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a b s t r a c t

Analmost Einsteinmanifold satisfies equationswhich are a slightweakening of the Einstein
equations; Einstein metrics, Poincaré–Einstein metrics, and compactifications of certain
Ricci-flat asymptotically locally Euclidean structures are special cases. The governing
equation is a conformally invariant overdetermined PDE on a function. Away from the
zeros of this function the almost Einstein structure is Einstein, while the zero set gives
a scale singularity set which may be viewed as a conformal infinity for the Einstein
metric. In this article there are two main results: we give a simple classification of the
possible scale singularity spaces of almost Einstein manifolds; we derive geometric results
which explicitly relate the intrinsic (conformal) geometry of the conformal infinity to the
conformal structure of the ambient almost Einstein manifold. The latter includes new
results for Poincaré–Einstein manifolds. Classes of examples are constructed. A compatible
generalisation of the constant scalar curvature condition is also developed. This includes
almost Einstein as a special case, and when its curvature is suitably negative, is closely
linked to the notion of an asymptotically hyperbolic structure.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A metric is said to be Einstein if its Ricci curvature is proportional to the metric [1]. Despite a long history of intense
interest in the Einstein equations many mysteries remain. In high dimensions it is not known if there are any obstructions
to the existence of an Einstein metric. There are 3-manifolds and 4-manifolds which do not admit Einstein metrics and
the situation is especially delicate in the latter case; see [2] for an overview of some recent progress. Here we consider a
specific weakening of the Einstein condition. By its nature this provides an alternative route to studying Einstein metrics
but, beyond this, there are several points which indicate that it may be a useful structure in its own right. On the one hand
the weakening is very slight, in a sense that will soon be clear. On the other hand, it allows in some interesting cases: at
least some manifolds satisfying these equations do not admit Einstein metrics, which suggests a role as a uniformisation
type condition; it includes in a natural way Poincaré–Einstein structures and conformally compact Ricci-flat asymptotically
locally Euclidean (ALE) spaces, and so Einstein metrics, Poincaré–Einstein structures and these ALE manifolds are special
cases of a uniform generalising structure.
Throughout the paper, we consider only metrics g of Riemannian signature (meaning that g is positive definite) and the

conformal structures these induce; all manifolds shall be assumed to be of dimension d ≥ 3. On a Riemannian manifold
(Md, g) the Schouten tensor P (or Pg ) is a trace adjustment of the Ricci tensor given by

Ricg = (d− 2)Pg + Jgg
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where Jg is the metric trace of Pg . Thus a metric is Einstein if and only if the trace-free part of Pg is zero. We will say that
(M, g, s) is a directed almost Einstein structure if s ∈ C∞(M) is a non-trivial solution to the equation

A(g, s) = 0 where A(g, s) := trace-free(∇g∇g s+ sPg). (1.1)

Here ∇g is the Levi-Civita connection for g , and the ‘‘trace-free’’ means the trace-free part with respect to taking a metric
trace. This is a generalisation of the Einstein condition; we will see shortly that, on the open set where s is non-vanishing,
go := s−2g is Einstein. On the other hand if g is Einstein then (1.1) holds with s = 1. Any attempt to understand the nature
and extent of this generalisation should include a description of the possible local structures of the scale singularity set,
that is the set Σ where s is zero (and where go = s−2g is undefined). The main results in this article are some answers
to this question and the development of a conformal theory to relate, quite directly, the intrinsic geometric structure of
the singularity space Σ to the ambient structure. The classification results for the scale singularity set are new, although
simple and elementary. On the other hand the approach to relating the (conformal) geometry of the conformal infinity to
the geometry of the ambient structure is more subtle and leads to a number of new results. If s solves (1.1) then so does
−s, and where s is non-vanishing these solutions determine the same Einstein metric. We shall say that a manifold (M, g)
is almost Einstein if it admits a covering such that on each open set U of the cover we have that (U, g, sU) is directed almost
Einstein and on overlaps U ∩ V we have either sU = sV or sU = −sV . Although there exist almost Einstein spaces which are
not directed [3], to simplify the expositionwe shall assume here that almost Einstein (AE)manifolds are directed. (So usually
we omit the term ‘‘directed’’.) In any case the results apply locally on almost Einstein manifolds which are not directed.
On an Einstein manifold (M, g) the Bianchi identity implies that the scalar curvature Scg (i.e. the metric trace of Ric) is

constant. Thus simply requiring a metric to be scalar constant is another weakening of the Einstein condition. On compact,
connected oriented smooth Riemannian manifolds this may be achieved conformally: this is the outcome of the solution to
the ‘‘Yamabe problem’’ due to Yamabe, Trudinger, Aubin and Schoen [4–7]. Just as almost Einstein generalises the Einstein
condition, there is a correspondingweakening of the constant scalar curvature condition as follows.Wewill say that (M, g, s)
is a directed almost scalar constant structure if s ∈ C∞(M) is a non-trivial solution to the equation S(g, s) = constant where

S(g, s) =
2
d
s(Jg −∆g)s− |ds|2g . (1.2)

Away from the zero set (which again we denote byΣ) of swe have S(g, s) = Scg
o
/d(d−1)where go := s−2g . In particular,

off Σ , S(g, s) is constant if and only if Scg
o
is constant. The normalisation is so that if go is the metric of a space form then

S(g, s) is exactly the sectional curvature. We shall say that a manifold (M, g) is almost Scalar constant (ASC) if it is equipped
with a covering such that on each open set U of the cover we have that (U, g, sU) is directed ASC, and on overlaps U ∩ V we
have either sU = sV or sU = −sV . In fact, in line with our assumptions above and unless otherwise mentioned explicitly, we
shall assume below that any ASC structure is directed.
As suggested above, closely related to these notions are certain classes of the so-called conformally compact manifolds

that have recently been of considerable interest. We recall how these manifolds are usually described. Let Md be a com-
pact smooth manifold with boundaryΣ = ∂M . A metric go on the interiorM+ ofM is said to be conformally compact if it
extends (with some specified regularity) to Σ by g = s2go where g is non-degenerate up to the boundary, and s is a non-
negative defining function for the boundary (i.e. Σ is the zero set for s, and ds is non-vanishing along Σ). In this situation
the metric go is complete and the restriction of g to TΣ in TM|Σ determines a conformal structure that is independent of
the choice of defining function s; thenΣ with this conformal structure is termed the conformal infinity ofM+. (This notion
had its origins in the work of Newman and Penrose; see the introduction of [8] for a brief review.) If the defining function
is chosen so that |ds|2g = 1 along M then the sectional curvatures tend to −1 at infinity and the structure is said to be
asymptotically hyperbolic (AH) (see [9] where there is a detailed treatment of the Hodge cohomology of these structures
and related spectral theory). The model is the Poincaré hyperbolic ball and thus the corresponding metrics are sometimes
called Poincaré metrics. Generalising the hyperbolic ball in another way, one may suppose that the interior conformally
compact metric go is Einstein with the normalisation Ric(go) = −ngo, where n = d − 1, and in this case the structure is
said to be Poincaré–Einstein (PE); in fact PE manifolds are necessarily asymptotically hyperbolic. Such structures have been
studied intensively recently in relation to the proposed AdS/CFT correspondence of Maldacena [10,11], related fundamental
geometric questions [12–20], and through connections to the ambient metric of Fefferman–Graham [21,22].
For simplicity of exposition we shall restrict our attention to smooth AE and ASC structures (Md, g, s); that is (M, g) is a

smooth Riemannianmanifold of dimension d ≥ 3 and s ∈ C∞(M) satisfies either (1.1) (the AE case) or (1.2) (for ASC). Let us
writeM± for the open subset ofM on which s is positive or, respectively, negative and, as above,Σ for the scale singularity
set. The first main results (proved in Section 2) are the following classifications for the possible submanifold structures
ofΣ .

Theorem 1.1. Let (Md, g, s) be a directed almost scalar constant structure with M connected. If S(g, s) > 0 then s is nowhere
vanishing and (M, go) has constant scalar curvature d(d − 1)S(g, s). If S(g, s) < 0 then s is non-vanishing on an open dense
set and Σ is either empty or else is a smooth hypersurface; On M \ Σ , Scg

o
is constant and equals d(d − 1)S(g, s). Suppose M

is closed (i.e. compact without boundary) with S(g, s) < 0 and Σ 6= ∅. A constant rescaling of s normalises S(g, s) to −1, and
then (M \M−) is a finite union of connected AH manifolds. Similar for (M \M+).
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By hypersurface we mean a submanifold of codimension 1 which may include boundary components. In the following we
will say that an ASC structure is scalar positive, scalar flat, or scalar negative if, respectively, S(g, s) is positive, zero, or
negative.
It seems that almost Einstein manifolds, in the generality we describe here, were introduced in [23] and it was observed

there that PE manifolds are a special case; this was explained in detail in [24]. Here, among other things, we see that PE
manifolds arise automatically in the scalar negative (i.e. S(g, s) < 0) case.

Theorem 1.2. Let (M, g, s) be a directed almost Einstein structure with M connected. Then s is non-vanishing on an open dense
set and (M, g, s) is almost scalar constant. Writing Σ for the scale singularity set, on M \Σ , go is Einstein with scalar curvature
d(d− 1)S(g, s). There are three cases:

• If S(g, s) > 0 then the scale singularity set Σ is empty.
• If S(g, s) = 0 thenΣ is either empty or otherwise consists of isolated points and these points are critical points of the function
s; in this case for each p ∈ M with s(p) = 0, the metric go is asymptotically locally Euclidean (ALE) near p and the Weyl,
Cotton, and Bach curvatures vanish at p.
• If S(g, s) < 0 thenΣ is either empty or else is a totally umbilic smooth hypersurface. In particular on a closed S(g, s) = −1
almost Einstein manifold (M \M−) is a finite union of connected Poincaré–Einstein manifolds. Similar for (M \M+).

The Cotton and Bach curvatures are defined in, respectively, (4.6) and (4.10) below. Using compactness, the last statement
is an easy consequence of Proposition 3.7. That AE implies ASC is part of Theorem2.3. Given this several parts of the Theorem
are immediate from Theorem 1.1 above. The remaining parts of the Theorem summarise Theorem 3.1, Proposition 3.3,
Proposition 3.6, and parts of Proposition 4.3 and Corollary 4.4. We shall say that the ALE structures arising as here are
conformally conformally compact because of the obvious link the term as used above.
Eq. (1.2) is conformally covariant in the sense that for anyω ∈ C∞(M)we have S(g, s) = S(e2ωg, eωs). Similarly for (1.1)

we have eωA(g, s) = A(e2ωg, eωs) and so if (M, g, s) is almost Einstein then so is (M, e2ωg, ews). Evidently the notions of ASC
and AE structure pass to conformal geometry by descending to the equivalence classes, in the space of all such structures, as
determined by the equivalence relation (M, g, s) ∼ (M, e2ωg, ews). This is the point of view we wish to take, throughout g
is to be viewed as simply a representative of its conformal class. (We should really view the function s as corresponding to a
conformal density σ of weight 1 on the conformalmanifold (M, [g]), and A as a 2-tensor taking values in this density bundle.
We shall postpone this move until Section 2.) The conformal equivalence class [g, s] of (g, s) (under (g, s) ∼ (e2ωg, eωs))
is a structure which generalises the notion of a metric. This suggests a definition which is convenient for our discussions. A
manifoldM equipped with the conformal equivalence class [g, s] (in this sense) of (g, s), and where s is nowhere vanishing
on an open dense set, is a well-defined structure that we shall term an almost Riemannianmanifold. Of course the zero set
of s is conformally invariant and so is a preferred set Σ ⊂ M . An almost Riemannian structure with Σ = ∅ is simply a
Riemannian manifold. Note that, in the casesΣ 6= ∅, S(g, s) smoothly extends, to all ofM , the natural scalar Scg

o
/n(n+ 1)

which is only defined onM \ Σ . Similarly A(g, s) smoothly extends sPg
o

0 , where P
go
0 is the trace-free part of P

go . Thus even
though the metric go = s−2g is not defined along Σ , nevertheless A(g, s) and S(g, s) are defined globally (at least if we
view A(g, s) as representing a density valued tensor) and it is natural to think of these as curvature quantities on almost
Riemannian structures. It turns out that AE manifolds, and also the cases of ASC manifolds covered in Theorem 1.1, are
necessarily almost Riemannian.
The structures we consider here have an elegant and calculationally effective formulation in terms of conformal tractor

calculus. On Riemannian manifolds the metric canonically determines a connection on the tangent bundle, the Levi-Civita
connection. On conformal structures we lose this but there is a canonical conformally invariant connection ∇T on the
(standard conformal) tractor bundleT , as described in the next section. On (Md, [g]) this is a rank (d+2) bundle that contains
a conformal density twisting of the tangent bundle as a subquotient. The bundle T also has a (conformally invariant) tractor
metric h, of signature (d + 1, 1), that is preserved by ∇T . On a given conformal structure we may ask if there is parallel
section of T ; that is a section I of T satisfying ∇T I = 0. In fact, as we see below (following [25]), this equation is simply a
prolongation of (1.1). In particular, on any open set, solving ∇T I = 0 is equivalent to solving (1.1) and there is an explicit
1–1 relationship between solutions. (We shall write sI for the solution of (1.1) given by a parallel tractor I .) Thus an almost
Einstein structure is a triple (M, [g], I)where I is parallel for the standard tractor connection determined by the conformal
structure [g]. Since the tractor connection preserves themetric h, the squared length of I , whichwe denote by the shorthand
|I|2 := h(I, I), is constant on connected AE manifolds (and we henceforth assumeM is connected). In fact S(g, sI) = −|I|2.
There is a generalising result for ASC manifolds; see Proposition 2.2.
The geometric study of PEmanifolds has beendrivenby adesire to relate the conformal geometry of the conformal infinity

to the metric geometry on the interior. We may obviously extend this programme to the scalar negative (i.e. S(g, s) < 0)
almost Einstein structures. As indicated above this is a core aim here, and in our treatment (Sections 4 and 6) the tractor
structures play a key role. The first main result is Theorem 4.5 which shows, for example, that Σ satisfies a conformal
analogue of the Riemannian totally geodesic condition: the intrinsic tractor connection of (Σ, [gΣ ]) exactly agrees with
a restriction of the ambient tractor connection. In fact the results are stronger. Summarising part of Theorem 4.5 with
Corollary 6.4, along the scale singularity set Σ of a scalar negative AE structure we also have results as in the following
theorem. In thisΩ is the curvature of the tractor connection for (M, [g])whileΩΣ is the curvature of the tractor connection
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for the intrinsic conformal structure ofΣ .W is a natural conformally invariant tractor field equivalent (in dimensions d 6= 4)
to the curvature of the Fefferman–Graham (ambient) metric over (M, [g]), whileWΣ is the same for (Σ, [gΣ ]).

Theorem 1.3.

Ω(u, v) = ΩΣ (u, v) along Σ

where u, v ∈ Γ (TΣ). In dimensions d 6= 4 we have the stronger result

Ω(·, ·) = ΩΣ (·, ·) along Σ,

where here, by trivial extension, we viewΩΣ as a section of Λ2T ∗M ⊗ End T . While in dimensions d ≥ 6 we also have

(d− 5)W |Σ = (d− 4)WΣ ,

where W is the prolonged conformal curvature quantity (4.9) and again a trivial extension is involved.

In Section 6, Theorem6.1we also show that the Fefferman–Graham (obstruction) tensormust vanish on the scale singularity
hypersurface of a smooth almost Einstein structure. An alternative direct proof thatΣ is Bach-flat, when n = 4, is given in
Corollary 4.8. A key tool derived in Section 6 is Theorem 6.3which constructs a Fefferman–Graham ambientmetric, formally
to all orders, for the even-dimensional conformal structure of a scale singularity set; this constructionwas heavily influenced
by themodel in Section 5.1. An important and central aspect of theworks [21] and [22] is the direct relationship between the
Fefferman–Graham (ambient)metric for conformalmanifolds (Σ, [gΣ ]) and suitably even smooth formal Poincaré–Einstein
metrics, with (Σ, [gΣ ]) as the conformal infinity (see especially [22, Section 4]); in Section 5.2 there is some discussion
of the meaning of even in this context. Here, in contrast, we work in one higher dimension and exploit the use of the
Fefferman–Graham metric for the Poincaré–Einstein (or AE) space M itself. In this case we may work with not necessarily
even PE (or AE) metrics and exploit the Fefferman–Graham metric globally overM .
In Section 4.4 we describe equations controlling (at least partially) the conformal curvature of almost Einstein structures.

Importantly these are given in a form that is suitable for studying boundary problems alongΣ that are based directly around
the conformal curvature quantities. For example in Proposition 4.6 we observe that in this sense the Yang–Mills equations,
applied to the tractor curvature, give the natural conformal equations for four-dimensional almost Einstein structures. The
analogue for higher even dimensions is given in Proposition 4.10. In all dimensions we have the following result.

Theorem 1.4. Let (Md, [g], I) be an almost Einstein manifold then

IA6DAW = 0.

The operator IA 6DA has the form σ∆+ lower order terms. The statement here is mainly interesting in dimensions d ≥ 5
and is a part of Theorem 4.7. Since for d ≥ 6 we have (d−5)W |Σ = (d−4)WΣ , for Poincaré–Einstein manifolds (andmore
generally scalar negative AE structures) the Theorem suggests a Dirichlet type problem with the conformal curvatureWΣ

of Σ as the boundary (hypersurface) data. The operator IA 6DA is well defined on almost Einstein manifolds and is linked to
the scattering picture of [18] as outlined in Corollary 4.9.
As mentioned, almost Einstein structures provide a generalisation of the notions of Einstein, Poincaré–Einstein and

certain conformally compact ALE metrics. Aside from providing a new and uniform perspective on these specialisations,
the AE structures provide a natural uniformisation type problem. We may ask for example which smooth manifolds admit
an almost Einstein structure. While it is by now a classical result [1] that the sphere products S1 × S2 and S1 × S3 do not
admit Einsteinmetrics it is shown in [3] that these both admit almost Einstein structures; in factwe construct these explicitly
as part of a general construction of closed manifolds with almost Einstein structures. In this article we make just a small
discussion of examples in Section 5. This includes the conformal sphere as the keymodel. It admits all scalar types of almost
Einstein structure and has a central role in the construction of other examples in [3]. (In fact the standard conformal structure
on the sphere admits a continuous curve of AE structures which includes the standard sphere metric, the Euclidean metric
pulled back by stereographic projection as well as negative S(g, s) AE structures with go hyperbolic off the singularity set.
See Corollary 2.4 and the final comments in Section 5.1.) We conclude in Section 5.2 with a discussion of examples found by
a doubling construction. Non-Einstein almost Einsteinmetrics turn up in the constructions and classifications by Derdzinski
and Maschler of Kähler metrics which are ‘‘almost everywhere’’ conformal to Einstein by a non-constant rescaling factor;
see e.g. [26,27] and the references therein. Some of their examples were inspired by constructions known for some time,
such as [28,29]. Examples of non-Einstein S([g], I) = 0 AE structures are discussed in [30].
It should also be pointed out that many of the techniques and results we develop apply in other signatures. However

there are also fundamental differences in the case of non-Riemannian signature and so here we confine the study to the
positive definite setting.
Conversations with Michael Eastwood, Robin Graham, Felipe Leitner, and Paul-Andi Nagy have been much appreciated.

It should pointed out that the existence of AE structures which are not directed was observed in the joint work [3] with
Leitner and this influenced the presentation here.
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2. Almost Einstein structures and conformal tractor calculus

As above letM be a smooth manifold, of dimension d ≥ 3, equipped with a Riemannian metric gab. Here and throughout
we employ Penrose’s abstract index notation. We write Ea to denote the space of smooth sections of the tangent bundle TM
onM , and Ea for the space of smooth sections of the cotangent bundle T ∗M . (In fact we will often use the same symbols for
the bundles themselves. Occasionally, to avoid any confusion, we write Γ (B) to mean the space of sections of a bundleB.)
We write E for the space of smooth functions and all tensors considered will be assumed smooth without further comment.
An index which appears twice, once raised and once lowered, indicates a contraction. The metric gab and its inverse gab
enable the identification of Ea and Ea and we indicate this by raising and lowering indices in the usual way.
With ∇a denoting the Levi-Civita connection for gab, and using that this is torsion-free, the Riemann curvature tensor

Rabcd is given by

(∇a∇b −∇b∇a)V c = RabcdV d where V c ∈ E c .

This can be decomposed into the totally trace-freeWeyl curvature Cabcd and the symmetric Schouten tensor Pab according to

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c, (2.1)

where [· · ·] indicates antisymmetrisation over the enclosed indices. Thus Pab is a trace modification of the Ricci tensor
Ricab = Rcac b:

Ricab = (n− 2)Pab + Jgab, J := Paa.

In denoting such curvature quantities we may write e.g. Ricg or simply Ric depending on whether there is a need to
emphasise the metric involved. Also abstract indices will be displayed or suppressed as required for clarity.
Under a conformal rescaling of the metric

g 7→ go = s−2g,

with s ∈ E non-vanishing, the Weyl tensor Cabcd is unchanged (and so we say the Weyl tensor is conformally invariant)
whereas the Schouten tensor transforms according to

Pg
o

ab = P
g
ab + s

−1
∇a∇bs−

1
2
gcds−2(∇cs)(∇ds)gab. (2.2)

Taking, via go, a trace of this we obtain

Jg
o
= s2Jg − s∆s−

d
2
|ds|2g ,

where the ∆ is the ‘‘positive energy’’ Laplacian. Note that the right-hand side of the last display is d2S(g, s), with S(g, s) as
defined in (1.2). Clearly this is well defined for smooth s even if smay be zero at some points. On the other hand the right-
hand side above (and hence S(g, s)) is clearly invariant under the conformal transformation (g, s) 7→ (e2ωg, eωs): this is true
away from the zeros of s since there Jg

o
depends only on the 2-jet of go = s−2g , but the explicit conformal transformation

of the right-hand side is evidently polynomial in eω and its 2-jet.
Let us digress to prove Theorem 1.1 since it illustrates how an almost Riemannian structure may arise immediately from

a formula polynomial in the jets of s.

Proof of Theorem 1.1. Under a dilation g 7→ µg (µ ∈ R+, and fixing s) we have S(g, s) 7→ µ−1S(g, s), so to prove the
Theorem we may consider just the cases S(g, s) = 1 and S(g, s) = −1. Suppose that S(g, s) = 1 then if p ∈ M were to be a
point where sp = 0 then at pwe would have 1 = −|ds|2g which would be a contradiction. Suppose that S(g, s) = −1. Then
at any point p ∈ M where sp = 0 we have |ds|2g = 1. For the last statements of the Theorem assume thatM is closed and the
scale singularity setΣ is not empty. ThenΣ is a hypersurface (not necessarily connected) which separatesM according to
the sign of s. The restriction of go to the interior ofM \ M− (i.e. toM+) is conformally compact since the restriction of g to
M \M− extends s2go smoothly to the boundary. Finally (M \M−, g, s) is AH since |ds|2g = 1 alongΣ . By compactness this
consists of a finite union of connected AH components. The same analysis applies toM \M+. �

Note that although setting S(g, s) constant is a weakening of the constant scalar curvature condition, Eq. (1.2) is still
quite restrictive. For example, it is evident that on closed manifolds with negative Yamabe constant there are no non-trivial
solutions with S(g, s) a non-negative constant.
The tensor A(g, s) defined in the Introduction should be compared to the trace-free part of the right-hand side of

(2.2) above. Arguing as for S(g, s) above, or by direct calculation, one finds that under (g, s) 7→ (e2ωg, eωs) we have
A(g, s) 7→ eωA(g, s) as mentioned earlier. So both the AE condition and the more general ASC condition are best treated
as structures on a conformal manifold. To obtain a clean treatment it is most efficient to draw in some standard objects
from conformal geometry; the further details and background may be found in [31,32]. Clearly we may view a conformal
structure on M is a smooth ray subbundle Q ⊂ S2T ∗M whose fibre over x consists of conformally related metrics at the
point x. The principal bundle π : Q → M has structure group R+, and so each representation R+ 3 x 7→ x−w/2 ∈ End(R)



A. Rod Gover / Journal of Geometry and Physics 60 (2010) 182–204 187

induces a natural line bundle on (M, [g]) that we term the conformal density bundle E[w]. We shall write E[w] for the
space of sections of this bundle. Note E[w] is trivialised by a choice of metric g from the conformal class, and we write ∇
for the connection corresponding to this trivialisation. It follows immediately that (the coupled)∇a preserves the conformal
metric. (Note on a fixed conformal structure the conformal densities bundle E[−n] may be identified in an obvious way
with appropriate powers of the 1-density bundle associated to the frame bundle through the representation | det( )|−1. See
e.g. [31]. Via this identification, the connection we defined on E[w] agrees with the Levi-Civita connection.)
We write g for the conformal metric, that is the tautological section of S2T ∗M ⊗ E[2] determined by the conformal

structure. This will be henceforth used to identify TM with T ∗M[2] even when we have fixed a metric from the conformal
class. (For example, with these conventions the Laplacian ∆ is given by ∆ = −gab∇a∇b = −∇b∇b .) Although this is
conceptually valuable and significantly simplifies many calculations, it is, however, a point where there is potential for
confusion. For example in the below, when we write J or Jg wemean gabPab where P is the Schouten tensor for somemetric
g . Thus J is a section of E[−2] (which depends on g).
In this picture to study the ASC condition we replace s ∈ E with a section σ ∈ E[1] in (1.2) to obtain

S([g], σ ) =
2
d
σ(Jg −∆g)σ − |∇σ |2g , (2.3)

where we have written |∇σ |2g as a brief notation for g
−1(∇σ ,∇σ). When the conformal structure is fixed we shall often

denote the quantity displayed by simply S(σ ). Similarly the conformally invariant version of A is the 2-tensor of conformal
weight 1 given by

A([g], σ ) := trace-free(∇a∇bσ + Pabσ),

again we may write simply A(σ ).
The A([g], σ ) = 0 equation (i.e. (1.1)) becomes

∇a∇bσ + Pabσ + ρgab = 0 (2.4)

where ρ is a density (in E[−1]) to accommodate the trace part. Here∇ and P are given with respect to somemetric g in the
conformal class, but the equation is invariant under conformal rescaling.
We may replace (2.4) with the equivalent first order system

∇aσ − µa = 0, and ∇aµb + Pab + gabρ = 0,

where µa ∈ Ea[1] := Ea ⊗ E[1]. Differentiating the second of these and considering two possible contractions yields

∇aρ − Pabµb = 0,

whence we see that the system has closed up linearly. Eq. (2.4) is equivalent to a connection and a parallel section for this:
on any open set inM , a solution of (2.4) is equivalent to I := (σ , µa, ρ) ∈ E[1] ⊕ Ea[1] ⊕ E[−1] satisfying ∇T I = 0 where

∇
T
a

(
σ
µb
ρ

)
:=

 ∇aσ − µa
∇aµb + gabρ + Pabσ
∇aρ − Pabµb

 . (2.5)

The connection ∇T constructed here (following [25]) is the normal conformal tractor connection. We will often write
simply ∇ for this when the meaning is clear by context. This is convenient since we will couple the tractor connection to
the Levi-Civita connection.
Let uswrite JkE[1] for the bundle of k-jets of germs of sections of E[1]. Considering, at each point of themanifold, sections

which vanish to first order at the given point reveals a canonical sequence,

0→ S2T ∗M ⊗ E[1] → J2E[1] → J1E[1] → 0.

This is the jet exact sequence at 2-jets. Via the conformal metric g , the bundle of symmetric covariant 2-tensors S2T ∗M
decomposes directly into the trace-free part, which we will denote S20T

∗M , and a pure trace part isomorphic to E[−2],
hence S2T ∗M ⊗ E[1] = (S20T

∗M ⊗ E[1])⊕ E[−1]. The standard tractor bundle T may defined as the quotient of J2E[1] by
the image of S20T

∗M ⊗ E[1] in J2E[1]. By construction this is invariant, it depends only on the conformal structure. Also by
construction, it is an extension of the 1-jet bundle

0→ E[−1]
X
→ T → J1E[1] → 0. (2.6)

The canonical homomorphism X here will be viewed as a section of T [1] = T ⊗ E[1] and, with the jet exact sequence at
1-jets, controls the filtration structure of T .
Next note that there is a tautological operator D : E[1] → T which is simply the composition of the universal 2-jet

differential operator j2 : E[1] → Γ (J2E[1]) followed by the canonical projection J2E[1] → T , from the definition of T .
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On the other hand, via a choice of metric g , and the Levi-Civita connection it determines, we obtain a differential operator
E[1] → E[1] ⊕ E1[1] ⊕ E[−1] by σ 7→ (σ ,∇aσ ,

1
d (∆− J)σ ) and this obviously determines an isomorphism

T
g
∼= E[1] ⊕ T ∗M[1] ⊕ E[−1]. (2.7)

In the following we shall frequently use (2.7). Sometimes this will be without any explicit comment but also we may write
for example t

g
= (σ , µa, ρ), or alternatively [t]g = (σ , µa, ρ), to mean t is an invariant section of T and (σ , µa, ρ) is

its image under the isomorphism (2.7). Changing to a conformally related metric ĝ = e2ωg (ω a smooth function) gives a
different isomorphism, which is related to the previous by the transformation formula

̂(σ , µb, ρ) = (σ , µb + σΥb, ρ − gbcΥbµc −
1
2
σgbcΥbΥc), (2.8)

where Υ := dω. It is straightforward to verify that the right-hand side of (2.5) also transforms in this way and hence ∇T

gives a conformally invariant connection on T which we shall also denote by ∇T . This is the tractor connection. There is
also a conformally invariant tractor metric h on T given (as a quadratic form) by

(σ , µ, ρ) 7→ g−1(µ,µ)+ 2σρ. (2.9)

This is preserved by the connection and clearly has signature (d+ 1, 1).
Let us return to our study of Eqs. (2.4) and (1.2). First observe that, given a metric g , via (2.7) the tautological invariant

operator D from above is given by the explicit formula

D : E[1] → T σ 7→

(
σ ,∇aσ ,

1
d
(∆σ − Jσ)

)
. (2.10)

This is a differential splitting operator, since it is inverted by the canonical tractor X: h(X,Dσ) = σ . (To see this onemay use
that in terms of the splitting (2.7) X = (0, 0, 1).) If a standard tractor I satisfies I = Dσ for some σ ∈ E[1] then σ = h(X, I)
and we shall term I a scale tractor. For the study of scale tractors the following result is useful.

Lemma 2.1. For σ a section of E[1] we have

|Dσ |2 := h(Dσ ,Dσ) =
2
d
σ(∆g − Jg)σ + |∇gσ |2g , (2.11)

where |∇σ |2g means g
ab(∇aσ)∇bσ . In particular, if σ(p) = 0, at p ∈ M, then

|Dσ |2(p) = |∇σ |2g (p).

Proof. This follows easily from formulae (2.9) and (2.10). �

Using Lemma 2.1, we have the following.

Proposition 2.2. If I is a scale tractor then

|I|2 = −S(σ ),

where σ = h(X, σ ). In particular off the zero set of σ we have

|I|2 = −
2
d
Jg
o

where go = σ−2g and Jg
o
is the go trace of Pg

o
. An ASC structure is a conformal manifold (M, [g]) equipped with a scale tractor

of constant length.

Proof. Everything is clear except the point made in the second display. Recall that now, in contrast to the Introduction, Jgo

denotes gabPg
o

ab . So, writing go for the inverse to g
o, we have

σ 2Jg
o
= σ 2gabPg

o

ab = g
ab
o Pab =: J

go ,

this is the metric go trace of the Schouten tensor Pg
o
. On the other hand, away from the zero set of σ , we may calculate in

the scale σ and we have ∇g
o
σ = 0, whence−2σ 2Jg

o
/d is exactly the right-hand side of (2.11). �

Now collecting our observations we obtain the basic elements of the tractor picture for AE structures, as follows.
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Theorem 2.3. A directed almost Einstein structure is a conformal manifold (Mn+1, [g]) equipped with a parallel (standard)
tractor I 6= 0. The mapping from non-trivial solutions of (2.4) to parallel tractors is by σ 7→ Dσ with inverse I 7→ σ := h(I, X).
If I 6= 0 is parallel and σ := h(I, X) then the structure (M, [g], σ ) is ASC with S([g], σ ) = −|I|2. On the open set where σ is
nowhere vanishing go := σ−2g is Einstein with Ricg

o
= −n|I|2go.

Proof. The first observation is immediate from the construction in (2.5) of the tractor connection as a prolongation of
Eq. (2.4) for an almost Einstein structure.
Next observe that if I

g
= (σ , µa, ρ) is a parallel section for ∇T then it follows immediately from formula (2.5) that

necessarily(
σ ,µa, ρ

)
=

(
σ ,∇aσ ,

1
d
(∆σ − Jσ)

)
, (2.12)

that is I is a scale tractor, I = Dσ . From the formula for the tractor metric it follows that σ = h(X, I).
Since the tractor connection preserves the tractor metric it follows that if I is a parallel tractor then |I|2 := h(I, I) is

constant. Thus an almost Einstein structure is ASC as claimed.
For the final statement we use that I parallel implies that σ satisfies (2.4). On the set where σ is nowhere vanishing we

may use the metric go = σ−2g . The corresponding Levi-Civita connection annihilates σ and then (2.4) asserts that Pgo is
trace-free. �

In view of the Theorem we shall often use the notation (M, [g], I) to denote a directed almost Einstein manifold. In this
context I should be taken as parallel and non-zero.
There is a useful immediate consequence of the Theorem, as follows.

Corollary 2.4. On a fixed conformal structure (M, [g]) the set of directed AE structures is naturally a vector space with the origin
removed. In particular if I1 and I2 are two linearly independent directed AE structures then for each t ∈ R

It := (sin t)I1 + (cos t)I2

is a directed AE structure. In this case given p ∈ M there is t ∈ R so that σt(p) := h(X, It)p = 0.

One might suspect that generically non-scalar positive AE manifolds will have non-empty scale singularity sets. The
Corollary shows that this certainly is the case on a fixed conformal structure with two linearly independent AE structures.

3. Classification of the scale singularity set

Given a standard tractor I and σ := h(X, I) let us write S(I) as an alternate notation for S(σ ). As before we write

Σ := {p ∈ M | σ(p) = 0}

and term this the scale singularity set of I; this is the set where go = σ−2g is undefined. In this section we shall establish the
following Theorem before extending our results to a proof of Theorem 1.2.

Theorem 3.1. Let (M, [g], I) be an almost Einstein structure of Riemannian signature. There are three cases:
• |I|2 < 0, which is equivalent to S(I) > 0, thenΣ is empty and (M, σ−2g) is Einstein with positive scalar curvature;
• |I|2 = 0, which is equivalent to S(I) = 0, thenΣ is either empty or consists of isolated points, and (M \Σ, σ−2g) is Ricci-flat;
• |I|2 > 0, which is equivalent to S(I) < 0, then the scale singularity set Σ is either empty or else is a totally umbilic smooth
hypersurface, and (M \Σ, σ−2g) is Einstein of negative scalar curvature.

The curvature statements follow from Theorem 2.3. Also from there we have that an AE manifold is ASC. Thus from
Theorem 1.1 we have at once both the first result and also that if, alternatively, |I|2 > 0 then the singularity set is either
empty or is a hypersurface. The proof is completed via Propositions 3.3 and 3.6 below.
We shallmake a general observationwhich sheds light on the scalar flat case. FromTheorem2.3, I parallel implies I = Dσ ,

for some density σ in E[1]. An obvious question is whether, at any point p ∈ M , we may have j1pσ = 0, i.e. whether the 1-jet
of σ may vanish at p. Evidently this is impossible if |I|2 6= 0. We observe here (cf. [23]) that, in any case, if I = Dσ 6= 0 is
parallel then the zeros of j1σ are isolated. In fact we have a slightly stronger result. As usual here we write σ = h(X, I).

Lemma 3.2. Suppose that I 6= 0 is parallel and j1pσ = 0. Then there is a neighbourhood of p such that, in this neighbourhood, σ
is non-vanishing away from p.

Proof. Suppose that I 6= 0 is parallel and j1pσ = 0. Since I is parallel I = Dσ . This with j
1
pσ = 0 implies that, at p,

and in the scale g , we have I
g
= (0 , 0 , ρ) for some density ρ with ρ(p) 6= 0. Thus from (2.5) (or equivalently (2.4)) we

have (∇a∇bσ)(p) = −ρ(p)gab(p). Trivialising the density bundles using the metric g the latter is equivalent to (∇a∇bs)(p)
= −r(p)gab(p) where the smooth function r satisfies r(p) 6= 0. (Here we use that g = τ−2g for some non-vanishing τ in
E[1] and s = τ−1σ while r = τρ. Then since ∇ is the Levi-Civita for g we have ∇τ = 0.) So, in terms of coordinates based
at p, the first non-vanishing term in the Taylor series for s (based at p) is−rgijxixj. �
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Note that an ASC structure is scalar flat if and only if go is Ricci-flat onM \Σ . In the following σ := h(X, I).

Proposition 3.3. If (M, [g], I) is an ASC structure with j1pσ = 0, at some point p, then (M, [g], I) is scalar flat. Conversely if
(M, [g], I) is a scalar flat ASC structure then, at any p ∈ M with σ(p) = 0 we have j1pσ = 0.
If (M, [g], I) is a scalar flat AE structure then, at any p ∈ M with σ(p) = 0we have j1pσ = 0 and j

2
pσ 6= 0. For any scalar flat

AE manifold the scale singularity set consists of isolated points.

Proof. Since by definition I = Dσ , from Lemma 2.1 it is immediate that, at any point pwith σ(p) = 0, we have S(σ )(p) = 0
if and only if j1pσ = 0. (Alternatively this is visible directly from formula (2.3).) The first two statements follow immediately,
as by definition S(σ ) is constant on an ASC manifold.
Now we consider AE manifolds. These are ASC and so we have the first results. Since I is parallel, we have I = Dσ . If an

AE manifold is scalar flat then, at a point pwhere σ(p) = 0, we have j1pσ = 0 and so from (2.12) the tractor I is of the form

I
g
= (0, 0, ρ) at p. On the other hand, since I 6= 0 is parallel, it follows that Dσ = I is nowhere zero on M . Hence (since D
is a second order differential operator) j2σ is non-vanishing. In fact, from (2.10), at any point pwhere j1pσ vanishes we have
ρ(p) = 1

d (∆σ)(p) 6= 0. The last statement is now an immediate consequence of Lemma 3.2. �

Remark. Note that j1pσ = 0 means that when we work in terms of a background metric g we have j
1
ps = 0 for the function

s corresponding to σ and so p is a critical point of s. In fact it is already clear from (1.2) that, even for ASC structures, if
S(g, s) = 0 then sp = 0 implies p is a critical point. �

3.1. Conformal hypersurfaces and the scale singularity set

Let us first recall some facts concerning general hypersurfaces in a conformalmanifold (Md, [g]), d ≥ 3. IfΣ is a boundary
component of a Riemannian (or conformal) manifold then, without further comment, we will assume that the conformal
structure extends smoothly to a collar of the boundary. Our results will not depend on the choice of extension. So in the
following we suppose thatΣ is an embedded codimension 1 submanifold ofM .
Let na be a section of Ea[1] such that, alongΣ , na is a conormal that satisfies |n|2g := gabnanb = 1. Note that the latter is

a conformally invariant condition since g−1 has conformal weight−2. Now in the scale g , the mean curvature ofΣ is given
by

Hg =
1
d− 1

(
∇ana − nanb∇anb

)
,

as a conformal −1-density. This is independent of how na is extended off Σ . Now under a conformal rescaling, g 7→ ĝ =
e2ωg , H transforms to H ĝ = Hg + naΥa where Υ = dω (and we use this notation below without further mention). Thus we
obtain a conformally invariant section N of T |Σ

N
g
=

( 0
na
−Hg

)
,

and from (2.9) h(N,N) = 1 alongΣ . ObviouslyN is independent of any choices in the extension of na offΣ . This is the normal
tractor of [25] and may be viewed as a tractor bundle analogue of the unit conormal field from the theory of Riemannian
hypersurfaces.
Recall that a point p in a hypersurface is an umbilic point if, at that point, the trace-free part of the second fundamental

form is zero. This is a conformally invariant condition. A hypersurface is totally umbilic if this holds at all points.
Differentiating N tangentially alongΣ using ∇T , directly from (2.5) we obtain the following result.

Lemma 3.4. If the normal tractor N is parallel, with respect to ∇T , along a hypersurface Σ then the hypersurface Σ is totally
umbilic.

In fact constancy of N along a hypersurface is equivalent to total umbilicity. This is (Proposition 2.9) from [25].
We return now to the study of ASC structures, on which I denotes the scale tractor. First we see that the normal tractor

is linked, in an essential way, to the ambient geometry off the hypersurface.

Proposition 3.5. Let (Md, [g], I) be a scalar negative ASC structure with scale singularity set Σ 6= ∅ and |I|2 = 1. Then, with N
denoting the normal tractor for Σ , we have N = I|Σ .

Proof. As usual let us write σ := h(X, I). By definition

I = Dσ
g
=

 σ
∇aσ

1
d
(∆σ − Jσ)

 .
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Let us write na := ∇aσ . AlongΣ we have σ = 0, therefore

I|Σ
g
=

 0
na
1
d
∆σ

 ,
and from Lemma 2.1 |n|2g = 1, since |I|

2
= 1. So na|Σ is a conformal weight 1 conormal field forΣ .

Next we calculate the mean curvature H in terms of σ . Recall (d − 1)H = ∇ana − nanb∇bna, on Σ . We calculate the
right-hand side in a neighbourhood ofΣ . Since na = ∇aσ , we have ∇ana = −∆σ . On the other hand

nanb∇bna =
1
2
nb∇b(nana) =

1
2
nb∇b

(
1−

2
d
σ∆σ +

2
d
Jσ 2

)
,

where we used that |Dσ |2 = 1. Now alongΣ we have 1 = nana = na∇aσ , and so there this simplifies to

nanb∇bna = −
1
d
∆σ .

Putting these results together, we have

(d− 1)H =
1
d
(1− d)∆σ ⇒ H = −

1
d
∆σ .

Thus

I|Σ
g
=

( 0
na
−H

)
,

as claimed. �

A consequence for AE structures follows easily.

Proposition 3.6. Let (Md, [g], I) be a scalar negative almost Einstein structure with scale singularity set Σ 6= ∅ and |I|2 = 1.
ThenΣ is a totally umbilic hypersurface with I|Σ = N, the normal tractor for Σ .

Proof. Since an AE structure (M, [g], I) is ASC it follows from Proposition 3.5 above that along the singularity hypersurface
I agrees with the normal tractor N . On the other hand, since I is parallel everywhere, it follows that N is parallel along Σ
and so, from Lemma 3.4,Σ is totally umbilic. �

Proposition 2.8 of LeBrun’s [8] also gives a proof that the conformal infinity of a PE metric is totally umbilic.

Proof of Theorem 3.1. The remaining point is to show that if (M, [g], I) is AE with |I|2 > 0 and a singularity hypersurface
Σ , then this is totally umbilic. This is immediate from the previous Proposition as multiplying I with a positive constant
yields a yields a parallel tractor with the same singularity set. �

Muchof Theorem1.2 repackages the tractor based statements in Theorem3.1 above, other parts follow fromTheorem1.1.
To complete the proofwe simply need to describe PEmanifolds in the same language, and this is our final aim for this section.

Proposition 3.7. Suppose that M is a compact manifold with boundary Σ , and (M, [g], I) is an almost Einstein structure with
|I|2 = 1, and such that the scale singularity set is Σ . Then (M, [g], I) is a Poincaré–Einstein manifold with the interior metric
go = σ−2g , where σ := h(X, I). Conversely Poincaré–Einstein manifolds are scalar negative almost Einstein structures.

Proof. Suppose that (M, [g], I) is an AE structure as described. Since AEmanifolds are ASC, with the parallel tractor I giving
the scale tractor of the ASC structure, it follows from Theorem 1.1 that (M, [g], σ ) is AH. But I parallel means that go = σ−2g
is Einstein onM \Σ , and there |I|2 = 1 is equivalent to Ric(go) = −ngo. The converse direction is also straightforward, or
see [24]. �

4. Conformal geometry ofΣ versus conformal geometry ofM

Here for almost Einstein manifolds we shall derive basic equations satisfied by the conformal curvatures. In particular
for Poincaré–Einstein manifolds, and more generally for scalar negative almost Einstein manifolds, we shall study the
relationship between the conformal geometry of M and the intrinsic conformal geometry of the scale singularity set Σ .
Since Σ is a hypersurface, a first step is to understand the conformal structure induced on an arbitrary hypersurface in a
conformal manifold and in particular the relationship between the intrinsic conformal tractor bundle ofΣ and the ambient
tractor bundle ofM . This is the subject of Section 4.1. On the other handwe have already observed that on scalar negative AE
manifolds the singularity set is umbilic. So the main aim of this section is to deepen this picture. We shall see that the along



192 A. Rod Gover / Journal of Geometry and Physics 60 (2010) 182–204

the singularity hypersurface the intrinsic tractor connection necessarily agrees with an obvious restriction of the ambient
tractor connection. This has immediate consequences for the relationship between the intrinsic and ambient conformal
curvature quantities, but we are able to also show that there is an even stronger compatibility between the conformal
curvatures of (Σ, [gΣ ]) and those of (M, [g]). Finally we shall derive equations on the latter that partly establish a Dirichlet
type problem based directly on the conformal curvature quantities.

4.1. Conformal hypersurfaces

Here we revisit (cf. Section 3.1) the study of a general hypersurface Σ in a conformal manifold (Md, [g]), d ≥ 3. This
time our aim is to see, in this general setting, how the conformal structure of the hypersurface is linked that of the ambient
space.
With respect to the embedding map, each metric g from the conformal class onM pulls back to a metric gΣ onΣ . Thus

the ambient conformal structure of M induces a conformal structure [gΣ ] on Σn (n + 1 = d); we shall refer to this as
the intrinsic conformal structure of Σ . Given the relationship of the intrinsic and ambient conformal structures it follows
easily that the intrinsic conformal density bundle of weightw, EΣ [w] is canonically isomorphic to E[w]|Σ and we shall no
longer distinguish these. It is also clear that, since gΣ is determined by g , the trivialisations gΣ and g induce on, respectively,
EΣ [w] and E[w] are consistent. In particular the Levi-Civita connection on EΣ [w] agrees with the restriction of the Levi-
Civita connection on E[w] (and see Section 2 for a discussion of the latter).
If n ≥ 3 then (Σ, [gΣ ]) has an intrinsic tractor bundle TΣ . We want to relate this to T along Σ . Note that T |Σ has a

canonical rank n + 2 subbundle, viz. N⊥ the subbundle orthogonal (with respect to h) to the normal tractor N . As noted
in [33], there is a canonical (conformally invariant) isomorphism

N⊥
∼=
−→ TΣ . (4.1)

To see this let na denote aweight 1 conormal field alongΣ . There is a canonical inclusion of TΣ in TM|Σ andwe identify T ∗Σ
with the annihilator subbundle in T ∗M|Σ of na. These identifications do not require choosing a metric from the conformal
class. Now calculating in a scale g on M the tractor bundle T , and hence also N⊥, decomposes into a triple via (2.7). Then
the mapping of the isomorphism is (cf. [34])

[N⊥]g 3

(
σ
µb
ρ

)
7→

 σ
µb − Hnbσ

ρ +
1
2
H2σ

 ∈ [TΣ ]gΣ (4.2)

where, as usual, H denotes the mean curvature of Σ in the scale g and gΣ is the pull-back of g to Σ . Since (σ , µb, ρ) is a
section of [N⊥]g we have naµa = Hσ . Using this one easily verifies that the mapping is conformally invariant: If we trans-
form to ĝ = e2ωg , ω ∈ E , then (σ , µb, ρ) transforms according to (2.8). Using that Ĥ = H + naΥa one calculates that the
image of (σ , µb, ρ) (under the map displayed) transforms by the intrinsic version of (2.8), that is by (2.8) except where Υa
is replaced by Υ Σ

a = Υa− nan
bΥb (which onΣ agrees with dΣω, the intrinsic exterior derivative of ω). This signals that the

explicit map displayed in (4.2) descends to a conformally invariant map (4.1). We henceforth use this to identify N⊥ with
TΣ , and write ProjΣ : T |Σ → TΣ for the orthogonal projection afforded by N .
So far we understand the tractor bundle on Σ for n ≥ 3. In the case of n = 2, Σ does not in general have a preferred

intrinsic conformal tractor connection. There is much to be said in this case but for our current purposes it will be most
economical to proceed as follows. In the case of a dimension n = 2 surface Σ in (M3, [g]), we shall define TΣ to be the
subbundle orthogonal to N in T |Σ . As in other dimensions we write ProjΣ : T |Σ → TΣ for the corresponding orthogonal
projection. Then for d = 3, equivalently n = 2, we define the tractor connection on Σ to be the orthogonal projection of
the ambient tractor connection. That is, working locally, for v ∈ Γ (TΣ) and T ∈ TΣ = N⊥ we extend these smoothly to
v ∈ Γ (TM) and T ∈ T . Then we define ∇TΣ

v T := ProjΣ (∇
T
v T ) along Σ . It is verified by standard arguments that this is

independent of the extension choices and defines a connection on TΣ .
Finally we observe a useful alternative approach to the arguments above via a result that, for other purposes, we will call

on later.

Proposition 4.1. Let Σ be an orientable hypersurface in an orientable conformal manifold (M, [g]). In a neighbourhood of Σ
there is a metric ĝ in the conformal class so that Σ is minimal, i.e. H ĝ = 0.

Proof. For simplicity let us calculate in the metric g and write Hg to be the mean curvature of Σ as a function along Σ .
Take any smooth extension of this to a function onM . By a standard argument one can show that in a neighbourhood ofΣ
there is a normal defining function s forΣ , that is Σ is the zero set of s, and alongΣ the 1-form ds satisfies |ds|2g = 1. Then
na := gab∇bs is a unit normal vector field alongΣ . Recall the conformal transformation of the mean curvature: If ĝ = e2ωg ,
for some ω ∈ E then eωH ĝ = Hg + naΥa = Hg + na∇aω. Thus if we take ω := −sHg then H ĝ = 0. �
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Dropping the ‘hat’ on ĝ , we see that with such g (satisfying Hg = 0) the map (4.2) simplifies significantly in this normal-
isation; the splittings of N⊥ and TΣ then agree in the ‘‘obvious way’’. This is consistent with conformal transformation: The
conditionH = 0 does not fix the representativemetric g , even alongΣ . For example at the 1-jet level the remaining freedom
alongM is to conformally rescale by g 7→ e2ωg where na∇aω = 0. This is exactly as required to preserve the agreement of
the splittings of N⊥ and TΣ . In fact this was the point of view taken in [33]. From there one easily recovers formula (4.2).
Finally we note here that the rescaling involved in the proof of the proposition above is global, and especially natural in

the case of directed ASC and AE structures.

Corollary 4.2. Let (M, [g], I) be a directed scalar negative ASCmanifoldwith a scale singularity set. Then there is ametric ĝ ∈ [g]
with respect to whichΣ is a minimal hypersurface. In particular if (M, [g], I) is a directed AE manifold thenΣ is totally geodesic
with respect to ĝ .

Proof. Suppose that σ is the conformal weight 1 density defining a S(σ ) = −1 ASC structure with a non-trivial scale singu-
larity hypersurfaceΣ . Write Hg (now as a−1 density) for the mean curvature ofΣ with respect to an arbitrary background
metric g and extend this smoothly to M . Then Σ has mean curvature zero with respect to the metric ĝ = e2ωg where
ω := −Hgσ . For the last statement we recall that if σ satisfies (2.4) then Σ is totally umbilic and this is a conformally
invariant condition. �

4.2. Tractor curvature

We digress briefly to recall some further background. In this section we work on an arbitrary conformal manifold
(Md, [g]). It will be convenient to introduce the alternative notation EA for the tractor bundle T and its space of smooth
sections. Here the index indicates an abstract index in the sense of Penrose and so we may write, for example, V A ∈ EA to
indicate a section of the standard tractor bundle. Using the abstract index notation the tractor metric is denoted hAB with
inverse hBC . These will be used to lower and raise indices in the usual way.
In computations, it is often useful to introduce the ‘projectors’ from EA to the components E[1], Ea[1] and E[−1]which

are determined by a choice of scale. They are respectively denoted by XA ∈ EA[1], ZAa ∈ EAa[1] and YA ∈ EA[−1], where
EAa[w] = EA ⊗ Ea ⊗ E[w], etc. Using the metrics hAB and gab to raise indices, we define XA, ZAa, Y A. Then we immediately
see that

YAXA = 1, ZAbZAc = gbc

and that all other quadratic combinations that contract the tractor index vanish.
Given a choice of conformal scale we have the corresponding Levi-Civita connection on tensor and density bundles and

we can use the coupled Levi-Civita tractor connection to act on sections of the tensor product of a tensor bundle with a
tractor bundle and so forth. This operation is defined via the Leibniz rule in the usual way. In particular we have

∇aXA = ZAa, ∇aZAb = −PabXA − YAgab, ∇aYA = PabZAb. (4.3)

The curvatureΩ of the tractor connection is defined by

[∇a,∇b]V C = ΩabC EV E (4.4)

for V C ∈ EC . Using (4.3) and the usual formulae for the curvature of the Levi-Civita connection we calculate (cf. [32])

ΩabCE = ZC cZE eCabce − XCZE eAeab + XEZC eAeab (4.5)

where

Aabc := 2∇[bPc]a (4.6)

is the Cotton tensor.
Next we note that there is a conformally invariant differential operator between weighted tractor bundles

DA: EB···E[w] → EAB···E[w − 1],

given a choice of conformal scale g by the formula

DAV := (d+ 2w − 2)wYAV + (d+ 2w − 2)ZAa∇aV + XA(∆− wJ)V . (4.7)

This is the (Thomas) tractor-D operator as recovered in [25]; see [35,36] for an invariant derivation. The conformal operator
D from Section 2 is simply 1d timesD applied to E[1]. (It is convenient to retain the two notations, rather than carry the factor
1/d into many calculations.) Using Dwe obtain (following [35,36]) a conformally invariant curvature quantity as follows

WBC EF :=
3
d− 2

DAX[AΩBC]E F , (4.8)
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whereΩBC EF := ZBbZC cΩbc E F . In a choice of conformal scale,WABCE is given by

(d− 4)
(
ZAaZBbZC cZE eCabce − 2ZAaZBbX[CZE]eAeab − 2X[AZB]bZC cZE eAbce

)
+ 4X[AZB]bX[CZE]eBeb, (4.9)

where

Bab := ∇cAacb + PdcCdacb (4.10)

is known as the Bach tensor or the Bach curvature. From formula (4.9) it is clear thatWABCD hasWeyl tensor type symmetries.
It is shown in [31] and [32] that the tractor field WABCD has an important relationship to the ambient metric of Fefferman
and Graham. See also Section 4.4 below.
For later use we recall here some standard identities which arise from the Bianchi identity ∇a1Ra2a3de = 0, where se-

quentially labelled indices are skewed over:

∇a1Ca2a3cd = gca1Ada2a3 − gda1Aca2a3; (4.11)

(n− 3)Aabc = ∇dCdabc; (4.12)

∇
aPab = ∇bJ; (4.13)

∇
aAabc = 0. (4.14)

4.3. Further geometry of the singularity set

We are now set to return to the almost Einstein setting. Via the projectors, a general tractor IA ∈ EA expands to

IE = Y Eσ + ZEdµd + XEρ,

where, for example, σ = XAIA. Hence

ΩabCE IE = σZC cAcab + ZC cµdCabcd − XCµdAdab.

Now assume that IA 6= 0 is parallel (of any length). As a point of notation: in this casewe shall write IE = Y Eσ+ZEdnd+XEρ.
That is nd = ∇dσ . Then the left-hand side of the last display vanishes, whence the coefficients of ZC c and XC must vanish,
i.e.,

σAcab + ndCabcd = 0 and ndAdab = 0.

Away from the zero set ofσ , we have thatσ−1nd = σ−1∇dσ is a gradient and the first equation of the display is the condition
that the metric is conformal to a Cotton metric (cf. e.g. [1,37,38]). On the other hand at a point p where σ(p) = 0 the same
equation shows that

Cabcd∇dσ = Cabcdnd = 0 at p. (4.15)

Once again using formulae (4.3) for the tractor connection we obtain

∇
aΩacDE = (d− 4)ZDdZE eAcde − XDZE eBec + XEZDeBec . (4.16)

This too is annihilated by contraction with the parallel tractor IE and so we obtain

(d− 4)ZDdneAcde − XDneBec + σZDdBdc = 0.

From the coefficient of ZDd we have

σBdc + (d− 4)neAcde = 0.

In dimension four Bdc is conformally invariant and this recovers thewell-known result that, in this dimension, it vanishes on
the conformally Einstein part ofM . But then by continuity it follows that the Bach tensor vanishes everywhere onM . In other
dimensions the last display shows that neAcde = 0 at any zeros of σ . This with (4.15) gives the first part of the following.

Proposition 4.3. Consider an almost Einstein manifold (M, [g], I) and write σ := IAXA and na := ∇aσ . We have

σAcab + ndCabcd = 0,⇒ ncAcab = 0, and
σBac + (d− 4)neAcae = 0⇒ naBab = 0,

everywhere on M. Hence for any point p with σ(p) = 0 we have

naCabcd = 0 at p.

In dimension d = 4 we have Cabcd(p) = 0, while Bab = 0 on M. In dimensions d 6= 4 we have:

naΩabCD = 0 at p.

In any dimension, if j1pσ = 0 then

Cabcd = 0 = Abcd ⇔ ΩabCD = 0 at p, and WABCD(p) = 0.
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Proof. The displayed implications follow by contracting na into the equations and using the symmetries of A and C . In
dimension 4 naCabcd = 0 at p implies Cabcd(p) = 0, when I is not null (and so na(p) 6= 0). It remains to establish the final
claims. If at some point pwehave j1pσ = 0, then, at pwehave I

A
= ρXAwith ρ(p) 6= 0. So from IE∇aΩbcDE = 0 it follows that

XE∇aΩbcDE = 0 at p. But,∇aXE = ZEa and from (4.5)we have XEΩbcDE = 0 everywhere. So ZDdCbcda−XDAabc = ZEaΩbcDE = 0
at p. This immediately yields the result of the last display. But we also have that XAWABCD and IAWABCD are zero everywhere,
so an easy variation of the last argument also shows thatWABCD vanishes at p. �

In the case that I is null go = σ−2g is Ricci-flat on M \ Σ . So, from the last part of the Proposition, it follows that go is
asymptotically flat (locally) as we approach any points of Σ . Following [37] let us say a conformal manifold of dimension
d ≥ 4 is weakly generic at p ∈ M if the only solution at p to Cabcdvd = 0 is vdp = 0; then say that (M, [g]) is weakly generic if
this holds at all points ofM . From the Proposition above and Corollary 2.4 we see that the rank of theWeyl tensor obstructs
certain AE structures. Summarising we have the following.

Corollary 4.4. Let (Md, [g], I) be an almost Einstein structure with S(I) = −|I|2 = 0. Then (M, go) is asymptotically locally
Euclidean as we approach any point p with σ(p) = 0. If (Md≥4, [g], I) is an AE structure with scale singularity set Σ 6= ∅ then
(M, [g]) is not weakly generic. If (M, [g]) admits any two linearly independent AE structures then it is nowhere weakly generic.

S(I) = 0 AE structures were studied via a different approach in [30]; as well as some of the results mentioned here, they
show that if M is closed, or (M \ Σ, go) is complete, then Σ 6= ∅ implies that (M, g) is conformally diffeomorphic to the
standard sphere. They also discuss the asymptotic flatness in preferred coordinates based at p.
Nowwe specialise to the case of a scalar negative almost Einsteinmanifold (M, [g], I), with a non-empty scale singularity

setΣ . We may suppose, without loss of generality, that |I|2 = 1. From Corollary 4.2 we may also assume that g is a metric
in the conformal class so that Hg = 0, where Hg is the mean curvature of the hypersurfaceΣ .
As usual we identify TΣ with its image in TM|Σ under the obvious inclusion and T ∗Σ with the annihilator (in T ∗M) of na.

In our calculations here wewill reserve the abstract indices i, j, k, l for TΣ ⊂ TM|Σ and its dual. For example Rijcdmeans the
restriction of the Riemannian curvature Rabcd = R

g
abcd to tangential (toΣ) directions in the first two slots. Now, calculating

in the metric g , recall that the Riemannian curvature Rabcd decomposes into the totally trace-free Weyl curvature Cabcd and
a remaining part described by the Schouten tensor Pab, according to (2.1). It follows that alongΣ

Rijkl = Cijkl + 2gΣk[iPj]l + 2g
Σ
l[j Pi]k,

where we have used that the intrinsic conformal metric on Σ is just the restriction of the ambient conformal metric. The
Levi-Civita connection∇ on (M, g) induces a connection on TΣ; this is bydifferentiating tangentially followedbyorthogonal
projection into Γ (TΣ). By the well-known Gauss formula this recovers the Levi-Civita connection for gΣ . On the other hand
sinceΣ is totally geodesic for g the section giving the orthogonal projection is itself parallel, so we find the standard result
that for totally geodesic hypersurfaces the intrinsic parallel transport along Σ agrees with the ambient parallel transport
(as applied to tangent vectors). It follows immediately that Rijkl = RΣijkl, where by R

Σ we mean the intrinsic Riemannian
curvature of (Σ, g|Σ ). But since naCabcd = 0 we have that Cijkl|Σ is completely trace-free with respect to gΣ and so hasWeyl
tensor type symmetries, as a tensor onΣ . It follows easily that, for d ≥ 4, the right-hand side of the last display necessarily
gives the canonical decomposition of RΣijkl into its Weyl and Schouten parts. On the other hand since na is parallel along Σ
we have Rijc dnc = 0 and using again (2.1), but now applied to Rijcd, we see that Pibnb = 0. That is, alongΣ

CΣijkl = Cijkl, PΣij = Pij and Pibnb = 0. (4.17)

Note that since the Weyl curvature of any 3 manifold is identically zero, in the case of dimension d = 4 we have CΣ ≡ 0.
Thus in this dimension the display is consistent with Proposition 4.3 where we observed that C |Σ = 0.
As discussed in Section 4.1, TΣ may be identified with N⊥ (i.e. the annihilator subbundle of the normal tractor) in T |Σ

and we shall continue to make this identification. Since N is parallel along Σ , ∇T preserves this subbundle. Now recall
that the conformal density bundles on Σ are just the restrictions of their ambient counterparts: EΣ [w] = E[w]|Σ . When
we work with the metric g , which has Hg = 0, then the splittings of the tractor bundles N⊥ and TΣ also coincide in the
obvious way (see the Remark concluding Section 4.1), and in particular (via the intrinsic version of (2.7)) TΣ decomposes to
EΣ [1] ⊕ EΣi [1] ⊕ EΣ [−1]where the weight one 1-forms onΣ , EΣi [1]may be identified with n

⊥ in Ea[1]|Σ . It follows from
these observations, the explicit formula (2.5) expressed with respect to the metric g , and the second result in the display
(4.17), that the tractor parallel transport on Σn≥3 is just the restriction of the ambient. Although we used special scales
for the argument it suffices to use any metric from the conformal class to verify the agreement since the connections are
conformally invariant. Let us summarise the consequences.

Theorem 4.5. Let (Md≥3, [g], I) be a scalar negative almost Einstein structure with a non-empty scale singularity hypersurface
Σ . The tractor connection of (M, [g]) preserves the intrinsic tractor bundle of Σ , where the latter is viewed as a subbundle of
the ambient tractors: TΣ ⊂ T . Furthermore the intrinsic tractor parallel transport of ∇TΣ coincides with the restriction of the
parallel transport of ∇T .
We have

Ω(u, v) = ΩΣ (u, v) along Σ
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where u, v ∈ Γ (TΣ). In dimensions d 6= 4 we have the stronger result

Ω(·, ·) = ΩΣ (·, ·) along Σ,

where here, by trivial extension, we viewΩΣ as a section of Λ2T ∗M ⊗ End T .

Proof. In the case of d = 3 the agreement of the parallel transport is immediate from the definition of the tractor connection
∇

TΣ and that the normal tractorNA is parallel alongΣ . In the remaining dimensions thiswas established immediately above.
From this, and the fact that onΣ we haveΩ(u, v)N = 0, it follows at once thatΩ(u, v) = ΩΣ (u, v) alongΣ , as claimed.
For dimensions d 6= 4 we have from Proposition 4.3 above thatΩ(n, ·) = 0, whence the final claim. �

Remark. To obtain the result that the intrinsic tractor parallel transport of∇TΣ coincideswith the restriction of the ambient
parallel transport of ∇T to sections of TΣ uses thatΣ is totally umbilic and that naCabcd = 0 alongΣ . These conditions are
sufficient for the agreement of the connections. �

4.4. Extending offΣ

Given a conformal manifold (Σ, [gΣ ])wemay ask if this can arise as the scale singularity set of a scalar negative almost
Einstein manifold. Narrowing the problem, we may begin with a fixed smooth (or with specified regularity) codimension
1 embedding of Σ in a manifold M and consider the Dirichlet type problem of finding a directed AE structure (M, [g], I)
with (Σ, [gΣ ]) as the scale singularity set; issues include whether or not there is any solution and, if there is, then whether
(Σ, [gΣ ]) determines (M, [g], I) uniquely. This is exactly the problem of finding onM a conformal structure [g] and on this
a solution σ to the conformally invariant equation ∇a∇bσ + Pabσ + ρgab = 0 (i.e. (2.4)) such that Σ is the zero set of σ
(and then there is the question of whether the pair ([g], σ ) is unique). We want to derive consequences of this equation
that make the nature of this problem more transparent. We have seen already that this may be viewed as finding on M a
conformal structure admitting a parallel tractor parallel tractor I with I|Σ agreeing with the normal tractor N alongΣ .
The data on Σ is a conformal structure, and, for any solution [gΣ ] is simply the pull-back of the ambient conformal

structure [g] on M . By Theorem 4.5 we know (at least to some order along Σ) how the ambient conformal curvature is
related to the intrinsic conformal curvature of (Σ, [gΣ ]). Thus it seems natural to derive the equations which control how
this extends offΣ . With less ambition we shall not attempt here to study the full boundary problem. Rather we seek to find
equations which control the conformal curvature quantities offΣ and which are also well defined alongΣ .
First note that it follows from the Bianchi identity (4.13) that Einstein manifolds (Md, go) are Cotton, i.e. Ag

o

abc = 0. In
dimension d = 3 the Weyl tensor vanishes identically and the Cotton tensor is conformally invariant. Thus almost Einstein
3-manifolds are Cotton and hence conformally flat. So if (M3, [g], I) is scalar positive then it is a positive sectional curvature
space form. If (M3, [g], I) has S(I) ≤ 0 then I may have a scale singularity setΣ , but off this the structure (M, go) is either
hyperbolic (if S(I) < 0) or locally Euclidean (if S(I) = 0).
From (4.16) one easily concludes that on an Einsteinmanifold (Md, go) the tractor curvature satisfies the (full) Yang–Mills

equations, that is∇aΩabC D = 0 (see also [39]) (where the connection∇ is in the scale go). In dimension d = 4 this equation
is conformally invariant. Thus almost Einstein 4-manifolds are globally Yang–Mills. Combining with relevant results from
Proposition 4.3 and Theorem 4.5, let us summarise.

Proposition 4.6. Let (M4, [g], I) be an almost Einstein manifold. Then the tractor curvature satisfies the conformally invariant
Yang–Mills equations,

∇
aΩab

C
D = 0.

If I is scalar negative then along any singularity hypersurfaceΣ of I we have

Cabcd = 0 and Ω(u, v) = ΩΣ (u, v) along Σ

where u, v ∈ Γ (TΣ).

Note that in dimension 4 the tractor curvature is Yang Mills if and only if the conformal structure is Bach-flat. However
the Proposition suggests that it is useful to view the Bach-flat condition as a Yang–Mills equation in order to formulate
an extension problem (or boundary problem in the PE case). We note that in [8] LeBrun established the existence and
uniqueness of a real analytic self-dual Poincaré–Einstein metric in dimension 4 defined near the boundary with prescribed
real analytic conformal infinity. If a four-dimensional metric is self-dual then so is its tractor curvature and hence the tractor
connection is Yang–Mills.
Before we continue we need some further notation. Let us write ] (hash) for the natural tensorial action of sections A of

End(T ) on tractor sections. For example, on a covariant 2-tractor TAB, we have

A]TAB = −AC ATCB − AC BTAC .

If A is skew for h, then at each point, A is so(h)-valued. The hash action then commutes with the raising and lowering of
indices and preserves the SO(h)-decomposition of tractor bundles.
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As a section of the tensor square of the h-skew bundle endomorphisms of T , the curvature quantityW has a double hash
action on tractors T ; we writeW]]T for this. Now for dimensions d 6= 4 we use this to construct a Laplacian operator on
(possibly conformally weighted) tractor sections. For T a section of (⊗k T )[w] and d 6= 4 we make the definition

6�T := (∆− wJ)T −
1

2(d− 4)
W]]T .

Then from this we obtain a variant of the usual tractor-D operator as follows:

6DAT := (d+ 2w − 2)wYAT + (d+ 2w − 2)ZAa∇aT + XA 6�T .

In terms of this operator we have,

Theorem 4.7. Let (Md, [g], I) be an almost Einsteinmanifold. Then if d = 4we haveWBCDE = 0. In dimension 6 the conformally
invariant equation

6�WA1A2B1B2 = 0

holds. In all dimensions we have

IA6DAWBCEF = 0. (4.18)

Also

WBCEF IF = 0. (4.19)

In particular if I is scalar negative andΣ denotes the singularity hypersurface for I then WBCEFNF = 0 along Σ .

Proof. From (4.9) it follows that, in dimension 4,W = 0 is equivalent setting the Bach tensor to zero and, as noted earlier,
this is equivalent to the conformal tractor connection being Yang Mills. We have this, in particular, on almost Einstein
manifolds. Since I is parallel it annihilates the tractor curvature, i.e.Ωbc E F IE = 0. But since it is parallel and has conformal
weight 0, I commutes with the tractor-D operatorD. Thus (4.19) follows from (4.8).We also note here that since I commutes
with D, and, on the other hand, any contraction of I withW is zero, it follows by an elementary argument that I commutes
with 6D.
In dimension 6 we have from [40] that

6�WA1A2B1B2 = KXA1ZA2
aXB1ZB2

bBab,

where K is a non-zero constant and Bab is the Fefferman–Graham (obstruction) tensor (see also [23]). The sequentially
labelled indices here are implicitly skewed over. But the conformal invariant Bab is zero on Einstein manifolds [21,41,40]
and hence also (by continuity) on almost Einstein manifolds.
It remains to establish (4.18). Since W has conformal weight −2, it follows that when d = 6 we have IA 6DAWBCEF =

σ6�WA1A2B1B2 , where as usual σ denotes the conformal density X
AIA. Thus (4.18) holds in dimension 6. Let us suppose now

that d 6= 4, 6. Here we will use the link between the standard tractor bundle on (M, [g]) and the Fefferman–Graham (FG)
metric of [21,22]. This link was developed in [31,32,42] but here we use especially the notation and results from [40]. (It
should be noted however that here we use the opposite sign for the Laplacian.) The arguments we use below are a minor
variation of similar developments from those sources.
For a Riemannian conformal manifold (Md, [g]) the Fefferman–Graham ambient manifold [21] is a signature (d + 1, 1)

pseudo-Riemannian manifold with Q as an embedded submanifold. There is some further background on the FG metric
in Section 6. Suitably homogeneous tensor fields on the ambient manifold, upon restriction to Q, determine tractor fields
on the underlying conformal manifold. In particular, in dimensions other than 4, WABCD is the tractor field equivalent to
(d−4)RABCD|Q where R is the curvature of the FG ambientmetric. Under this correspondence the FG ambientmetric applied
to homogeneous tensors alongQ, descends to the tractor metric. Ambient differential operators that are suitably tangential
and homogeneous (see e.g. [42,40]) also descend to operators between tractor bundles or subquotients thereof. For example
the tractor connection arises from ambient parallel transport alongQ.
On the FG ambient manifold let us define a Laplacian operator 61 by the formula

61 := 1−
1
2
R##.

Then in all dimensions d 6= 4, 6, 61R|Q = 0, [40, Section 3.2]. On the other hand 6DA corresponds to the ambient operator

(d+ 2w − 2)∇ + X 61 =:6D : T Φ(w)→ T ⊗ T Φ(w − 1)

where T Φ(w) indicates the space of sections, homogeneous of weightw, of some ambient tensor bundle. (NB: An ambient
tensor T is homogeneous of weightw if and only if∇XT = wT .) From the Bianchi identity on the FG ambient manifold, and
the fact that 61R|Q = 0, it follows that on the ambient manifold we have

6D[ARBC]DE = 0,
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alongQ. This descends to

6D[AWBC]DE = 0.

So we have

IA6D[AWBC]DE = 0.

But since IAWABDE = 0 and I commutes with 6D (4.18) follows. �

From the Theorem we may conclude some restrictions on the intrinsic conformal structure. For example we have the
following.

Corollary 4.8. Let (M5, [g], I) be a scalar negative almost Einstein manifold with scale singularity set Σ 6= ∅. Then the induced
conformal structure (Σ4, [gΣ ]) is Bach-flat.

Proof. In dimensions d 6= 6 Eq. (4.18), i.e. IA6DAW = 0, onM implies that along any scale singularity subspace weΣ have

δW = 0

where δ is the (conformally invariant) tractor twisted conformal Robin operator [33,24] applied toW ; in terms of g we have
δW = na∇gaW + 2HgW where Hg is the mean curvature ofΣ and ∇ is the usual (density coupled) the tractor connection.
To simplify the presentation let us temporarily display the first two abstract indices of the tractorW , but suppress the

last pair; we shall writeWBC rather thanWBCDE . From the defining formula (4.8) forWBC it follows easily that

WBC = (d− 4)ZBbZC cΩbc − XBZC b∇aΩab + XCZBb∇aΩab. (4.20)

This is expression (13) from [32]. Exploiting Corollary 4.2, let us calculate in a metric g with respect to which Σ is totally
geodesic. Setting d = 5, applying δ = na∇a to (4.20), and using the tractor connection formulae (4.3) we see that the
coefficient of ZBbZC c is

na∇aΩbc − nb∇aΩac + nc∇aΩab,

where Ωbc is the tractor curvature of the ambient conformal structure (M, [g]) (where we have suppressed the tractor
indices). Evidently a part of the condition δW |Σ = 0 is that the last display is zero alongΣ . Thus, in particular, nb contracted
into this must vanish, that is

nbna∇aΩbc −∇aΩac + ncnb∇aΩab = 0 alongΣ .

But using that Σ is totally geodesic and, from Theorem 4.5, that Ω(u, v) = ΩΣ (u, v) along Σ where u, v ∈ Γ (TΣ), this
exactly states that

g ijΣ∇
Σ
i Ω

Σ
jk = 0,

where gΣ is the intrinsic metric on Σ induced by g and ΩΣ
jk is the tractor curvature of its conformal class. Thus the

conformally invariant intrinsic tractor curvature of the (Σ, gΣ ) satisfies the Yang–Mills equations. As mention earlier, in
dimension 4 these are conformally invariant and are equivalent to the structure (Σ, [gΣ ]) being Bach-flat. �

There is an analogue of this result for higher odd d; see Theorem 6.1 below. It is likely that there is a proof of Theorem 6.1
using only Eq. (4.18), but certainly approaching this directly (as in the proof for d = 5 above)would rapidly become technical
for increasing dimension. Section 6 gives a simple and conceptual treatment, using the Fefferman–Graham metric.
Remarks: From Eq. (4.18) it follows that the conformal aspects of the asymptotics of Poincaré–Einstein metrics are
controlled by the operator IA6DA.
In dimension 6 the main equation (4.18) (or equivalently 6 �WA1A2B1B2 = 0) is equivalent to requiring (M, [g]) to have

vanishing Fefferman–Graham tensor.
In dimensions other than 3, 4 and 6, and off Σ , a key part of (4.18) is the harmonic equation ∆C − 1

2R]]C = 0 on the
Weyl curvature which holds on Cotton (and hence Einstein) manifolds, as follows easily from the Bianchi identities (4.11)
and (4.12). However in dimensions other than 3 we cannot conclude that there is a scale for which an AE manifold is Cotton
(everywhere). On the other hand Eq. (4.18) holds globally on an AE manifold (d 6= 4).
The following sheds some light on the meaning of Eq. (4.18) and its relation to possible boundary problems. This follows

easily from the Theorem and the definitions of the operators involved, except we have also called on Corollary 6.4.

Corollary 4.9. On an Einstein manifold (M(n+1)≥3, go) we have(
∆g

o
+ 4
n− 2
n+ 1

Jg
o
)
W −

1
2(n− 3)

W]]W = 0.
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In particular this holds on an almostmanifold (M(n+1)≥3, [g], I) off the zero set Σ of σ = h(X, I). If |I|2 = 1 andΣ is non-empty,
then on M \Σ we have

(∆g
o
− 2(n− 2))W −

1
2(n− 3)

W]]W = 0,

while along the hypersurfaceΣ we have

N W = 0, and, if n ≥ 5, (n− 4)W |Σ = (n− 3)WΣ ,

while, if n 6= 5,

δW = 0 along Σ,

where δ is the conformal Robin operator applied to W; in terms of g we have δW = na∇ga + 2HgW is the where Hg is the mean
curvature of Σ .

It is shown in [24] that on densities IADA agrees with the Laplacians arising in the scattering problems treated in [18]. The
operator (∆g

o
− 2(n − 2)) here is a tractor twisted version of such. We have used n rather than d in the formulae here to

simplify comparisons with [24] and [18].
We have seen in dimension 3, 4 and 6 that there are conformally invariant equations controlling the conformal curvature

of an AE manifold. This is achieved trivially in dimension 3. As a final note for this section we point out that there is an
analogue of the results for dimensions 4 and 6 to higher even dimensions.

Proposition 4.10. Almost Einstein manifolds (Md even, [g], I), d ≥ 4, satisfy the conformally invariant equation that the
Fefferman–Graham tensor vanishes. This may be expressed in the form

0 =6�d/2−2W = ∆d/2−2W + lower order terms, (4.21)

where by 6�0 and∆0 we mean the operator given by multiplication by 1.

The linear operator 6�d/2−2 is constructed in [40], and the result here is an easy consequence of the results there for
Einsteinmanifolds. Once again on a scalar negative AEmanifoldwith a scale singularity setΣ , (4.21) expresses the vanishing
Fefferman–Graham tensor condition in a form suitable to link with the conformal curvature data onΣ (using Corollary 6.4,
or for n = 3, 4 Theorem 4.5). It should be interesting to construct compatible conformal boundary operators forW along
embedded submanifoldsΣ so that these yield a well posed and conformal elliptic problem for the conformal curvatureΩ .
Close analogues of the conformal boundary operators developed in [33] should play a role.

Remark. Note that conformal equations, such as (4.21), offer the chance to split the problem of finding almost Einstein
structures (or Poincaré–Einsteinmetrics) into a conformal problem, say controlled by (4.21)with further boundary operators
alongΣ , and a second part where one would find a compatible ‘‘scale’’ σ . We should expect that a solution to the conformal
problem is necessary but in general not sufficient. However one may ask if (in Riemannian signature and say on closed even
manifolds) (4.21) plus the (clearly necessary) vanishing of the conformal invariant

Ωab
C
F1Ωcd

D
F2 · · ·Ωef

E
Fd+1 ,

where the sequentially labelled indices are skewed over, is sufficient for a conformalmanifold to necessarily admit an almost
Einstein structure locally. A corresponding global question is whether a smooth section K of T satisfyingΩabC DKD = 0 plus
(4.21) is sufficient to conclude that the conformal structure on a closed even manifold admits a directed almost Einstein
structure. In dimension 4 there is a positive answer to this if we restrict to K such that h(X, K) is non-vanishing [43]; in this
case the structure must be Einstein. �

5. Examples and the model

5.1. The model—Almost Einstein structures on the sphere

Proposition 5.1. The d-sphere, with its standard conformal structure, admits a (d+2)-dimensional space of compatible directed
almost Einstein structures. For each S ∈ R there is an almost Einstein structure I on Sd with S(I) = S.

The AE structures on the sphere also may be viewed as examples of ASC structures on the sphere. In any case we shall
see that, in a sense, ‘‘most’’ of these are scalar negative (which might at first seem counterintuitive).
Before we prove this let us recall a construction of the standard conformal structure on the sphere. Consider a (d + 2)-

dimensional real vector space V equipped with a non-degenerate bilinear formH of signature (d + 1, 1). The null cone N
of zero-length vectors form a quadratic variety in V. Choosing a time orientation, let us write N+ for the forward part of
N \ {0}. Under the ray projectivisation of V the forward cone N+ is mapped to a quadric in P+(V) ∼= Sd+1. This image
is topologically a sphere Sd and we will write π for the submersion N+ → Sd. Each point p ∈ N+ determines a positive
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definite inner product on Tx=πpSd by gx(u, v) = Hp(u′, v′) where u′, v′ ∈ TpN+ are lifts of u, v ∈ TxSd. For a given vector
u ∈ TxSd two lifts to p ∈ N+ differ by a vertical vector field. Since any vertical vector is normal (with respect toH) to the
cone it follows that gx is independent of the choices of lifts. Clearly then, each section of π determines a metric on S and by
construction this is smooth if the section is. (Evidently the metric agrees with the pull-back ofH via the section concerned.)
Now, viewed as a metric on TRd+2, H is homogeneous of degree 2 with respect to the standard Euler vector field E on V,
that is LEH = 2H , where L denotes the Lie derivative. In particular this holds on the cone, which we note is generated
by E.
Write g for the restriction of H to vector fields in TN+ which are the lifts of vector fields on Sd. Then for any pair

u, v ∈ Γ (TSd), with lifts to vector fields u′, v′ on N+, g(u′, v′) is a function on N+ homogeneous of degree 2, and which
is independent of how the vector fields were lifted. Evidently N+ may be identified with the total space of the bundle of
conformally related metrics (i.e. Q in Section 2) for the standard sphere. Thus g(u′, v′)may be identified with a conformal
density of weight 2 on Sd. That is, this construction determines a section of S2T ∗Sd⊗ E[2] that we shall also denote by g . By
construction this is a conformal metric (see Section 2) on Sd. Fix a future pointing vector I in V with |I|2 := H(I, I) = −1.
Regarding V as an affine space, view I as a constant section of TV. Write XA for standard coordinates on V (i.e. via an
isomorphism V ∼= Rd+2). It is straightforward to verify that the H(I, X) = 1 hyperplane meets N+ in a copy of Sd and
the metric induced by this section of π is a standard metric on Sd. Thus g is a standard conformal structure on the sphere.
We are ready to prove the Proposition.
Proof of Proposition 5.1. It is easily verified that G := SO(H) ∼= SO0(d + 1, 1) (the identity connected component of the
Lorentz group) acts transitively on the sphere. Thus the conformal spheremaybe identifiedwithG/P where P is the parabolic
subgroup of Gwhich stabilises a nominated ray inN+. Now G→ G/P may be viewed as a flat Cartan bundle over G/P = Sd
and the standard tractor bundle T isG×P VwhereV is viewed as a P-module, by restriction. HereG×P V = G×V/ ∼where
the equivalence relation is (gp, v) ∼ (g, p ·v)with g ∈ G, p ∈ P and where ‘‘·’’ indicates the standard representation of G on
V. The bundleG×P V is trivialised canonically by themap (g, v) 7→ (gP, g ·v) and sowe have a connection∇T on T induced
from the trivial connection on (G/P) × V. It is straightforward to verify that this is the normal tractor connection. (In fact
this is essentially a tautology; one view the idea of a normal conformal connection tractor asmodelled on this homogeneous
case.) Thus in this case the tractor connection is globally flat, and the bundle T admits (d+ 2) linearly independent parallel
sections. �

Using the embedding ofN+ inVwe can explicitly describe the almost Einstein structures of the Proposition. For example
we may construct a scalar negative AE structure on Sd as follows. Take a vector I ∈ V of squared length 1 (i.e. |I|2 = 1). We
shall use the same notation for the covectorH(I, ·). By the standard parallel transport (of V viewed as an affine structure)
view this as a constant section of T ∗V. Then as above, writing XA for standard coordinates on V, the intersection of the
hyperplane IAXA = 1 withN+, which we shall denote S+, is a section of π over an open cap C+ of the sphere. Similarly the
intersection of the hyperplane IAXA = −1 with N+, which we shall denote S−, is a section of π over another open cap C−
of the sphere. On the other hand the hyperplane IAXA = 0 (parallel to the previous) intersects N+ in a cone of one lower
dimension. The imageΣ of this under π is a copy of Sn embedded in Sd (where as usual d = n+ 1). It is easily deduced that
Sd is the union of the three submanifolds C−,Σ , and C+ and that, for example, with respect to (a restriction of) the smooth
structure on Sd, the embedded Σ is a boundary for its union with C+. This follows because any forward null ray though
the origin and parallel to the IAXA = 1 hyperplane lies in the hyperplane IAXA = 0, whereas every other forward null ray
through the original meets either the IAXA = 1 hyperplane or the IAXA = −1 hyperplane. Let us write go for the metric
that the sections S± give on C±. Note that the hypersurface Sn canonically has nomore than a conformal structure. This may
obviously be viewed as arising as a restriction of the conformal structure on Sd. Equivalently we may view its conformal
structure as arising in the same way as the conformal structure on Sd+1, except in this case by the restriction of π to the
sub-cone IAXA = 0 in N+, and from (the restriction of) H along this sub-cone. In the following we write g to denote any
metric from the standard conformal class on Sd. Note that on C± this is conformally related to go.
Now let us henceforth identify, without further mention, each function on N+ which is homogeneous of degree w ∈ R

with the corresponding conformal density of weightw. With σ := IAXA, as above, note that σ−2g is homogeneous of degree
0 onN+ and agreeswith the restriction ofH along S±. Thus on C±wehaveσ−2g = go;σ−2g recovers themetric determined
by S±. Similarly on Sdwehave g = τ−2g , where τ is a non-vanishing conformal density ofweight 1. So on C+∪C−, go = s−2g
where s is the function σ/τ . We see that go is conformally compact on Sd \ C+, and also on Sd \ C−.
We may now understand this structure via the tractor bundle on Sd. Let us write ρt for the natural action of R+ on N+

and then ρt
∗
for the derivative of this. Now modify the latter action on TV by rescaling: we write t−1ρt

∗
for the action of

R+ on TV which takes u ∈ TpV to t−1(ρt∗u) ∈ Tρt (p)V. Note that u and t
−1(ρt

∗
u) are mutually parallel, according to the

affine structure on V. It is easily verified that the quotient of TV|N+ by the R+ action just defined is a rank d + 2 vector
bundle T onM . The parallel transport of V determines a parallel transport on T , that is a connection ∇T . Since V is totally
parallel this connection is flat. The twisting of ρt

∗
to t−1ρt

∗
is designed so that the metricH on Rd+2 also descends to give a

(signature (d + 1, 1)) metric h on T and clearly this is preserved by the connection. In fact (T , h,∇T ) is the usual normal
standard tractor bundle. This is proved under far more general circumstances in [31] (see also [32]); it is shown there that
the tractor bundle may be recovered from the Fefferman–Graham ambient metric by an argument generalising that above.
In this picture the Euler vector field E = XA∂/∂XA (using the summation convention), which generates the fibres of π ,
descends to the canonical tractor field X ∈ T [1].
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It follows from these observations that, since the vector field I is parallel on V, its restriction to N+ is equivalent to a
parallel section of T ; we shall also denote this by I . So this is an almost Einstein structure on Sd; |I|2 = 1 means that the
almost Einstein structure we recover has S(σ ) = −1, whence has Ric(go) = −ngo on C±. The zero set for σ = h(X, I) is
exactly Σ . So we see that (Sd, [g], I) is an almost Einstein manifold. Since it is conformally flat with S(σ ) = −1 it is what
may be termed an almost hyperbolic structure on the sphere. The fact that along Σ the parallel tractor I gives the normal
tractor N is especially natural in this picture sinceΣ is determined by a hyperplane orthogonal to I . Finally we observe that
it follows from Proposition 3.7 that the spaces (Sd \ C±, [g], I) are Poincaré–Einstein manifolds, in fact each equivalent to
the conformal compactification of the hyperbolic ball.
Since the group G acts transitively on length 1 spacelike vectors, from the picture above we see that any scalar negative

AE structure on the sphere is related to the one constructed by a conformal transformation after anR+ action on the parallel
tractor I .
The scalar flat almost Einstein structures are obtained by a similar construction to the scalar negative case above. Note

that if I is a non-zero null vector in V then the hyperplane H(I, X) = 1 meets all future null rays in N+ except the one
parallel to I . So the almost Einstein structure determined by I has a single isolated point of scale singularity. The Einstein
metric go is conformally related to the round metric, and |I|2 = 0 means that S(I) = 0 and so go is flat; this is the usual
Euclidean structure on the sphereminus a point. It is straightforward to conclude that themap, alongnull generators, relating
this Euclidean almost Einstein structure and the standard sphere embedded in the cone (as described earlier) is the usual
stereographic projection.
In a partial summary then, if I1 and I2 are constant vectors in Vwith |I1|2 = −1 and |I2|2 = 1 then, as parallel tractors on

Sd these determine, respectively the standard sphere metric and almost hyperbolic structures. We can interpolate between
these via Corollary 2.4 andwe note that for some t ∈ R the parallel tractor It := (sin t)I1+(cos t)I2 is null and so determines
a Ricci-flat structure in the conformal class, that is a Euclideanmetric on the sphereminus a point. For each t ∈ R the isotropy
subgroup GIt of G = SO0(H) fixing the vector It clearly acts transitively and by isometries on the connected components of
Sd \Σt , whereΣt is the scale singularity set of It .

5.2. Doubling and almost hyperbolic constructions

One route to constructing further compact almost Einstein manifolds is via the doubling of compact Poincaré–Einstein
manifolds. So suppose that M is a compact Poincaré–Einstein with conformal infinity Σ . The double we seek is a gluing
alongΣ ,

M(2) := (M tM)/Σ

where the identification of the two copies ofΣ is the obvious one. As pointed out in [44], for example, this may be equipped
with a smooth structure compatible with the smooth structure on M and so that the natural involution exchanging the
factors is also smooth. Now extend the PE metric go ofM to a metric onM(2) by symmetry. This will be smooth if go is even
in the sense of [22, Section 4] (following [17]): Locally along the collar the metric may be put in normal form, relative to
some gΣ from the conformal class onΣ ,

go = s−2(ds2 + gΣs ) (5.1)

where s satisfies |ds|2g = 1 and gs is a 1-parameter family of metrics onΣ such that g
Σ
0 = g

Σ . The metric is even if for each
point ofΣ , and with the metric go in this form, we have that ds2 + gs is the restriction toM × [0,∞) of a smooth metric g
on a neighbourhoodU ⊂ Σ × (−∞,∞) such thatU and g are invariant under the map s 7→ −s.
Infinite volume hyperbolic manifolds provide a source of even PE manifolds. From Theorem 7.4 in [22] (building on

[45,46]) we have that if (M, go) is a hyperbolic PE manifold then locally along the conformal infinityΣ it may be put in the
normal form (5.1) where (in terms of local coordinates (s, xi), with xi the coordinates onΣ) we have

(gs)ij = gΣij − P
Σ
ij s
2
+
1
4
gklΣP

Σ
ik P

Σ
lj s
4
;

here if d ≥ 4 then PΣij is the intrinsic Schouten tensor of g
Σ , while if d = 3 then PΣij is a symmetric 2-tensor onΣ satisfying

2g ijΣP
Σ
ij = Sc

gΣ and 2g ijΣ∇iP
Σ
jk = ∇

Σ
k Sc

gΣ . In this case go is manifestly even.
Let Γ be a convex co-compact, torsion-free, discrete group of orientation preserving isometries of Hd. Then the orbit

spaceM+ := Γ \ Hd is a hyperbolic manifold of infinite volume. SuchM+ may be conformally compactified [9,44] to yield
a (hyperbolic) PE manifold. Thus, by the doubling construction, to each group Γ as above we may associate a closed almost
Einstein structure.
Rather than the usual model of the hyperbolic ball we may realise Hd as a hyperbolic cap of the sphere as described in

Section 5.1; it is not difficult to see that we may arrange that the cap is the right-hemisphere of a standard round sphere,
where the latter is given also as a section of the cone as Section 5.1. Then the convex co-compact Γ arises as a discrete
subgroup of GI ⊂ G = SO(H), where GI is the isotropy subgroup of G which fixes the length 1 parallel tractor I defining
the hyperbolic manifold. Now Γ also acts on the hyperbolic left-hemisphere and, by symmetry, in both cases the conformal
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infinityΣΓ may be identified with the orbit space Γ \ΩΓ (Σ)whereΩΓ (Σ) is the open subset of the sphereΣ ∼= Sn where
Γ acts properly discontinuously. The smooth structure on the doubling ofM is induced by the usual smooth structure on the
sphere and the action of Γ on Sd evidently preserves the solution of (2.4) giving I . In this sense we may view the doubling
ofM as arising from the orbit space of Γ on Sd equipped with a standard almost hyperbolic structure (i.e. hyperbolic almost
Einstein structure as in Section 5.1), but where we first remove the limit of this action in Σ . The AE structure on this is a
solution to (2.4) descended from a solution on Sd.

6. The Fefferman–Grahammetric for an AE manifold and obstructions

The Fefferman–Graham tensor (also called ‘‘the obstruction tensor’’) is a natural conformally invariant symmetric trace-
free 2-tensorBab onmanifolds of even dimension n that has the form∆n/2−2∇c∇dCacbd+lower order terms. In the case n = 4
it agrees with the Bach tensor while in higher even dimensions it is due to Fefferman and Graham [21]. In Corollary 4.8 we
found that the Bach tensor necessarily vanishes on the scale singularity set of AE 5-manifolds. Here we prove the analogue
of that result for higher odd dimensions. In the process of proving this we obtain an extension to Theorem 4.5.
For π : Q → Md a Riemannian conformal structure, let us use ρ to denote the R+ action on Q given by ρ(s)(x, gx) =

(x, s2gx). An ambient manifold is a smooth (d + 2)-manifold M̃ endowed with a free R+–action ρ and an R+–equivariant
embedding i : Q→ M̃ . We write X ∈ Γ (TM̃) for the fundamental field generating the R+–action. That is, for f ∈ C∞(M̃)
and u ∈ M̃ , we have X f (u) = (d/dt)f (ρ(et)u)|t=0. For an ambient manifold M̃ , an ambient metric is a pseudo–Riemannian
metric h of signature (d + 1, 1) on M̃ satisfying the conditions: (i) LXh = 2h, where LX denotes the Lie derivative by X ;
(ii) for u = (x, gx) ∈ Q and ξ, η ∈ TuQ, we have h(i∗ξ, i∗η) = gx(π∗ξ, π∗η). In [21] (and see [22]) Fefferman and Graham
considered formally the Gursat problem of obtaining Ric(h) = 0. They proved that for the case of d = 2 and d ≥ 3 odd this
may be achieved to all orders, while for d ≥ 4 even the problem is obstructed at finite order by the tensor Bab; for d even
one may obtain Ric(h) = 0 up to the addition of terms vanishing to order d/2− 1. (See [22] for the statements concerning
uniqueness. For extracting results via tractors we do not need this, as discussed in e.g. [31,32].) We shall henceforth call any
(approximately or otherwise) Ricci-flat ambient metric a Fefferman–Graham metric.
Since an AE manifold (Md, [g], I) has, by definition, a conformal structure we may construct the Fefferman–Graham

metric, as for any conformal manifold. We have already exploited this in the proof of Theorem 4.7. On the other hand if
S(I) < 0 and the scale singularity setΣ is non-empty then, as discussed in Section 4, this embedded n-manifold (n = d−1)
has induced on it a conformal structure (Σ, [gΣ ]). We may ask how the Fefferman–Graham metric for (Σ, [gΣ ]) is related
to the Fefferman–Grahammetric for (Md, [g]). In Theorem 6.3 below for n even (so d = n+ 1 odd) we show that (Σ, [gΣ ])
admits a Fefferman–Graham which is Ricci-flat to all orders. Thus we obtain the following.

Theorem 6.1. Suppose that (Σn, [gΣ ]) is the scale singularity space of a scalar negative almost Einstein manifold, then the
Fefferman–Graham tensor of (Σn, [gΣ ]) is zero.

Using Theorem 1.2, this result also follows from [22, Theorem 4.8] or [41, Theorem 2.1]. The proof here follows a rather
different tack.
In the subsequent discussion of ambient metrics all results can be assumed to hold formally to all orders unless stated

otherwise. We typically use bold symbols or tilde symbols for the objects on M̃ . For example∇ is the Levi-Civita connection
on M̃ . It is assumed the reader is somewhat familiar with treatments of Fefferman–Grahammetrics. In particular, as used in
the proof of Theorem 4.7, we use that suitably homogeneous tensor fields of M̃|Q correspond to tractor fields. The notation
and approach here follows that in [42,31,40].

Lemma 6.2. Let (Md, [g], I) be an AE manifold with d ≥ 3 odd. There is a parallel 1-form field I on M̃ such that I|Q is the
homogeneous (of weight 0) section of T ∗M̃|Q corresponding to I.

Proof. Let σ := h(X, I), as usual. This corresponds to a function onQ homogeneous of degree 1. Since d is odd, this may be
extended ‘‘harmonically’’ to all orders (e.g. [47]). That is there is a smooth homogeneous degree 1 function σ on M̃ such that
∆σ = 0 and σ|Q is the homogeneous function corresponding to the conformal density σ .
The operator D̃A = (d+ 2w− 2)∇A+XA∆, on M̃ , corresponds to the tractor-D operator D [31,32]. This acts tangentially

alongQ in the sense of [42] and [40]. Define IA := ∇Aσ =
1
d D̃Aσ. This has the required properties. Obviously I|Q corresponds

to IA = 1
dDAσ . (Recall on a density σ of weight 1,

1
dDAσ = Dσ .) Now note that ∆IB = ∆∇Bσ = ∇B∆σ = 0, to all orders,

as the FG metric is Ricci-flat to all orders. Now DAIB = 0 on M , and so D̃AIB|Q = 0. Using the previous result we conclude
((d − 2)∇AIB)|Q = 0. Now by induction we get that IA is parallel to all orders: Suppose that ∇A2 · · ·∇Ai+1 IB|Q = 0 for
i = 1, . . . , k then, since D̃ acts tangentially, we get

D̃A1∇A2 · · ·∇Ak+1 IB|Q = 0.

Thus, alongQ,

(d− 2k− 2)∇A1∇A2 · · ·∇Ak+1 IB + XA1∆∇A2 · · ·∇Ak+1 IB = 0.
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To study the second term we may commute the Laplacian∆ to the right of the∇’s with free indices. We see then that this
entire term drops out as ∆I vanishes to all orders while the other terms pick up curvature and hence involve at most k
derivatives of I (and so exit by the inductive hypothesis). On the other hand, since d is odd, (d− 2k− 2) 6= 0. �

Using this we obtain the key result.

Theorem 6.3. Let (Md, [g], I) be a scalar negative AE manifold with d ≥ 3 odd andΣ 6= ∅. Write I for the parallel 1-form field
on M̃ corresponding (as in the Lemma above) to I. Write Σ for the hypersurface given as the zero set of σ := h(X, I). This has
a metric h6 induced from h, it is totally geodesic, and (6, h6) is a Fefferman–Graham metric for (Σ, [gΣ ]), which is formally
smooth and Ricci-flat to all orders.

Proof. First some observations. Since dσ 6= 0, (and in particular this holds along 6) it is clear that 6 is a smooth hypersur-
face, and its intersection with Q is the inverse image of Σ with respect to the standard map Q → M . Since the conformal
structure [gΣ ] of Σ is induced from the conformal structure of the ambient space (M, [g]) it follows easily that, when re-
stricted to the tangents of this intersection, h6 agrees with the tautological 2-form (which we have since the intersection of
6withQ is naturally identified with the bundle of metrics in the conformal class over (Σ, [gΣ ])).
Since σ is homogeneous of degree 1 we have LXσ = σ and so along 6 the field X is everywhere tangent to 6. Clearly

LXh6 = 2h6 from the analogous property for h.
Since dσ is parallel h−1(dσ, dσ) is constant and agrees with |I|2 > 0. In particular, along 6, N := dσ gives a parallel

conormal field for 6, of non-zero pointwise length. So 6 is totally geodesic.
Once again using that dσ is parallel we have that RABCDNC = 0 along 6. It follows that the intrinsic Ricci curvature Ric6

agrees with the tangential restriction of the ambient Ricci curvature. But the latter is everywhere zero to all orders, and
therefore so is Ric6. �

Corollary 6.4. If (Md, [g], I) is a scalar negative AE structure with d ≥ 6 and a non-empty scale singularity space Σ , then
(d− 5)W |Σ = (d− 4)WΣ .

In the Corollary we view, by trivial extension,WΣ as a section of⊗4 T .

Proof. If d ≥ 7 is odd then this is immediate from the proof above. Since6 is totally geodesic andN annihilates the curvature
R of the Fefferman–Grahammetrich, it follows that along6wehaveR = R6 (using a trivial extension to viewR6 as a section
of⊗T ∗M̃). But, as used in Section 4.4, (d−4)R|Q is the ambient tensor field equivalent to the tractorW ; (n−4)R6 similarly
corresponds toWΣ .
If d ≥ 6 is even it is straightforward to verify that the results in Lemma 6.2 and in Theorem 6.3 hold to sufficient order

to obtain the result here. �

In some sense the Corollary applies to all dimensions d ≥ 3 except for d = 4 as follows. When d = 5 since [gΣ ] is Bach-flat
we haveWΣ

= 0. HoweverW |Σ gives a tractor field equivalent to RΣ . For d = 3 AE manifolds both R and R6 are zero.
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