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In the two papers of this series, we initiate the development of a new approach to 
implementing the concept of symmetry in classical field theory, based on replacing Lie 
groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools 
to describe local symmetries when gauge transformations are combined with space-time 
transformations.
In this second part, we shall adapt the formalism developed in the first paper to the 
context of gauge theories and deal with minimal coupling and Utiyama’s theorem.
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1. Introduction

In the first paper of this series [2], we have initiated an investigation of how to handle symmetries – or more precisely, 
local symmetries – in classical field theories using the language of Lie groupoids and their actions. However, the formalism 
developed there is perhaps a bit too general because it allows us to leave the nature of the underlying Lie groupoids and 
their actions completely unspecified, whereas there can be no doubt that the motivation for the entire program comes 
predominantly from one single (class of) example(s), namely, gauge theories. Spelling out the details for this case is the 
main goal of the present paper and is necessary not only because it provides us with a class of examples whose importance 
can hardly be overestimated but also because it leads to a substantial clarification of the general structure of the theory. 
Moreover, the results will generalize those of earlier work [4] by extending them from internal symmetries to space-time 
symmetries.

Let us begin with a few comments on the already traditional geometric formulation of gauge theories (as classical field 
theories) over a general space-time manifold M; more details can be found in textbooks such as [1,3,5]. The basic input data 
one has to fix right at the start are an internal symmetry group, which is a Lie group G0 with Lie algebra g0,1 together with 
a principal bundle P over M with structure group G0 and bundle projection ρ : P −→ M: then gauge fields are described 
in terms of connections in P , which can be viewed as sections of an affine bundle over M , namely, the connection bundle 
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1 Note that we perform a slight change of notation as compared to Ref. [4], where we have denoted the internal symmetry group by G and its Lie algebra 
by g: here, we want to reserve these symbols for the basic Lie groupoid and Lie algebroid of the theory.
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C P = J P/G0 of P . Moreover, if the theory is to contain not only gauge fields (as in “pure” Yang-Mills theories) but also 
matter fields, one also has to fix a vector space V equipped with a representation of G0 or, more generally, a manifold Q
equipped with an action of G0: then matter fields are described by sections of the associated vector bundle E = P ×G0 V
(for scalar matter fields) or of its tensor product with some tensor or spinor bundle over M (for tensor or spinor matter 
fields) or of the associated fiber bundle E = P ×G0 Q (for nonlinear scalar matter fields such as in the nonlinear sigma 
models). Finally, there is gravity, described by yet another and very special kind of field, namely, a metric tensor g on M . 
(Some discussion of what sets the metric tensor apart from all other fields can be found in Ref. [6].)

Symmetries in this approach are traditionally described in terms of automorphisms of the principal bundle P and the 
induced automorphisms of its connection bundle and its associated bundles. To set the stage, recall that an automorphism
of P is a diffeomorphism of P as a manifold which is G0-equivariant, i.e., which commutes with the right action of the 
structure group G0 on P : since the orbits of this action are precisely the fibers of P , it then follows that it takes points 
in the same fiber to points in the same fiber and hence induces a diffeomorphism of the base manifold M . Moreover, 
the automorphism is said to be strict if it preserves the fibers, or equivalently, if the induced diffeomorphism on the 
base manifold is the identity. Automorphisms of P form a group Aut(P ) and strict automorphisms of P form a normal 
subgroup Auts(P ) which is the kernel of a natural group homomorphism

Aut(P ) −→ Diff(M)

that projects each automorphism of P to the diffeomorphism of M it induces. In physics language, strict automorphisms are 
also called gauge transformations and the group Auts(P ) is often called the gauge group and denoted by Gau(P ), but we prefer 
the more precise term group of gauge transformations so as to avoid the confusion whether by “gauge group” one means 
the infinite-dimensional group Gau(P ) or the finite-dimensional structure group G0. Thus strict automorphisms, or gauge 
transformations, are internal symmetries since they do not move points in space-time, whereas general automorphisms will 
in what follows be referred to as space-time symmetries.2 At any rate, all such symmetry transformations, being represented 
by automorphisms of P , can be lifted to automorphisms of its jet bundle J P and hence act naturally on the connection 
bundle C P = J P/G0 of P as well as on any associated vector bundle or fiber bundle E , its jet bundle J E and any tensor 
or spinor bundle over M , thus providing the appropriate setting for deciding which of them are symmetries of the field 
theoretical model under consideration.

The main mathematical difficulty within this approach comes from the fact that one is dealing here with infinite-
dimensional groups which are notoriously hard to handle from the point of view of Lie theory. Therefore, it is desirable 
to recast the property of invariance of a field theory under such local symmetries into a form where one deals exclusively 
with finite-dimensional objects. This program has been initiated in Ref. [4] and implemented there for strict automorphisms 
(gauge transformations), where it leads naturally to replacing Lie groups by Lie group bundles (and similarly Lie algebras by 
Lie algebra bundles), making use of the well-known fact that there is a natural isomorphism between the group of strict 
automorphisms of P and the group of sections of the gauge group bundle of P , which is the Lie group bundle P ×G0 G0
associated to P via the action of G0 on itself by conjugation:

Auts(P ) ∼= �(P ×G0 G0) .

In order to extend the resulting analysis from strict automorphisms to general automorphisms, we have to go one step 
further and replace Lie groups or Lie group bundles by Lie groupoids (and similarly Lie algebras or Lie algebra bundles by Lie 
algebroids). In this case, the basic observation is that there is a natural isomorphism between the group of automorphisms 
of P and the group of bisections of the gauge groupoid of P , which is the Lie groupoid (P × P )/G0 obtained as the quotient 
of the cartesian product of two copies of P by the “diagonal” right action of G0:

Aut(P ) ∼= Bis((P × P )/G0) .

Thus our task in what follows will be to extend the results of Ref. [4] by applying the general formalism of Ref. [2] to this 
specific situation.

When we replace Lie groups by Lie groupoids, or to put it a bit more precisely, actions of Lie groups on manifolds by 
actions of Lie groupoids on fiber bundles (over the same base manifold), we have to face one important novel feature, 
namely, that the construction of induced actions will involve changing the Lie groupoid as well. For example, while an 
action of a Lie group G0 on a manifold X induces an action of the same Lie group G0 on its tangent bundle T X , an action 
of a Lie groupoid G on a fiber bundle E (both over the same base manifold M) induces an action not of the original Lie 

2 There is some abuse of language in this simplified terminology because general automorphisms always represent a mixture of “pure” space-time 
symmetries with internal symmetries. The problem here is that there is in general no natural notion of a “pure” space-time symmetry, since that would 
require a lifting of the group Diff(M) (or at least of an appropriate subgroup thereof) to realize it as a subgroup (and not only as a quotient group) of Aut(P ), 
whose elements would then represent the “pure” space-time symmetries. However, such a lifting may not even exist, and even if it does (which happens, 
e.g., when the principal bundle P is trivial), it is far from unique, so what one means by a “pure” space-time transformation still depends on which lifting 
is chosen.
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groupoid G but rather of its jet groupoid J G on the jet bundle J E of E . (A similar phenomenon already occurs for Lie group 
bundles, as observed in Ref. [4]). As it turns out, properly dealing with this feature is the key to make the entire theory 
work out smoothly.

Let us pass to briefly describe the contents of the paper. In Section 2, we present the minimal coupling prescription and 
the curvature map that enters the formulation of Utiyama’s theorem in a very general context, and we show that these 
constructions are invariant (or perhaps it might be better to say, equivariant) under any action of any Lie groupoid over 
space-time on the bundle of field configurations over space-time, provided we employ the correct induced actions of the 
pertinent Lie groupoids derived from the former on the pertinent bundles derived from the latter. We conclude with a series 
of comments intended to show why, from the point of view of field theory, this approach is excessively general and needs 
to be adapted to a setting where all bundles are derived from some principal bundle and all connections are derived from 
principal connections in that principal bundle – which is the standard setup for gauge theories anyway. In Section 3, we 
collect the technical tools needed to perform this adjustment and to state the main results. The first step here is to recall 
the definition of the gauge groupoid G of a principal bundle P and of its natural actions on any bundle E associated to P
(including P itself). Next, we introduce the (first order) jet groupoid J G of G and use the results of the previous section and 
of Ref. [2] to write down natural actions of J G on various derived bundles such as the jet bundle J P and the connection 
bundle C P of P or the jet bundle J E of any bundle E associated to P . We also show how iterating this procedure provides 
induced actions of the second order jet groupoid J 2G and, more generally, the semiholonomous second order jet groupoid 
J̄ 2G of G on the semiholonomous second order jet bundle J̄ 2 P and on the (first order) jet bundle J (C P ) of the connection 
bundle C P of P . In Section 4, we then prove the main theorems concerning the invariance (or perhaps it might be better 
to say, the equivariance) of the minimal coupling prescription and the curvature map under the actions of the pertinent Lie 
groupoids introduced in the previous section, thus providing the desired extension of the results of Ref. [4] from the setting 
of Lie group bundles (internal symmetries) to that of Lie groupoids (space-time symmetries).

2. Minimal coupling, curvature and jets

As stated in the introduction, our main goal in this paper is to extend the results of Ref. [4] about invariance of the 
minimal coupling prescription and of the curvature map (Utiyama’s theorem) from the context of Lie group bundles to that 
of Lie groupoids. To do so, let us begin by recalling the general definition of these two constructions.

The term “minimal coupling” is widely used in mathematical physics to denote a procedure for converting ordinary 
derivatives to covariant derivatives. Such derivatives apply to “matter fields” on space-time M which in a general geometric 
framework are sections of some fiber bundle E over M: then their ordinary derivatives are sections of its (first order) jet 
bundle J E , as a fiber bundle over M , while their covariant derivatives are sections of its linearized (first order) jet bundle

�J E ∼= L(π∗(T M), V E) ∼= π∗(T ∗M) ⊗ V E , (1)

as a fiber bundle over M , where π is the bundle projection from E to M , π∗(T M) resp. π∗(T ∗M) is the pull-back of 
the tangent resp. cotangent bundle of M to E , V E is the vertical bundle of E and L(π∗(T M), V E) denotes the bundle of 
fiberwise linear maps from π∗(T M) to V E . Within this context, the minimal coupling prescription states that the covariant 
derivative Dϕ of a section ϕ of E is obtained from its ordinary derivative ∂ϕ by using a connection in E to decompose 
the tangent bundle T E of (the total space of) E into the direct sum of the vertical bundle V E and horizontal bundle H E
and then projecting onto the vertical part. Now if we think of that connection as being given by its horizontal lifting map, 
which is a section Γ of J E as an affine bundle over E , so that at each point e ∈ E with π(e) = x, Γ (e) is a linear map from 
TxM to Te E whose image is the horizontal space He E at e of the connection, then that projection onto the vertical part 
is precisely 1 − Γ (e)◦ Teπ . Thus if ϕ ∈ �(M, E), so that ∂ϕ ∈ �(M, J E) and Dϕ ∈ �(M, �J E), then as fiberwise linear maps 
from T M to T E , ∂ϕ is just the first order jet (or tangent map) of ϕ , while Dϕ is the difference

Dϕ = ∂ϕ − Γ ◦ϕ . (2)

This rule can be recast in a purely algebraic form, namely, by viewing it as the result of inserting ∂ϕ and Γ ◦ϕ into the 
difference map for (first order) jet bundles, i.e., the bundle map

− : J E ×E J E −→ L(π∗(T M), V E) ∼= π∗(T ∗M) ⊗ V E (3)

over E , explicitly constructed as follows: given any point e ∈ E with π(e) = x and any two jets u1
e , u2

e ∈ Je E ⊂ L(TxM, Te E), 
we have Teπ ◦ ui

e = idTx M , for i = 1, 2, and hence the difference u1
e − u2

e (in the vector space L(TxM, Te E)) takes values in 
the kernel of Teπ , that is, the vertical space V e E of E , so it becomes a linear map from Tx M to V e E .

The construction of the “curvature map” for connections in a given fiber bundle E over M is similar but somewhat more 
complicated because it involves its semiholonomous second order jet bundle J̄ 2 E . To see how that goes, we proceed as in 
Ref. [2] by first constructing the iterated jet bundle J ( J E) of E and noting that this allows two projections to J E , namely, 
the iterated jet target projection π J ( J E)

: J ( J E) −→ J E as well as the jet prolongation Jπ J E : J ( J E) −→ J E of the jet target 
projection π J E : J E −→ E: then by definition, J̄ 2 E is the subset of J ( J E) where these two projections coincide. Concretely, 
for e ∈ E , ue ∈ Je E and u′

u ∈ Ju ( J E),

e e

3
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(π J ( J E))ue
(u′

ue
) = ue , ( Jπ J E)ue

(u′
ue

) = Tue
π J E ◦ u′

ue
. (4)

As it turns out [9, Theorem 5.3.4, p. 174], J̄ 2 E is an affine bundle over J E which decomposes naturally into a symmetric 
part and an antisymmetric part: the former is precisely the usual second order jet bundle J 2 E of E (sometimes also called 
the holonomous second order jet bundle of E) and is an affine bundle over J E , with difference vector bundle equal to 
the pull-back to J E of the vector bundle π∗(∨2

T ∗M
) ⊗ V E over E by the jet target projection π J E , whereas the latter 

is a vector bundle over J E , namely the pull-back to J E of the vector bundle π∗(∧2
T ∗M

) ⊗ V E over E by the jet target 
projection π J E :

J̄ 2 E ∼= J 2 E × J E π∗
J E

(
π∗(∧2

T ∗M
) ⊗ V E

)
,

�J 2 E ∼= π∗
J E

(
π∗(∨2

T ∗M
) ⊗ V E

)
.

(5)

Now the proofs of these statements given in Ref. [9] and elsewhere in the literature all involve local coordinate representa-
tions, so it may be of some interest to provide a more direct, global argument. To this end, consider what we shall call the 
difference map for semiholonomous second order jet bundles, i.e., the bundle map

− : J̄ 2 E × J E J̄ 2 E −→ L2(π∗(T M), V E) ∼= π∗(⊗2
T ∗M

) ⊗ V E (6)

over π J E , where L2(π∗(T M), V E) denotes the bundle of fiberwise bilinear maps from π∗(T M) to V E , explicitly constructed 
as follows: given any point e ∈ E with π(e) = x, any jet ue ∈ Je E and any two semiholonomous second order jets u′ 1

ue
, u′ 2

ue
∈

J̄ 2
ue

E ⊂ Jue ( J E) ⊂ L(TxM, Tue
( J E)), we have Tue

π J E ◦ u′ i
ue

= ue , for i = 1, 2, and hence the difference u′ 1
ue

− u′ 2
ue

takes values 
in the kernel of Tue

π J E , that is, the vertical space V jt
ue ( J E) of J E with respect to the jet target projection π J E from J E

to E . But with respect to this projection, J E is an affine bundle with difference vector bundle �J E , so this vertical space is 
canonically isomorphic to the corresponding difference vector space,

V jt
ue ( J E) ∼= L(TxM, V e E) ,

and thus the difference u′ 1
ue

− u′ 2
ue

becomes a linear map from TxM to this vector space, which can be identified with 
a bilinear map from TxM to V e E . Obviously, any such bilinear map can be canonically decomposed into its symmetric 
and its antisymmetric part, and the restriction of the difference map for semiholonomous second order jet bundles to the 
symmetric part will provide the difference map for second order jet bundles, i.e., the bundle map

− : J 2 E × J E J 2 E −→ L2
s (π

∗(T M), V E) ∼= π∗(∨2
T ∗M

) ⊗ V E (7)

over π J E , where L2
s (π

∗(T M), V E) denotes the bundle of fiberwise symmetric bilinear maps from π∗(T M) to V E . Moreover, 
it will provide an alternator or antisymmetrizer for semiholonomous second order jets, which is an affine bundle map

Alt : J̄ 2 E −→ L2
a(π∗(T M), V E) ∼= π∗(∧2

T ∗M
) ⊗ V E (8)

over π J E , where L2
a(π∗(T M), V E) denotes the bundle of fiberwise antisymmetric bilinear maps from π∗(T M) to V E , as 

follows: given any point e ∈ E with π(e) = x, any jet ue ∈ Je E and any semiholonomous second order jet u′
ue

∈ J̄ 2
ue

E , 
choose any holonomous second order jet u′ 0

ue
∈ J 2

ue
E and define Alt(u′

ue
) to be the antisymmetric part of the difference 

u′
ue

− u′ 0
ue

, which obviously does not depend on the choice of u′ 0
ue

. It is this construction that we shall use to define the 
curvature of a connection in E , given, say, in terms of its horizontal lifting map, which is a section Γ of J E as a bundle 
over E: observing that its jet prolongation jΓ will then be a section not just of J ( J E) but actually of J̄ 2 E , again as a 
bundle over E , since Tπ J E ◦ jΓ = T

(
π J E ◦ Γ

) = T idE = idT E , and noting that it will therefore be a section of J̄ 2 E along 
Γ when J̄ 2 E is considered as a bundle over J E instead, we can compose it with the alternator to produce a section of 
π∗

J E

(
π∗(∧2

T ∗M
)⊗ V E

)
along Γ , which is just a section of π∗(∧2

T ∗M
)⊗ V E and (possibly up to a sign which is a matter 

of convention) is the curvature

curv(Γ ) = Alt ◦ jΓ (9)

of the given connection.
The main statement we want to prove in this section is that these two constructions are invariant (or perhaps it might 

be better to say, equivariant) under any action of any Lie groupoid G over M on the bundle E over M , provided we employ 
the correct induced actions of the pertinent Lie groupoids derived from G on the pertinent bundles derived from E .

Thus assume we are given a Lie groupoid G over M , with source projection σG : G −→ M and target projection τG :
G −→ M , together with an action
4
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E : G ×M E −→ E
(g, e) �−→ g · e

(10)

of G on E . (Cf. equation (44) of Ref. [2]). Then we obtain an induced action


V E : G ×M V E −→ V E
(g, ve) �−→ g · ve

(11)

of G on the vertical bundle V E of E , defined by

g · ve = Te Lg(ve) , (12)

where T Lg denotes the tangent map to Lg ; in other words, left translation by g in V E is just the derivative of left translation 
by g in E . (Cf. equations (89) and (90) of Ref. [2]). Combining this with the natural action of the linear frame groupoid 
GL(T M) of the base manifold M on the cotangent bundle T ∗M of M , we obtain an induced action of the Lie groupoid 
GL(T M) ×M G on the linearized jet bundle �J E of E ,

(
GL(T M) ×M G

) ×M �J E −→ �J E(
(a, g), �ue

) �−→ (a, g) · �ue
(13)

as suggested by the isomorphism of equation (1), defined by

(a, g) · �ue = Te Lg ◦ �ue ◦ a−1 . (14)

(Cf. equations (96) and (98) of Ref. [2]). On the other hand, applying the jet functor to all structural maps that appear in 
the original action (10), we obtain an induced action


 J E : J G ×M J E −→ J E

(ug, ue) �−→ ug · ue
(15)

of the jet groupoid J G of G on the jet bundle J E of E , defined by

ug · ue = T(g,e)
E ◦ (ug, ue) ◦ π fr
J G(ug)

−1 , (16)

where T 
E denotes the tangent map to 
E and π fr
J G : J G −→ GL(T M) is the natural projection of J G to the linear frame 

groupoid GL(T M) of the base manifold M defined by

π fr
J G(ug) = T gτG ◦ ug , (17)

whereas π J G : J G −→ G is the usual jet target projection. (Cf. equations (51), (93) and (94) of Ref. [2]). This definition 
can also be phrased in terms of (bi)sections, as follows: given any bisection β of G and any section ϕ of E , concatenate 
them into a map (β, ϕ) from M to G ×M E and compose that with the action 
E of G on E to produce a map from M
to E which, when precomposed with the inverse of the diffeomorphism τG ◦β of M induced by β , gives a new section 

E ◦ (β, ϕ) ◦ (τG ◦β)−1 of E , and 
 J E is then fully characterized by the property that, upon taking the jet prolongations of 
all these (bi)sections,


 J E ◦ ( jβ, jϕ) ◦ (τG ◦β)−1 = j
(

E ◦ (β,ϕ) ◦ (τG ◦β)−1) . (18)

Indeed, for any y ∈ M , putting x = (τG ◦β)−1(y) ∈ M , we have (β(x), ϕ(x)) ∈ G ×M E , ( jβ(x), jϕ(x)) ∈ J G ×M J E and

π fr
J G( jβ(x))−1 = (Tβ(x)τG ◦ Txβ)−1 = (Tx(τG ◦β))−1 = T y

(
(τG ◦β)−1) ,

so (

 J E ◦ ( jβ, jϕ) ◦ (τG ◦β)−1)(y) = 
 J E( jβ(x), jϕ(x))

= T(β(x),ϕ(x))
E ◦ (Txβ, Txϕ) ◦ T y

(
(τG ◦β)−1)

= T y

(

E ◦ (β,ϕ) ◦ (τG ◦β)−1) = j

(

E ◦ (β,ϕ) ◦ (τG ◦β)−1)(y) .

Now we have the following statement about compatibility between these various actions:

Proposition 1. The difference map of equation (3) is equivariant, i.e., the diagram

J G ×M ( J E ×E J E)

(π fr
J G×π J G ,−)

J E ×E J E

−

(GL(T M) ×M G) ×M �J E �J E

(19)

commutes.
5
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Proof. Given g ∈ G with σG(g) = x and τG(g) = y, e ∈ E with π(e) = x, ug ∈ J g G and u1
e , u2

e ∈ Je E ⊂ L(TxM, Te E), we want 
to prove that

ug · u2
e − ug · u1

e = (π fr
J G(ug), g) · (u2

e − u1
e ) .

Fixing some tangent vector v ∈ TxM , choose a vertical curve e(t) in E (π(e(t)) = x) such that

e(t)
∣∣
t=0 = e ,

d

dt
e(t)

∣∣∣
t=0

= (u2
e − u1

e )(v) .

Then

T(g,e)
E

(
ug(v), u2

e (v)
) − T(g,e)
E

(
ug(v), u1

e (v)
) = T(g,e)
E

(
0, (u2

e − u1
e )(v)

)

= d

dt

E(g, e(t))

∣∣∣
t=0

= d

dt
Lg(e(t))

∣∣∣
t=0

= Te Lg

(
(u2

e − u1
e )(v)

)
,

or using that v was arbitrary,

T(g,e)
E ◦
(
ug, u2

e

) − T(g,e)
E ◦
(
ug, u1

e

) = T(g,e)
E ◦
(
0, u2

e − u1
e

) = Te Lg ◦ (u2
e − u1

e ) .

Precomposing with π fr
J G(ug)

−1 proves the claim. �
To deal with the second part, we begin by iterating the procedure of applying the jet functor to obtain an induced action


 J ( J E) : J ( J G) ×M J ( J E) −→ J ( J E)

(u′
ug

, u′
ue

) �−→ u′
ug

· u′
ue

(20)

of the iterated jet groupoid J ( J G) of G on the iterated jet bundle J ( J E) of E , defined by

u′
ug

· u′
ue

= T(ug ,ue)
 J E ◦ (u′
ug

, u′
ue

) ◦ π fr
J ( J G)(u′

ug
)−1 , (21)

with the same notation as before; in particular, the definition can again be phrased in terms of (bi)sections. Namely, given 
any bisection β̃ of J G and any section ϕ̃ of J E which (by composition with π J G ) project to a bisection β of G and to a 
section ϕ of E , respectively, so that τ J G ◦ β̃ = τG ◦β , we have, just as in equation (18) above,


 J ( J E) ◦ ( jβ̃, jϕ̃) ◦ (τG ◦β)−1 = j
(

 J E ◦ (β̃, ϕ̃) ◦ (τG ◦β)−1) . (22)

This iterated action admits restrictions to several subgroupoids and subbundles, among which the following will become 
important to us at some point or another: the natural induced actions


 J̄ 2 E : J̄ 2G ×M J̄ 2 E −→ J̄ 2 E

(u′
ug

, u′
ue

) �−→ u′
ug

· u′
ue

(23)

of the semiholonomous second order jet groupoid J̄ 2G of G and


 J̄ 2 E : J 2G ×M J̄ 2 E −→ J̄ 2 E

(u′
ug

, u′
ue

) �−→ u′
ug

· u′
ue

(24)

of the second order jet groupoid J 2G of G on the semiholonomous second order jet bundle J̄ 2 E of E , as well as the action


 J 2 E : J 2G ×M J 2 E −→ J 2 E

(u′
ug

, u′
ue

) �−→ u′
ug

· u′
ue

(25)

of the second order jet groupoid J 2G of G on the second order jet bundle J 2 E of E , all defined by the same formula:

u′
ug

· u′
ue

= T(ug ,ue)
 J E ◦ (u′
ug

, u′
ue

) ◦ π fr
J G(ug)

−1 . (26)

Here, the simplification in the last term on the rhs of equation (26), as compared to that of equation (21), stems from the 
fact that when u′

ug
∈ J̄ 2

ug
G , i.e., Tug

π J G ◦ u′
ug

= ug , then since τ J G = τG ◦ π J G , we get

π fr
J ( J G)(u′

ug
) = Tug

τ J G ◦ u′
ug

= T gτG ◦ Tug
π J G ◦ u′

ug
= T gτG ◦ ug = π fr

J G(ug) .

Moreover, if u′
ug

and u′
ue

are both semiholonomous, then so is u′
ug

· u′
ue

, i.e., we have

u′
u ∈ J̄ 2

u G , u′
u ∈ J̄ 2

u E =⇒ u′
u · u′

u ∈ J̄ 2
u ·u E ,
g g e e g e g e

6
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since in this case, Tug
π J G ◦ u′

ug
= ug and Tue

π J E ◦ u′
ue

= ue , and using the equality π J E ◦ 
 J E = 
E ◦ (π J G ×M π J E ), we get

Tug · ue
π J E ◦ (u′

ug
· u′

ue
) = Tug · ue

π J E ◦ T(ug ,ue)
 J E ◦ (u′
ug

, u′
ue

) ◦ π fr
J G(ug)

−1

= T(g,e)
E ◦
(
Tug

π J G ◦ u′
ug

, Tue
π J E ◦ u′

ue

)
◦ π fr

J G(ug)
−1

= T(g,e)
E ◦ (ug, ue) ◦ π fr
J G(ug)

−1

= ug · ue .

Similarly, it is clear that if u′
ug

and u′
ue

are both holonomous, then so is u′
ug

· u′
ue

, i.e., we have

u′
ug

∈ J 2
ug

G , u′
ue

∈ J 2
ue

E =⇒ u′
ug

· u′
ue

∈ J 2
ug ·ue

E ,

since in this case there will exist a local bisection β of G and a local section ϕ of E , both defined in some open neighborhood 
U of x, satisfying g = β(x), e = ϕ(x), ug = jβ(x) = Txβ , ue = jϕ(x) = Txϕ , u′

ug
= j( jβ)(x) = Tx( jβ), u′

ue
= j( jϕ)(x) = Tx( jϕ)

and hence, putting y = (τG ◦β)(x) and using equation (26), equation (22) with β̃ = jβ , ϕ̃ = jϕ and equation (18),

u′
ug

· u′
ue

= 
 J ( J E)( j( jβ)(x), j( jϕ)(x))

= (

 J ( J E) ◦ ( j( jβ), j( jϕ)) ◦ (τG ◦β)−1)(y)

= j
(

 J E ◦ ( jβ, jϕ) ◦ (τG ◦β)−1)(y)

= j
(

j
(

E ◦ (β,ϕ) ◦ (τG ◦β)−1))(y) .

Finally, observe that, just like the (first order) jet groupoid J G of G , its iterated jet groupoid J ( J G) and, by restriction, its 
semiholonomous second order jet groupoid J̄ 2G and second order jet groupoid J 2G all admit natural projections both to 
GL(T M) and to G , which are just given by composition of those for J G with the natural projection π J ( J G) : J ( J G) −→ J G

and its respective restrictions π
J̄ 2G

: J̄ 2G −→ J G and π
J 2G

: J 2G −→ J G:

π fr
J ( J G) = π fr

J G ◦ π J ( J G) : J ( J G) −→ GL(T M) , π J ( J G),G = π J G ◦ π J ( J G) : J ( J G) −→ G

π fr
J̄ 2G

= π fr
J G ◦ π

J̄ 2G
: J̄ 2G −→ GL(T M) , π

J̄ 2G,G
= π J G ◦ π

J̄ 2G
: J̄ 2G −→ G

π fr
J 2G

= π fr
J G ◦ π

J 2G
: J 2G −→ GL(T M) , π

J 2G,G
= π J G ◦ π

J 2G
: J 2G −→ G

With this notation, we can now formulate the following statement about compatibility between these various actions:

Proposition 2. The difference maps of equations (6) and (7) are equivariant, i.e., the diagrams

J̄ 2G ×M ( J̄ 2 E × J E J̄ 2 E)

(π fr
J̄ 2G

×π
J̄ 2G,G

,−)

J̄ 2 E × J E J̄ 2 E

−

(GL(T M) ×M G) ×M

(
π∗(⊗2 T ∗M

) ⊗ V E
)

π∗(⊗2 T ∗M
) ⊗ V E

(27)

and

J 2G ×M ( J 2 E × J E J 2 E)

(π fr
J 2G

×π
J 2G,G

,−)

J 2 E × J E J 2 E

−

(GL(T M) ×M G) ×M

(
π∗(∨2

T ∗M
) ⊗ V E

)
π∗(∨2

T ∗M
) ⊗ V E

(28)

commute. Similarly, the alternator or antisymmetrizer map of equation (8) is also equivariant, i.e., the diagram

J 2G ×M J̄ 2 E

(π fr
J 2G

×π
J 2G,G

,Alt)

J̄ 2 E

Alt

(GL(T M) ×M G) ×M

(
π∗(∧2

T ∗M
) ⊗ V E

)
π∗(∧2

T ∗M
) ⊗ V E

(29)

commutes.
7
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Proof. First of all, the statements about commutativity of the last two diagrams are trivial consequences of that about 
commutativity of the first, together with the fact that the decomposition of rank 2 tensors into their symmetric and anti-
symmetric parts is obviously invariant under the action of GL(T M) ×M G . To deal with the first diagram, we shall find it 
convenient to keep track of the identifications made in the definition of the difference map in equation (6) by momentarily 
(i.e., just for the remainder of this proof) denoting that difference map by δ. Thus given g ∈ G with σG(g) = x and τG(g) = y, 
e ∈ E with π(e) = x, ug ∈ J g G , ue ∈ Je E , u′

ug
∈ J̄ 2

ug
G and u′ 1

ue
, u′ 2

ue
∈ J̄ 2

ue
E ⊂ Jue

( J E) ⊂ L(TxM, Tue
( J E)), we want to show 

that

δ(u′
ug

· u′2
ue

, u′
ug

· u′1
ue

) = (π fr
J G(ug), g) · δ(u′2

ue
, u′1

ue
) .

Note that δ(u′ 2
ue

, u′ 1
ue

) ∈ L2(Tx M, V e E) can be defined explicitly by stating that, for any tangent vector v ∈ TxM , the standard 
difference u′ 2

ue
− u′ 1

ue
, when evaluated on v , gives a tangent vector in Tue ( J E) which, being vertical with respect to the jet 

target projection π J E , can be realized as that of a straight line in Je E through ue , whose direction is δ(u′ 2
ue

, u′ 1
ue

)(v, .) ∈
L(TxM, V e E):

(u′2
ue

− u′1
ue

)(v) = d

dt

(
ue + t δ(u′2

ue
, u′1

ue
)(v, .)

)∣∣
t=0 .

Similarly, δ(u′
ug

· u′ 2
ue

, u′
ug

· u′ 1
ue

) ∈ L2(T y M, V g·e E) can be defined explicitly by stating that, for any tangent vector w ∈ T y M , 
the standard difference u′

ug
· u′ 2

ue
− u′

ug
· u′ 1

ue
, when evaluated on w , gives a tangent vector in Tug ·ue ( J E) which, being vertical 

with respect to the jet target projection π J E , can be realized as that of a straight line in J g·e E through ug · ue , whose 
direction is δ(u′

ug
· u′ 2

ue
, u′

ug
· u′ 1

ue
)(w, .) ∈ L(T y M, V g·e E):

(u′
ug

· u′2
ue

− u′
ug

· u′1
ue

)(w) = d

dt

(
ug · ue + t δ(u′

ug
· u′2

ue
, u′

ug
· u′1

ue
)(w, .)

)∣∣
t=0 .

On the other hand, putting v = π fr
J G(ug)

−1(w), we have

(u′
ug

· u′2
ue

− u′
ug

· u′1
ue

)(w)

= T(ug ,ue)
 J E

(
u′

ug
(v), u′2

ue
(v)

) − T(ug ,ue)
 J E

(
u′

ug
(v), u′1

ue
(v)

)

= T(ug ,ue)
 J E

(
0, (u′2

ue
− u′1

ue
)(v)

)

= d

dt

 J E

(
ug, ue + t δ(u′2

ue
, u′1

ue
)(v, .)

)∣∣∣
t=0

= (
(π fr

J G(ug), g) · δ(u′2
ue

, u′1
ue

)
)
(w, .) ,

where in the last step we have used the fact that, as shown in Ref. [2], the action 
 J E is affine along the fibers of J E
over E , together with Proposition 1. �

Returning to the formalization of the minimal coupling prescription and the curvature map, we want to emphasize that 
the context outlined above is a little bit too broad to fit into the theoretical setting of field theory, since general connections 
in general fiber bundles are not fields! This is so because they are not sections of bundles over space-time but rather sections 
of bundles over some “extended space-time” which is itself the total space of some fiber bundle over ordinary space-time. 
As such, when expressed in local coordinates and local trivializations, such sections correspond to multiplets of functions 
which, apart from being functions on space-time, depend on extra “vertical” variables, namely, the local coordinates along 
the fibers of this bundle, and in the absence of stringent restrictions on that dependence will produce infinite multiplets 
of fields when expanded in an appropriate basis. This situation is familiar from “Kaluza-Klein” type theories, which have 
been proposed long ago as models for unifying gravity with the other fundamental interactions and where the extended 
space-time is assumed to be the total space of some principal bundle over ordinary space-time, so that one can use the 
representation theory of the underlying structure group to control and restrict the dependence of functions on the extra 
vertical variables.3 The main problem with these models is that the aforementioned stringent restrictions, needed to weed 
out the large number of (often unwanted) extra fields, are usually quite artificial and imposed more or less “ad hoc”, without 
any convincing argument as to how they should arise from the dynamics of a fundamental theory in higher dimensions.

3 The simplest such model and one of the most interesting attempts to unify gravity with electromagnetism uses an extended space-time which is 
the total space of a principal U (1)-bundle over ordinary space-time, so the extra vertical variables reduce to a single phase θ , the representations of the 
structure group are given by its characters θ �−→ exp(ikθ), k ∈Z, and the expansion of functions on extended space-time is just a Fourier expansion with 
coefficients that are functions on ordinary space-time: still an infinite multiplet of fields.
8
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Here, these remarks serve merely as a guide to what should be done and what not: we shall completely avoid all these 
problems by working not with general connections but only with connections that do have a natural interpretation as fields 
in physics: these are connections whose behavior along the fibers is fixed by some condition, such as linear connections in 
vector bundles or affine connections in affine bundles, where the connection coefficients are required to be linear or affine 
functions along the fibers, respectively, or more generally, principal connections, which are required to be equivariant under 
the action of the structure group on the fibers of the principal bundle and are therefore completely fixed along the entire 
fiber once they are known at a single point in that fiber.

Thus from this point onward and throughout the rest of the paper, we shall assume that E is not just a general fiber 
bundle but rather a fiber bundle with structure group, which is a Lie group G0, with Lie algebra g0, say, so there is a 
principal G0-bundle P to which E is associated (this, by the way, includes the case where E is P itself), and any connection 
in E to be considered is associated to a principal connection in P . As a result, we have to adapt our formalism to this 
situation, and of course the Lie groupoid G that appears above, as well as in Ref. [2], but has so far been left unspecified, 
will now be the gauge groupoid of P .

3. Gauge groupoids, jet groupoids and induced actions

In order to implement the program outlined in the last paragraph of the previous section, we shall first introduce the 
gauge groupoid of a principal bundle and some of its actions (more specifically, on the principal bundle itself and on any 
of its associated bundles, as well as on the respective vertical bundles) and then investigate how some of these lift when 
taking first and second order jet prolongations.

3.1. The gauge groupoid and its actions

To begin with, let us recall the definition of the gauge groupoid of a principal bundle [8]:

Proposition 3. Given a principal bundle P over a manifold M with structure group G0 , whose bundle projection will be denoted by 
ρ : P −→ M, let

G = (P × P )/G0

denote the orbit space of the cartesian product of P with itself under the diagonal action of G0 (we shall write its elements as classes 
[p2, p1] of pairs (p2, p1) in P × P , where [p2 · g0, p1 · g0] = [p2, p1]). Then G is a Lie groupoid over M, called the gauge groupoid 
of P , with source projection σG : G −→ M, target projection τG : G −→ M, multiplication map μG : G ×M G −→ G, unit map 
1G : M −→ G and inversion ιG : G −→ G defined as follows:

• for [p2, p1] ∈ G,

σG([p2, p1]) = ρ(p1) , τG([p2, p1]) = ρ(p2) ;
• for [p2, p1], [p3, p2] ∈ G,

[p3, p2][p2, p1] ≡ μG([p3, p2], [p2, p1]) = [p3, p1] ;
• for x ∈ M,

(1G)x = [p, p] ,
where p is any element of ρ−1(x);

• for [p2, p1] ∈ G,

[p2, p1]−1 ≡ ιG([p2, p1]) = [p1, p2] .

Observe that the gauge group bundle associated with P employed in Ref. [4], also known as the adjoint bundle AdP =
P ×G0 G0 (where G0 acts on itself by conjugation), is (up to a canonical isomorphism) just the isotropy subgroupoid of G , 
that is,

P ×G0 G0
∼= G iso . (30)

This isomorphism can be constructed explicitly by noting that the map

P × G0 −→ P × P

(p, g ) �−→ (p, p · g )
0 0

9
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is equivariant under the right action of G0 on both sides (since it takes (p · g′
0 , (g′

0)
−1 g0 g′

0) to (p · g′
0 , p · g0 g′

0)) and hence 
factors to the respective quotients to yield a map

P ×G0 G0 −→ (P × P )/G0

[p, g0] �−→ [p, p · g0]
which is the desired isomorphism onto its image

G iso = {[p2, p1] ∈ G |τG([p2, p1]) = σG([p2, p1])} = {[p2, p1] ∈ G |ρ(p2) = ρ(p1)} . (31)

Moreover, it is well known that the group of bisections of the gauge groupoid G = (P × P )/G0 is isomorphic to the group 
of automorphisms of P ,

Bis(G) ∼= Aut(P ) , (32)

while the group of sections of the gauge group bundle G iso ∼= P ×G0 G0 is isomorphic to the group of strict automorphisms 
of P ,

�(G iso) ∼= Auts(P ) . (33)

Next, let us specify how the gauge groupoid of a principal bundle acts naturally on the principal bundle itself and on 
any of its associated bundles. To this end, some authors find it convenient to introduce the “difference map” for P , which is 
the smooth map

δP : P ×M P −→ G0

defined implicitly by the condition that given any two points p and p′ in the same fiber of P , δP (p, p′) is the unique 
element of G0 that transforms p into p′:

p · δP (p, p′) = p′ .

Note that, obviously, δP (p, p) = 1 and

δP (p · g0, p′ · g0) = g−1
0 δP (p, p′) g0 .

Here, we use this map to write down a natural action


P : G ×M P −→ P

([p2, p1], p) �−→ [p2, p1] · p

of the gauge groupoid G = (P × P )/G0 on the principal bundle P itself, defined as follows: given [p2, p1] ∈ G and p ∈ P
such that ρ(p1) = σG([p2, p1]) = ρ(p), put

[p2, p1] · p = p2 · δP (p1, p) .

Note, however, that we can always adapt the second component in the pair (p2, p1) representing the class [p2, p1] to be 
equal to p, which allows us to rewrite the previous two equations in the simplified form


P : G ×M P −→ P

([p′, p], p) �−→ [p′, p] · p
(34)

where

[p′, p] · p = p′ . (35)

In the sequel, when defining other actions of the gauge groupoid, we shall already perform this kind of simplification right 
from the start and without further notice, thus dispensing the need to deal with the difference map δP altogether. Of course, 
as the total space of a principal bundle, P also carries a right action of the structure group G0, and remarkably, these two 
actions commute,

[p′, p] · (p · g0) = ([p′, p] · p) · g0 , (36)

because both sides are equal to [p′ · g0, p · g0] · (p · g0) = p′ · g0. Thus using the natural projection of G to the pair groupoid 
M × M of the base manifold M , we get a commutative diagram:
10
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G ×M P P

(M × M) ×M M M

(37)

This procedure can be generalized as follows. First, given any manifold Q , we can introduce a natural action


P×Q : G ×M (P × Q ) −→ P × Q

([p′, p], (p,q)) �−→ [p′, p] · (p,q)
(38)

of the gauge groupoid G = (P × P )/G0 on the product manifold P × Q (as a fiber bundle over M), defined by letting G act 
as above on the first factor and trivially on the second factor,

[p′, p] · (p,q) = (p′,q) . (39)

Now suppose we are also given a left action

G0 × Q −→ Q

(g0,q) �−→ g0 · q
(40)

of G0 on the manifold Q , which according to the standard definition of the total space of an associated bundle is extended 
to a “diagonal” right action

G0 × (P × Q ) −→ P × Q

(g0, (p,q)) �−→ (p · g0, g−1
0 · q)

(41)

of G0 on the product manifold P × Q , and once again, these two actions commute,

[p′, p] · ((p,q) · g0) = ([p′, p] · (p,q)) · g0 , (42)

because both sides are equal to [p′ · g0, p · g0] · (p · g0, g
−1
0 · q) = (p′ · g0, g

−1
0 · q). This implies that the action 
P×Q of G

on P × Q in equation (38) passes to the quotient P ×G0 Q , and so we get a natural induced action


P×G0 Q : G ×M (P ×G0 Q ) −→ P ×G0 Q

([p′, p], [p,q]) �−→ [p′, p] · [p,q] (43)

of the gauge groupoid G = (P × P )/G0 on the associated bundle P ×G0 Q , defined by

[p′, p] · [p,q] = [p′,q] . (44)

It will be convenient to visualize this construction in terms of the “magical square” for associated bundles, i.e., the commu-
tative diagram

P × Q
ρQ

pr1

P ×G0 Q

π

P
ρ

M

(45)

in which the horizontal projections define principal G0-bundles while the vertical projections provide fiber bundles with 
typical fiber Q (the first of which is of course just the trivial bundle over P ) such that ρQ is an isomorphism on each fiber 
and, by definition, is G-equivariant. And again, using the natural projection of G to the pair groupoid M × M of the base 
manifold M , we get a commutative diagram:

G ×M (P ×G0 Q ) P ×G0 Q

(M × M) ×M M M

(46)

Of course, these actions extend the actions of the gauge group bundle P ×G0 G0 on the principal bundle P itself and on the 
associated bundle P ×G0 Q , respectively, considered in Ref. [4].

As a first example of induced actions, consider those of the gauge groupoid of a principal bundle on the vertical bundle 
of the principal bundle itself and on the vertical bundle of any of its associated bundles, constructed according to the 
prescription specified in equations (10)–(12) above. These actions can be simplified by making use of the fact that the 
11
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vertical bundle of a principal bundle is trivial and that the vertical bundle of an associated bundle is again an associated 
bundle, i.e., we have canonical isomorphisms

V P ∼= P × g0 , (47)

and

V (P ×G0 Q ) ∼= P ×G0 T Q , (48)

both as fiber bundles over M and as vector bundles over the respective total spaces P and P ×G0 Q , where in the second 
case, the action of G0 on the tangent bundle T Q of Q is the one induced from that on Q . Similarly, we also have canonical 
isomorphisms

�J P ∼= L(π∗(T M), (P × g0))
∼= π∗(T ∗M) ⊗ (P × g0) , (49)

and

�J (P ×G0 Q ) ∼= L(π∗(T M), P ×G0 T Q ) ∼= π∗(T ∗M) ⊗ (P ×G0 T Q ) , (50)

in the same sense. The statement is then that these bundle isomorphisms are equivariant under the action of the gauge 
groupoid G , in the first two cases, and of the Lie groupoid GL(T M) ×M G , in the last two cases.

For the proof, we need only consider the statements for the vertical bundles, since the corresponding ones for the 
linearized jet bundles follow directly from them by combining the corresponding actions of the gauge groupoid with that 
of the linear frame groupoid GL(T M) of the base manifold M on the cotangent bundle T ∗M of M . To this end, consider 
the fundamental vector fields (X0)P on P associated to the generators X0 ∈ g0 through the right action of G0 on P , and for 
later use, also the fundamental vector fields (X0)Q on Q associated to the generators X0 ∈ g0 through the left action of G0
on Q , defined by

(X0)P (p) = d

dt

(
p · exp(t X0)

)∣∣∣
t=0

, (51)

and by

(X0)Q (q) = d

dt

(
exp(−t X0) · q

)∣∣∣
t=0

, (52)

respectively.4 Then the isomorphism in equation (47) is given by the mapping that takes the pair (p, X0) to the vertical 
vector (X0)P (p), and that this is equivariant follows immediately from the following simple calculation:

[p′, p] · (X0)P (p) = T p L[p′,p]
( d

dt

(
p · exp(t X0)

)∣∣∣
t=0

)
= d

dt

([p′, p] · (p · exp(t X0))
) ∣∣∣

t=0

= d

dt

([p′ · exp(t X0), p · exp(t X0)] · (p · exp(t X0))
) ∣∣∣

t=0

= d

dt

(
p′ · exp(t X0)

)∣∣∣
t=0

= (X0)P (p′) .

Similarly, the isomorphism in equation (48) is given by the mapping (momentarily denoted by φ) that takes [p, d
dt q(t)

∣∣
t=0] ∈

(P ×G0 T Q )[p,q] to d
dt [p, q(t)]∣∣t=0 ∈ V [p,q](P ×G0 Q ), and that this is equivariant follows immediately from the following 

simple calculation:

[p′, p] · φ([
p,

d

dt
q(t)

∣∣∣
t=0

]) = [p′, p] ·
( d

dt
[p,q(t)]

∣∣∣
t=0

)
= T p L[p′,p]

( d

dt
[p,q(t)]

∣∣∣
t=0

)

= d

dt

([p′, p] · [p,q(t)])
∣∣∣
t=0

= d

dt
[p′,q(t)]

∣∣∣
t=0

= φ
([

p′, d

dt
q(t)

∣∣∣
t=0

])

= φ
([p′, p] · [p,

d

dt
q(t)

∣∣∣
t=0

])
.

Similar simplifications occur for the other induced actions considered in the previous section, and this will be discussed 
in the next two subsections.

4 We recall that the correspondence in equation (51) establishes a canonical linear isomorphism between the Lie algebra g0 and the vertical space V p P
of P at p, whereas the extra minus sign in equation (52) is introduced merely for convenience, so as to guarantee consistency of the formulas when we 
switch between left and right actions.
12
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3.2. First order jet groupoids and induced actions

To begin with, we apply the general procedure developed in Ref. [2] of “differentiating” actions of Lie groupoids on fiber 
bundles to the natural actions of the gauge groupoid G = (P × P )/G0 on the principal bundle P itself and on any associated 
bundle P ×G0 Q to obtain natural induced actions


 J P : J G ×M J P −→ J P

(u[p′,p], up) �−→ u[p′,p] · up
(53)

and


 J (P×G0 Q ) : J G ×M J (P ×G0 Q ) −→ J (P ×G0 Q )

(u[p′,p], u[p,q]) �−→ u[p′,p] · u[p,q]
(54)

derived from the actions 
P in equation (34) and 
P×G0 Q in equation (43) by applying the general formula in equation (16)

of the previous section.
A more profound understanding of the situation can be obtained by extending the “magical square” for associated bun-

dles in equation (45) to the corresponding jet bundles, considering the commutative diagram

J (P × Q )
JρQ

π J (P×Q )

J (P ×G0 Q )

π J (P×G0
Q )

P × Q
ρQ

pr1

P ×G0 Q

π

P
ρ

M

(55)

and noting that, just like there is a natural action of G on P × Q derived from that on P such that ρQ is an isomorphism 
on each fiber and is G-equivariant, as discussed in the previous subsection, there is also a natural action of J G on J (P × Q )

derived from that on J P such that JρQ , although no longer an isomorphism on each fiber (it is still onto but has a kernel), 
is J G-equivariant.5

To prove these statements, let us pick points p ∈ P and q ∈ Q with ρ(p) = x and take tangent maps to the commutative 
diagram in equation (45) to obtain the commutative diagram

T p P ⊕ Tq Q
T(p,q)ρQ

pr1

T [p,q](P ×G0 Q )

T [p,q]π

T p P
T pρ

TxM

(56)

Since ρQ is a submersion and hence its tangent maps are surjective, this means that the tangent spaces T [p,q](P ×G0 Q ) of 
the orbit space P ×G0 Q can be realized as quotient spaces, namely, the linear maps

T(p,q)ρQ : T p P ⊕ Tq Q −→ T [p,q](P ×G0 Q ) (57)

induce isomorphisms

T [p,q](P ×G0 Q ) ∼= (T p P ⊕ Tq Q )/ker T(p,q)ρQ , (58)

and noting that

J (p,q)(P × Q ) = J p P ⊕ L(TxM, Tq Q ) , (59)

this leads to an analogous realization of the jet spaces J [p,q](P ×G0 Q ) of the orbit space P ×G0 Q as quotient spaces, 
namely, the affine maps

J (p,q)ρQ : J p P ⊕ L(TxM, Tq Q ) −→ J [p,q](P ×G0 Q ) (60)

5 Note that here, J (P × Q ) is meant to be the jet bundle of P × Q as a bundle over M , i.e., with respect to the projection ρ ◦ pr1, whereas the previous 
statement that P × Q is a trivial bundle refers to its structure as a bundle over P , i.e., to the projection pr1.
13
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defined by

J (p,q)ρQ (up, uq) = T(p,q)ρQ ◦ (up, uq) (61)

induce isomorphisms

J [p,q](P ×G0 Q ) ∼= ( J p P ⊕ L(TxM, Tq Q )) / L(TxM,ker T(p,q)ρQ ) . (62)

Now using the G-equivariance of ρQ , which means that 
P×G0 Q ◦ (idG ×M ρQ ) = ρQ ◦ 
P×Q = ρQ ◦ (
P × idQ ) (where in 
the last equality we have applied the identity G ×M (P × Q ) = (G ×M P ) × Q ), we can prove the J G-equivariance of JρQ . 
To this end, let us also pick a point [p′, p] ∈ G , a jet u[p′,p] ∈ J [p′,p]G and another jet up ∈ J p P together with a linear map 
uq ∈ L(TxM, Tq Q ), and calculate

u[p′,p] · J (p,q)ρQ (up, uq)

= T([p′,p],[p,q])
P×G0 Q ◦
(
u[p′,p] , T(p,q)ρQ ◦ (up, uq)

)
◦ π fr

J G(u[p′,p])−1

= T([p′,p],[p,q])
P×G0 Q ◦ T([p′,p],(p,q))(idG ×M ρQ ) ◦
(
u[p′,p], (up, uq)

)
◦ π fr

J G(u[p′,p])−1

= T(p′,q)ρQ ◦ T([p′,p],(p,q))
P×Q ◦
(
u[p′,p], (up, uq)

)
◦ π fr

J G(u[p′,p])−1

= J (p′,q)ρQ

(
u[p′,p] · (up, uq)

) = J (p′,q)ρQ

(
u[p′,p] · up , uq

)
.

For later use, we also note that

ker T(p,q)ρQ = {((X0)P (p), (X0)Q (q)) | X0 ∈ g0} ∼= g0
∼= V p P , (63)

where (X0)P and (X0)Q denote the fundamental vector fields on P and on Q associated to a generator X0 ∈ g0 via the 
pertinent actions of G0, respectively, as defined in equations (51) and (52) above. Moreover, under the projection T(p,q)ρQ , 
the vertical spaces of the principal bundle P and of the associated bundle P ×G0 Q are related by

V [p,q](P ×G0 Q ) ∼= (V p P ⊕ Tq Q )/ker T(p,q)ρQ , (64)

while, with respect to any principal connection in P and its associated connection in P ×G0 Q , the corresponding horizontal 
spaces of the principal bundle P and of the associated bundle P ×G0 Q are related by

H[p,q](P ×G0 Q ) ∼= (H p P ⊕ {0})/ker T(p,q)ρQ . (65)

At the end of this subsection, we shall see how to express the correspondence between principal connections in P and their 
associated connections in P ×G0 Q in terms of jets.

Another important property of the action of J G on J P in equation (53) is that it commutes with the right action of the 
structure group G0 on J P : this is essentially obvious because they are induced from an action of G on P and a right action 
of G0 on P which commute. But since this is an important fact, let us give a quick formal proof of the pertinent formula,

u[p′,p] · (w p · g0) = (u[p′,p] · w p) · g0 . (66)

Indeed, according to equations (16) and (36) (the second of which can be reformulated as stating that 
P ◦ (idG × R g0
) =

R g0
◦ 
P , where R g0

denotes right translation by g0 in P ),

u[p′,p] · (w p · g0) = T([p′,p],p·g0)
P ◦ (u[p′,p], T p R g0
◦ w p) ◦ π fr

J G(u[p′,p])−1

= T([p′,p],p·g0)
P ◦ T([p′,p],p)(idG ×M R g0
) ◦ (u[p′,p], w p) ◦ π fr

J G(u[p′,p])−1

= T p R g0
◦ T([p′,p],p)
P ◦ (u[p′,p], w p) ◦ π fr

J G(u[p′,p])−1

= (u[p′,p] · w p) · g0 .

This implies that the action 
 J P of J G on J P in equation (53) passes to the quotient

C P = J P/G0 , (67)

which is an affine bundle over M called the connection bundle of P because its sections correspond precisely to the G0-
equivariant sections of J P (as an affine bundle over P ), which are exactly the principal connections on P . Thus we get a 
natural induced action
14
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C P : J G ×M C P −→ C P

(u[p′,p], [w p]) �−→ u[p′,p] · [w p] (68)

of J G on C P . It will be convenient to visualize this construction in terms of the “magical square” for connection bundles, 
i.e., the commutative diagram

J P
ρC

π J P

C P

πC P

P ρ M

(69)

in which the horizontal projections define principal G0-bundles while the vertical projections provide affine bundles such 
that ρC is an isomorphism on each fiber and, by definition, is J G-equivariant.

Now we can formulate the rule that to each principal connection in P assigns its associated connection in P ×G0 Q in 
terms of a canonical bundle map over P ×G0 Q , namely:

π∗(C P ) −→ J (P ×G0 Q )

([p,q], [w p]) �−→ J (p,q)ρQ (w p,0)
(70)

To see that it is well defined, we have to check that, given any point x ∈ M , the result remains unchanged if we pick any 
g0 ∈ G0 to replace the representative (p, q) ∈ (P × Q )x of [p, q] ∈ (P ×G0 Q )x by another representative (p · g0, g

−1
0 · q) and 

the representative w p ∈ J p P of [w p] ∈ Cx P by another representative w p·g0
: writing R P

g0
for right translation by g0 in P

and L Q
g−1

0
for left translation by g−1

0 in Q , we have w p·g0
= T p R P

g0
◦ w p and get

J
(p·g0,g−1

0 ·q)
ρQ (w p·g0

,0) = T
(p·g0,g−1

0 ·q)
ρQ ◦

(
T p R P

g0
◦ w p , 0

)

= T
(p·g0,g−1

0 ·q)
ρQ ◦ T(p,q)

(
R P

g0
× L Q

g−1
0

)
◦ (w p,0)

= T(p,q)ρQ ◦ (w p,0) = J (p,q)ρQ (w p,0) .

Moreover, this bundle map is also J G-equivariant: this follows trivially from the definition of the action of J G on the spaces 
involved and the J G-equivariance of JρQ that was proved above. And finally, we observe that this bundle map does capture 
the essence of passing from a principal connection to its associated connection, since if the former is given by a section 
Γ P : M −→ C P and the latter by a section Γ P×G0 Q : P ×G0 Q −→ J (P ×G0 Q ), then Γ P×G0 Q is simply the push-forward 
of the section Γ P ◦ π : P ×G0 Q −→ π∗(C P ) with this bundle map. Note also that the prescription corresponds precisely to 
that given in equation (65) at the level of horizontal bundles.

3.3. Second order jet groupoids and induced actions

In this subsection, we apply the general procedure developed in Ref. [2] of “differentiating” actions of Lie groupoids on 
fiber bundles once more, namely, to the natural actions of the jet groupoid J G of the gauge groupoid G = (P × P )/G0 on 
the jet bundle J P and the connection bundle C P of the principal bundle P itself, to obtain natural induced actions 6


 J ( J P ) : J ( J G) ×M J ( J P ) −→ J ( J P )

(u′
ug

, u′
up

) �−→ u′
ug

· u′
up

(71)

and


 J (C P ) : J ( J G) ×M J (C P ) −→ J (C P )

(u′
ug

, u[w p ]) �−→ u′
ug

· u[w p ]
(72)

derived from the actions 
 J P in equation (53) and 
C P in equation (68) by applying the general formula in equation (16)
of the previous section. Explicitly, we have

u′
ug

· u′
up

= T(ug ,up)
 J P ◦ (u′
ug

, u′
up

) ◦ π fr
J ( J G)(u′

ug
)−1 , (73)

and

u′
ug

· u′[w p] = T(ug ,[w p])
C P ◦ (u′
ug

, u′[w p ]) ◦ π fr
J ( J G)(u′

ug
)−1 , (74)

6 In this subsection, we often write g = [p′, p] for points in the gauge groupoid G = (P × P )/G0.
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respectively. These actions admit restrictions to several subgroupoids and subbundles, among which the following will 
become important to us at some point or another: the natural induced actions


 J̄ 2 P : J̄ 2G ×M J̄ 2 P −→ J̄ 2 P

(u′
ug

, u′
up

) �−→ u′
ug

· u′
up

(75)

of the semiholonomous second order jet groupoid J̄ 2G of G and


 J̄ 2 P : J 2G ×M J̄ 2 P −→ J̄ 2 P

(u′
ug

, u′
up

) �−→ u′
ug

· u′
up

(76)

of the second order jet groupoid J 2G of G on the semiholonomous second order jet bundle J̄ 2 P of P , as well as the action


 J 2 P : J 2G ×M J 2 P −→ J 2 P

(u′
ug

, u′
up

) �−→ u′
ug

· u′
up

(77)

of the second order jet groupoid J 2G of G on the second order jet bundle J 2 P of P , all defined by the same formula,

u′
ug

· u′
up

= T(ug ,up)
 J P ◦ (u′
ug

, u′
up

) ◦ π fr
J G(ug)

−1 , (78)

and similarly, the natural induced actions


 J (C P ) : J̄ 2G ×M J (C P ) −→ J (C P )

(u′
ug

, u[w p ]) �−→ u′
ug

· u[w p ]
(79)

of the semiholonomous second order jet groupoid J̄ 2G of G and


 J (C P ) : J 2G ×M J (C P ) −→ J (C P )

(u′
ug

, u[w p ]) �−→ u′
ug

· u[w p ]
(80)

of the second order jet groupoid J 2G of G on the jet bundle J (C P ) of the connection bundle C P of P , defined by

u′
ug

· u[w p] = T(ug ,[w p])
C P ◦ (u′
ug

, u[w p ]) ◦ π fr
J G(ug)

−1 . (81)

As noted in the discussion preceding Proposition 2 in the previous section, the simplification in the last term on the rhs of 
equations (78) and (81), as compared to equations (73) and (74), comes from the assumption that u′

ug
is semiholonomous, 

and the definition of the actions in equations (75) and (77) relies on the fact that when u′
ug

and u′
up

are both semi-
holonomous or both holonomous, then so is u′

ug
· u′

up
.

A more profound understanding of the situation can be obtained by extending the “magical square” for connection 
bundles in equation (69) to the corresponding jet bundles, considering the commutative diagram

J ( J P )
JρC

π J ( J P )

J (C P )

π J (C P )

J P
ρC

π J P

C P

πC P

P
ρ

M

(82)

and noting that JρC , although no longer an isomorphism on each fiber (it is still onto but has a kernel), is J ( J G)-
equivariant. Even more importantly, by restricting to the semiholonomous second order jet bundle of P , we arrive at a 
“magical square” for jet bundles of connection bundles, i.e., the commutative diagram

J̄ 2 P
JρC

π J̄ 2 P

J (C P )

π J (C P )

J P
ρC

π J P

C P

πC P

ρ

(83)
P M
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in which all three horizontal projections define principal G0-bundles while the vertical projections provide affine bundles 
such that ρC and JρC are both isomorphisms on each fiber, ρC is J G-equivariant and JρC is J̄ 2G-equivariant.

To prove these statements, let us pick a point p ∈ P with ρ(p) = x and a jet w p ∈ J p P and take tangent maps to the 
commutative diagram in equation (69) to obtain the commutative diagram

T w p
( J P )

T w p ρC

T w p π J P

T [w p ](C P )

T [w p ]πC P

T p P
T pρ

TxM

(84)

Since ρC is a submersion and hence its tangent maps are surjective, this means that the tangent spaces T [w p ](C P ) of the 
orbit space C P can be realized as quotient spaces, namely, the linear maps

T w p ρC : T w p
( J P ) −→ T [w p](C P ) (85)

induce isomorphisms

T [w p](C P ) ∼= T w p
( J P )/ker T w p ρC , (86)

and this leads to an analogous realization of the jet spaces J [w p ](C P ) of the orbit space C P as quotient spaces, namely, the 
affine maps

J w p ρC : J w p
( J P ) −→ J [w p ](C P ) (87)

defined by

J w p ρC (u′
w p

) = T w p
ρC ◦ u′

w p
(88)

induce isomorphisms

J [w p ](C P ) ∼= J w p
( J P ) / L(TxM,ker T w p

ρC ) . (89)

Now using the J G-equivariance of ρC , which means that 
C P ◦ (id J G ×M ρC ) = ρC ◦ 
 J P , we can prove the J ( J G)-
equivariance of JρC . To this end, let us also pick a point g = [p′, p] ∈ G and a jet ug ∈ J g G , together with iterated jets 
u′

ug
∈ Jug

( J G) and u′
w p

∈ J w p
( J P ), and calculate

u′
ug

· J w p
ρC (u′

w p
)

= T(ug ,[w p ])
C P ◦
(
u′

ug
, T w p

ρC ◦ u′
w p

)
◦ π fr

J ( J G)(u′
ug

)−1

= T(ug ,[w p ])
C P ◦ T(ug ,w p)(id J G ×M ρC ) ◦
(
u′

ug
, u′

w p

)
◦ π fr

J ( J G)(u′
ug

)−1

= Tug ·w p
ρC ◦ T(ug ,w p)
 J P ◦

(
u′

ug
, u′

w p

)
◦ π fr

J ( J G)(u′
ug

)−1

= Jug ·w p
ρC

(
u′

ug
· u′

up

)
.

But here we can actually do better if we replace iterated jets by semiholonomous second order jets because that will elim-
inate the need of passing to a quotient and convert the commutative diagram in equation (82) to the one in equation (83). 
To show this, we first note that, as before,

ker T w p
ρC = {(X0) J P (w p) | X0 ∈ g0} ∼= g0

∼= V p P , (90)

where (X0) J P denotes the fundamental vector field on J P associated to a generator X0 ∈ g0 via the pertinent action of G0, 
defined by the appropriate analogue of equation (51) above. Here, we shall need a more explicit form of this isomorphism 
between the spaces ker T w p

ρC and V p P : it is simply the restriction

T w p
π J P : ker T w p

ρC

∼=−→ V p P (91)

of the linear map

T w π : T w ( J P ) −→ T p P (92)

p J P p
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that appears in the definition of semiholonomous second order jets. (Indeed, the right action of G0 on J P being induced 
from that on P , the tangent map T w p

π J P will of course take any fundamental vector field (X0) J P at w p to the correspond-
ing fundamental vector field (X0)P at p). This in turn implies that the restriction of the (affine) map in equation (87) to the 
(affine) subspace J̄ 2

w p
P of the (affine) space J w p

( J P ) will establish an isomorphism

J w p ρC : J̄ 2
w p

P
∼=−→ J [w p ](C P ) (93)

so we can replace equation (89) by the much simpler equation

J [w p ](C P ) ∼= J̄ 2
w p

P . (94)

To prove this statement, we have to show that the affine map in equation (87), when restricted to the affine subspace 
J̄ 2

w p
P , (a) becomes injective and (b) remains surjective. For (a), assume we are given two semiholonomous second order jets 

u′ 1
w p

, u′ 2
w p

∈ J̄ 2
w p

P which under J w p
ρC have the same image; then their difference is a linear map from Tx M to T w p

( J P )

satisfying two conditions, namely that its composition with T w p
ρC is zero, so it takes value in ker T w p

ρC , and that its 
composition with T w p

π J P is also zero, since u′ 1
w p

and u′ 2
w p

are both semiholonomous. But this implies that it must itself be 
zero since according to equation (91), T w p

π J P is injective on ker T w p
ρC . For (b), assume we are given a general iterated jet 

u′
w p

∈ J w p
( J P ) and consider the difference T w p

π J P ◦ u′
w p

− w p , which is a linear map from Tx M to V p P , so that according 
to equation (91), there is a unique linear map �u ′

w p
from TxM to ker T w p

ρC ⊂ T w p
( J P ) satisfying T w p

π J P ◦ u′
w p

− w p =
T w p

π J P ◦ �u ′
w p

. But this implies that the difference ū′
w p

= u′
w p

− �u ′
w p

is a semiholonomous second order jet, ū′
w p

∈ J̄ 2
w p

P , 
which under J w p

ρC has the same image as the original iterated jet u′
w p

∈ J w p
( J P ).

4. Minimal coupling and Utiyama’s theorem

In the context of the formalism adopted in the previous section, the minimal coupling prescription and the curvature 
map can be viewed as stemming from bundle maps

D : C P ×M J (P ×G0 Q ) −→ �J (P ×G0 Q ) , (95)

and

F : J (C P ) −→ ∧2
T ∗M ⊗ (P ×G0 g0) , (96)

over M , which have already appeared in Ref. [4] (see the diagrams in equations (52) and (57) there). What we want to show 
here is that, and in precisely what sense, these bundle maps are equivariant under the action not only of the pertinent Lie 
group bundles but also of the pertinent Lie groupoids. To this end, it turns out to be convenient to “lift” all bundles to the 
space appearing in the upper left hand corner of the appropriate “magical square”, that is, the space P × Q in the first case 
(see equation (45)) and the space J P in the second case (see equation (69)), where these bundle maps take a much simpler 
form.

4.1. Minimal coupling

To deal with the minimal coupling prescription, we observe that the bundle map D in equation (95) fits into the follow-
ing commutative diagram

( J P × Q ) ×P×Q J (P × Q )
D

(ρC ◦pr1, JρQ )

�J (P × Q )

�JρQ

C P ×M J (P ×G0 Q )
D

�J (P ×G0 Q )

(97)

where the bundles in the top row are over P × Q while those in the bottom row are over M . (Here, we have identified the 
pull-back of J P by the projection from P × Q to P with the cartesian product J P × Q ). In fact, it is convenient to expand 
this to a commutative diagram
18
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( J P × Q ) ×P×Q J (P × Q )
D �J (P × Q )

π∗(C P ) ×P×G0 Q J (P ×G0 Q )
D �J (P ×G0 Q )

C P ×M J (P ×G0 Q )
D �J (P ×G0 Q )

(98)

where the bundles in the middle row are over the quotient space P ×G0 Q , i.e., the total space of the corresponding 
associated bundle. (Here, we omit the labels on the vertical maps, which are either the same as in the previous diagram or 
else are obvious.) Then the bundle map D in the middle row is the composition of the difference map already introduced 
at the beginning of this paper (see equation (3)) and the canonical bundle map of equation (70) in the first factor, up to a 
sign that can be taken care of by switching the two factors. Continuing to use the same notation as in Section 3.1, we see 
that this corresponds to the bundle map D in the bottom row being given in terms of that in the top row according to

Dx

([w p], J (p,q)ρQ (up, uq)
) = �J (p,q)ρQ

(
D(p,q)

(
w p, (up, uq)

))
, (99)

whereas the latter is simply defined by

D(p,q)

(
w p, (up, uq)

) = (up − w p, uq) . (100)

(This follows from equations (59)–(62) together with the same equations with J replaced by �J ). To show that Dx is well 
defined, note first that if we replace the point p in P by another point in P in the same fiber over x, which is of the form 
p · g0 for some (unique) g0 ∈ G , then we must replace w p by w p · g0 = T p R g0

◦ w p and similarly up by up · g0 = T p R g0
◦ up , 

as well as uq by uq · g0 = Tq Lg−1
0

◦ uq , so as to guarantee that J (p,q)ρQ (up, uq) remains unaltered:

J
(p·g0,g−1

0 ·q)
ρQ

(
up · g0, uq · g0

) = T
(p·g0,g−1

0 ·q)
ρQ ◦ T(p,q)

(
R g0

× Lg−1
0

)
◦ (up, uq)

= T(p,q)

(
ρQ ◦

(
R g0

× Lg−1
0

))
◦ (up, uq) = T(p,q)ρQ ◦ (up, uq)

= J (p,q)ρQ (up, uq) .

But then �J (p,q)ρQ (up − w p, uq) will remain unaltered as well:

�J
(p·g0,g−1

0 ·q)
ρQ

(
(up − w p) · g0, uq · g0

) = T
(p·g0,g−1

0 ·q)
ρQ ◦ T(p,q)

(
R g0

× Lg−1
0

)
◦ (up − w p, uq)

= T(p,q)

(
ρQ ◦

(
R g0

× Lg−1
0

))
◦ (up − w p, uq) = T(p,q)ρQ ◦ (up − w p, uq)

= �J (p,q)ρQ (up − w p, uq) .

Moreover, even if we leave p fixed, we may still modify the second component in the argument of D(p,q) , i.e., the 
pair (up, uq) ∈ J p P × L(TxM, Tq Q ), without changing its image under J (p,q)ρQ , namely, by adding a pair (�up, �uq) ∈
L(TxM, ker T(p,q)ρQ ). But then since w p ∈ J p P remains unaltered, the expression (up − w p, uq) ∈ �J p P × L(TxM, Tq Q ) will 
be modified in the same way and, in particular, without changing its image under �J (p,q)ρQ .

Now we are ready to formulate the first main theorem in this paper, which extends the left part of the commutative 
diagram in equation (52) of Ref. [4], as follows.

Theorem 1. The minimal coupling map D in equation (95) is equivariant under the actions of the pertinent Lie groupoids, i.e., the 
diagram

J G ×M (C P ×M J (P ×G0 Q ))

(π fr
J G×π J G )×M D

C P ×M J (P ×G0 Q )

D

(GL(T M) ×M G) ×M �J (P ×G0 Q ) �J (P ×G0 Q )

(101)

commutes.

Proof. This follows immediately from equivariance of JρQ under J G (which as we have seen implies equivariance of the 
canonical bundle map in equation (70) under J G) and equivariance of �Jρ under GL(T M) ×M G (which can be shown in 
Q
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precisely the same way), in combination with Proposition 1, to prove that the bundle maps D in the top and middle rows 
of the diagram in equation (98) are equivariant in the same sense, the former obviously being equivariant under the right 
action of G0 as well. �

To complete the discussion, let us specify in what sense the map D in equation (95) captures the essence of the minimal 
coupling prescription. Abbreviating P ×G0 Q to E , assume that Γ : M −→ C P is a section of C P representing a principal 
connection in P , Γ E : E −→ J E is the section of J E (as a bundle over E) representing the resulting associated connection 
in E , obtained by push-forward with the canonical bundle map in equation (70), ϕ : M −→ E is a section of E and ∂ϕ :
M −→ J E is its derivative (also denoted by jϕ and called its jet prolongation); then D ◦ (Γ, ∂ϕ) : M −→ �J E is indeed the 
covariant derivative of ϕ with respect to that connection, because it is elementary to see that equation (99) combined with 
equation (100) will boil down to the formula in equation (2).

4.2. Utiyama’s theorem

To deal with the curvature map, we observe that the bundle map F of equation (96) fits into the following commutative 
diagram

J̄ 2 P F

JρC

π∗
J P

(
ρ∗(∧2

T ∗M
) ⊗ V P

)

J (C P )
F

∧2
T ∗M ⊗ (P ×G0 g0)

(102)

where the bundles in the upper row are over J P while those in the lower row are over M . (Here, we have identified the 
vertical bundle V P of P with the trivial vector bundle P × g0 over P ; then the second tensor factor in the vertical map on 
the rhs of this diagram is just the map ρg0

in the “magical square” of equation (45) for the adjoint bundle P ×G0 g0, pulled 
back to J P ). Again, it is convenient to expand this to a commutative diagram

J̄ 2 P F π∗
J P

(
ρ∗(∧2

T ∗M
) ⊗ V P

)

J̄ 2 P F ρ∗(∧2
T ∗M

) ⊗ V P

J (C P )
F ∧2

T ∗M ⊗ (P ×G0 g0)

(103)

where the bundles in the middle row are over the total space P of the principal bundle. (And again, we omit the labels on 
the vertical maps, which are either the same as in the previous diagram or else are obvious.) Then the bundle map F in 
the middle row is the alternator or antisymmetrizer already introduced at the beginning of this paper (see equation (8)). 
Continuing to use the same notation as in Section 3.2, we see that this corresponds to the bundle map F in the bottom row 
being given in terms of that in the top row according to

Fx

(
J w p

ρC (u′
w p

)
)
(v1, v2) = ρg0

(
F w p

(u′
w p

)(v1, v2)
)
, (104)

for v1, v2 ∈ TxM , whereas the latter, as we recall from Section 2, is explicitly defined as follows: given a semiholonomous 
second order jet u′

w p
∈ J̄ 2

w p
P , we arbitrarily choose some holonomous second order jet u′ 0

w p
∈ J 2

w p
P (this choice will 

ultimately drop out under the antisymmetrization) to form the difference u′
w p

−u′ 0
w p

, which is a linear map from Tx M to the 

vertical space V jt
w p ( J P ) of J P with respect to the jet target projection π J P ; then we can apply the canonical isomorphism

V jt
w p ( J P ) = ker T w p

π J P = T w p
( J p P ) ∼= �J p P = L(TxM, V p P ) (105)

to identify it with a linear map from Tx M to L(TxM, V p P ), that is, with an element of L2(Tx M, V p P ), and obtain F w p
(u′

w p
) ∈

L2
a(Tx M, V p P ) by antisymmetrizing in the usual sense. The last step then consists in applying the additional canonical 

isomorphism

V p P ∼= g0 . (106)

To show that Fx is well defined, note that if we replace the point p in P by another point in P in the same fiber over x, 
which is of the form p · g for some (unique) g ∈ G , then we must replace w p by w p · g = T p R P

g ◦ w p , u′
w by u′

w · g =
0 0 0 0 p p 0
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T w p
R J P

g0
◦ u′

w p
and similarly u′ 0

w p
by u′ 0

w p
· g0 = T w p

R J P
g0

◦ u′ 0
w p

, where R P
g0

and R J P
g0

denote right translation by g0 in P and 
in J P , respectively, so as to guarantee that J w p

ρC (u′
w p

) remains unaltered:

J w p ·g0
ρC (u′

w p
· g0) = T w p ·g0

ρC ◦ T w p
R J P

g0
◦ u′

w p
= T w p

(
ρC ◦ R J P

g0

)
◦ u′

w p

= T w p
ρC ◦ u′

w p
= J w p

ρC (u′
w p

) .

But then

u′
w p

· g0 − u′0
w p

· g0 = T w p
R J P

g0
◦ u′

w p
− T w p

R J P
g0

◦ u′0
w p

,

so that applying the isomorphism in equation (105), we get

(
u′

w p
− u′0

w p

) · g0 = T p R P
g0

◦
(
u′

w p
− u′0

w p

)
,

and applying the additional isomorphism in equation (106), we get

(
u′

w p
− u′0

w p

) · g0 = Ad(g−1
0 ) ◦

(
u′

w p
− u′0

w p

)
,

implying that

[ p · g0 ,
(
u′

w p
− u′0

w p

) · g0 ] = [ p , u′
w p

− u′0
w p

] .
(To justify this conclusion, note that the linear isomorphism T w p

R J P
g0

: T w p
( J P ) −→ T w p ·g0

( J P ), when restricted to the 

vertical space of J P with respect to the jet target projection π J P , reduces to the tangent map T w p
R J P

g0,p : T w p
( J p P ) −→

T w p ·g0
( J p·g0

P ) of the restricted right translation R J P
g0,p : J p P −→ J p·g0

P by g0. But this is an affine map between affine 
spaces, so under the isomorphism in equation (105), its tangent map at each point becomes the corresponding difference 
map, which is a linear map �R J P

g0,p : �J p P −→ �J p·g0
P , and that is just composition with T p R P

g0
: V p P −→ V p·g0

P . Finally, it is 
well known that under the isomorphism in equation (106), this becomes Ad(g−1

0 ) : g0 −→ g0.)
Now we are ready to formulate the second main theorem in this paper, which extends the left part of the commutative 

diagram in equation (57) of Ref. [4], as follows.

Theorem 2. The curvature map F in equation (96) is equivariant under the actions of the pertinent Lie groupoids, i.e., the diagram

J 2G ×M J (C P )

((π fr
J G×π J G )◦π J 2G ,F )

J (C P )

F

(GL(T M) ×M G) ×M
(∧2

T ∗M ⊗ (P ×G0 g0)
) ∧2

T ∗M ⊗ (P ×G0 g0)

(107)

commutes.

Proof. This follows immediately from Proposition 2, together with the fact that, as shown in Section 3.1, the canonical 
isomorphism V P ∼= P × g0 and the projection ρg0

: P × g0 −→ P ×G0 g0 are both G-equivariant. � �
To complete the discussion, let us specify in what sense the map F in equation (96) captures the essence of the pre-

scription for defining the curvature of a principal connection. Assume that Γ : M −→ C P is a section of C P representing 
a principal connection in P and ∂Γ : M −→ J (C P ) is its derivative (also denoted by jΓ and called its jet prolongation); 
then F ◦ ∂Γ : M −→ ∧2

T ∗M ⊗ (P ×G0 g0) is a 2-form on M with values in the adjoint bundle P ×G0 g0 which is precisely 
the curvature form of that connection, because it is elementary to see that equation (104) will boil down to the formula in 
equation (9).

5. Conclusions and outlook

The equivariance statements formulated in the two theorems in this paper are very general, in that this equivariance 
holds for the full jet groupoid J G of the gauge groupoid G , in the case of Theorem 1, and for the full second order jet 
groupoid J 2G of the gauge groupoid G , in the case of Theorem 2. But this does of course not mean that a concrete field 
theoretical model will have such a huge amount of symmetry – quite to the contrary! Any such model will be subject 
to restrictions on what are its allowed symmetries coming from the dynamics, which is governed, say, by its Lagrangian: 
such a Lagrangian will typically be invariant not under the pertinent jet groupoid but rather only under a certain Lie 
subgroupoid thereof. The generic situation here, which prevails for all standard Lagrangians in gauge theories, is that M
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comes equipped with some metric g and the aforementioned Lie subgroupoid will be the inverse image of the corresponding 
orthonormal frame groupoid O (T M, g) ⊂ GL(T M) under the “frame” projection from the pertinent jet groupoid to the linear 
frame groupoid GL(T M) of M . Thus what the two theorems in the previous section really prove is that there are no other 
restrictions, so this is in fact the correct Lie groupoid for hosting the symmetries of any such theory, and remarkably, it is 
large enough to accommodate not only its gauge symmetries but also its space-time symmetries, including isometries as 
well as orthonormal frame transformations, unifying them all within a single mathematical object. Finally, the formalism 
can also be adapted to handle symmetry breaking, as has been discussed in Ref. [7] (even though only at the level of Lie 
group bundles and not of full Lie groupoids, which is however enough to deal with that subject).

With this picture in mind, we hope to have demonstrated, in the two papers of this series, that Lie groupoids provide a 
much wider and more flexible mathematical framework than Lie groups for describing symmetries in physics, and in some 
cases such as that of gauge theories, we would venture to say they provide the “right” one. What remains to be seen is how 
this approach will evolve when one tries to extend it from classical to quantum field theories.
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