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a b s t r a c t

In this paper we find minimal faithful representations of several classes of filiform Lie
algebras by means of strictly upper-triangular matrices. We investigate Leibniz algebras
whose corresponding Lie algebras L/I are filiform Lie algebras such that the action
I × L/I → I gives rise to a minimal faithful representation of a filiform Lie algebra,
where I is the ideal generated by the squares of the elements of the algebra L. The
classification up to isomorphism of such Leibniz algebras is given for low-dimensional
cases.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

According to Ado’s Theorem, given any finite-dimensional complex Lie algebra g, there exists a matrix algebra
isomorphic to g. In this way, every finite-dimensional complex Lie algebra can be represented as a Lie subalgebra of
the complex general linear algebra gl(n,C), formed by all the complex n × n matrices, for some n ∈ N. We consider the
following integer valued invariant of g:

µ(g) = min{dim(M) | M is a faithful g-module}

It follows from the proof of Ado’s Theorem that µ(g) can be bounded by a function depending on only n. This value is
also equal to the minimal value n such that gl(n,C) contains a subalgebra isomorphic to g.

Given a Lie algebra g, a representation of g in Cn is a homomorphism of Lie algebras f : g → gl(Cn) = gl(n,C). The
natural integer n is called dimension (or degree) of this representation. We consider faithful representations because such
representations allow us to identify a given Lie algebra with its image under the representation, which is a Lie subalgebra
of gl(n,C). Representations can be also defined by using arbitrary n-dimensional vector spaces V (see [10]). In such a case,
a representation would be a homomorphism of Lie algebras from g to the Lie algebra of endomorphisms of the vector
space V , gl(V ), which is called a g-module. However, it is sufficient to consider representations on Cn because there always
exists a unique n ∈ N such that V is isomorphic to Cn.
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Many works are devoted to finding the value µ(g) of several finite-dimensional Lie algebras. In [6], the value of µ(g)
for abelian Lie algebras and Heisenberg algebras is found and, additionally, the estimated value of µ(g) for filiform Lie
algebras is given. In the works [4,8,11] the authors find a matrix representation of some low-dimensional Lie algebras.

In the paper [8] a minimal faithful representation of the filiform Lie algebra Ln is shown. Let gn be the nilpotent matrix
algebra of n × n strictly upper-triangular matrices. In [8] the authors introduce

µ(g) = min{n ∈ N | there exists a subalgebra of gn isomorphic to g},

and prove the next proposition.

Proposition 1 ([8]). Let g be an n-dimensional filiform Lie algebra. Then µ(g) ≥ n.

Leibniz algebras are a non-antisymmetric generalization of Lie algebras, and they were introduced in 1965 by Bloh
in [5], who called them D-algebras. In 1993 Loday [13] rediscover these algebras called them Leibniz algebras.

An algebra (L, [−,−]) over a field F is called a Leibniz algebra if for any x, y, z ∈ L, the so-called Leibniz identity[
[x, y], z

]
=

[
[x, z], y

]
+

[
x, [y, z]

]
holds.

One of the methods of classification of Leibniz algebras is the study of those with given corresponding Lie algebras.
In the papers [2,7,15,16], Leibniz algebras whose corresponding Lie algebras are naturally graded filiform Lie algebras Ln,
Heisenberg algebras, simple Lie sl2 and Diamond Lie algebras are studied. Let L be a Leibniz algebra. The ideal I generated
by the squares of elements of the algebra L, that is ⟨{[x, x] | x ∈ L}⟩, plays an important role in the theory since it
determines the (possible) non-Lie character of L. Observe that we can write L = (L/I)⊕ I as a direct sum of vector spaces.
From the Leibniz identity, it is easy to see that this ideal belongs to the right annihilator of L, that is

[L, I] = 0.

Clearly, the quotient algebra L/I is a Lie algebra, called the corresponding Lie algebra of L.
The map I × (L/I) → I defined as (v, x) ↦→ [v, x], v ∈ I, x ∈ L, endows I with a structure of right (L/I)-module. If

we consider the direct sum of vector spaces (L/I) ⊕ I , then the structure of right (L/I)-module defines a Leibniz algebra
structure on (L/I)⊕ I , known as the hemisemidirect product of L/I with I (see [1] or [12]), with the following multiplication

[x + v, y + w] := [x, y] + [v, y], that is,

[x, y] = [x, y], [v, x] = [v, x], [x, v] = 0, [v,w] = 0, x, y ∈ L, v, w ∈ I.

Therefore, given a Lie algebra g and a g-module V , we can construct a Leibniz algebra (g, V ) by the above construction,
and so, the principal question appearing in this relation is the description of the Leibniz algebras L, such that the associated
Leibniz algebra (L/I) ⊕ I is isomorphic to an earlier given Leibniz algebra (g, V ).

The theory of representations of Leibniz algebras was introduced in [14]. Let L be a Leibniz algebra and V a vector
space over the field F. A representation of the Leibniz algebra L on the vector space V is a pair (λ, ρ) of linear maps
λ, ρ: L → gl(V ) satisfying the following properties:

ρ[x,y] = ρyρx − ρxρy,

λ[x,y] = ρyλx − λxρy,

λ[x,y] = ρyλx + λxλy, for all x, y ∈ L, where λx = λ(x) and ρx = ρ(x).

If g is a Lie algebra, then its Lie representation ϕ: g → gl(V ) becomes a Leibniz representation with λ = ϕ and ρ = −ϕ,
or also by taking λ = 0 and ρ = −ϕ.

Notice that the concepts of representations of Lie algebras and Leibniz algebras are different. Ado’s theorem on the
existence of faithful representations is a relevant theorem in the theory of Lie algebras. The analogous in the case of Leibniz
algebras was proved in [3] in an easier way and gives a stronger result. That is because the kernel of the Leibniz algebra
representation is the intersection of the kernels of λ and ρ, ker(λ, ρ) := ker λ ∩ ker ρ = {x ∈ L | λx = 0 = ρx}, which
are in general different, in contrast to the representations of Lie algebras, where these kernels are the same. Therefore,
a faithful representation of Leibniz algebras can be obtained more easily than a faithful representation in the case of Lie
algebras. The representation theories of Leibniz algebras and their corresponding Lie algebras are very related. In fact,
in [9] the authors use representations of the Lie algebra L/I to construct representations of the Leibniz algebra L.

The paper is devoted to finding minimal representations of some classes of filiform Lie algebras of dimension n.
Specifically, in Section 2 we find minimal faithful representations of the filiform Lie algebras Q2n,Rn and Wn. Finally, in
Section 3 we construct Leibniz algebras with corresponding Lie algebras Q6,R7 and W5, by using obtained representations
of these algebras.
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2. Minimal representation of filiform Lie algebras

Now we recall the definitions of nilpotent and filiform Lie algebras.
For a Lie algebra L consider the following lower central series:

L1 = L, Lk+1
= [L1, Lk], k ≥ 1.

Definition 2. A Lie algebra L is called nilpotent if there exists s ∈ N such that Ls = 0.

The smallest number s is called the index of nilpotency or nilindex of L. The index of nilpotency of an n-dimensional Lie
algebra is at most n. Among the nilpotent Leibniz algebras, we distinguish the filiform algebras (nilindex n).

Definition 3. An n-dimensional Lie algebra L is said to be filiform if dim Li = n − i, 2 ≤ i ≤ n.

We list some classes of n-dimensional filiform Lie algebras with basis {e1, . . . , en}.

1. Let Ln be the Lie algebra whose brackets in the basis are defined by

[e1, ei] = −[ei, e1] = ei+1, 2 ≤ i ≤ n − 1.

2. Let Q2s (n = 2s) be the Lie algebra defined by

[e1, ei] = −[ei, e1] = ei+1, 2 ≤ i ≤ 2s − 2,
[e2s+1−i, ei] = −[ei, e2s+1−i] = (−1)i e2s, 2 ≤ i ≤ s.

3. Let Rn be the Lie algebra defined by

[e1, ei] = −[ei, e1] = ei+1, 2 ≤ i ≤ n − 1,
[e2, ei] = −[ei, e2] = ei+2, 3 ≤ i ≤ n − 2.

4. Let Wn be the Lie algebra defined by

[ei, ej] = −[ej, ei] = (j − i)ei+j, i + j ≤ n.

Notice that the algebras Ln and Q2n are naturally graded model filiform Lie algebras. The algebra Wn is the finite-
dimensional Witt algebra.

Proposition 4. A minimal faithful representation of the algebra Q2n is

a1e1 + a2e2 + · · · + a2ne2n ↦−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a2 −a3 . . . a2n−2 −a2n−1 −2a2n
0 0 a1 . . . 0 0 a2n−1
0 0 0 . . . 0 0 a2n−2
...

...
...

. . .
...

...
...

0 0 0 . . . 0 a1 a3
0 0 0 . . . 0 0 a2
0 0 0 . . . 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. Consider the linear map ϕ:Q2n → gl(2n,C) given by

ϕ(e1) =

2n−2∑
k=2

Ek,k+1, ϕ(ei) = (−1)iE1,i + E2n−i+1,2n 2 ≤ i ≤ 2n − 1, ϕ(e2n) = −2E1,2n,

where Ei,j is the matrix with (i, j)th entry equal to 1 and all others zero.
By checking that [ϕ(ei), ϕ(ej)] = ϕ(ei)ϕ(ej) − ϕ(ej)ϕ(ei) for all 1 ≤ i, j ≤ 2n, we verify that ϕ is an injective

homomorphism of Lie algebras. Then by Proposition 1 we obtain that it is minimal. □

Let us denote by V = C2n the natural ϕ(Q2n)-module and endow it with a Q2n-module structure V × Q2n → V , given
by

(x, e) := xϕ(e),

where x ∈ V and e ∈ Q2n.
Then we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

(xi, e1) = xi+1, 2 ≤ i ≤ 2n − 2,

(x1, ei) = (−1)ixi, 2 ≤ i ≤ 2n − 1,
(x2n+1−i, ei) = x2n, 2 ≤ i ≤ 2n − 1,

(x1, e2n) = −2x2n,

(1)

and the remaining products are zero.
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Proposition 5. A minimal faithful representation of the algebra Rn is

a1e1 + a2e2 + · · · + anen ↦−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 a2 0 . . . 0 0 0 an
0 0 a1 a2 . . . 0 0 0 an−1
0 0 0 a1 . . . 0 0 0 an−2
0 0 0 0 . . . 0 0 0 an−3
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 a1 a2 a4
0 0 0 0 . . . 0 0 a1 a3
0 0 0 0 . . . 0 0 0 a2
0 0 0 0 . . . 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. We take the linear map ψ:Rn → gl(n,C) given by

ψ(e1) =

n−2∑
i=1

Ei,i+1, ψ(e2) =

n−3∑
i=1

Ei,i+2 + En−1,n, ψ(ei) = En+1−i,n, 3 ≤ i ≤ n.

By checking that [ψ(ei), ψ(ej)] = ψ(ei)ψ(ej) − ψ(ej)ψ(ei) for all 1 ≤ i, j ≤ n, we verify that ψ is an injective
homomorphism of Lie algebras. Then by Proposition 1 we obtain that it is minimal. □

Now, we construct a Rn-module structure V = Cn, V × Rn → V , given by

(x, e) := xϕ(e),

where x ∈ V and e ∈ Rn.
Then we obtain⎧⎨⎩

(xi, e1) = xi+1, 1 ≤ i ≤ n − 2,
(xi, e2) = xi+2, 1 ≤ i ≤ n − 3,

(xn+1−j, ej) = xn, 2 ≤ j ≤ n,

and the remaining products in the action being zero.
Denote by Cn

m =
(m
n

)
the binomial coefficient.

Proposition 6. A minimal faithful representation of the algebra Wn is given by ϕ:Wn → gl(n,C), where

ϕ(e1) =

n−2∑
k=1

Ek,k+1, ϕ(e2) =

n−3∑
k=1

1
n − k

Ek,k+2 + En−1,n,

ϕ(ei) =
1

(i − 2)!

(n−i−1∑
k=1

( i−2∑
s=0

(−1)i+sC s
i−2

n − k − s

)
Ek,k+i + En+1−i,n

)
, 3 ≤ i ≤ n.

Proof. We take the injective homomorphism ϕ:Wn → gl(n,C) such that

ϕ(e1) =

n−2∑
k=1

Ek,k+1, ϕ(e2) =

n−3∑
s=1

αsEs,s+2 + En−1,n.

Now we consider

ϕ(e3) = [ϕ(e1), ϕ(e2)] = ϕ(e1)ϕ(e2) − ϕ(e2)ϕ(e1)

=
(n−2∑
k=1

Ek,k+1
) (n−3∑

s=1

αsEs,s+2 + En−1,n
)
−

(n−3∑
s=1

αsEs,s+2 + En−1,n
) (n−2∑

k=1

Ek,k+1
)

=

n−4∑
k=1

(αk+1 − αk)Ek,k+3 + En−2,n,

Let us prove the following equality:

ϕ(ei) =
1

(i − 2)!

(n−i−1∑
p=1

( i−2∑
s=0

(−1)i+sC s
i−2αp+s

)
Ep,p+i + En+1−i,n

)
, 3 ≤ i ≤ n.
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We suppose that the above equality is true for k and let us prove it for k + 1.

ϕ(ek+1) =
1

k − 1
[ϕ(e1), ϕ(ek)] =

1
k − 1

(
ϕ(e1)ϕ(ek) − ϕ(ek)ϕ(e1)

)
=

1
k − 1

( 1
(k − 2)!

(n−2∑
t=1

Et,t+1
)(n−k−1∑

p=1

( k−2∑
s=0

(−1)k+sC s
k−2αp+s

)
Ep,p+k + En+1−k,n

)
−

1
(k − 2)!

(n−k−1∑
p=1

( k−2∑
s=0

(−1)k+sC s
k−2αp+s

)
Ep,p+k + En+1−k,n

)(n−2∑
t=1

Et,t+1
) )

=
1

(k − 1)!

(n−k−2∑
p=1

( k−2∑
s=0

(−1)k+sC s
k−2(αp+s+1 − αp+s)

)
Ep,p+k+1 + En−k,n

)

=
1

(k − 1)!

(n−k−2∑
p=1

( k−1∑
s=0

(−1)k+s+1C s
k−1αp+s

)
Ep,p+k+1 + En−k,n

)
.

By using the multiplications, where i + j ≤ n, we get

[ϕ(ei), ϕ(ej)] = ϕ(ei)ϕ(ej) − ϕ(ej)ϕ(ei)

=
1

(i − 2)! (j − 2)!

( (n−i−1∑
p=1

( i−2∑
s=0

(−1)i+sC s
i−2αp+s

)
Ep,p+i + En+1−i,n

)
(n−j−1∑

q=1

( j−2∑
r=0

(−1)j+rC r
j−2αq+r

)
Eq,q+j + En+1−j,n

)

−

(n−j−1∑
q=1

( j−2∑
r=0

(−1)j+rC r
j−2αq+r

)
Eq,q+j + En+1−j,n

)
(n−i−1∑

p=1

( i−2∑
s=0

(−1)i+sC s
i−2αp+s

)
Ep,p+i + En+1−i,n

) )

=
1

(i − 2)! (j − 2)!

( n−i−j−1∑
p=1

( ( i−2∑
s=0

(−1)i+sC s
i−2αp+s

)( j−2∑
r=0

(−1)j+rC r
j−2αp+i+r

)
−

( j−2∑
r=0

(−1)j+rC r
j−2αp+r

)( i−2∑
s=0

(−1)i+sC s
i−2αp+j+s

) )
Ep,p+i+j

+

( i−2∑
s=0

(−1)i+sC s
i−2αn+s+1−i−j −

j−2∑
r=0

(−1)j+rC r
j−2αn+r+1−i−j

)
En+1−i−j,n

)
.

On the other hand

[ϕ(ei), ϕ(ej)] = (j − i)ϕ(ei+j)

=
(j − i)

(i + j − 2)!

(n−i−j−1∑
p=1

(i+j−2∑
s=0

(−1)i+j+sC s
i+j−2αp+s

)
Ep,p+i+j + En+1−i−j,n

)
.

Next, we have the following system of equations

( i−2∑
s=0

(−1)i+sC s
i−2αp+s

)( j−2∑
r=0

(−1)j+rC r
j−2αp+i+r

)
−

( j−2∑
r=0

(−1)j+rC r
j−2αp+r

)
( i−2∑
s=0

(−1)i+sC s
i−2αp+j+s

)
+

(i − j)(i − 2)! (j − 2)!
(i + j − 2)!

i+j−2∑
s=0

(−1)i+j+sC s
i+j−2αp+s = 0,

(2)

where 1 ≤ p ≤ n − i − j − 1, i + j ≤ n − 2.
j−2∑
r=0

(−1)j+rC r
j−2αn+r+1−i−j −

i−2∑
s=0

(−1)i+sC s
i−2αn+s+1−i−j =

(i − j)(i − 2)! (j − 2)!
(i + j − 2)!

, i + j ≤ n. (3)
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One of the solutions of the system of Eqs. (2) and (3) is

αi =
1

n − i
, 1 ≤ i ≤ n − 3.

Now we check it by using the next property of binomial coefficients
m∑

k=0

(−1)kCk
m

x + k
=

m!

x(x + 1) · · · (x + m)
, x /∈ {0,−1, . . . ,−m}. (4)

By putting all values of αi in the system (2)–(3), and by using the property (4), we get

(i − 2)!
(n − i − p + 2)(n − i − p + 3) · · · (n − p)

·
(j − 2)!

(n − i − j − p + 2)(n − i − j − p + 3) · · · (n − i − p)

−
(j − 2)!

(n − j − p + 2)(n − j − p + 3) · · · (n − p)
·

(i − 2)!
(n − i − j − p + 2)(n − i − j − p + 3) · · · (n − j − p)

+
(i − j)(i − 2)! (j − 2)!

(n − i − j − p + 2)(n − i − j − p + 3) · · · (n − p)
= 0, 1 ≤ p ≤ n − i − j − 1, i + j ≤ n − 2,

and
(j − 2)!

(i + 1)(i + 2) · · · (i + j − 1)
−

(i − 2)!
(j + 1)(j + 2) · · · (i + j − 1)

=
(i − j)(i − 2)! (j − 2)!

(i + j − 2)!
, i + j ≤ n.

So, the values of αi satisfy the system of equations (2)–(3).
By Proposition 1 we get that this representation is minimal. □

Now, we construct a Wn-module structure V = Cn, V × Wn → V , given by

(x, e) := xϕ(e),

where x ∈ V and e ∈ Wn.
Then we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xi, e1) = xi+1, 1 ≤ i ≤ n − 2,

(xi, e2) =
1

n − i
xi+2, 1 ≤ i ≤ n − 3,

(xi, ej) =
1

(j − 2)!

j−2∑
s=0

(−1)j+sC s
j−2

n − i − s
xi+j, 3 ≤ j ≤ n − 2, 1 ≤ i ≤ n − j − 1,

(xn+1−j, ej) =
1

(j − 2)!
xn, 2 ≤ j ≤ n,

and the remaining products in the action are zero.

3. Leibniz algebras constructed by minimal faithful representations of Lie algebra

Now we investigate Leibniz algebras L such that L/I ∼= Q2n and I = V as a Q2n-module.
Further we define the multiplications [ei, ej] for 1 ≤ i, j ≤ 2n. We put

[ei, ej] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei+1 +

2n∑
k=1

αk
i,1xk, i = 1, 2 ≤ j ≤ 2n − 2,

−ej+1 +

2n∑
k=1

αk
1,jxk, j = 1, 2 ≤ i ≤ 2n − 2,

(−1)ie2n +

2n∑
k=1

αk
i,jxk, i = 2n − j + 1, 2 ≤ j ≤ n,

(−1)i+1e2n +

2n∑
k=1

αk
i,jxk, j = 2n − i + 1, 2 ≤ i ≤ n,

2n∑
k=1

αk
i,jxk, otherwise.

(5)
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In the multiplication table (5), by taking the basis transformation

e′

1 = e1 −

2n−2∑
k=2

αk+1
1,1 xk − (α2n

1,2 + α2n
2,1)x2n−1, e′

2 = e2 −

2n−2∑
k=2

(αk+1
1,2 + αk+1

2,1 )xk,

e′

i = [e′

1, e
′

i−1], 3 ≤ i ≤ 2n − 1, e′

2n = [e′

2n−1, e
′

2],

we obtain
[e1, e1] = α1

1,1x1 + α2
1,1x2 + α2n

1,1x2n, [e2, e1] = −e3 + α1
2,1x1 + α2

2,1x2,
[e1, ei] = ei+1, 2 ≤ i ≤ 2n − 2, [e2n−1, e2] = e2n.

(6)

There are difficulties to classify the general case, therefore we classify low-dimensional Leibniz algebras of such type.
It is well known that Q2 is abelian and L4 ∼= Q4, therefore we start by classifying Leibniz algebras such that L/I ∼= Q6.

By using the multiplications (1)–(6), and by checking Leibniz identity, we get the following family of algebras denoted
by λ(α1, α2, α3, α4, α5, α6, α7, α8, α9):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = α1x6, [e1, e3] = e4, [x1, e6] = −2x6,

[e3, e1] = −e4, [e5, e3] =
1
4
α3x6, [e2, e1] = −e3 + α2x1 + α3x2,

[e4, e1] = −e5, [x1, e3] = −x3, [e2, e2] = α5x3 + α7x4 + α8x5,
[e5, e1] = −α4x6, [x4, e3] = x6, [e3, e2] = 4α2x2 − α6x3 − 2α7x5 − α9x6,

[e6, e1] = −
1
4
α3x6, [e1, e4] = e5, [e4, e2] = −2α2x3 +

1
2
α6x4,

[x2, e1] = x3, [e3, e4] = e6, [e2, e3] = −3α2x2 + α6x3 − α5x4 + α7x5 + α9x6,

[x3, e1] = x4, [x1, e4] = x4, [e3, e3] = −2α2x3 +
1
2
α6x4,

[x4, e1] = x5, [x3, e4] = x6, [e4, e3] = −e6 + 2α2x4 −
1
2
α6x5,

[e1, e2] = e3, [e1, e5] = α4x6, [e2, e4] = 4α2x3 −
3
2
α6x4 + α5x5,

[e5, e2] = e6, [x1, e5] = −x5, [e4, e4] = −2α2x5 −
1
2
α3x6,

[e6, e2] = −α6x6, [x2, e5] = x6, [e2, e5] = −e6 − 3α2x4 +
3
2
α6x5,

[x1, e2] = x2, [e2, e6] =
5
2
α6x6, [e3, e5] = 2α2x5 +

3
4
α3x6,

[x5, e2] = x6, [e3, e6] = −2α2x6, [e1, e6] = −2α2x5 −
3
4
α3x6.

Theorem 7. Let L be a 12-dimensional Leibniz algebra such that L/I ∼= Q6 and I a natural L/I-module with a minimal faithful
representation. Then L is isomorphic to one of the pairwise non-isomorphic algebras given in Appendix A.

Proof. Let L(α) := L be the 12-dimensional Leibniz algebra given by λ(α1, α2, α3, α4, α5, α6, α7, α8, α9). Let ϕ: L(α) → L(α′)
be the isomorphism of Leibniz algebras:

ϕ(e1) =

6∑
k=1

Akek +

6∑
k=1

Bkxk, ϕ(e2) =

6∑
k=1

Pkek +

6∑
k=1

Qkxk, ϕ(x1) =

6∑
k=1

Mkek +

6∑
k=1

Rkxk,

and the other elements of the new basis are obtained as products of the above elements.
Then, we obtain the following restrictions:

A1P2R4 ̸= 0, A2 = B1 = P1 = Mi = 0, 1 ≤ i ≤ 6,

A6 =
−A2

4 + 2A3A5

2A1
, P4 =

P2
3

2P2
, R2 =

A3R1

A1
, R3 = −

A4R1

A1
, R4 =

A5R1

A1
,

B2 =
2A2

3α2

A1
, B3 =

−4α2A3A4 − α6A2
3

2A1
, B4 =

2α2A2
4 + α6A3A4

2A1
,

B5 =
4α2P2

2 (A
2
1R6 − A4A5R1 − A1A3R5) − α6A2

4P
2
2R1 − 4A2

3α7P2
2R1

4A1P2
2R1

+
α3(4A1A5P2P3R1 − 2A1A4P2

3R1 + 4A1A3P2P5R1 − 4A2
1P2P6R1 + 4A2

1P
2
2R5)

4A1P2
2R1

,
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Q1 = −α2P3, Q2 =
3α2(A3P3 − A4P2) − α3A1P3

A1
,

Q3 =
2α2(4A5P2

2 − A4P2P3 − A3P2
3 ) + α3A1P2

3 + 2α5A3P2
2 + 2α6(A4P2

2 − 2A3P2P3)
2A1P2

Q4 =
α2(2A4P2

3R1 + A1P2
2R5 − 3A5P2P3R1 + 2A1P2P6R1 − 2A3P2P5R1)

A1P2R1

+
−4α3A1P2P5 − 4α5A4P2

2 + α6(A3P2
3 − 6A5P2

2 + 2A4P2P3) + 4α7A3P2
2

4A1P2
,

Q5 =
α2(A5P2

2P
2
3R1 − A4P2P3

3R1 + 2A3P2
2P3P5R1 − 2A1P2

2P3P6R1 − A1P3
2P3R5)

A1P3
2R1

+
8α5A5P4

2R1 + α6(12A3P3
2P5R1 − 8A4P2

2P
2
3R1 − 12A1P3

2P6R1 + 12A5P3
2P3R1)

8A1P3
2R1

+
α3A1(P2

2P3P5 − P4
3 ) + α7(A4P4

2 − 2A3P3
2P3) + α8A3P4

2

A1P3
2

,

and parameters

α′

1 =
α1

A1P2
2R1

, α′

2 =
α2A1P2

R1
, α′

3 =
α3A1

R1
, α′

4 =
α4A1

P2R1
, α′

5 =
α5P2
A1R1

, α′

6 =
α6P2
R1

,

α′

7 =
2α7P3

2 + α2(P3
3 − 6P2

2P5)
2A2

1P
2
2R1

, α′

8 =
4α8P3

2 − α6(P3
3 − 6P2

2P5)
4A3

1P
2
2R1

,

α′

9 =
α9

A2
1R1

+
2α2(2A5P2

2P3R1 − A4P2P2
3R1 − 2A1P2

2P6R1 + 2A1P3
2R5 + 2A3P2

2P5R1)
A3
1P

3
2R

2
1

+
α3(P3

3 − 6P2
2P5)

8A2
1P

3
2R1

Considering all the possible cases, we obtain the families of the algebras listed in the theorem. □

Now, we will give the classification of the Leibniz algebras L of lowest dimension in the other two types, L/I ∼= Wn
and L/I ∼= Rn. Taking into account that W1 ∼= R1 ∼= L1, W2 ∼= R2 ∼= L2 are abelian, and W3 ∼= R3 ∼= L3, W4 ∼= R4 ∼= L4,
W5 ∼= R5, W6 ∼= R6, we will study the cases L/I ∼= W5 and L/I ∼= R7. We denote the next families of algebras by
µ(γ1, γ2, γ3, γ4, γ5, γ6, γ7) and η(β1, β2, β3, β4):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = γ1x5, [e2, e1] = −e3, [e3, e1] = −2e4,

[e4, e1] = −3e5, [e5, e1] = −γ2x5, [e2, e4] =
1
2
(γ3x4 + γ2x5),

[x2, e1] = x3, [x3, e1] = x4, [e1, e2] = e3,

[x2, e2] =
1
3
x4, [x3, e3] = x5, [e4, e2] = −

1
2
γ2x5,

[e5, e2] = −γ5x5, [x1, e2] =
1
4
x3, [e2, e2] = γ3x2 + γ4x3 + γ6x4,

[x4, e2] = x5, [e1, e3] = 2e4, [e2, e3] = e5 − γ3x3 + γ4x4 + γ7x5,

[e4, e3] = 3γ5x5, [x1, e3] =
1
12

x4, [e3, e2] = −e5 − 2γ4x4 − γ7x5,

[e1, e4] = 3e5, [x1, e1] = x2, [e3, e4] = −3γ5x5,

[x2, e4] =
1
2
x5, [e1, e5] = γ2x5, [e2, e5] = γ5x5,

[x1, e5] =
1
6
x5.
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = β1x7, [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,
[e1, e5] = e6, [e1, e6] = e7, [e1, e7] = β2x7, [e2, e1] = −e3,
[e2, e2] = β3x4 + β4x6, [e2, e3] = e5 − β3x5, [e2, e4] = e6 + β3x6, [e2, e5] = e7,
[e2, e6] = β2x7, [e3, e1] = −e4, [e3, e2] = −e5, [e4, e1] = −e5,
[e4, e2] = −e6, [e5, e1] = −e6, [e5, e2] = −e7, [e6, e1] = −e7,
[e6, e2] = −β2x7, [e7, e1] = −β2x7, [x1, e1] = x2, [x1, e2] = x3,
[x1, e7] = x7, [x2, e1] = x3, [x2, e2] = x4, [x2, e6] = x7,
[x3, e1] = x4, [x3, e2] = x5, [x3, e5] = x7, [x4, e1] = x5,
[x4, e2] = x6, [x4, e4] = x7, [x5, e1] = x6, [x5, e3] = x7,
[x6, e2] = x7.

Theorem 8. Let L be a 10-dimensional Leibniz algebra such that L/I ∼= W5 and I a natural L/I-module with a minimal faithful
representation. Then L is isomorphic to one of the pairwise non-isomorphic algebras given in Appendix B.

Theorem 9. Let L be a 14-dimensional Leibniz algebra such that L/I ∼= R7 and I a natural L/I-module with a minimal faithful
representation. Then L is isomorphic to one of the following pairwise non-isomorphic algebras:

η(0, 0, 0, 0, 0), η(0, 0, 0, 1), η(0, 0, 1, 0), η(0, 1, 0, 1), η(0, 1, β3, 0)β3 ̸=0,

η(1, 0, 0, 0, 0), η(1, 0, 0, 1), η(1, 0, 1, 0), η(1, 1, 0, β4), η(1, 1, β3, 0)β3 ̸=0,

with β3, β4 ∈ C.

The proofs of Theorems 8 and 9 are carried out by applying similar arguments to those used in Theorem 7.
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Appendix A

λ(0,0,0,0,0,0,0,0,0) λ(0,0,0,0,0,0,0,0,1) λ(0,0,0,0,0,0,0,1,0) λ(0,0,0,1,1,1,α7,0,α9)
λ(0,0,0,0,0,0,1,0,0) λ(0,0,0,0,0,0,1,0,1) λ(0,0,0,0,0,0,1,1,0) λ(1,0,0,0,1,0,1,α8,α9)
λ(0,0,0,0,0,1,0,0,0) λ(0,0,0,0,0,1,0,0,1) λ(0,0,0,0,0,1,1,0,0) λ(1,0,1,0,1,0,α7,α8,0)
λ(0,0,0,0,1,0,0,0,0) λ(0,0,0,0,1,0,0,0,1) λ(0,0,0,0,1,0,0,1,0) λ(0,0,1,1,0,0,1,α8,0)
λ(0,0,0,0,0,0,0,1,1) λ(0,0,0,1,0,0,0,1,1) λ(0,0,0,0,1,1,α7,0,0) λ(0,0,0,0,1,1,α7,0,1)
λ(0,0,0,1,0,0,0,0,0) λ(0,0,0,1,0,0,0,0,1) λ(0,0,0,1,0,0,0,1,0) λ(0,0,0,0,1,0,1,α8,1)
λ(0,0,0,1,0,0,1,0,0) λ(0,0,0,1,0,0,1,0,1) λ(0,0,0,1,0,0,1,1,α9) λ(1,0,0,1,1,0,α7,α8,α9)
λ(0,0,0,1,0,1,0,0,1) λ(0,0,0,1,0,1,0,0,0) λ(0,0,0,1,1,0,0,0,0) λ(0,0,0,1,1,0,1,α8,α9)
λ(0,0,0,0,0,0,1,1,1) λ(0,0,0,1,1,0,0,0,1) λ(0,0,0,0,1,0,1,α8,0) λ(0,0,1,0,0,1,1,α8,0)
λ(0,0,1,0,0,0,0,1,0) λ(0,0,1,0,0,0,1,0,0) λ(0,0,1,0,0,0,1,1,0) λ(0,0,1,0,1,1,α7,α8,0)
λ(0,0,1,0,0,1,0,1,0) λ(0,0,1,0,0,0,0,0,0) λ(0,0,1,0,1,0,0,0,0) λ(0,0,1,1,0,1,α7,0,0)
λ(0,0,0,0,0,1,1,0,1) λ(0,0,1,0,0,1,0,0,0) λ(0,0,1,1,0,0,0,0,0) λ(1,0,1,1,α5,0,α7,α8,0)
λ(0,0,0,0,1,0,0,1,1) λ(0,0,1,0,1,0,0,1,0) λ(1,0,0,0,0,0,1,1,α9) λ(0,0,1,1,1,0,α7,α8,0)
λ(0,1,0,0,0,0,0,0,0) λ(0,1,0,0,0,0,0,1,0) λ(0,1,0,0,0,1,0,α8,0) λ(0,1,0,0,1,α6,0,α8,0)
λ(0,1,0,1,0,0,0,0,0) λ(0,1,0,1,0,0,0,1,0) λ(0,1,0,1,0,1,0,α8,0) λ(0,1,0,1,1,α6,0,α8,0)
λ(0,1,1,0,0,0,0,0,0) λ(0,1,1,0,0,0,0,1,0) λ(0,1,1,0,0,1,0,α8,0) λ(0,1,1,0,1,α6,0,α8,0)
λ(0,0,0,1,0,0,0,1,1) λ(1,0,0,0,0,0,0,0,0) λ(1,0,0,0,1,0,0,1,α9) λ(1,0,1,1,α5,α6,α7,0,0)
λ(1,0,0,0,0,0,0,1,1) λ(1,0,0,0,0,0,1,0,0) λ(1,0,1,0,0,1,α7,0,0) λ(0,0,1,1,1,α6,α7,0,0)α6 ̸=0
λ(1,0,0,0,0,1,0,0,0) λ(1,0,0,0,0,1,0,0,1) λ(1,0,0,0,0,1,1,0,α9) λ(1,1,0,1,α5,α6,0,α8,0)
λ(1,0,0,0,1,0,0,0,1) λ(0,0,1,1,0,0,0,1,0) λ(0,0,0,1,1,0,0,1,α9) λ(1,0,0,0,1,1,α7,0,α9)
λ(1,0,0,1,0,0,0,0,0) λ(1,0,0,1,0,0,0,0,1) λ(1,0,0,1,0,0,0,1,α9) λ(1,0,0,1,0,0,1,α8,α9)
λ(1,0,1,0,0,0,0,0,0) λ(1,0,1,0,0,0,0,1,0) λ(0,0,0,1,0,1,1,0,α9) λ(1,0,0,1,1,α6,α7,0,α9)α6 ̸=0
λ(1,0,0,0,1,0,0,0,0) λ(1,0,0,0,0,0,1,0,1) λ(0,0,1,0,1,0,1,α8,0) λ(1,0,1,0,1,α6,α7,0,0)α6 ̸=0
λ(1,0,0,0,0,0,0,1,0) λ(1,0,0,0,0,0,0,0,1) λ(1,1,0,0,0,1,0,α8,0) λ(1,1,0,0,1,α6,0,α8,0)
λ(1,1,0,0,0,0,0,0,0) λ(1,1,0,0,0,0,0,1,0) λ(1,0,1,0,0,0,1,α8,0) λ(1,1,1,α4,α5,α6,0,α8,0)

with α4, α5, α6, α7, α8, α9 ∈ C.
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Appendix B

µ(0,0,0,0,0,0,0) µ(0,0,1,0,1,0,0) µ(0,1,0,0,0,γ6,0) µ(0,0,1,1,γ5,0,0)γ5 ̸=0
µ(0,0,0,0,0,0,1) µ(1,0,0,0,0,0,0) µ(1,0,0,0,1,γ6,0) µ(0,1,0,1,γ5,γ6,0)γ5 ̸=0
µ(0,0,0,0,0,1,0) µ(1,0,0,0,0,0,1) µ(0,1,0,1,0,γ6,γ7) µ(0,1,1,γ4,γ5,0,0)γ5 ̸=0
µ(0,0,0,0,0,1,1) µ(0,0,0,1,0,1,γ7) µ(1,0,0,1,0,γ6,γ7) µ(1,0,0,1,γ5,γ6,0)γ5 ̸=0
µ(0,0,0,0,1,0,0) µ(0,0,0,1,γ5,1,0) µ(1,0,1,γ4,0,0,γ7) µ(1,0,1,γ4,γ5,0,0)γ5 ̸=0
µ(0,0,0,0,1,1,0) µ(0,0,1,1,0,0,γ7) µ(0,1,1,γ4,0,0,γ7) µ(1,1,0,γ4,γ5,γ6,0)γ5 ̸=0
µ(0,0,0,1,0,0,1) µ(0,1,0,0,0,γ6,1) µ(1,1,0,γ4,0,γ6,γ7) µ(1,1,γ3,γ4,0,0,γ7)γ3 ̸=0
µ(0,0,1,0,0,0,0) µ(1,0,0,0,0,1,γ7) µ(0,0,0,1,γ5,0,0)γ5 ̸=0 µ(1,1,γ3,γ4,γ5,0,0)γ3 ̸=0,γ5 ̸=0
µ(0,0,1,0,0,0,1) µ(0,1,0,0,1,γ6,0)

with γ3, γ4, γ5, γ6, γ7 ∈ C.
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