then
hi(g) = w(g) for all g.

Assume for a moment thdtheorem 3.1s proved for the graphs,. We can rephrase it
as follows.

Proposition 3.4. Let G be a group as ifheorem 3.1f g andg¢’ are two points ofz" such
that for all word w in r letters and their inverseghe elementsv(g) and w(g’) of G are
conjugatethen g andg’ belong to the same diagonal conjugacy class

Proof. In this proof, we identify freelyG” with GE, whereE is the set of edges of the
graphL,. If two pointsg andg’ of G do not belong to the same diagonal conjugacy class,
their orbits mCG are different. Hence, byheorem 3.Jpplied to the graph,, there exists
alooplin L, such thath;(g) andh;(g’) are not conjugate. This loop is a woadin the
letters of E* and the corresponding elemenigg) andw(g’), which are preciselyi;(g)
andh;(g'), are not conjugate. O

It turns out thaProposition 3.4s almost equivalent tdheorem 3.1The gap is filled by
the following result.

Proposition 3.5. Let G be a compact group. Lét = (E, V) be a graph. Let c and’ be
two points ofCIQ. Assume thatfor any vertexv of V and any finite sequendg ... , I,
of loops inI" based atv, the diagonal conjugacy classes @f;,(c), ... , h;,(c)) and
(hyy ('), ..., hy (")) are equal. Ther = ¢'.

3 Sp, C is the group of matrices which preserve the skew-symmetric form whose matrix in the canonical basis

is<_0] é)
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This proposition is proved in a slightly different languag§dh For the convenience of the
reader, we recall the argument.

Proof. Fix once for all a vertex. Chooseg andg’ in GE representing andc’. For any finite
family F of loops based at, let K be the closed subset 6f consisting of thosé such
thath;(¢') = kh(g)k—1 for all I € F. By assumptionK r is hon-empty, just as any finite
intersection of sets of the foriki . By compactness df, there exist& such that;(g") =
khy(g)k—1 for every loopl based ab. By letting the element o&" equal tok atv and 1
anywhere else act ggi, we are reduced to the case wherg) = h;(g) for all  based at.

Now, for every vertexw, choose a pathin I joining w to v. Defineg,, = h,(g)h -1 @).
Then one checks easily thaj, does not depend op and that the elemert = (¢y) wev
of GV built in that way satisfie® - g = ¢’. Hencec = ¢'. O

We have reduced the problem as follows.

Proposition 3.6. Theorem 3.1is logically equivalent to its specialization to the graphs
L,,r > 1,which is in turn equivalent t®roposition 3.4

Proof. We prove thaProposition 3.4mpliesTheorem 3.1LetI" be agraph. Leg andg’ be

two points ofG £ such that all Wilson loops take the same valugadg’. Letv be a vertex
ofthe graphand, ... , . r loops based at. Since any product of thgs and their inverses

is still a loop based at, Proposition 3.4applied to the elemeni@;, (g), ... , ;. (g)) and

(h1, (&), ..., by, (g")) of G" shows that there existse G such thaty; (g') = khy, (9)k~1
foralli=1,...,r.Hence, byProposition 3.5¢ andg’ belong to the same orbit under the
action of GV. Hence, Wilson loops separate the points on the configuration space. Since
this space is compact, the result follows by the Stone—Weierstrass theorem. O

Remark 3.7. The factthat one needs only consider the special grapban be understood
another way, explained in a particular case by DurtBlislt happens that, for any graph
I' = (E. V), the configuration spad&’ is homeomorphic t€f with r = |E| — |V| + 1.
This homeomorphism can be constructed as follows.

Choose a spanning tree In that is, a connected subsebf E without cycle and such
thats(7) Ut(T) = V. Spanning trees are nothing but maximal subtrees, so that they always
exist. Choose an origin o in V. For every vertex V, there exists a unique injective path
fromo to v in T, which we denote byd, v]7. Define a mapping : GE — GV\9} x GE\T
by setting

J((8e)ecE) = ((h[o,v]r)veV\{0}7 (h[o,s(e)]re[o,t(e)];1)‘3€E\T)'

We leave the reader check thais a homeomorphism and that it induces, after quotienting
both sides by the action @, an isomorphism betweedf: andG\G*\, whereG acts

by diagonal conjugation. Finally, the precise value obmes from the fact that a tree with
|V| vertices has exactly/| — 1 edges"

4 Observe thaltE| — |V|+1 is just the dimension of tH&-module of linear combinations with integer coefficients
of cycles inI".
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The translation in algebraic language allows us to reduce the list of groups that we need
to consider. The proof of the following lemma is straightforward.

Lemma 3.8. If Proposition 3.zholds for two groups51 and G, then it holds for their
productGi x Ga.

According to this lemma, it is enough to proVeeorem 3.WwhengG is one of the groups
O(n), SQAn), U(n), SUn), Spn).

Remark 3.9. One might expect that the property expresse®tpposition 3.4s preserved

by standard transformations of the group such as quotients or central extensions. Unfor-
tunately, no such result seems easy to prove. For central extensions, Sengupta has stated
and proved in[8] a partial result, namely that a property slightly stronger than that of
Proposition 3.4s preserved. | have not been able to improve this result.

4, Spin networks

From now on, we concentrate on the case whergethe graphl, for somer > 1 andG
is one of the groups listed above. Instead of working on the configuration space, we prefer
to work onGY = G” and consider only objects which are invariant under the diagonal
adjoint action ofG.

Spin networks provide us with a very natural dense subalgebra of the space of invariant
continuous functions. They are defined as follows.

Chooser finite-dimensional representations, . .. , «, of G with spacesvy, ..., V,.
ThenG actsonV1 ® ---® V, bya1 ® - - - ® «,. Let us choosé € Endg (V1 ® --- ® V).
This means that is a linear endomorphism dof; ® - - - ® V, commuting with the action
of G. Let g be an element ofi". Sete = (1, ... , «r). Then the functiony, ; : G" — C
defined by

Ve, 1(8) =r(o1(g) ® - @ ar(gr) o )

is invariant under the action @f. It is called aspin network
The following proposition has been proved by Bétz

Theorem 4.1. The spin networkg,, ;, wherea runs over the set of r-tuples of irreducible
representations of G andivena = (a1, ... , o), I runs over a basis &Endg (V1 ® - - - ®
V,), generate a dense subalgebra@fG")“, the space of continuous functions invariant
under the diagonal action of G

Remark 4.2. Just as in the Peter—Weyl theorem, there is alsb%wersion of this result,
but we do not need it here.

For the sake of completeness and because we find it illuminating, we give a short proof
of Theorem 4.1
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Proof. The irreducible representations@f are exactly the tensor products-afreducible
representations afr (see for instancg], 11.4). Thus, the Peter—Weyl theorem applied to
G” implies that the functiong,, ; on G”, wherex is as before, buf is anyendomorphism
of V1 ® --- ® V,, generate a dense subalgebr&of;").

Now, it is readily seen that the average under the diagonal actiGroésuch a function
VYe,s 1S @ spin networky,, ;, wherel is the orthogonal projection of on End; (V1 ®
-+ ® V,) for any G-invariant scalar product on Efth ® --- ® V,). The result follows
immediately. O

Let us call the spin networl, ; irreducibleif « is irreducible as a representation@f,
that is, if everyw; is irreducible.

Proposition 4.3. Any spin network is a linear combination of irreducible spin networks

Proof. Let v, ; be a spin network. Decompoaeas a sun®ye;, of irreducible represen-
tations of G". Accordingly, decompose the spakef « asV = @, Vi. For eachk, define
I as the component dflying in Endg (Vi) in the decomposition

Endg (V) = Endg (& Vi) ~ & Homg (Vi Vi).
Then we leave it for the reader to check thiat; = > V.1, - O

In order to establisitheorem 3.¥or the graphd.,, itis thus enough to prove the following
result.

Proposition 4.4. Let G be one of the group8(n), SQn), U(n), SUn), Spn). Letr > 1
be an integer. On the graph,, any irreducible spin network is a finite linear combination
of products of Wilson loops

We have now almost reached the formulation of the problem under which we are going to
solve it.

5. Natural representations

The main problem we are going to encounter in handling with spin networks is that they
involve invariant endomorphisms of spaces of representatios wfich are in general
very difficult to describe.

In the case wheré€ is a group of complex matrices of some siz¢hat is, an orthogonal,
unitary or symplectic group,G acts by left multiplication orv = C” and this is called the

natural representationThe contragredient of this representation is the actioibgiven

byg-¢=¢pogt.

5 Recall that the elements 8f(n) are complex matrices of size2
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The first fundamental theorem@FT) of classical invariant theory describe a set of
generators of the space Ead/®? @ (V*)®7) when p andq are given integers, for the
different kinds of matrix group§.

This gives us what we are looking for in a special case, namely when each representation
a; is of the formV®? @ (V*)®4, The two following results allow us to reduce the general
case to this particular one.

Lemma 5.1. Let G be any compact Lie group. Consider= («1,...,a,) and g =

(B1, ..., Br) two r-tuples of representations 6f. Assume thafor eachi = 1, ... , r, the
representationy; is a subrepresentation @. Let,, ; be a spin network o". Then there
exists/ € Endg (1 ® - - - ® B,) such thatyy ; = ¥ ;.

Proof. For each, endow the space ¢f; with a G-invariant scalar product and defipe
as the orthogonal projection on a subspace on which the actiGhi@isomorphic tay;.
ThenJ =10 p1 ®--- ® p,is G-invariant and satisfiegq ;1 = Vg, ;. O

Proposition 5.2. Let G be a compact Lie group. Letbe a faithful finite-dimensional
representation of G. Then any irreducible representation of G is a subrepresentation of
a®? ® (aV)®4 for some integery, g > 0.

In this statementy” denotes the contragredient representatian &ffe use the convention
a®0 = C, the trivial representation.

This result is of course well knovirin the sense that the representations of compact Lie
groups are completely classified and that a proof “by inspection” is almost possible, see for
example the end dR]. However, we were not able to find a direct proof in textbooks on
Lie groups. Therefore, we propose a short analytical argument.

Proof. Leta be afaithful finite-dimensional representatiortfSincex is unitary for some
Hermitian scalar product, its character satisfies the inequalite)| < dim « with equality
only if @(g) = £Id. Hence| x,(g) + 1| is maximal only whemx(g) = Id, that is, sincex is
faithful, wheng = ¢, the unit ofG. For each: > 0, define a probability measugg, on G by

Ixa(g) + 1|2
[ 1xa(h) + 121 dh

where again, g denotes the unit-mass Haar measurgsorSetD(g) = |x«(g) + 1| and
define, fors > 0, M(8) = supD(g) : d(g, e) > 8}, whered is any Riemannian distance
onG. Let us also denote by(s) the volume of the balB(e, §). Now, let f be a continuous
function onG such thatf(e) = 0. Chooses > 0 and determing such that] f(g)| < ¢
whenevel(g, ¢) < §. Finally, letnp > 0 be such thab(g) > C > M(8) for someC when
d(e, g) < n. One checks easily that

I flloo { M)\
‘/G f(®) dun(g)‘ <&+ Voo <T)

dun(g) = g,

6 In the case of a finite group, it is referred to as a theorem of Burnside and Moljéh in
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andtherighthand side is smaller tharf@ n large enough. Hence, the integrgls /() du.,
(g) tend to zero as tends to infinity. By applying this t¢ — f(0) when £ is any continuous
function, we prove that the measuyes converge weakly to the Dirac ma&s

In particular, letp be any irreducible representation G Sincep,(x,) converges to
Xxp(e) # 0, there exists an integer> 0 such that

/G X0(@)|xa(g) + 1" dg # 0.

Now observe thalty, + 1|2 is just the character of the representatiom C) ® (a & C)¥ ~
Chada¥® (ax®a), whereC denotes the trivial representation 6f Thus, p is
a subrepresentation of theth tensor product of this representation. This tensor product
breaks into (non-necessarily irreducible) factors of the fefii ® («¥)®4, so thatp, being
irreducible, is a subrepresentation of one of them. O

Remark 5.3. We have not used the fact th&twas a Lie group, we have only used its
compactness. However, a compact group admits a faithful finite-dimensional representation
if and only if it is a Lie group (see for examplé]).

For matrix groupsProposition 5.2nsures that every irreducible representation arises as a
subrepresentation of some tensor product of a number of copies of the natural representation
and its contragredient. We are now reduced to prove the following result.

Proposition 5.4. Let G be a group of the following lisO(n), SQn), U(n), SUn), Spn).
Letr > 1 be an integer. Le& be an r-tuple of representations of the folff? @ (V*)®4,
whereV is the natural representation 6f Then any spin networl, ; on G” is a linear
combination of products of Wilson loops.

We leave it to the reader to check tixbposition 5.4mplies Proposition 4.4

6. Unitary groups

Letn > 1 be an integer and lat be eitherU(n) or SU(n). The groupG acts on
V = C" by multiplication on the left. For any integer > 1, there is a corresponding
diagonal action of; on V®<, that we denote by : G — GL(V®?). On the other hand,
the symmetric groug, acts by permutation of the factors #%¥“. We denote this action
by 7 : &, — GL(V®). Itis obvious that the actionsandx commute to each other. The
following theorem is known as Schur—Weyl duality theorem.

Theorem 6.1 (Schur—Wey! duality).The two subalgebrag(CU(n)) and n(C&,) of
End(V®9) are each other's commutant

In other words, Engl(n)(V@’d) is generated as a vector space by the permutations of
the factors. The case &U(n) follows immediately by the equality Ergy,) (V®?Y) =
End(](n)(V®d).
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Proof. By the bicommutant theorem (s¢g] for example), it is equivalent to prove that
7(C&,) = p(CG) or to prove thap(CG) = n(C&,). The second statement is the most
important for us, but the first one is the easiest to prove.

By definition, 7(C®,)’ = Endg, (V®4), which in turn is just Endv®?)®<, where®,
acts by conjugation on Eq#f®4). Now,

End(V®?)®4 ~ [End(V)®?]®¢ ~ Synf (End(V)).

We must prove that SyfiEnd(V)) is generated by the endomorphisms of the fpii) <,
g € U(n). This is true becaus&(n) is Zariski-dense in En@") and, for any finite-
dimensional vector spac®, Synf (W) is generated byix®?|x € X} as soon as¥ is
Zariski-denséin W. O

Consider the following isomorphisms 6--modules:

End(V®? @ (V¥)®) ~ (V)P @ V& @ V& @ (V*)®1
~ (V*)®p+q ® V®P+q ~ End(V®P+q)’ (1)

where the second one is chosen in the simplest possible way, namely

(pl...(ppul...upvl...vqwl...wq|_)gpl...(ppwl...wqul...upvl...vq_

If o belongs ta® ., let us denote by, the element of End/®? ® (V*)®9) corresponding
via (1) to (o). Schur—Weyl duality implies that Egd V®? ® (V*)®9) is generated by the
endomorphismd,,. Let p1, ..., pr,q1,...,q, b€ non-negative integers. For each=
1,...,r, consider the representatian= V®? @ (V*)®4% of G and setx = (a1, ... , o).
Setp=p1+---+ prandg =qg1+---+¢,. Leto be an element ab ., ,. Considetl,, €
End; (V®? @ (V*)®7). By the isomorphisnV®? @ (V*)®1 ~ ®'_, (Vi @ (V*)®1), I,
can be seen as an element of Ei¢h ® - - - ® ). We may thus form the spin network
V.1, The following proposition implie®roposition 5.4n the case of unitary groups.

Proposition 6.2. The spin networlyy ;. on G” is a product of Wilson loops

Proof. Let us denote by: the natural representation 6f andn" its contragredient. By
definition,

r .
Va1, (g1, .. . g) =1tr (-®1"(gi)®”" ®n" (g% o I") '
i=

Each factom(g;,)®” ® n" (g;)®% corresponds, througfl) with p = p; andg = ¢;, to
n(g)®’ ® n(g;1)®4f, by definition of the contragredient. Thus,

r r .
Vo 1,(81, .., g) =1r (_®1n(gi)®p’ ® ‘®ln(gfl)®q’ o 77(0)) ,
= 1=

7 This is most easily seen through the identification $¢) ~ P?(W)*, whereP denotes the algebra of
homogeneous polynomials of degrée
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Fig. 2. Schematic representation of tensors.

where we see now both endomorphisms as elements afi&#d¢). This trace can now
easily be evaluated. Before that and for the sake of clarity, let us rename the sequence
(81y -+ s QLsvv s 8roven s 8 81 s eve s 815 -5 &Y oo, gD, whereg; appearg; times
andgj1 gi times, aghy, ... , hp1y). Thenthe tensor product appearing in the last equation

is justhy; ® - - - ® hpyq. Hence,

Vol (81 80 =[] ey ... ha).
C=(az1,... ,ax)
where the product runs over the cyclessofWe claim that each factor in this product is a
Wilson loop. To see this, define the functions{l, ..., p + g} — {1, r} by
j@=i ifpi+---+pia<a<pi+---+p; or
rtat+-+g-1<a=ptqa+---+gq

ande : {1, ..., p+q} — {1, =1} suchthat(a)is+1ifl < a < pand-1if p+1<a <gq.
They are designed in such a way that= g€<2)

. j@-

Let us now give a hame to the edges of t?1e grapmamely sett = (eq, ..., e,). For
each cycl&€ = (ay, ... , ax) of o, define a looge in L, by lc = (ej.g:;, e ej{;’ﬁ). Then
the last equality can be rewritten simply as

Var,(81. g0 =[] Waiclgr....g)
C=(a1,... ,ax)
and the result is proved. O

This proof has a nice graphical representation which allows one to understand very easily
the generalization to the orthogonal and symplectic cases.

Let us represent a tensor 6P? ® (V*)®4 by a box withp + g oriented legsp outwards
andq inwards. We put inside the box a schematic description of the tensor. For example, the
leftmost picture irFig. 2represents a tensor & ® V. It could be labeled by an element
of End(V) or End(V*).

The middle picture represents the tensot123) € End(V®3). The rightmost picture
represents the same tensor, via the identificAtiEEmd(V®3) ~ End(V®2 @ V*).

8 We will stay a hit loose about the order of the factors in the tensors. We hope the pictures are clear enough by
themselves.
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n(h) | n(h) n‘(9)

1

-

Fig. 3. The spin network,v on L3 as the Wilson loogV, -

n®2) 1123 Tlese)

In this representation, tensor product corresponds to juxtaposition of the boxes and a
contraction is represented by joining an outcoming leg with an incoming one.

Let us consider a particular case, for exampie 2, p1 = g2 = 0,91 = 1 andp, = 2.
We take the permutation = (123). Choose(g, ) € G2. The picture corresponding
to tr(n¥ (g) ® n(h)®2 o I,) is drawn below Eig. 3. If one remembers that, through the
identification EndV*) ~ End(V), n" (g) corresponds ta(g—1), it becomes almost evident
that the trace we are computing is also a Wilson loop, namelggtr142).

7. Orthogonal and symplectic groups

Letn > 1 be an integer. LeG be eitherO(n), SO(n) or Y(n). Recall that, by the
two first groups of this list we mean, respectively, R and SO, R. By the third we mean
the subgroupU(2n) N S2,C of GLo,C, which preserves, via the identificatid® ~
C" @ jC", the standard quaternionic Hermitian scalar productin We are going to
treat at once the orthogonal and symplectic case, although they are not exactly identical.
For example, the spadé of the natural representation 6fis C" in the orthogonal case,

C?" in the symplectic case. We shall use the letieto denote the dimension &f in both
cases.

The situation here differs significantly from the preceding one becéugeeserves
a non-degenerate bilinear fortn -) on V. In the orthogonal case, we are going to use
orthonormal bases df. In the symplectic case, we say that, ... , ¢2,) is a standard
basis forV if (¢;, e;4,,) = 1fori=1,... ,nand(e;,e;) =0if |i — j| # n.

The bilinear form(., -) induces an isomorphism — (v, -) betweenV and V* which
intertwines the natural representation and its contragredient. So, there is no need in this
case to conside¥*. Now, if p denotes as before the diagonal action(fon V®<,
p(CG) is larger thafl 7(C®,). The first fundamental theorem tells us how much
larger.

In this section, we will identify freely End/®?) with V®2 by saying thab; ® - - - ® vag
transformswi ® - - - ® wy into ]_[le(v,-, WihVg+1 ® + -+ ® v2g.

9 We keep the notation for the action of the symmetric group of any order on the corresponding tensor power
of V.
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/D

Fig. 4. The endomorphisnf,, whend = 4 andr = {{1, 3}, {2, 8}, {4, 7}, {5, 6}}.

Let r be a partition of the sdftl, ... , 2d} in pairs. Let(es, ... , e,) be an orthonormal
or standard basis df, according to the nature @. We define/; € End(V®%) by

m
= Tl tewaden®- ey

i1,...,i29=1{k,l}et k<l

One checks easily that this definition.hfdoes not depend on the choice of the orthonormal
basis ofV and that/, commutes to the action @, that is,J; € p(CG)’ = Endg (V®?).

The graphical representation introduced in the preceding section may be helpful to clarify
the situation. An example is given IByg. 4. Note that we do not need arrows to distinguish
betweenV andV* anymore, since we are working in tensor power¥ aflone.

The following theorem is proved if].

Theorem 7.1 (FFT for orthogonal and symplectic groupd)he subspace Endg (V&%) =
p(CG) of End(V®4) isspanned by the endomorphisms J;, where t runsover the partitions
of {1,...,2d}inpairs.

Remark 7.2. The proof of this theorem is longer than that of Schur—Weyl duality, so
we do not give it here. However, it is usually stated and proved for complex Lie groups
rather than compact ones. Let us explain how the former can be deduced from the latter.
If Gis O(n) (resp.F(n)), let us denote by the groupO, C (resp.$2,C). SinceG
is contained inG¢, one needs just prove that anye Ends(V®?) is invariant by the
whole G¢. Via the isomorphism End/®¢) ~ v®2 ~ (y*)®2 e can think ofx as
a polynomial, that we denote by, in 24 variables onV, homogeneous of degree one in
each variable, invariant under the action®f This means that, for eveny € V9%, the
functionii(-v) : Gc — C which sendg to iz(gv) is constant or;. Since, on one hand, this
function is polynomial ing and on the other handj is Zariski-dense irG ¢, the function
is constant orG¢. So,u is invariant by the whole complex orthogonal (resp. symplectic)
group.

The theorem foBO(n) follows from that forO(n) just becausg(CSO(n)) = p(CO(n)).

We proceed now as before. Lgt, ... , p, be integers. Foreadh=1, ... , r, leta; denote
V®Pi and setx = (a1, ... ,a,). Setp = p1+--- + p,. Lett be a partition of1, ... , 2r}
in pairs.

Proposition 7.3. The spin network s, on L, isa product of Wilson loops.
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The proof is very similar to that dProposition 6.2We are going to show that, up to some
isomorphism,J; acts as a permutation operator. For this, define for eaeh, . .. , pT; =
7((i, p+ 1)) € End(V®2P) ~ End(End(V®P)).

Lemma7.4. Lettbeapartitionof{l, ..., 2p}inpairs. Thereexistiy, ... ,ix € {1,..., p}
ando € S, suchthat 7;, o - - - o T;, (J) = 7(0).

Remark 7.5. It is worth saying what this lemma means graphically, because this is much
simpler than the aspect of the proof might suggest. Let us represent, as we-itid4na
partition like t as a pairing of 2 points byp lines. We put the points,1.. , p on the top

edge ofaboxangd+1, ..., 2ponthe bottom edge, with+i belowi. Then the lemma says

that, by switching the positions éfand p + i for some well-choseris without changing

the pairingz, we can make sure that every line connects a point on the top edge with a
point on the bottom edge. The diagram one gets in that way corresponds to a permutation
operator.

Proof. It is convenient in this proof to think of as a fixed-point free involution of
{1,...,2p}. Letoy, ..., 6, denote the transpositions, p+ 1), ..., (p, 2p). Then, given
some integersgy, . .. , iy between 1 angh, one checks easily that

Til -0 le(J'L’) = J951~~~9[k1’9i1~~9[k s

where the product in the subscript #fis a composition of permutations ¢, . .. , 2p}.

On the other hand, # is a permutation ofd1, ... , p} andt pairsi with o(i) + p for each
i=1,...,p, thenJ; = n(o). Thus, the lemma will be proved if we show that, for some
i1, ... ,ix between 1 ang and somes € &, 6;, - - - 6;, 10;, - - - 0;, pairsi with o(i) 4+ p for
i=1,...,p.

To do this, seb = 6, ... ,6,. The mapdr acts on{1, ..., 2p} and we are interested
in its orbits. In particular, observe thét, . .. , p}is a reunion of orbits ofiz if and only if
there existg € &, such thatr pairsi with (i) + pforalli=1,... , p.

We define by induction a sequence of cycles, thatis, of cyclic permutatiofis, an , p}
as follows.

Setx; = 1 and letD; be the orbit ofc; underdr, endowed with its cyclic order. Let ), :
{1,...,2p} - {1,..., p} bethe map which sendandi+ ptoi,i =1, ..., p. Define the
cycleCy = m,(O01) and setro = min({1, ..., p} —Cy). Then, giverCy, ... , C,—1 andx,,
defineO, as the orbit ok, C, = m,(O,) andx,41 = min({1, ..., p} = (C1U---UC,)).
This procedure stops whenthe cydigs. .. , C, cover{l, ..., p}. These cycles are disjoint
by construction and we see each of them as an eleme dfet us callo their product.

Now foreachi = 1, ..., p, one and only one of the two elementndi + p belongs to
O1U---UO,.Sets; =01ifitisi, e = 1ifitis i + p. Definet = ([17_, 6;)t([T/_, 6.

It is easily checked that the iteratestdfpreservel, ... , p} and in fact thaf pairsi with
o)+ pfori=1,..., p. The lemma is proved, by taking far, ... , iy those integers
such that; = 1. O

The elements of; have a simple behavior under the transposition operdtors
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Lemma 7.6. Consider the following isomorphism:

Id 12) Id
T EndV)~ v eV 2 ve v yev 2% ve g v ~ Endw).

Let g be an element of G. Then T(g) = eg~ 1, wheree = 1if G isorthogonal and e = —1
if Gissymplectic.

Proof. If v belongs toV and¢ to V*, let us denote by and¢ the corresponding elements
of V* andV, respectively, so thdt= (v, -) and¢ = (¢, -).

Letg = 3, ¢ ® v; be an element off € End(V). ThenT(g) = Y, i ® ¢;. Now letu
andw be two elements of. One has

(gu, w)= <Z¢,<u)vl, > Zﬁi<w><&s,-,u>=e<u,Zf}i<w)&>i>=<u,eT<g><w>>,

wheree equals plus or minus one, according to the symmetry of the form Since this

form is non-degenerate and preserveg:pthe result follows. O
Proof of Proposition 7.3. Letgs, ... , g- ber elements ofG. By definition,
Vo1, (81. - . 8) = (g7 ® -+ ® g®P o J7).

By Lemma7.4thereexisty, ... iy € {1,..., pfando € &, suchthaf,o---oT; (J;) =
(o), or equivalently,/; = T;; o - - - o T, ((0)), sinceT? = 1.

Now, observe that, fax andu’ in End(V®?), one has tfu o T; (1)) = tr(T;(u) o u’) for
alli=1,..., p. Hence, we have

Va1 (81, &) =tr(Ty o0 T (57 @ - ® g277) o (o).

For the sake of clarity, let us rename the sequégpee. .. , g1,..., 8, ..., &), Whereg;
appearg; times, as justh1, ... , h,). Thus,gS"* ®@ - ®¢- " equalsiy ® - - - ® h . Now,
by Lemma 7.6 we have

Tpo-oTy(hi® - ®hp) =eh} @ - @hy,

where nowg; = —1 if i appears in the lish, . .. , iy ande; = 1 otherwiset® Here again,
¢ = 1 in the orthogonal case;1 in the symplectic one.
Now we finish the proof just as that Bfoposition 6.2Indeed,

Vo, (81 ... g) = TP @ - @b omo)=e [ trlhat.... hat).
C=(ay,... ,ar)

where the product runs over the decompositios @f cycles. Each factor in this product
is a Wilson loop. Indeed, let us defige {1, ..., p} — {1,... ,r} by

j@=min{i:a < p1+---+ pi}.

10 This newe; is minus twice the one defined in the proofi@fmma 7.4 plus one.
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Then by definitions, = gjw). If E = {e1, ... , e,} denotes the set of edges of the grdph

then we can define for every cyate= (ay, ... , a;) of o the looplg = (ej.’('il), ... ,ej‘ggk)).
With this notation, we have proved that

‘ﬂa,],(gln-- agr) =8k l_[ Wn,lga

C=(az1,... ,ax)

wheren denotes the natural representation. This proves the proposition. O
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