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Abstract

Intersecting hypersurfaces in classical Lovelock gravity are studied exploiting the description of the Lovelock Lagrangian as
a sum of dimensionally continued Euler densities. We wish to present an interesting geometrical approach to the problem. The
analysis allows us to deal most efficiently with the division of spacetime into a honeycomb network of cells produced by an
arbitrary arrangement of membranes of matter. We write the gravitational action as bulk terms plus integrals over each lower
dimensional intersection.

The spin connection is discontinuous at the shared boundaries of the cells, which are spaces of various dimensionalities. That
means that at each intersection there are more than one spin connections.

We introduce a multi-parameter family of connections which interpolate between the different connections at each intersection.
The parameters live naturally on a simplex. We can then write the action including all the intersection terms in a simple way. The
Lagrangian of Lovelock gravity is generalized so as to live on the simplices as well. Each intersection term of the action is then
obtained as an integral over an appropriate simplex.

Lovelock gravity and the associated topological (Euler) density are used as an example of a more general formulation. In this
example one finds that singular sources up to a certain co-dimensionality naturally carry matter without introducing conical or
other singularities in spacetime geometry.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the light of the current trends in high energy physics, it is widely supposed that spacetime has dimensions higher
than four. In studying classical gravity, there are then other terms in the gravitational action, yielding second order
field equations, which it is reasonable to consider. In d dimensions we have the general Lagrangian, first obtained by
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Lovelock [1]. We use the vielbein formulation [2,3]:

L =

[d/2]∑
n=0

αn f (Ω∧n
∧ E∧d−2n), (1)

f (Ω∧n
∧ E∧d−2n) = Ωa1a2 ∧ · · · ∧ Ωa2n−1a2n ∧ Ea2n+1 ∧ · · · ∧ Ead εa1...ad .

Above, Ea are the vielbein frames and Ωab is the curvature 2-form:

Ωab
= dωab

+
1
2
[ω,ω]

ab
= dωab

+ ωa
c ∧ ωcb.

The spin connection is ω. The Lie bracket for a p-form A and q-form B is [A, B]
ab

= Aa
c ∧ Bcb

− (−1)pq Ba
c ∧ Acb.

The totally antisymmetric tensor is normalized to ε01...d = +1. [d/2] is the highest integer less than d/2. There are
[d/2] coefficients αn .

The first term in (1) is the cosmological constant. The second term is the Einstein–Hilbert Lagrangian. In the
familiar four dimensions it reads:

LE H = α1Ωab
∧ Ec

∧ Edεabcd = 2α1 R
√

−g

and the coefficient in our conventions is related to Newton’s constant by α1 = (8πG)−1. In dimensions higher than
four, there are other terms in (1) which are corrections to the Einstein theory. Each term is a polynomial of order n
in the curvature. These were studied in the late 1980’s when it was realized that they were related to strings and were
ghost free in a flat background [3,4]. The relation to strings was further discussed [5–7], exact solutions were obtained
and black hole spacetimes were analyzed in various dimensions [8–16]. Recently the special properties of the theory
have been studied motivated by braneworld models [17,18], higher dimensional black holes and also Chern–Simons
Gravity [19]. To us, the important property of the Lagrangian (1) is its affinity to topological densities. It is the fact
that will enable us to deal with the problem of intersecting hypersurfaces filled with matter in this theory with ease
and generality. It will also allow us to write the solution in an elegant form.

In d = 2n, the term f (Ω∧n) is proportional to the Euler density and is locally a total derivative. For example if we
write the Einstein–Hilbert term in two dimensions it reads

α1Ωabεab

(the coupling α1 has dimension zero). Integrated over a closed manifold M it just gives the Euler number of the
manifold. No local information can be obtained from this. The analogous quantity in arbitrary even dimension is

αn Ωa1a2 · · ·Ωa2n−1a2nεa1...a2n .

This quantity is equally mute about local information. By analogy, in d > 2n, the quantity f (Ω∧n
∧ Ed−2n) is known

as the dimensionally continued Euler density [3,20,21]. When written in terms of tensors, the dimensionally continued
density takes the same form as the Euler density,

1
2n δ

µ1...µ2n
ν1...ν2n

Rν1ν2
µ1µ2 · · · Rν2n−1ν2n

µ2n−1µ2n

√
−g (2)

except that the dummy indices run over more values. In the vielbein notation, the difference is more clear — the
vielbeins appear explicitly in the dimensionally continued density. The Lagrangian formulation of Lovelock gravity
involves a sum of terms which are dimensionally continued Euler densities and yields the Lovelock equations of
motion [1]. This is a useful way to think of the Lagrangian. This similarity to the Euler density accounts for the
interesting properties of the theory mentioned in the previous paragraph.

In this paper, we deal with singular sources of gravity, that is matter whose internal structure is restricted in
dimensionality lower than of that of the manifold. It is known that, of all singular sources in Einstein’s theory, the
codimension 1 source [22,23] is especially easy to describe mathematically. The stress–energy–momentum tensor is
unambiguously well defined as a distribution. It has recently been realized that this is also true for codimension 1
hypersurfaces in Lovelock theory [18]. It is also known that, due to the non-linearity of Einstein’s theory, there are
problems and ambiguities in describing singular sources of codimension greater than 1 [23], although there is some
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hope of being able to describe codimension 2 sources in a meaningful way [24,25]. Just as point charges are useful in
studying electromagnetism, it is also useful to have a well defined description of singular sources of gravity. Even if
singular sources do not exist as fundamental particles, they can be useful as simple approximations.

Hypersurfaces of codimension one (hereafter just called hypersurfaces), will generally intersect each other. It is
then a natural step to consider intersections. In Ref. [26] we found that there could be a singular energy–momentum
tensor located at intersections without any mathematical problems or ambiguities (in particular, the vielbein frame
is well defined at the intersections). In the order n Lovelock gravity, the singular matter can live on intersections of
codimension n or less. Some examples of intersections in Lovelock gravity have also been given in Refs. [27].

Before going into the details of intersections, let us first consider a hypersurface and the junction conditions [22].
At a junction, the metric is continuous but the normal derivative jumps. The part of the curvature that is intrinsic to
the junction is single valued but the extrinsic curvature representing the embedding of the surface into the manifold
is different on each side. In the vielbein language it is the connection 1-form that is discontinuous. The problem
then is that there are discontinuous forms meeting at intersections. We would like to re-express the problem in terms
of continuous connection 1-forms so as to use usual methods of differential geometry. To give a specific example,
consider the so called Einstein–Gauss–Bonnet theory in five dimensions. There are three terms: the cosmological
constant, Einstein–Hilbert and a curvature squared term:

L = α0 Ea
∧ Eb

∧ Ec
∧ Ed

∧ Eeεabcde + α1Ωab
∧ Ec

∧ Ed
∧ Eeεabcde + α2Ωab

∧ Ω cd
∧ Eeεabcde.

Suppose that we have a single hypersurface Σ which divides our spacetime into two regions M− and M+, such that the
metric is continuous but the connection may be discontinuous. The junction conditions can be obtained by including
the surface term in the action:

α1

∫
Σ
(ωab

+ − ωab
− ) ∧ Ec

∧ Ed
∧ Eeεabcde

+α2

∫
Σ
(ωab

+ − ωab
− ) ∧

(
Ω cd

+ + Ω cd
− −

1
3
(ω+ − ω−)

c
f ∧ (ω+ − ω−)

f d
)

∧ Eeεabcde. (3)

The Euler–Lagrange variation with respect to the connection cancels the total derivative term coming from the bulk.
The Euler variation with respect to the vielbein gives a tensor which, when set equal to the intrinsic stress tensor on Σ ,
gives the correct junction conditions [28,29]. It is usual to introduce the intrinsic connection ω‖, and the corresponding
curvature Ω‖ and second fundamental form θab

:= ωab
− ωab

‖
. Then the surface term would have the form:∫

Σ
α1

[
θab

∧ Ec
∧ Ed

∧ Eeεabcde

]+
−

+ 2α2

[
θab

∧

(
Ω cd

‖
+

1
3
θc

f ∧ θ f d
)

∧ Eeεabcde

]+

−

where the brackets signify the jump in this surface term across the boundary: [ f (θ)]+− := f (θ+) − f (θ−). The first
term is the jump in the Gibbons–Hawking boundary term (first written, it seems, by York [30]), written in terms of
differential forms. The second term is the jump in the boundary term of Myers [31]. It is of course natural that the
boundary term which makes the action well defined on a manifold with boundary also plays a role in the junction
conditions.

The advantage of introducing the intrinsic connection into the action is that one can write everything in terms
of extrinsic and intrinsic curvature tensors on Σ . One can then evaluate the junction conditions using bulk metrics
written in different coordinate systems on each side. The intrinsic curvature is then written in terms of the intrinsic
reference frame on Σ . Then the difference is taken between the two terms. In this way one can avoid the dangers of
confusing a real discontinuity with a purely coordinate effect [22]. This approach is important if one is calculating in
terms of tensors, but not so essential if one uses differential forms, a point which will be discussed in more detail at
the end of Section 5. In the following we shall introduce surface terms which, like (3), do not explicitly contain the
induced connections on the hypersurfaces. In Section 6 we will return to make contact with the formulation in terms
of extrinsic curvature.

The question arises, can one describe intersections of hypersurfaces in the same style, with boundary terms? The
key point in Ref. [26] is that this can be done, thanks to the relationship of each term in the Lagrangian to its topological
cousin, the Euler density.
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Now the Euler number is something that is actually independent of the local form of the metric and associated
connection,∫

M(2n)
f (Ω∧n) =

∫
M(2n)

f ((Ω ′)∧n) ∝ Euler no. (4)

It is a purely topological number. If we have a whole family of (metric respecting) connections over M , ωi , related to
each other by homotopy, one can equally well write the Euler number in terms of any of them. Also, and the important
point for us, one can formally rewrite the Euler number in terms of a discontinuous connection, which coincides with
each ωi in some region i of M . One will then have boundary and intersection terms in the integral. This amounts
to a cellular decomposition of the manifold into a honeycomb-type lattice. Note, we do not localize curvature at the
intersections (which would introduce the complication of the connection picking up a gauge transformation going
round the singularity).

The set of boundary and intersection terms were found in the previous work and are summarized in Section 2. We
introduced a connection which interpolated between each ωi by means of some variables usually denoted by t which
we shall call homotopy parameters. We found that each intersection term was a density built from the curvature of the
interpolating connection, integrated over the homotopy parameters. In Section 3, we shall re-derive these results by a
more geometrical method. We introduce a manifold, W , which is locally a Cartesian product of each intersection and
a simplex in the homotopy parameters. We then introduce a closed form η in the space W . The closure of η implies
our composition rule (8), in other words the closure of η is sufficient to provide the composition rule. The results can
be presented in a simpler way by introducing a multi-parameter generalization of the Cartan homotopy operator. We
should note that these results are essentially the same as results found by Gabrielov et al. in seeking a combinatorial
formula for Characteristic Classes [32].

The entire honeycomb formed out of the complicatedly intersecting hypersurfaces is described by a few simple
equations. All sorts of intersections which it contains are accommodated in the scheme given by these equations and
the shape of W . For the Euler density, we find an explicit expression for η and show that it is closed. The form of the
intersection terms is clarified greatly.

In Section 4 we turn to the action built from the dimensionally continued Euler densities, where the vielbein
enters explicitly into the action. If there are hypersurface sources, the connection 1-form is discontinuous. Can we
still rewrite the action in terms of the continuous connection in each bulk region plus boundary terms? We will show
that the answer is yes and that the gravitational intersection Lagrangians obey the same composition rule (8). This is
because the dimensionally continued η is still closed on W .

In Ref. [26], we generalized the intersection terms to the dimensionally continued Euler densities in a natural
way. The resulting action was found to be one-and-a-half order in the connection: the field equations come from
independent variation of vielbein and connection. The zero torsion constraint makes the field equation from the
variation of the connection vanish identically. We thus concluded that this was the correct action, the explicit variation
with respect to the vielbein giving the junction conditions for intersecting hypersurfaces in Lovelock gravity. The key
results of Section 5, Propositions 6–9, verify this.

We can write the action which generates all the intersection terms as

S =

∫
W
η (5)

η is given by (17) for the Euler density and (51) for the dimensionally continued Euler density. The validity of the
formula in both the topological and the gravitational case is the main result of this paper.

In Section 6 the junction conditions for intersections and collisions are elaborated in more detail and some physical
applications are discussed.

2. The composition rule

We will review the argument of Ref. [26]. Let ω be any connection and Ω the curvature. The continuous variation
of an invariant polynomial

P(Ω) = f (Ω∧n) (6)
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with respect to the connection produces the well known formula

P(Ω)− P(Ω ′) = dTP(ω, ω′) (7)

where TP is the Transgression of P [41]. This was generalized to the composition formula:

p∑
s=1

(−1)s−p−1L(ω0, . . . , ω̂s, . . . , ωp) = dL(ω0, . . . , ωp). (8)

L(ω) = P(Ω), L(ω1, ω2) = TP(ω1, ω2) and an expression for the general L was found. It was shown that these
forms live on the intersections of regions of M . Let’s divide M up into a honeycomb of regions labelled by i and
denoted by {i}, with intersections denoted by {i j}, {i jk} etc, which are symbols fully antisymmetric in their indices
and keep track of the orientation. The integral over the manifold of L(ω) can be rewritten∫

M
L(ω) =

∑
i

∫
{i}
L(ωi )+

∑
k≥2

1
k!

∑
i1...ik

∫
{i1...ik }

L(ωi1 , . . . , ωik ). (9)

Explicit formulae for these intersection terms were found. Each intersection contributes to the action a term:∫
dd−px

∫
dpt funct.(ω(t)). (10)

where t are the homotopy parameters and ω(t) interpolates between the ωi ’s. We will find somewhat simpler
expressions for these terms in the next section.

This composition rule applies to any invariant polynomial, such as the Pontryagin Class. Because of our interest
in Lovelock gravity, we shall only discuss here the Euler density. The connection ω is always the Lorentzian (or
Riemannian) connection and torsion free.

In the dimensionally continued case the left hand side of (9) with the L(ωi1 , . . . , ωik ) being replaced by the
their dimensionally continued analogues, is the gravitational action describing the system involving intersecting
hypersurfaces. The variation with respect to the connections gives identically zero under zero torsion and the variation
with respect to the vielbein provides the junction conditions. The existence of these intersection Lagrangians, coming
from the discontinuities of the connection, shows that, in order to have a general treatment, one should allow for the
possibility of distributional parts of the matter’s energy tensor with support at the discontinuities

T =

∑
i

Ti fi +

∑
k≥2

1
k!

∑
i1...ik

Ti1...ik δ(Σi1...ik ) (11)

where Ti is the energy tensor of the region labelled by i and fi is a function that taken on the value 1 in the
respective region and 0 elsewhere; Ti1...ik is the energy tensor of the intersection hypersurface Σi1...ik , the point-set
whose orientation as embedded in Σi2...ik , Σi1i3...ik , etc, has been taken into account by the fully antisymmetric symbol
{i1 . . . ik}. δ(Σi1...ik ) is the delta function with support Σi1...ik .

Note that lower case Latin indices from the middle of the alphabet label the bulk regions, not to be confused with
spacetime indices.

3. A geometrical approach

This and the next section will be devoted to analyzing the purely topological case, since part of our arguments can
be understood in this context. It will then help us to see what kind of refinements are needed to pass to the gravitational
case.

We want to describe the situation in the vicinity of an intersection of codimension p between different bulk regions.
In this vicinity there will also be intersections of lower codimension. At each intersection, we have a meeting of
connections ωi in the different regions. Let us for the moment deal only with simplicial intersections: we define the
simplicial intersection of codimension p to be a surface of codimension p where p +1 regions meet (Fig. 1(a)). It was
found in Ref. [26] that the L(ω0, . . . , ωp) is an integral over p different homotopy parameters interpolating between
the connections (see (10)).



1866 E. Gravanis, S. Willison / Journal of Geometry and Physics 57 (2007) 1861–1882

Fig. 1. (a) Simplicial intersection; (b) Simplex in the space of homotopy parameters; (c) A projected diagram of the space W (Eq. (B.6)). Every
d − 1 dimensional surface is ‘thickened’ in the t-space by a 1-dimensional simplex. These meet at a d − 2 dimensional intersection, which is
“thickened” by a triangle in the t-space.

If we look at (10) we make the following observation: each order of intersection causes us to lose a dimension but
gain an extra connection. Each new connection means an extra parameter of continuous variation. With this in mind,
we can think of our action as an integral over a d-dimensional space which is a mixture of spacetime and t directions.

Let us interpolate in the most symmetrical way. We introduce a N -dimensional simplex in the Euclidean space
RN+1 with coordinates t . Let us define the interpolating connection:

ω(t) :=

N∑
i=0

t i ωi ,

N∑
i=0

t i
= 1 (12)

and the associated curvature:

Ω(t) := dω(t)+
1
2
[ω(t), ω(t)]. (13)

So we introduce the space F = SN × M , with SN , a simplex of dimension N . The latter will be frequently called
t-space. Each of N points of the simplex corresponds to a continuous connection form ωi on M with its support on
some open set in M containing the region i ; we add another one, that is, one more connection for reasons that will
become clear later. Each contribution to our action will live on some d-dimensional subspace of F . The technical
reason for introducing the space F is that the connection is continuous on it and integration is well defined. There is
also an aesthetic reason. It is quite a nice feature of the problem that the mathematics will take on its simplest form
when the t-space is a simplex, as we have already chosen. It provides a geometrical picture which can simplify many
calculations. For example, the treatment of a non-simplicial intersection becomes easy, as we shall see in below.

Let us define a d-dimensional differential form in this space F (where for convenience the dx’s are suppressed).

η :=

n∑
l=0

1
l!

dt i1 ∧ · · · ∧ dt il ∧ ηi1...il (x, t), (14)

ηi1...il := ηi1...ilµl+1...µd dxµl+1 ∧ · · · ∧ dxµd .

We can now proceed to integrate this form over different faces of SN . A p-face (which we call s0...p or just s) is a
subsimplex of SN which interpolates between a total of p + 1 different connections (Fig. 1(b)):

s0...p =

{
(t0, . . . , t p, 0, . . . , 0)

∣∣∣∣∣t i
≥ 0,

p∑
i=0

t i
= 1

}
. (15)

Let us define L0...p to be the integral over the p-dimensional face1:

L0...p :=

∫
s0...p

η =
1
p!

∫
s0...p

dt i1 · · · dt i pηi1...i p , (16)

1 Strictly there should be a factor of (−1)P(0,...,p) in the middle term to account for the orientation with respect to SN . However, we can choose
s to have the positive orientation by assuming the points 0 . . . p are in the appropriate order.
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η here being understood to be the restriction of η onto s so that the integral is a function of x only. This integral picks
out terms in η which are a volume element on the appropriate face. We would like, for an appropriate choice of η, to
identify this term with L(ω0, . . . , ωp) as defined in the introduction with respect to the Euler density. We shall see
that this can indeed be done and we shall find a simple form for η.

Proposition 1. A sufficient condition on η such that L0...p obeys the composition rule (8) is that η be a closed form,
dFη = 0. Here the exterior derivative on F is dF = d(x) + d(t). d(t) and d(x) are the exterior derivative restricted to
the simplex and to M respectively.

Proposition 2. The form of η corresponding to the Euler density is

η = f
(
[d(t)ω(t)+ Ω(t)]∧n) . (17)

This formula is already known in the mathematics literature [32]. η is closed on F: dFη = 0.

Proposition 3. The intersection Lagrangian can be recovered by the specific choice:

η1...p = Ap f (χ1 ∧ · · · ∧ χp ∧ Ω(t)∧(n−p)), (18)

Ap = (−1)p(p−1)/2 n!

(n − p)!

⇒ L(ω0, . . . , ωp) = Ap

∫
s01...p

dpt f (χ1 ∧ · · · ∧ χp ∧ Ω(t)∧(n−p)). (19)

χi ≡ ωi − ω0 and ω(t) = ω0 +
∑p

i=1 t iχi . The intersection Lagrangian is zero for p > n.

To prove the first proposition, we will need to use Stokes’ Theorem on the face s.∫
s

d(t)η =

∫
∂s
η. (20)

The boundary of the simplex s0...p is

∂s0...p =

p∑
i=0

(−1)i s0...̂i ...p (21)

with the orientation being understood from the order of the indices.
Now let us integrate the form d(x)η over the face. We will need to remember that in permuting this exterior

derivative past the dt’s we will pick up a ± factor.

d(x)η =

∑
l

(−1)l

l!
dt i1 ∧ · · · ∧ dt il ∧ d(x)ηi1...il . (22)

Using this information we may integrate over the p-face s∫
s

d(x)η = (−1)pd
∫

s
η. (23)

Combining Eqs. (20) and (23)∫
s0...p

dFη = (−1)pd
∫

s0...p

η +

p∑
i=0

(−1)i
∫

s0...̂i ...p

η. (24)

If our form η is closed in F , dFη must necessarily vanish term by term in the dt’s and dx’s. The integral on the right
hand side of (24) must therefore vanish. Recalling the definition (16) we have proved Proposition 1:

dFη = 0 ⇒ dL0...p =

p∑
i=0

(−1)p−i−1L0...̂i ...p. (25)

The condition that η be closed indeed implies our composition formula.
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The proof of Propositions 2 and 3 is in the appendix. We now turn to discuss the space where the form η lives and
write down the topological invariant in the presence of connection discontinuities.

4. W space and the action of the system

We have seen that the simplicial intersection is related to a simplex in the parameter space. The simplex with p + 1
vertices corresponds to a codimension p intersection with p + 1 bulk regions meeting. The example p = 2 is shown
in Fig. 1(a) — the intersection looks like the simplex turned inside out. As pointed out already, the connection ω(t) is
smooth on F where the d-dimensional Lagrangian density η is defined.

Now define a d-dimensional space W ⊂ F as follows. Consider a simplicial intersection and set

W =

h∑
p=0

∑
i0...i p

1
(p + 1)!

si0...i p × {i0 . . . i p} ⊂ F (26)

where h is the highest codimension of the intersections present. Let’s write the first few terms explicitly

W =

∑
i

si × {i} +

∑
i< j

si j × {i j} +

∑
i< j<k

si jk × {i jk} + · · · . (27)

The first term contains the bulk regions multiplied with 0-simplices, the second contains the hypersurfaces multiplied
with 1-simplices, the third contains the codimension 2 intersections multiplied with the associated 2-simplex, and so
on. All the intersection submanifolds of M have been put in a single d-dimensional space, where again d = dim M .
Moreover this is a d-dimensional space where the connection ω(t) =

∑
i t iωi is continuous.

Define the curvature associated with the connection ω(t) over W ⊂ F , that is, the derivative operator is dF :

ΩF := dFω(t)+
1
2
[ω(t), ω(t)]. (28)

From that we have

ΩF = d(t)ω(t)+ Ω(t). (29)

Being a curvature form it satisfies the Bianchi identity. To see this explicitly let DF be the covariant derivative
associated with the derivative operator dF and connection ω(t). We have

DFΩF = (d(t) + D(t))(d(t)ω(t)+ Ω(t)) = d(t)Ω(t)+ D(t)d(t)ω(t)+ D(t)Ω(t) = 0 (30)

as the first two terms cancel each other by d(t)d(x) = −d(x)d(t) and the last by the Bianchi identity of Ω(t). This is
discussed in more detail in Appendix A.

The action takes the simple form on W :

Proposition 4. The action of the whole system takes the form

S =

∫
W
η, η = P(ΩF ). (31)

Proof. It is an immediate consequence the form of action (9) derived in [26] and of the definition of W above under
the consistent identification (16) according to Propositions 2 and 3.2 We return to prove this explicitly in the next
section, for the more general case of the dimensionally continued density by the methods introduced in this paper.

The manifold W is further discussed in Appendix B where some discussion of topology is also included. There it
is proved the following

2 It is an abuse of terminology to speak about ‘action’ in the purely topological case. In the next section it will become clear why the real
gravitational action is found in almost the same way.
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Proposition 5. If ∂M = 0 then

∂F W = 0. (32)

In fact it is shown as being equivalent to the definition of the simplicial intersection’s boundary rule introduced in [26].
This is a homological version of the statements of the previous section. Also this proposition helps us prove easily
the invariance of the quantity

∫
W P(ΩF ) under continuous variations of the connection: under ω(t) → ω(t)+ δω we

have easily have δΩF = DFδω so

δ

∫
W

P(ΩF ) =

∫
W

n f (DFδω ∧ Ω∧(n−1)
F ) =

∫
W

ndF f (δω ∧ Ω∧(n−1)
F ) = 0 (33)

where in the second equality we used the invariance of f (see Appendix A) and the Bianchi identity (30) and in the
last step the previous proposition. In the next section this will translate to a well defined variational principle of a
gravity action, i.e. a functional providing equations of motion for E and ω.

The proof of Proposition 1 can be thought of in terms of a generalization of Cartan homotopy formula to a higher
number of homotopy parameters. Let the operator Ks be defined by Ksη :=

∫
s η and let K∂s :=

∫
∂s η. The Eq. (24)

can be written as

(Ks · dF − (−1)mdF · Ks)η = K∂sη. (34)

This reduces to the usual Cartan homotopy formula for the 1-simplex m = 1.

(K01dF + dF K01)η = η(1)− η(0). (35)

In fact, the whole of our analysis can be reduced down to the two Eqs. (31) and (34). In words: the whole intersection
Lagrangian is a density in some manifold which is locally a product of spacetime and a simplex. The composition
rules are an expression of this higher dimensional Cartan homotopy operator acting on this density.

Now the non-simplicial intersection in M (that is, when k > p regions meet at a codimension p surface) can be
treated quite easily. Instead of integrating over a simplex one integrates over a simplicial complex in t-space. More
than one face of dimension p in SN are associated with the same (d − p)-surface in M .

Let us consider a simple example. We have four regions, 1, . . . , 4, meeting at a codimension 2 intersection I ⊂ M
which is has no boundary (Fig. 2). There are four hypersurfaces {12}, {23}, {34} and {41} meeting at I . Now look for
a 2-chain c such that

∂c = s12 + s23 + s34 + s41 (36)

as the r.h.s. is a 1-cycle, that is a 1-chain annihilated by the boundary operator ∂ . One solution to this equation is

c = s123 + s341 (37)

which is clearly not unique: (36) tells us that a new chain differing from the old one with a boundary is another
solution. If for example we choose a new 2-chain c′

c′
= c + ∂s1234 = s234 + s124 (38)

still ∂c′
= s12 + s23 + s34 + s41.

Integrating dFη = 0 over the two sides of (36) we have∫
s12+s23+s34+s41

η = d
∫

c
η

⇒ L12 + L23 + L34 + L41 = d (L123 + L341) . (39)

According to what we have seen in [26] building a functional with a well defined variational principle in the presence
of intersections, the last equation tells us that the appropriate term for the non-simplicial intersection I ⊂ M is∫

I

∫
c
η =

∫
I
(L123 + L341) . (40)
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Fig. 2. Non-simplicial Intersection. (a) Spacetime, (b) t-space.

This is a special case of the result obtained in [26] by more conventional means, and can of course be easily checked
in our new language: the W space reads

W =

4∑
i=1

si × {i} + s12 × {12} + s23 × {23} + s34 × {34} + s41 × {41} + c × I (41)

with ∂{21} = ∂{32} = ∂{43} = ∂{14} = −I and ∂ I = 0. Then

∂F W = (−(s12 + s23 + s34 + s41)+ ∂c)× I (42)

which vanishes for any chain c satisfying (36). So, recalling (33),
∫

W η has a well defined variational principle. The
action term at I should be given by

∫
I

∫
c η.

This action term is unique: the arbitrariness c → c + ∂c′, for any 3-chain c′, does not affect the action as the term
above changes by∫

I

∫
∂c′

η =

∫
I

∫
c′

d(t)η = −

∫
I

∫
c′

d(x)η =

∫
∂ I

∫
c′

η = 0 (43)

where we used 0 = dFη = d(t)η + d(x)η in the second equality and ∂ I = 0 in the last equality and the usual rule of
commutation of a t-space integral with d(x) operator.

5. Dimensionally continued Euler density

So far we have been considering the topological density. This is not much good as a Lagrangian. We know that the
action yields no equations of motion. The point is that we can apply what we have learned to the dimensionally
continued densities. The Lovelock Lagrangian (1) is a combination of such densities. Now we assume that the
connection is a metric compatible (Lorentz) connection. There are now explicit factors of the vielbein frame Ea

appearing in the action.
We have a manifold M , of dimension d , with regions labelled by i , separated by surfaces of matter. The vielbein

E is continuous but the connection 1-form ω is discontinuous at the surfaces. Once again we rewrite the Lagrangian
in terms of the continuous connections ωi and boundary terms. We interpolate as before:

E(t) :=

N−1∑
i=0

t i Ei + t N E, ω(t) :=

N−1∑
i=0

t i ωi + t Nω (44)

and again we define the space F = SN × M . As well as the d-dimensional manifold W , defined in (26), we also
introduce the (d + 1)-dimensional manifold:

W +
=

h∑
p=0

∑
i0...i p

1
(p + 1)!

s+

i0...i p
× {i0 . . . i p} ⊂ F, (45)
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s+

i0...i p
=

{
(t0, . . . , t p, 0, . . . , 0, t N )

∣∣∣∣∣t i
≥ 0,

p∑
i=0

t i
+ t N

= 1

}
. (46)

The difference from the previous section is that we include the physical vielbein and connection, E , ω, as well as the
Ei , ωi .

We impose the two constraints:
(i) The vielbein frame is continuous across M . At an intersection {i0 . . . i p}:

Ei0 |{i0...i p} = · · · = Ei p |{i0...i p} = E |{i0...i p}

(ii) Each connection is torsion free:

d(x)Ea
i + ωi

a
b ∧ Eb

i = 0.

In fact, a good alternative way to define W is: W is the region in F where E(t, x) = E(x) (of course d(x)E(t, x) is
a function of t because the derivative of the metric is discontinuous on M). Let φ+ be the embedding φ+ : W +

→ F .
Let D(t) be the covariant derivative associated with ω(t) and d(x). From the two constraints we derive:

φ∗
+(d(t)E(t)) = 0, (47)

φ∗
+ D(t)E(t)a = 0. (48)

To prove the second equation we have used constraints (i) and (ii) as well as
p∑

i=0

t i d(x)Ea
i +

∑
i

t iωi
a

b ∧ E(t)b =

∑
i

t iωi
a

b ∧ (E(t)− Ei )
b.

By the definition of the covariant derivative DF = d(t) + D(t), (47) and (48) give

φ∗
+(DF E(t)) = 0. (49)

By these the composition formula is unchanged. To see that this is the case we make use of the invariance property
of the polynomial contracted with the epsilon tensor:

φ∗
+dF f

(
(d(t)ω(t)+ Ω(t))∧(n) ∧ E(t)∧(d−2n)

)
= φ∗

+ DF f
(
(d(t)ω(t)+ Ω(t))∧(n) ∧ E(t)(d−2n)

)
= 0. (50)

This vanishes by (28), (30) and (49).
So we can define the form, closed in W +:

ηDC = f ((d(t)ω(t)+ Ω(t))∧(n) ∧ E(t)∧(d−2n)). (51)

An alternative notation will be

η(ω(t), E(t)) ≡ ηDC . (52)

The intersection terms will be terms in the expansion of ηDC integrated over the appropriate simplex in F . We
define:

L(ω0, . . . , ωp, E0, . . . , E p) :=

∫
s0...p

ηDC .

We can now state:

Proposition 6. φ∗
+dFηDC = 0.

Further, by (24) the composition rule for L(ω0, . . . , ωp, E0, . . . , E p) applies, when restricted a codimension
(p − 1) intersection {1 . . . p}, where E0 = · · · = E p = E .

dL(ω, ω1, . . . , ωp, E)|{1...p} −

p∑
i=1

(−1)p−i−1L(ω, ω1, . . . ω̂i . . . ωp, E)|{1...p}

= (−1)p−1L(ω1, . . . , ωp, E)|{1...p}. (53)
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The connection ω is the physical (discontinuous) connection. Each term on the left hand side is ill defined, but the
sum of them is formally equal to the right hand side.

For the dimensionally continued case, ηDC and L are no longer Euler densities. It was therefore not obvious that
our composition formula should survive. It does survive though because ηDC is still a closed form when restricted to
W +

⊂ F .
As a consequence of the composition rule the infinitesimal variation of the action

S =

∫
W
ηDC (54)

with respect to the connection vanishes [26] (provided we impose the torsion free condition on the connection and
continuity of the metric) and the equations of motion just come from the explicit variation with respect to the vielbein.

We can prove this fact now in a neat way using the W space. We assume M has no boundary. Then, according to
Appendix B, ∂F W = 0. Under variation ω(t) → ω(t)+ δω,

δω

∫
W

f (Ω∧n
F ∧ E(t)∧(d−2n)) = n

∫
W

dF f (δω ∧ Ω∧(n−1)
F ∧ E(t)∧(d−2n)) = 0 (55)

where we have used the invariance of f , the variation of ΩF : δΩF = DFδω, the identity (30) and the constraint (49)
restricted on W . So we have:

Proposition 7. Under continuity of the vielbein and the torsion free condition on each bulk connection
(conditions (i) and (ii) restricted on W ) the field equations for the connection are trivial: δω

∫
W ηDC = 0.

We can also show that the various intersection terms in the action do produce a diffeomorphism invariant action
functional in the presence of discontinuities. Let ξ be a vector field. Then diffeomorphism invariance of the action∫

W ηDC can be expressed as

0 = δξ

∫
W
ηDC =

∫
W

£ξ ηDC (56)

where £ is the Lie derivative. But∫
W

£ξ ηDC =

∫
W

i(ξ)dFη + dF i(ξ)ηDC (57)

where we express the Lie derivative via a well known identity involving the inner product operator i(ξ) and used also
i(ξ)d(t) + d(t)i(ξ) = 0 as d(t)ξ = 0. From ∂F W = 0 the second term in the above equation vanishes and we have the
condition∫

W
i(ξ)dFηDC = 0 (58)

for all vector fields ξ . This implies that(
p∑

i=0

(−1)i−pL(ω0, . . . , ω̂i , . . . , ωp, E)+ dL(ω0, . . . , ωp, E)

)∣∣∣∣∣
{01...p}

= 0 (59)

at an arbitrary intersection chosen here to be {01 . . . p}. This is a quite different composition rule than (53).
Nevertheless it is true, as the quantity on the l.h.s. of (58) does vanish by the conditions (i) and (ii) (and the Bianchi
identity (30)).

Let us look again at the non-simplicial intersection. We have seen that the arbitrariness in the choice of the chain
c in

∫
I

∫
c η does not affect the action in the purely topological case because dFη = 0. The dimensionally continued

density is closed only when restricted to a subspace of F . In the specific example we treated in the previous section,
the arbitrariness c → c + ∂c′ corresponds to a change in W space as W → W + ∂F Y where Y = c′

× I . That is, the
action

∫
W ηDC is unaffected if and only if∫
∂F Y

ηDC =

∫
Y

dFηDC = 0 (60)
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where Y is a (d + 1)-dimensional space. Let for example c′
= s1234. The above equation is guaranteed by the fact

that continuity of the vielbein ensures that the pullbacks of d(t)E(t) and D(t)E(t) onto Y , with E(t) =
∑4

i=1 t i Ei ,
vanish.

The composition rule (53) can be used to derive that the action
∫

W η(ω(t), E(t)) is formally equivalent to the action∫
M L(ω, E) (Lemma 3 of Ref. [26]), provided there exists an everywhere continuous vielbein frame E and DE = 0.

We prove that now in a more elegant and general way as follows.

Proposition 8. The relation

φ∗η(ω, E) = φ∗η(ω(t), E(t))+ φ∗dFB (61)

holds, for some differential form B, provided that conditions (i) and (ii) are satisfied.

Proof. We interpolate by ω(t, s) = (1 − s)ω(t)+ sω and E(t, s) = (1 − s)E(t)+ s E , with 0 ≤ s ≤ 1. We can easily
show that φ∗(dF E(t, s)a + ω(t, s)ab E(t, s)b) = 0. By the Chern–Weil procedure one finds that (61) holds and

B = n
∫ 1

0
ds f ((ω − ω(t)) ∧ ΩF (s)∧(n−1)

∧ E(t, s)∧(d−2n)) (62)

where ΩF (s) := dFω(t, s) +
1
2 [ω(t, s), ω(t, s)]. We have then proved a gravitational version of the transgression

formula (7). As ω is not well defined at the hypersurfaces, formula (61) holds in the weak sense.

We prove now the equivalence. We start by noting that:∫
M
L(ω, E) =

∫
W
η(ω, E). (63)

We integrate over W the identity of Proposition 8. From the Proposition B.1 we have that for ∂M = 0 the space W
has no boundary so∫

W
η(ω, E) =

∫
W
η(ω(t), E(t)). (64)

Therefore we have proved:

Proposition 9. The action

S =

∫
W
η(ω(t), E(t)) =

∑
i

∫
i
L(ωi , E)+

∑
k≥2

1
k!

∑
i1...ik

∫
{i1...ik }

L(ωi1 , . . . , ωik , E), (65)

L(ω0, . . . , ωp, E) =

[d/2]∑
n=p

αn Ap

∫
s0...p

dpt f ((ω1 − ω0) ∧ · · · ∧ (ωp − ω0) ∧ Ω(t)∧(n−p)
∧ E∧(d−2n)),

is formally equivalent to
∫

M L(ω, E).

By Proposition 7 the equations of motion (junction conditions) come only from variation with respect to the
vielbein. Since the action is algebraic in the vielbein they are now easily obtained.

It is worth noting the following. The action S and the implied equations of motion involve explicitly only bulk
data. One can easily prove the formula

Ω(t) =

∑
i

t iΩi −
1
4

∑
i j

t i t j
[ωi − ω j , ωi − ω j ]. (66)

One only needs to calculate the bulk connection jumps and bulk curvature forms. The intrinsic connection on each
hypersurface is virtually absent from the formulas. It is only implicitly there by continuity of the vielbein and the
vanishing of torsion everywhere. If there is a discontinuity at the codimension one submanifold Σ , then the purely
tangential part of the derived connections is continuous and defines an intrinsic connection of Σ . Consider a non-null
Σ . Let an adapted frame (E N , Eµ) at Σ where E N is normal and Eµ are tangential to it. Then the pullback of the
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tangential torsion reads i∗dEµ + i∗ωµν ∧ Eν = 0. If Eµ is continuous across Σ then i∗ωµν is a natural intrinsic
connection on it. The continuous components do not actively participate in the interpolations ω(t) =

∑n
i=0 t iωi i.e.

it is absent in d(t)ω(t) and it cancels out in the differences ωi − ω j . Then, as we also discuss in more detail below,
these bulk connection differences are simply the jump of the second fundamental form across the hypersurfaces i j . In
general one need not explicitly introduce the Cauchy data of the hypersurface for the junction condition calculation.
The results are equivalent and the actual calculations are often greatly facilitated.

Lack of need for intrinsic data in the junction conditions formulas means that they are applicable to the null
hypersurface as well. This is also suggested by the fact that the inverse of the spacetime metric g appears nowhere. So
if in particular the induced metric becomes degenerate somewhere, as in the case of null hypersurfaces, the formulas
still hold.

Finally note that the vielbein may be more naturally given in a different frame on each side of the hypersurface.
In this case, there is a set of vielbeins Eµ on one side and a different set of vielbeins E µ̂ on the other. If the induced
metric is the same then Eµ and E µ̂ must be related by a local Lorentz transformation across a hypersurface. Then
the connection also differs by a gauge transformation across the hypersurface. In order to get the correct junction
conditions, this Lorentz transformation must be taken into account. In practice, it may be more convenient to do
calculations on each side of the hypersurface with the respective natural intrinsic connection and put together the
results. The justification of the calculation is based on the composition rule (8) with intrinsic as well as bulk
connections involved, and it is an interesting problem on its own to be discussed elsewhere. In any case the result
can be obtained from (65) by replacing E and the respective ω with the transformed ones.

6. Explicit junction conditions for intersections

Let us make contact with more standard formulations of junction conditions. We take the chance to comment on
some quite remarkable qualitative differences compared to the Einstein gravity. We will consider non-null intersecting
hypersurfaces.

The bulk field equation in terms of tensors takes the form:∑
n
βn Hµ

ν = Tµν , (67)

Hµ
ν := −2−n−1δµµ1···µ2n

νν1···ν2n
Rν1ν2

µ1µ2 · · · R
ν2p−1ν2n
µ2n−1µ2n (68)

where Hµ
ν is the standard Lovelock tensor one obtains by varying (2) with respect to the metric.

First note that the variation of the bulk action with respect to the vielbein gives∑
n
βnΩb1b2 ∧ · · · ∧ Ωb2n−1b2n eab1...b2n = −2T b

aeb. (69)

Above, it is convenient to define the rescaled constants βn = (d −2n)!αn . The right hand side is defined so as to agree
with (67) with Tµν = eµb ea

νT b
a . We also introduced the following

ea1...ak =
1

(d − k)!
εa1...akak+1...ad Eak+1 ∧ · · · ∧ Ead .

Note that e =
√

−g is the volume element in d dimensions. The variation of this volume element with respect to
the vielbein gives δEaea . The intrinsic volume element on an intersection of codimension p is defined as follows:
Let N j , j = 1, . . . , p be orthonormal vectors, i.e. Ni · N j = ηi j or Ni · N j = δi j , on the normal space of the
intersection {01 · · · p}. Let Ea

= (E N1 , . . . , E Np , Eµ) be the adapted vielbein where Eµ spans the cotangent space
of the intersection. We introduce the following differential forms:

ẽµ...ν :=

p∏
i=1

(Ni · Ni ) ea1...apµ...ν(N1)
a1 · · · (Np)

ap . (70)

In particular, ẽ is the induced volume element on the intersection and its variation with respect to the vielbein gives
δEµẽµ.
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On the simplicial intersection of bulk regions {0}, {1}, . . . , {p} the junction conditions read

(E01...p)a = −2(T01...p)
b
a ẽb (71)

where (T01...p)
b
a is the stress–energy tensor living on the intersection and (E01...p)a is simply the variation with respect

to the vielbein of the surface term L(ω0, . . . , ωp, E). It is given by:

λa
∧ (E01...p)a ≡

[d/2]∑
n=p

(d − 2n)αn Ap

×

∫
s0...p

dpti∗ f ((ω1 − ω0) ∧ · · · ∧ (ωp − ω0) ∧ Ω(t)∧(n−p)
∧ λ ∧ E∧(d−2n−1))

where λ is an arbitrary vector-valued 1-form. i∗ is the pullback into the given intersection.
The second fundamental form of the hypersurface {i j} embedded in the bulk region {i} is [2]

θab
i j = i∗(ωi − ω‖)

ab
= (Ni j · Ni j )(N a

i j K b
i j − N b

i j K a
i j ) (72)

whereω‖ is the intrinsic connection in {i j} and i∗ pulls the form back into this hypersurface. N j i = −Ni j by definition.
Ni j · Ni j = ±1. The 1-form K a introduced is related to the extrinsic curvature tensor by K a

:= K a
b Eb. We will use

the following convention: K a
i j is the extrinsic curvature of the hypersurface {i j} embedded in the bulk region {i} (the

first index), and

K ab
i j = −haa′

Da′ N b
i j , i > j; K ab

i j = +haa′

Da′ N b
i j , i < j. (73)

Under this convention let us define

K a
[i j] := K a

i j − K a
ji . (74)

This is the jump of the extrinsic curvature across this hypersurface. Now consider a product of connection jumps ωi −

ω j as in (71) pulled back into an intersection. {i j} is one of the hypersurfaces involved. As mentioned above the purely
tangential components of the connection are continuous across hypersurfaces. Only the components i∗(ωi − ω j )

aNi j

are non-zero, where i∗ is the pullback into {i j}. By (72) we have that i∗(ωi −ω j )
ab

= (Ni j · Ni j )(N a
i j K b

[i j]− N b
i j K a

[i j]).
After some calculation, using the identity

i∗Eν1...νn ∧ ẽµ1...µm =
m!

(m − n)!
δ
ν1
[µm−n+1

· · · δνn
µm

ẽµ1...µm−n ],

we find that the junction condition is:

(T01...p)
τ
σ = −

[d/2]∑
n=p

ς0...pβn 2p−1 n!

(n − p)!
(2n + 1 − p)!

× det(M j
i )

∫
s01...p

dpt (K[10])
ν1
[ν1

· · · (K[p0])
νp
νp Ω(t)

νp+1...ν2n−p
νp+1...ν2n−pδ

τ
σ ]

(75)

where

ς0...p :=

p∏
i=1

Ni0 · Ni0

p∏
j=1

N j · N j

is +1 for a spacetimelike intersection and ±1 for a spacelike intersection depending on the arrangement of the
hypersurfaces which meet there. Also we have defined the matrix M j

i by

(Ni0)
a

=

p∑
i=1

M j
i N a

j .

Compact notation of the form Ων1...ν2k
ν1...ν2k standing for Ων1ν2

[ν1ν2
. . .Ων2k−1ν2k

ν2k−1ν2k ]
will be used for convenience.
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The curvature Ω(t) can be expressed in terms of the curvatures and the connections of the individual regions by
the symmetrical formula (66). One may write the purely tangential components of this curvature in terms of curvature
of the bulk regions and quadratic terms in the extrinsic curvatures.

Ω(t)µνκσ =
1
2

(∑
i

t i (Ri )
µν
κσ +

∑
i> j

t i t j (Ni j · Ni j )(K
µ

[i j] κK ν
[i j] σ − K µ

[i j] σ K ν
[i j] κ)

)
(76)

where (Ri )
µν
κσ are the tangential components of the Riemann tensor in the bulk region {i}, pulled back onto the

intersection.
Eqs. (75) and (76) give the building blocks for writing the junction conditions for any non-null intersection. The

most explicit formula for the junction conditions involves integrating over the simplex. This can always be done using
the integrals∫

s01...p

dpt tn0
0 . . . t

n p
p =

n0! . . . n p!(
p +

p∑
i=0

ni

)
!

but the final expression can be rather involved.
Let us now look at some of the important differences between Einstein gravity and higher order Lovelock gravity.

Consider a single hypersurface separating bulk regions labelled by 0 and 1. Unlike Einstein gravity (Israel junction
condition) a vanishing (non-null) hypersurface’s energy tensor

T01 = 0 (77)

does not imply continuity of the connection (that is, zero jump of the extrinsic curvature) in Lovelock gravity:
the relevant Lagrangian involves polynomial terms of the extrinsic curvatures and of the intrinsic curvature of the
hypersurface and the various terms may well cancel each other. In general, one cannot deduce an explicit expression
for the jump of the extrinsic curvature from Ti j as one can do in Einstein case.

Let us see this difference explicitly. First, consider Einstein gravity with cosmological constant, that is, only β1 and
β0 are non-zero. For the bulk we have

Gb
a =

1
β1

T b
a +

β0

2β1
δb

a (78)

where Gb
a is the Einstein’s tensor. The junction conditions for the hypersurface read

(K[10])
τ
σ − K[10] δ

τ
σ =

1
β1
(T01)

τ
σ . (79)

As is well known, T01 = 0 if and only if (K[10])
τ
σ = 0.

In the general case, the junction conditions for the hypersurface are

[d/2]∑
n=1

βn (2n)! n
∫ 1

0
dt (K[10])

ν2
[ν2

Ω(t)ν3...ν2n
ν3...ν2n

δτσ ]
= −(T01)

τ
σ . (80)

Vanishing of the energy tensor T01 does not imply that the extrinsic curvature is continuous across the hypersurface
in Lovelock gravity.

Let the discontinuity K[10] be infinitesimal. Then the junction condition reads

[d/2]∑
n=1

βn 2−n+1(2n)! n (K[10])
ν2
[ν2

Rν3...ν2n
ν3...ν2n

δτσ ]
= −(T01)

τ
σ (81)

to first order in K[10]. Then T01 = 0 for an arbitrary infinitesimal K[10] if and only if the quantity

[d/2]∑
n=1

βn 2−n+1 (2n)! n δν
[µδ

τ
σ Rν3...ν2n

ν3...ν2n ]
(82)
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vanishes. Inversely, we may think of it as a matrix MI J ≡ M(µν)(στ). If the Cauchy data evolve under the condition
that det MI J 6= 0, then (infinitesimal) K[10] = 0 if and only if T01 = 0, that is, K[10] 6= 0 if and only if T01 6= 0 so
that the extrinsic curvature cannot get a discontinuity across a hypersurface without a T01. This is Choquet-Bruhat’s
condition for a well posed initial value problem in Lovelock gravity [33]. When this determinant becomes zero, there
is a breakdown of predictability in the theory [20,18], which is a key problem to be addressed if Lovelock gravity is
to be regarded as a physical theory of gravity.

The next more complicated thing than the hypersurface is the codimension 2 intersection. The simplest case comes
from the Gauss–Bonnet term and reads

2X τσ − δτσ Xρρ = (T012)
τ
σ (83)

X τσ ≡ 4β2 det(M j
i )((K[10])

ρ
ρ(K[20])

τ
σ + (K[20])

ρ
ρ(K[10])

τ
σ − 2(K[10])

ρ
σ (K[20])

τ
ρ).

Note first that the energy tensor T012 on the intersection vanishes if and only if the matrix X τσ vanishes. This does
not imply that the jumps K[10] and K[20] vanish too. On the other hand, intersecting or colliding shells of matter
will in general produce a non-zero energy tensor on the hypersurface where their spacetime trajectories meet. This is
unavoidable however small β2 might be.

The most obvious physical implication coming out of this work and the previous one [26], is that intersections in
Lovelock gravity involves hypersurfaces of various codimensionalities carrying non-zero energy tensors. In particular
one can consider a collision of shells, that is, a spacelike intersection C of timelike hypersurfaces, with a total of m
ingoing and outgoing shells. There could exist a non-zero stress tensor on C , TC . (The appearance of a stress tensor
on the spacelike surface would have to be due to some exotic kind of matter, in conflict with the dominant energy
condition [34] as mentioned already in [26].) An implication is that we may have m outgoing or m ingoing shells
i.e. the shells of matter may all originate from or disappear into C . This also is forbidden in Einstein gravity by the
conservation of energy for positive energy densities, but perfectly possible here because of TC (see Section 3.2 of [26]
for the energy exchange relations). The reason is that the energy exchange relations involve also extrinsic curvatures
and C acts as source which can emit or absorb all m timelike trajectories. The dominant energy condition is respected
in Lovelock gravity collisions if the bulk geometries are constraints by the condition TC = 0.

We have mentioned that hypersurfaces with no energy tensor are possible in Lovelock gravity. That is a
discontinuity of the connection can be self-supported. We showed in Ref. [35] that one may have a bulk AdS spacetime
vacuum with such discontinuities. More complicated cases do not seem impossible. If perfect homogeneity is given
up, we have an interesting kind of vacuum in this gravity.

Continuing with matters of vacuum, thin shells and their gravitational effects appear when separating the phases
of false and true vacuum in false vacuum decay in the presence of gravity [36]. This happens when there are more
one (local) minima of the energy of a system and not all of them have the same value. A (only) local minimum
state, false vacuum, decays by formation of bubbles of true vacuum which grow very fast and eventually collide. The
bubble effects play an important role in the inflationary evolution model of the early universe [37], the implications
of collisions have been studied in [38]. In a ‘universe’ with more than four dimensions at those times or in general,
the collisions of the bubbles have additional effects as we have learned here: at the spacelike hypersurface of collision
there will in general live a non-zero stress tensor. That is, an instanton-like configuration of non-topological nature.
These may have interesting implications, they are though beyond the scope of this paper.

7. Conclusion

The theory of General Relativity (GR) admits singular sources whose stress–energy tensor has support on a
hypersurface. In general, an arbitrary collection of such objects should intersect. We have shown that in gravities
including dimensionally continued Euler densities with up to n factors of the Riemann tensor, not only are such
hypersurface sources well defined but that there is a possibility of sources of codimension up to n at the intersections.
This becomes possible because the equations of motion are not linear in curvature and of the fully antisymmetric way
the Riemann tensors are contracted. To give an example, imagine we have two hypersurfaces crossing each other, one
at x = 0 and the other where y = 0. Then some components of the curvature will have a δ(x) singularity and some
other will have a δ(y) one. If the theory of gravity includes a Gauss–Bonnet term, the energy tensor will have a term
of the form δ(x)δ(y) i.e. a codimension two matter distribution localized at x = y = 0. In Einstein theory if the
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curvature is of that form one could not have a codimension two matter. Schematically,

f (Ω ∧ E∧(d−2)) ≈ Aδ(x)+ Bδ(y),

f (Ω∧2
∧ E∧(d−4)) ≈ Cδ(x, y).

A δ(x, y) could be produced in Einstein gravity only if the curvature itself had such a singularity, which implies a
conical singularity.

The n = 1 (GR) junction conditions give a 1-1 correspondence between the discontinuity of the connection
and the energy–momentum tensor on a hypersurface. For the Lovelock theory with higher n terms, things are more
complicated: the energy–momentum tensor is a polynomial in the curvature and discontinuity of the connection. For
a singular energy–momentum tensor to be supported, there must be a discontinuity, but the converse does not apply.
It is possible for the energy–momentum tensor to vanish even if there is a discontinuity.

The metric describing an intersection of hypersurfaces which in GR has no localized matter at the intersection,
will generally produce localized matter due to the non-trivial junction conditions for the higher order Lovelock terms.
‘Intersection’ is a general term and includes the case where the intersection hypersurface is space-like where we have a
collision. Then, if we demand no localized space-like matter there will be a constraint on the geometry. The constraint
will be of order α2, the coefficient of the quadratic Lovelock term. Thus, the higher order Lovelock terms place
additional constraints on the way that singular matter sources can interact with each other. This qualitative difference
is well illustrated by a planar intersection in AdS space [35].

Expressions like P
(
[d(t)A(t)+ F(t)]∧n), descended from a Characteristic Class P

(
F∧n), are already known

in the mathematics literature [32] and in the context of anomalies in gauge theory or gravity [39]. The homotopy
operator (34) has appeared in Ref. [40]. We have shown that these geometrical methods are very useful when studying
intersections of hypersurfaces in gravity theories.
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Appendix A. Proof of dFη = 0

Recall the definition of Ω(t) and also the Jacobi identity [41]:

Ω(t) = d(x)ω(t)+
1
2
[ω(t), ω(t)] (A.1)

[[ω,ω], ω] = 0. (A.2)

From these one can easily find the following identities.

d(x)[ω(t), ω(t)] = 2[Ω , ω(t)] (A.3)
d(t)[ω(t), ω(t)] = 2[d(t)ω(t), ω(t)] (A.4)

d(t)ω(t)+ Ω(t) = dFω(t)+
1
2
[ω(t), ω(t)]. (A.5)

Also, from (A.3), we get the Bianchi identity for ω(t):

D(t)Ω(t) = 0. (A.6)

Like ω0, ω(t) is a connection and so the invariance property of f implies, for 2-forms ψ :∑
i

f (ψ1 ∧ · · · [ω(t), ψi ] · · · ∧ ψn) = 0. (A.7)

Combining (A.4)–(A.6):

dF (d(t)ω(t)+ Ω(t)) = [d(t)ω(t)+ Ω(t), ω(t)] (A.8)
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which is equivalent to (30) and so our Proposition 2 follows by the invariance property of the Polynomial (A.7).

dF f
(
[d(t)ω(t)+ Ω(t)]∧n)

= 0. (A.9)

Let us expand the polynomial:

[d(t)ω(t)+ Ω(t)]∧n
=

n∑
l=0

nC l

(
p∑

α=1

d(t)ω(t)

)∧l

∧ Ω(t)∧(n−l)

=

n∑
l=0

(−1)l(l−1)/2 nC l dt i1 ∧ · · · ∧ dt il

∧ d(t)ω(t)i1 ∧ · · · ∧ d(t)ω(t)il ∧ Ω(t)∧(n−l). (A.10)

The first term in the expansion evaluated at the 0-simplex si is just the Euler density (6) in the interior of the region i .
Thus (A.9), combined with (25) completes the proof by induction of the second proposition. As a consistency check,
we can see that the terms in this expansion reproduce the form of (19).

Appendix B. W -space and topology

The closure of η in F but also means that it obeys the same transgression formula as the invariant polynomial we
started with, only now on F . Under continuous variation ω(t) → ω′(t),

P(ΩF )− P(Ω ′

F ) = dF T P(ω(t), ω′(t)). (B.1)

Let us for now assume that M is compact. We define a covering of open sets on W by the open sets on M . Choose
a covering of M . For every open Oi ⊂ M define the set Oi ⊂ W as the set {(t, x) ∈ W |x ∈ Oi }. Clearly Oi ’s cover
W and are open sets,3 endowing W with a manifold structure. This gives W the topology of M . For a partition of
unity fi of M we define the partition of unity of W simply by fi (t, x) = fi (x). Then, by the invariance (C.1), (31) is
meaningful over W associated with a topologically non-trivial M just as

∫
M L(ω) is meaningful over M .

The shape of W is interesting. Every d − 1 dimensional surface is thickened in the t-direction by a 1-dimensional
simplex; These meet at a d − 2 surface in M which looks like a triangular prism in W (Fig. 1(c)), etc. We know that
the equality holds:∫

M
L(ω) =

∫
W
η(ω(t)) (∝ Euler no.). (B.2)

All that we did in Section 3 amounts to expanding both sides via (9) and (A.10), and equating the terms. Given that
M and W have the same topology (and Euler number) we can say that η(ω(t)) is the Euler density of W .

If we calculate
∫

M L(ω) with a different C0 metric4 (with discontinuities of the connection at intersecting
hypersurfaces) described by an ω′(t), we have along with (B.2) the relation∫

M
L(ω) =

∫
W
η(ω′(t)). (B.3)

Then (B.1) tells us that∫
W

dF T P(ω(t), ω′(t)) = 0. (B.4)

3 One may face problems only if an infinite number of intersections is considered, locally. Apart from that, the t-excursions add no accumulation
points, that is boundary points, to the sets Oi .

4 The argument of L, ω, is unrelated to ω(t); they are just both assumed to produce the same Euler number. As we explained in [26], ω is
associated with a smooth metric, say C2. Our formulas give the wanted independence from the connection, of certain topological quantities, when
discontinuities are allowed.
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This is true for quite arbitrary ω(t), ω′(t) so we must have

∂F W = 0. (B.5)

Proposition B.1. Define π : W → M, π(x, t) = x. Then π(∂F W ) ⊂ ∂M if and only if:

∂{i0 . . . i p} =

∑
i p+1

{i0..i pi p+1} + {i0 . . . i p} ∩ ∂M.

In particular ∂F W = 0 if ∂M = 0. These relations can be taken as the definition of the simplicial intersections, which
we used in Ref. [26].

Proof. When each ωi , Ei are chosen to be that of each bulk region i , then:

W =

h∑
p=0

∑
i0...i p

1
(p + 1)!

si0...i p × {i0 . . . i p} ⊂ F (B.6)

where {i0 . . . i p} ⊂ M is a codimension p submanifold and as a point-set corresponds to the codimension p simplicial
intersection. h is the codimension of the highest codimension intersection present. Note that it is sufficient to take
{i0 . . . i p} fully antisymmetric.

Then,

∂F W =

h∑
p=0

∑
i0...i p

1
(p + 1)!

{
∂si0...i p × {i0 . . . i p} + (−1)psi0...i p × ∂{i0 . . . i p}

}
,

where ∂(x)sp = (−1)psp∂(x) was used, and ∂F = ∂(x) + ∂(t). For the first term we have

h∑
p=0

∑
i0...i p

1
(p + 1)!

p∑
r=0

(−1)r si0...îr ...i p
× {i0 . . . i p} =

h∑
p=1

∑
i0...i p

1
(p + 1)!

(p + 1)(−1)psi0...i p−1 × {i0 . . . i p}

=

h−1∑
p=0

∑
i0...i pi p+1

1
(p + 1)!

(−1)p+1si0...i p × {i0 . . . i pi p+1} (B.7)

so combining with the second term we have

∂F W =

h−1∑
p=0

∑
i0...i p

(−1)p 1
(p + 1)!

si0...i p ×

−

∑
i p+1

{i0 . . . i pi p+1} + ∂{i0 . . . i p}


+ (−1)hs01...h × ∂{01 . . . h}. (B.8)

For the highest codimension surface one has

∂{01 . . . h} = {01 . . . h} ∩ ∂M. (B.9)

Thus we get Proposition B.1. If we ignore boundary terms on ∂M , we may justly ignore boundary terms on ∂F W .

Appendix C. Invariance of η

In this appendix it is shown that the η-form is invariant under gauge transformations:

η(ω(t)) = η(ω(t)(g)). (C.1)

Under the change ωi → ωi (g) of the connection of every region {i} with

ωi (g) = g−1ωi g + g−1d(x)g. (C.2)
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The interpolating connection ω(t) =
∑p

i=0 t iωi (with
∑p

i=0 t i
= 1) changes as ω(t) → ω(t)(g) with

ω(t)(g) = g−1ω(t)g + g−1d(x)g. (C.3)

Then both

d(t)ω(t) =

p∑
i=1

dt i (ωi − ω0), Ω(t) = d(x)ω(t)+
1
2
[ω(t), ω(t)] (C.4)

obviously transform as

d(t)ω(t)(g) = g−1d(t)ω(t)g, Ω(t)(g) = g−1Ω(t)g (C.5)

so ΩF itself changes to

(ΩF )(g) = g−1ΩF g (C.6)

and the invariant polynomial P gives us the wanted invariance relation (C.1).
Actually, the abstraction of ΩF as a curvature associated to ω(t) and the derivative operator dF helps us again to

prove things easily. By its very definition (which let us repeat)

ΩF = dFω(t)+
1
2
[ω(t), ω(t)]

we see that under ω(t) → ω(t)(g) with

ω(t)(g) = g−1ω(t)g + g−1dF g (C.7)

we have immediately the covariant transformation (C.6). But dF g = d(x)g so we proved again (C.1).
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