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Abstract 

The moduli space of vacua for the confining phase of N = 1 S 0 (NC) supersymmetric gauge 
theories in four dimensions is analyzed by studying the M theory fivebrane. The type IIA brane 
configuration consists of a single NS5 brane, multipk copies of NS’5 branes, D4 branes between 
them, and D6 branes intersecting D4 branes. We construct M theory fivebrane configuration cor- 
responding to the superpotential perturbation where the power of adjoint field is connected to the 
number of NS’5 branes. At a singular point in the moduli space where mutually local dyons become 
massless, the quadratic degeneracy of the N = 2 S 0 (NC) hyperelliptic curve determines whether 
this singular point gives a N = 1 vacua or not. The comparison of the meson vevs in M theory 
fivebrane configuration with field theory results turns out that the effective superpotential by the 
“integrating in” method with enhanced gauge group SU(2) is exact. 0 1998 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

In the last years we have seen how string/M theory can be used to study nonperturbative 
dynamics of low energy supersymmetric gauge theories in various dimensions. One of the 
main motivations is to understand the D(irichet) brane dynamics where the gauge theory is 
realized on the worldvolume of D branes. 
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This work was pioneered by Hanany and Witten [ 11 where the mirror symmetry of N = 4 
gauge theory in three dimensions was described by changing the location of the Neveu- 
Schwarz(NS)S brane in spacetime (see, for example, [2,3]). As one changes the relative 
orientation of the two NS5 branes [4] while keeping their common four spacetime dimen- 
sions intact, the N = 2 supersymmetry is broken to N = 1 [5,6]. Using this configuration 
they [5] described and checked a stringy derivation of Seiberg’s duality for N = 1 su- 
persymmetric gauge theory with SU(N,) gauge group with Nf flavors in the fundamental 
representation which was conjectured some time ago in [7]. This result was generalized 
to brane configurations with orientifolds which give N = 1 supersymmetric theories with 
gauge group SO(N,.) or Sp(N,) [6,8] (see also [9-l 11 for this approach and [12-161 for 
an equivalent geometrical approach). 

The branes in type IIA/W string theory were considered to be rigid without any bendings. 
As the branes are intersecting each other, a singularity occurs. In order to avoid that kind of 
singularities, a nice explanation was found by reinterpreting brane configuration in string 
theory from the point of view of M theory by Witten [ 171. Then both the D4 branes and NS5 
branes used in type IL4 string theory originate from the fivebrane of M theory (the former 
is an M theory fivebrane wrapped over S’ and the latter is the one on R” x S’). That is, 
D4 brane’s worldvolume projects to a five-dimensional manifold in R” and NS5 brane’s 
worldvolume is located at a point in S’ and fills a six dimensional manifold in R”. In order 
to insert D6 branes one has to use a multiple Taub-NUT space [ 181 whose metric is complete 
and smooth. Therefore, the singularities are removed in 11 dimensions where the picture 
becomes smooth, the D4 branes and NS5 branes become the unique M theory fivebrane and 
the D6 branes are the Kaluza-Klein monopoles. The property of N = 2 supersymmetry in 
four dimensions requires that the worldvolume of M theory fivebrane is R’,3 x .E where 
Z is uniquely identified with the curves [19-241 that appear in the solutions to Coulomb 
branch of the field theory. Further generalizations of this configuration with orientifolds 
were studied in [25,26]. The original work [17] was appropriated for understanding the 
moduli space for N = 2 supersymmetric gauge theories. In [27,28] (see also [29-3 l]), this 
was seen in M theory, by considering the possible deformation of the curve ,E. 

The exact low energy description of N = 2 supersymmetric SU ( NC) gauge theories with 
Nf flavors in four dimensions have been found in [28]. They obtained the information re- 
garding the Affleck-Dine-Seiberg superpotential [32] for Nf < N,, in M theory approach. 
It has N, branches corresponding to NC D4 branes and there exist two asymptotic regions 
corresponding to two NS5 branes. The M theory fivebrane [27] is described by the curve 

(1.1) 
i=l 

where v = x4 + ix5, t = exp(-(x6 + ix”)/R) where xl0 is the 11th coordinate of M 
theory compactified on a circle of radius R, CN, (v, uk) is a degree NC polynomial in v with 
coefficients depending on the moduli Uk and mi(i = 1,2, . . . , Nf) is the mass of quark. 
By rotating the N = 2 configuration (which implies to add a mass term pzTr(Q2) where 
0 is the adjoint field) an N = 1 configuration is obtained. The asymptotic conditions are 
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changed and the M theory fivebrane is described now in an (v, t, w) space where w = 
x8 + ix9. 

This approach has been developed further and used to study the moduli space of vacua of 
confining phase of N = 1 supersymmetric gauge theories in four dimensions [3 11. In terms 
of brane configuration of IIA string theory, this was achieved by taking multiples of NS’5 
branes rather than a single NS’5 brane. In field theory, this is done by generalizing to the 
case of the superpotential AW = JTFL, pkTr(Qk). This perturbation lifts the nonsingular 
locus of the N = 2 Coulomb branch while at singular locus there exist massless monopoles 
that can condense due to the perturbation. 

In the present work we extend the results of [31] to N = 1 supersymmetric theories 
with gauge groups SO(2N,) and SO(2N, + 1) and also generalize our previous work [33] 
which dealt with a single NS’5 brane in the sense that we are considering multiple copies 
of NS’5 branes. We will describe how the field theory analysis obtained in the low energy 
superpotential gives rise to the geometrical structure in (v, t, w) space. For more than one 
massless dyon(what we mean by dyon is a state charged electrically or magnetically or 
both), a mismatch is found between field theory results which have been studied in [34,35] 
and brane configuration results for the exact result WA = 0. As in SU ( NC) case, this implies 
that the minimal form for the effective superpotential obtained by “integrating in” is not 
exact [36], in general, for several massless dyons. 

This paper is organized as follows. In Section 2, we summarize some results concerning 
the N = 2 moduli space of vacua for S 0 (NC) supersymmetric gauge theory. By adding tree 
level superpotential perturbation A W to N = 2 superpotential, we can analyze the N = 1 
field theory. In Section 3, we describe the M theory fivebrane configuration corresponding 
to N = 1 theory with superpotential perturbation A W. In Section 4, we calculate meson 
vacuum expectation values (vevs) and the result is in complete agreement with field theory 
results discussed in Section 2, for one massless dyon. Finally, in Section 5, we come to the 
conclusions and the outlook in the future directions. 

Note that these techniques of intersecting branes in string/M theory have been used to 
obtain much information about supersymmetric gauge theories with different gauge groups 
and in various dimensions [37-641. 

2. Field theory analysis 

Let us first review some field theory results already obtained in [34,35,65-681. We claim 
no originality for most of the results presented in this section except the description of the sin- 
gular point in the moduli space where mutually local dyons become massless and the compu- 
tation of the generating function for the parameter p2k (see, for example, (2.23) and (2.27)). 

2.1. N = 2 theory 

Let us consider N = 2 supersymmetric SO(N,) gauge theory with matter in the N,.- 
dimensional representation of SO( NL.). In terms of N = 1 superfields, N = 2 vector 
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multiplet consists of a field strength chiral multiplet Wib and a scalar chiral multiplet @ab, 
both in the adjoint representation of the gauge group SO (NC). The quark hypermultiplets are 
made of a chiral multiplet Q6 which couples to the Yang-Mills fields where i = 1, . . . ,2Nf 
are flavor indices and a = 1, . . . , NC are color indices. The N = 2 superpotential takes the 
form 

W = d&@ab QL Jij + z/zmij Qh Qi, (2.1) 

where Jij is the symplectic metric (“, A) 8 ONION,. used to raise and lower SO(N,) flavor 
indices (1~~ xNf is the Nf x Nf identity matrix) and mij is a quark mass matrix (y A) @ 
diag(m 1, . . . , mNf). Classically, the global symmetries are the flavor symmetry Sp(2Nf) 
when there are no quark masses, in addition to U( 1)~ x Su(2)R chiral R-symmetry. The 
theory is asymptotically free for the region Nf < N, - 2 and generates dynamically a strong 
coupling scale A,v=2 where we denote the N = 2 theory by indicating it in the subscript 
of A. The instanton factor is proportional to AhiZ2 2N’-4-2N’. Then the U(l)R symmetry is 
anomalous and is broken down to a discrete Z2Nc_4-2Nr symmetry by instantons. 

The [ N,/2] complex dimensional moduli space of vacua contains the Coulomb and Higgs 
branches (we denote [NC/21 by the value of integer part of N,/2). The Coulomb branch is 
parameterized by the gauge invariant order parameters 

U2k = (Tr(42k)), k = 1,. . . , [Nc/21, (2.2) 

where #J is the scalar field in N = 2 chiral multiplet. Up to a gauge transformation 4 
can be skew diagonalized to a complex matrix, (4) = diag(At , . . . , Al,v,/21) where Ai = 

’ 
( > io; -F . At a generic point the vevs of 4 breaks the SO (NC) gauge symmetry to U ( 1)lNc/2) 
and the dynamics of the theory is that of an Abelian Coulomb phase. The Wilsonian ef- 
fective Lagrangian in the low energy can be made of the multiplets of Ai and Wi where 
i = 1,2,... , [N,/2]. If k ai’s are equal and nonzero then there exists an enhanced SU(k) 

gauge symmetry. On the other hand when they are also zero, there is an enhanced SO (2k) 
or SO(2k + 1) depending on whether N, is even or odd. The property of N = 2 super- 
symmetry implies that there are no perturbative corrections beyond one loop and there exist 
nonperturbative instanton corrections. 

The quantum moduli space is described by a family of genus 2N, - 1 hyperelliptic spectral 
curves (we will use the subscript “even” for the quantity corresponding to SO(2N,), “odd” 
for SO(2N, + 1); otherwise they have common expression) [66,67,69] with associated 
meromorphic one forms, 

Nf 

Y .$e, = C&,(u2) - Ayzg4P2Nf u4 n(u2 - mf) for SO(2N,), 
i=I 

(2.3) 
Nf 

Y&d = c&c(v2) - Ayz_2-2Nf u2 n(u2 - m?) for SO(2N, + 1), 
i=l 
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where C2N, (v2) is a degree 2N, polynomial in u with coefficients depending on the moduli 
u2k appearing in (2.2) and mi (i = 1,2, . . . , Nf) is the mass of quark, that is, nonzero quark 
mass matrix element. Note that the polynomial C&V, (u2) is an even function of u which 
will be identified with a complex coordinate (x4, x5) directions in spacetime in next section 
and is given by 

(2.4) 
i=l i=l 

where S2k and 242k are related each other by so-called Newton’s formula 

2&k + 2 S2k-2i u2i = 0, k = 1,2, . . . , N,, 
i=l 

(2.5) 

with SO = 1. Recall that the symmetric polynomial s2k in LZ~ is 

S7-k = (-l)k c ai’, . ..a. 
ii <...<ia 

at the classical level. From this recurrence relation, we obtain 

(2.6) 

as2j 1 
G = -gsX-k) for j 1 k, (2.7) 

which will be used later. When 2r branch points of (2.3) coincide, the Riemann surface 
degenerates as we vary the moduli, giving a singularity in the effective action and there 
exists an unbroken SO(2r) or SO(2r + 1) enhanced gauge symmetry. On the subman- 
ifold with all but (NC - r)/2 of the ai being zero (when N, - I is even), the curve be- 
comes 

92 1 - u4r(C;(N,_,)(u2) - A,=, even - 
4N,.-4-2Nf u2Nf-4r+4 

), (2.8) 

(c,2,+, (u2> - A,,,=2 
4Nc--2-2Nf v2Nf -4,. 

) (2.9) 

for massless matter. By absorbing the factor u4r (u4r+2 ) into the new variable j&,(j&d) 
we will study the property of singular point in the moduli space. 

2.2. Breaking N = 2 to N = 1 

We are interested in a microscopic N = 1 theory mainly in a phase with a single confined 
photon coupled to the light dyon hypermultiplet while the photons for the rest are free. By 
taking a tree level superpotential perturbation AW of [35] made out of the Casimirs of 
the adjoint fields in the vector multiplets to the N = 2 superpotential (2.1), the N = 2 
supersymmetry can be broken to N = 1 supersymmetry. That is, 

W = JZQL@abQi Jij + d!%ni,i Qh Qi + AW, (2.10) 



168 C. Ahn et al. /Journal of Geometry and Physics 28 (1998) 163-194 

where (our ,_&2k is the same as their g2k/2k in [35]) @ is the adjoint N = 1 superfields in 
the N = 2 vector multiplet and 

NC-2 

AM’,,,, = c P2k Tr(@2k) + p2(N,-l)s2(N,-I) + k.pf@, 

k=l 

N,-1 

AWodd = c P2k ‘W@2k) + p2Ncs2Nc. (2.11) 
k=l 

HerethereexistsanextrainvariantquantityPf@ = (1/2N~N,!)~~,j,...~,~j,,~‘lj~ . . . QiNcjNc 
when NC is even while F’f @ vanishes for odd NC. Note that the /12(&-t) term is not 
associated with Uz(N,-1) but S2(&_1) which is proportional to the sum of U2(N,-l) and 
the polynomials of other u2k(k < NC - 1) according to (2.5) (similar argument for odd 
NC). Then microscopic N = 1 SO ( NC) gauge theory is obtained from N = 2 SO (NC) 
Yang-Mills theory perturbed by A W. 

2.2.1. Pure Yang-Mills theory 
Let us first study N = 1 pure SO(N,) Yang-Mills theory with tree level superpoten- 

tial (2.11). Near the singular points where monopole singlets charged under U( 1) factors 
become massless, the macroscopic superpotential of the theory is given by 

NC-1 N,-2 

W even = A C MiAiMi + C /12kU2k + p2(N,-l)s2(N,.-1) -I AU (2.12) 
i=l k=l 

and 

NC-l NC-l 

Wodd = h c MiAiMi + c p2kU2k + ~2Ncs2Nc. 
i=l k=l 

(2.13) 

We denote by Ai the N = 2 chiral superlield of (NC - 1) N = 2 U(1) gauge multi- 
plets, by Mi those of N = 2 dyon hypermultiplets, by U2k the chiral superfields corre- 
sponding to Tr(@2k), by S2k the chiral superfields which are related to U2k through (2.5), 
and by U the one corresponding to Pf @, in the low energy theory. The vevs of the low- 
est COmpOnents Of Ai, Mi , U2k, &, U are Written as ai, F?li,dy, UZk, .Qk, u, respectively. 

Recall that N = 2 configuration is invariant under the group U(~)R and Sum cor- 
responding to the chiral R-symmetry of the field theory we mentioned last subsection. 
However, in N = 1 theory SU (2) R is broken to U (1) J . In order to the theory to be con- 
sistent we should specify the charges of U(I)R x U( 1)~ of the fields and parameters as 
follows: 
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u(l)R U(l)./ 

Ai 2 0 

MiMi 0 2 

P2k 4-4k 4 

U2k -2+4k -2 

S?k -2+4k -2 

AN=2 2 0 

(2.14) 

The equations of motion obtained by varying the superpotential with respect to each field 
read 

p2k 
-_ = 

Nc-’ aUi 2 

-Jz c i=, zmi,dyt k= 1, . . . . NC -2, 

-_ = 

and 

(2.15) 

aimi,dv = 0, i = 1,. . . , NC - 1. (2.16) 

At a generic point in the moduli space, no massless fields appear (ai # 0 for i = 

1 ,..., NC - 1) which implies mi,dv = 0 by (2.16). Thus p2k, p2(N,._r) and L vanish 
according to (2.15). Then we obtain the moduli space of vacua of N = 2 theory. 

On the other hand, we consider a singular point in the moduli space where 1 mutually 
local dyons are massless. (We can choose local coordinates so that the quantum discrim- 
inant factorizes into linearly independent factors. This implies that all branches intersect 
transversely.) This means that 1 one cycles shrink to zero. Then the curve (2.3) of genus 
2N, - 1 degenerates to a curve of genus 2N, - 2Z- 1. The right-hand side of (2.3) becomes, 
for SO(2NC), 

YL = &,.(v2, u2k) - A,=, 
4w-1)U4 = f-p2 - $)2 2Nfi2i(u’ _ g?) (2.17) 

i=l j=l 

with pi and qj distinct. A point in the N = 2 moduli space of vacua is characterized by 
pi and qj . The degeneracy of this curve is checked by explicitly evaluating both y,‘?,, and 
8y,?v,,,/L+u2 at the point v = &pi, obtaining thus a zero. Since ai = 0 for i = 1, . , I and 
ai#Ofori=E+l,...,Nc-1,(2.16)leadsto 

mi, dy = 0, i=l+l,...,Nc-1, (2.18) 
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Whilemi,dy(i = I,..., 1) are not constrained. We will see how the vevs mi, dy originate 
from the information about N = 2 moduli space of vacua which is encoded in the values of 
pi and qj . We assume that the matrix 8Ui /&@k is nondegenerate and a complex 2N, - 21- l- 
dimensional moduli space of N = 1 vacua remains after perturbation. In order to calculate 
&zi/auTk, which appears in Eq. (2.15), we need the relation between aai/aszk and the 
period integral on a basis of holomorphic one forms on the curve (we thank A. Hanany for 
communicating us the misprint of the power of u in the original hep-th version; the correct 
expression appeared in the published version of [67]), 

aai vW’c-k) dv 

zgk= Y . 
(2.19) 

% 

By plugging the expression of y of (2.17) into (2.19) and by integrating along one cycles 
around v = fpi (i = 1, . . . , Z), we get 

(2.20) 

since the I one cycles shrink to zero. Through Eqs. (2.7), (2.15) and (2.20), we arrive at the 
following relation between the parameters p2k and the dyon vevs my dv . 

m? 
1, dy 

&i(P’ - p,2) fl;Nc-2qPi” - qf)‘/2’ (2.21) 

By using the definition 

Wi = 
am: dy 

l-p,, (pi’ - p,‘) n;K-‘“<p,’ - qF)‘/2 ’ 
(2.22) 

which will be useful for comparison with brane configuration, we can express the generating 
function for the p2k, &’ 2kj_L2kU2(k-1), in terms of Wi as follows: 

&-I NC-l I A’, 

c 2kPzk v W-1) = C )y x v2(k-1),2(j_k,p~(N~!-i)wi 

k=l k=l i=l j=l 

NC-l 1 NC 

= c y x “2(k-‘),2(j_k,p~‘N~-“wi + qv-4> 

k=-cc i=l j=1 

(2.23) 

In principle, we can find the parameter ,LL2k by reading the right-hand side of (2.23). This 
result determines whether a point in the N = 2 moduli space of vacua classified by the set 
of pi, qj in (2.17) remains as an N = 1 vacuum after the perturbation, if given a set of 
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perturbation parameters p2k, p2(~,_ 1) and h, and gives the dyon vevs rnf dv. We will see in 
Section 3 that this corresponds to one of the boundary conditions on a complex coordinate 
in (x8, x9) directions as IJ (which is realized as a complex coordinate in (x4, x5) directions 
in string/M theory point of view) goes to infinity. In order to make the comparison with the 
brane picture, it is very useful to define the polynomial Heven (v*) of degree 21 - 4 by 

I 

c W 2&,“(~2) 

;=, v2(u2 - Pi’> = l-g&* - pi”,’ 
(2.24) 

At a given point pi and qj in the N = 2 moduli space of vacua, Heven(u2) determines the 
dyon vevs, that is, 

which will be described in terms of the geometric brane picture in next section. Therefore, 
allthevevsofdyonsm~,~y(i=l,...,~)arefOUnd:m~,~,(i=Z+1,...,N,-1)vanishes 
according to (2.18). 

Similarly we can proceed (we will describe SO(2N, + 1) case very briefly and simply 
write down the main results throughout this paper because the arguments for SO (2NC) case 
go through in the same way.) the case of SO (2N, + 1) by starting from 

1 2N,.-21 

&‘, (n*, u2k) - A$!!*U* = n(U2 - pf)2 fl (U2 - q;) (2.26) 
i=l j=l 

going near a singular point where we get 

N 

c 2kruzk u W-1) = 9 h 2 u2(k-1),2(j_k,p2(N’-j)wi 

k=l k=l i=l j=l 

’ c2N,(n2) = c i=, (n2 - Pi”) 
Oi + O(U-*). (2.27) 

We will see how this generating function arises when we consider the brane approach which 
is the main subject in Section 3. Also we define the polynomial H&l(u2) of degree 21 - 2 

by 

1 

c Wi 2&ddk2) 

i=, (u2 - Pi’> = nf&J* - pT>’ 

(2.28) 

which will be of use later. At a given point pi and qm, f&,&j (u2) determines the dyon vevs 

my, dv = 1/Z&,&$) n(p; - q;)“2. (2.29) 
m 

Of course, the equations of motion leads to rni. dY = 0 for i = 1 + 1, . . . , NC - 1. 



172 C. Ahn et al./Joumal of Geometry and Physics 28 (1998) 163-194 

2.2.2. Yang-Mills theory with massless matter 
The theory with Nf flavors is similar to the pure case we have discussed. When some of 

branch points of (2.3) collide as we change the moduli, the Riemann surface degenerates 
and gives a singularity in the effective theory corresponding to an additional massless field. 
ThegaugegroupisSO(r)xU(l) (Nc-r)/2 where NC - r is even. At very special points in the 
moduli space, there are (NC - r)/2 hypermultiplets charged under these U (1)‘s becoming 
simultaneously massless. The superpotential at these points is 

NC-r-l NC-2 

W even = h c MiAiMi •k c p2kU2k + ~~(N,--I)S~(N,-I) -I- hU (2.30) 
i=l k=l 

and 

NC-r-l N,-I 

W odd = h c MiAiMi + c PZkU2k + /12Ncs2Nc. 

i=l k=l 

As we did in the pure case, the equations of motion can be written as 

N,-r- I 
aai 2 

as2(N,-l) 
mi, dy’ 

(2.3 1) 

(2.32) 

and 

aimi, dy = 0, i = l,..., NC-r-l. (2.33) 

Notice that the extra term in the left-hand side of (2.33) comes from the fact that U2k for 
k > NC - r - 1 are dependent on U2k for k 5 NC - r. At a generic point in the moduli 
space, no massless fields mi, dy appear (ai # 0 for i = 1, . . . , NC - r - 1) which implies 
mi, dy = 0 by (2.33). Then we get the moduli space of vacua of N = 2 theory since all the 
parameters are zero which gives A W = 0. 

In order to reduce this case to the one analogous to the pure Yang-Mills case where 
mutually local dyons are massless, we define j,“,,, = Y&,Jv~~ to get the 2r branch points 
of Riemann surface: the curve (2.3) of genus 2N, - 2r - 1 degenerates to a curve of genus 
2N, - 2r - 21- 1. Then 

-2 
Y even = c;(Nc-,) k2> - AN=2 

2(2Nc-2-Nf)v2Nf -4r+4 
(2.34) 



C. Ahn et al./Joumal of Geometry and Physics 28 (1998) 163-194 173 

-2 
Y even = c;(,j,< --I‘) k2> - AN=2 

4(N,-r)-(2Nf-4~.+4)~2N~-4r+4 

=fr 

2(N,.-r-1) 

(v2 - p;j2 n bJ2 -4j2) 

i=l j=l 

with all pi, qj distinct. Similarly, by redefinition of j&, = y$,,/~~~+~ we obtain 

j&d = C;2N,.-2r-,)(v2) - ‘N=2 
2(2N,-2r-I)-(2N1.-4r)U2Nf-4r 

/ 2CN,-r-1) 

= I-I ($ - $)’ ~ n ‘@2 - YJZ). 
i=l ;=1 

(2.35) 

(2.36) 

Now Eq. (2.33) implies that 

mi, dy = 0, i=Z+l,...,N,-r-l, (2.37) 

whilemj,dyfOri = I,..., 1 are not constrained since ai = 0 for i = 1, . . . , 1 and ai # 0 
for i = I+ 1, . . . , NC - r - 1. By analogy with the pure Yang-Mills case, we use again the 
relation: 

aai &Nc-k) dv 
-= 
as2k I - 

&V-r-k) dv 
= (2.38) 

Yeven I YeVeIl 
aI % 

Then, after making the steps between (2.19) and (2.23), it turns out the generating function 
for p2k is given by 

N,-I 

c Zk-1) _ 2kP2kV - 
’ C2(N,-r) (v2> c Oi + 0(IJw4), (2.39) 

k=l i=, v2(u2 - Pi’> 

where the relation between the function H(u2), wi and the dyon vevs rnf dv is the same as 
’ ’ in pure Yang-Mills case. Also we get similar result for SO (2N, + l), 

N< ’ c W-1) _ %&xv - c C2Nc-2r-1 (v2) w, + o(u-2). 

k=l j=* (v2 - P,“> l 

2.3. The meson vevs 

(2.40) 

Let us discuss the vevs of the meson field along the singular locus of the Coulomb branch. 
This is due to the nonperturbative effects of N = 1 theory and obviously was zero before 
the perturbation (2.11). We will see the property of exactness in field theory analysis in the 
context of M theory fivebrane in Section 4. Equivalently, the exactness of superpotential 
for any values of the parameters is to assume WA = 0. 
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2.3.1. SO(2N,) case 
We will follow the method presented in [70]. Let us consider the vacuum where one 

massless dyon exists with unbroken SU(2) x I!J(~)~~-’ where 

@km = ~2 8 diag(al, al, a2, . . . , a,+r,_l), 02 = (2.41) 

and the chiral multiplet Q = 0. These eigenvalues of @ can be obtained by differentiating 
the superpotential (2.10) with respect to @ and setting the chiral multiplet Q = 0. 

NC-2 

W’(o) = C 2iP2i(@2i-1)ij + p2(N,-I) 
a32(N,-1) 

i=l 

a~ 

h 
- 

2Nc(NC - l)! 
Eijkl[l...kNCINC @k”‘#k212 . . * OkNcN,INc = 0. 

The vacua with classical SU(2) x ~!I(l)~c-’ group are those with two eigenvalues equal to 

al andtherestgivenbyaz,a3,..., aiy,_l. It is known from [34,35] that, if using S2(j&_t) 
in the superpotential perturbation rather than u~(N,_I) the degenerate eigenvalue of @ is 
obtained to be 

af = (NC - 2h2(Nc-2) 

(Nc - 1b2(Nc-1) ’ 
(2.43) 

We will see in Section 3 that in the context of string/M theory, the asymptotic behavior of a 
complex coordinate in (x8, x9) directions for large TV determines this degenerate eigenvalue 
by using the condition for generating function of /_I,zk (2.23). Recall that ~2(&-r)s2(NC_t) 
term in (2.11) is used rather than ~2(N,._r)U2(NC_t) to get this result. The scale matching 
condition between the high energy SO(2N,) scale AN,;! and the low energy SU(2) scale 
ASUQ),N, is related by the following relation 

A 
6-2Nf 4(N,-1)-2Nf 
SUWJf = CW’c - 1h(N,-1))2A~,2 (2.44) 

After integrating out SU(2) quarks we obtain the scale matching between AN=2 and Asu(2) 
for pure N = 1 SU(2) gauge theory. That is, 

A&_,(2) = WN, - ~)IL~(N,-~))~A~N(~~-~)-~~~ det(af - m2), (2.45) 

wherematrixa~meansia@a~andquarkmassmatrixmbeing(~ A)@diag(n,,...,rnNf). 
Then the full exact low energy effective superpotential is given by 

NC-2 

=c P2kTr (@:f> + ~2(Nc-l)~;‘(Nc_,) + h pf @%I f 2&(,), (2.46) 
k=l 
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where WC1 is the superpotential evaluated in the classical SU (2) x U (1) ‘c-’ vacua and the 
last term is generated by gaugino condensation in the low energy SU(2) theory (the sign 
reflects the vacuum degeneracy). In terms of the original N = 2 scale, it is written as 

f4(N, - 1)~2(,,+l)AN=2 
2(f”c-‘j-N/ det@; _ m2)l/2. (2.47) 

Therefore, one can obtain the vevs of meson Mi = Ql QL by taking the mass matrix m to 
be (y A) 8 diag(m 1, . . . , mNf) which gives 

a w,,,, 
&fi = - 

arn~ 
(NC - 1),q,j+,$et(a; - m2)“*, (2.48) 

where a 1 is given by (2.43). It is easy to see that the vacua of gauge invariant order parameters 
which are obtained from WL parametrize the singularities of the curve (2.3) and reproduce 
the N = 2 curve (2.3). We will see in Section 3 that the finite value of a complex coordinate 
in (x8, x9) directions corresponds to the above vevs of meson when u -+ krni and the other 
complex coordinate in (x6, x”) directions vanishes. 

2.3.2. SO(2N, + 1) case 
Let us go now to the SO (2N, + 1) group for which there is no contribution from Pf @ and 

consider again the case of one massless dyon, i.e., the case of unbroken SU(2) x tJ( I)Nc -’ 
vacua with: 

~~~d=a2~diag(a~,al,a2 ,..., aiy,-l,O), (2.49) 

which can be determined by differentiating the superpotential with respect to @, 

N,-I 

W’(Q) = C 2ip2i(@2i-1)ij + p2NCs = 0. 
i=l 

(2.50) 

Again we use the result of [34,35] where the degenerate eigenvalue of @ was obtained to be 

a: = 
(Nc - ~)P~(N,-I) 

N&~N, ’ 
(2.5 1) 

We will use this value when we discuss the property of the function of a complex coor- 
dinate in (x8, x9) directions in Section 3. The scale matching between the high energy 
SO(2N, + 1) scale and the low energy SU(2) scale is 

A 
6-~NJ 

su@),Nf = (~N&N,)(~(N, - 1)1_L2(N,.-l))4f5-NJ) (2.52) 

and after integrating out SU(2) quarks it leads to for pure N = 1 SU(2) gauge theory 

4”C2,.N, = (~NcI*~N,)(~(N~ - l)~2(~,-l))A~~-‘-~~’ det(af - m2) (2.53) 
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as in SO(2N,) case. The matrices at and m are the same as those in even NC case. As a 
result the low energy effective superpotential is given by 

where again the sign reflects the vacuum degeneracy. The quadratic degeneracy of the 
curve (2.3) is confirmed by the vevs of gauge invariants obtained by WL. In terms of orig- 
inal N = 2 scale it is written as 

Woddb2kt m) = c cLzkTr(@;/) + ~2N,4 
k=l 

~+N’Jc - 1)/&&~2(N,-l)A,+2 2Nc-1-Nfdet(af _ m2)1/2_ 

(2.55) 

Finally, one gets the vevs of meson Mi = Q6 Qi by using the corresponding mass matrix m, 

Mi _ awodd 
am: 

4A 
2N,-I-Nf 

= f &Gy2_ mi,&%(Nc - 1)~2N,P2(N,-l) det<af - m2)“2T (2.56) 

where al given by (2.5 1). We will learn how this vevs of meson will occur and relate to the 
asymptotic location in (x8, x9) directions of semiinfinite D4 branes in brane geometry. 

2.4. Several massless dyons 

We discuss now the case of several massless dyons. The basic procedure in this direction 
already appeared in [71] for the SU(N,) case. Let us start with the SO(2N,) case. The 
classical moduli space is given then by 

QC1 even = 02 63 diag(a;' , . . . , a?), (2.57) 

where the eigenvalue ai occurs rr times, the eigenvalue a2 does r-2 times and so on. When 
t-1 = 2 and r-i = 1 (i > l), this will lead to the case of one dyon (2.41). The unbroken 
group is identical to the one of SU case, i.e., SU(r1) x s . . x su(rk) x ~Y(l)~-l. In (2.57), 
we consider that all of the ui’s are nonzero. If some of them are zero, the unbroken gauge 
group will be a product of several SO groups with several SU groups. 

The procedure to obtain the meson vevs is already clear from the arguments of one 
massless dyon. That is, we decompose @ = oCl + 60 and some of the &P’s commute with 
oCi and are integrated first out. Then one obtains just a product of SU(ri) groups, each one 
with adjoints. Some of the vector particles are massive after the symmetry breaking and are 
to be integrated out. After that we integrate out the adjoint fields in each SU(ri) so we go 
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from N = 2 to N = 1 theory. In the N = 1 theory we integrate out the quarks. The final 
formula for the scale of the pure N = 1 SU(ri) theory is: 

A;‘i = det(a? _ m2)4(ai)G n(aT _ a?)ri-2rj~~~~-‘)-2hr~ (2.58) 
ifi 

for some polynomial 4 (ai) and the low-energy effective superpotential is given by 

NC-2 k 

W even = c p*kTr(@z/) + P~(N,-&,+,, +IPf@,t&Cjjv;A;, (2.59) 
k=l i=l 

where u; is an rith root of unity and after differentiating with respect to rn: we obtain 

&Mj = f C *&(a’ _ m*)l/ri 

i ay-r$ ’ 

x I-I (a? _ .?)I-Zrj/r, Ajv4(47-‘)-*Nr)ir,. (2.60) 
j#i 

In the case of S0(2N, + 1) gauge group, the classical moduli space is taken to be 

QC’ - 02 @diag(ai’, . ..,a:,~). odd - (2.61) 

Then we obtain the meson vevs by using the same procedure as in the even case and 
we integrate out all the massive fields. The only difference as compared with the even 
case (2.60) is the power of AN=* which becomes (2(2N, - 1) - 2Nf)/ri. We will find for 
the unbroken gauge group SlJ(2) that there exists an agreement between the meson vevs 
result in this section and the one which will be discussed in Section 4. However, we will 
find for the unbroken gauge group SU (r), r > 2, that there is a disagreement between these 
two approaches. 

3. Brane cotiguration from M theory 

In this section we study the theory with the superpotential perturbation A W (2.11) by 
analyzing M theory fivebranes. Let us first describe them in the type IIA brane configuration. 

Following [5], the brane configuration in N = 2 theory consists of three kinds of branes: 
the two parallel NS5 branes extend in the directions (x”, x ’ , x2, x3, x4, x5), the D4 branes 
are stretched between two NS5 branes and extend over (x0, x ’ , x2, x3) and are finite in the 
direction of x6, and the D6 branes extend in the directions (x0, x1, x2, x3, x7, x8, x9). In 
order to study orthogonal gauge groups, we will consider an 04 orientifold which is parallel 
to the D4 branes in order to keep the supersymmetry and is not of finite extent in x6 direction. 
The D4 branes is the only brane which is not intersected by this 04 orientifold. The orien- 
tifold gives a spacetime reflection as (x4, x5, x7, x8, x9) -+ (-x4, -x5, -x7, -x8, --x9), 
in addition to the gauging of worldsheet parity 0. The fixed points of the spacetime sym- 
metry define this 04 planes. Each object which does not lie at the fixed points (i.e., over the 
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orientifold plane), must have its mirror image. Thus NS5 branes have a mirror in (x4, x5) 
directions and D6 branes have a mirror in (x7, x8, x9) directions. 

For SO(2N,) gauge group, each D4 brane at u = x4 + ix5 has its mirror image at --v: 
NC D4 branes and its mirror NC ones. Similarly, for SO(2N, + 1) gauge group, there exist 
an extra single D4 brane which lies over the 04 orientifold being frozen at u = 0 because 
it does not contain its mirror image, as well as N, D4 branes and their N, mirror branes. 
Another important ingredient of 04 orientifold is its charge which is related to the sign of 
Q2. When the D4 brane carries one unit of this charge, the charge of the 04 orientifold is 
~1, for Q2 = f 1 in the D4 brane sector. We are considering the four-dimensional N = 2 
supersymmetric gauge theory on D4 brane’s worldvolume, (x0, x ’ , x2, x3) directions. The 
Higgs branch of the theory can be described as the D4 branes broken the D6 brane, suspended 
them and being allowed to move on the directions (x7, x8, x9). The dimension of the Higgs 
moduli space is found by counting all possible breakings of D4 branes into D6 branes. 

In order to realize the N = 1 theory with a perturbation (2.11) we can think of a single 
NS5 brane and multiple copies of NS’5 branes which are orthogonal to a NS5 brane with 
worldvolume, (x0, x1, x2, x3, x8, x9) and between them there exist D4 branes intersecting 
D6branes.ThenumberofNS’5branesis N,-2forS0(2N,)andN,-1 forS0(2N,+l) 
by identifying the power of adjoint field appearing in the superpotential (2.11). The brane 
description for N = 1 theory with a superpotential (2.10) where P~(N,- 1) = p2N, = h = 0 
has been studied in the paper [6] in type IIA brane configuration. In this case, all the 
couplings, &?k can be regarded as tending uniformly to infinity. On the other hand, we will 
see in M theory configuration there will be no such restrictions. 

3.1. M theory fivebrane configuration 

3.1.1. SO(2N,) case 
Let us describe how the above brane configuration is embedded in M theory in terms of 

a single M theory fivebrane whose worldvolume is R’,3 x .E where E is identified with 
Seiberg-Witten curves [66,67,69] that determine the solutions to Coulomb branch of the 
field theory. As usual, we writes = (x6 +ix’O)/R, t = e-’ where x1’ is the 11 th coordinate 
of M theory which is compactified on a circle of radius R. Then the curve E, describing 
N = 2 SO(N,) gauge theory with Nf flavors and even N,, is given [25] by an equation in 
(u, t) space 

t2 _ 2c2Nc(V2t U2k) 
Nf 

4N,-4-2Nf 

V2 
t + *N=2 I-I 

(v2 - mf) = 0. 
i=l 

(3.1) 

Here C2N, ( v2, U2k) is a degree 2N, polynomial in v with only even degree of terms and the 
coefficients depending on the moduli U2k, and mi is the mass of quark. It is easy to check 
that this description is the same as (2.3) under the identification 

v2t = y + c2Nc(v2, U2k). (3.2) 
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By adding (2.11) which corresponds to the adjoint chiral multiple& the N = 2 super- 
symmetry will be broken to N = 1. To describe the corresponding brane configuration in 
M theory, let us introduce a complex coordinate 

w = 2 + ix9. (3.3) 

To match the superpotential perturbation A We,,, (2.1 l), we propose the following boundary 
conditions for S 0 (2 NC) : 

NC-l 

w2 + 
c 

2kp2kV2(k-‘) as u +. 00, t _ ~~=~-2-Nf),2N~-2N~+2, 

k=2 (3.4) 

w -+O asv+oo, t _ ,+-2 

After deformation, SU(2)7,s,9 is broken to U(1)8.9 if p2k has the charges (4 - 4k, 4) under 
U(1)4,5 x u(1)8.9. The charges of coordinates and parameters are given by 

U(l)43 u(1)8,9 

v 2 0 

W 0 2 
(3.5) 

t 4(N, - 1) 0 

p2k 4 - 4k 4 

AN=2 2 0 

where U(1)4,5 = U(~)R and u(1)8,9 = U(l)5 we have mentioned last section. If we 
consider now only the value k = 2, this reduces to the case of [33] and one obtains in (3.4) 
that w2 w p4u2 as u + 00 which is the same as the relation w -+ pv obtained in [33] if we 
identify ~4 with p2. This identification comes also from the U (1)4,5 and U( 1)8,9 charges 
of p and ~4. So the reduction to the case of a single NS5 brane is found. 

After perturbation, only the singular part of the N = 2 Coulomb branch with I or more 
mutually local massless dyons remains in the moduli space of vacua. The corresponding 
brane configuration is possible only when the curve .Z degenerates to a curve of genus less 
than 2N, - 21- 1. Let us construct the M theory fivebrane configuration corresponding to 
the correct boundary conditions and assume the condition that w2 is a rational function of 
u2 and t. Our result is really similar to the case of SU (NC) [31] and we will follow their 
notations. We write w2 as follows: 

w2(t, LJ2) = a(l?>t + b(G) 
c(I?>t + d(u2) ’ (3.6) 
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where a, b, c, d are arbitrary polynomials of u2 and t satisfies Eq. (3.1). Now we can 
calculate the following two quantities using the two solutions of t, denoted by t+ and t_ 
which satisfy the equation for t, (3.1): 

u?(t+(IT), v*> + &t_(IP), v2) = 
2acG + 2adC + 2bcC + 2bd 

c*G + 2cdC + d* 
(3.7) 

w2(t+(v2>, v2) - w2(t_(v2), v2) = 
2(ad - bc)Sz/T 

v2(c2G + 2cdC + d2) ’ (3.8) 

where there is a relation between 

NJ 
c = c2Nc(v27 u2/o/v2 

4N,-4-2Nf 
and G =ANz2 I-I (v2 - m?), (3.9) 

i=l 

implying that 

C2 - G(v2) = 
s2(v*)r(v*) 

v4 , (3.10) 

where 

S(v2) = h(v* - pi’), 

2N,-21 

T@) = n (t? - 4j2) (3.11) 
i=l j=l 

with all pi, qj’s different. Remember that N = 2 moduli space of vacua is determined by 
these pi and qj. Since w2 has no poles for finite value of v*, w2(t+(v2), v2) f w*(t-(v2), 
v*) also does not have poles which leads to arbitrary polynomials H (v*) and N ( v2) given by 

acG + adC + bcC + bd 

c*G f 2cdC + d* 
= N, (3.12) 

(ad - bc)S 

v2(c2G + 2cdC + d*) 
= H. (3.13) 

It will turn out that the function H(v*) is exactly the same as the one (2.24) or (2.28) de- 
fined in field theory analysis. By making a shift of a -+ a + NC, b + b + Nd due to the 
arbitrariness of the polynomials a and b the following relations come out: 

w2=N+ 
a(v2)t + b(v2) 

c(v*)t + d(v2) ’ 

O=acG+adC+bcC+bd, 

H= 
(ad - bc)S 

v2(c2G + 2cdC + d2) ’ 

The second equation implies 

a(cG + dC) + b(d + CC) = 0, 

(3.14) 

(3.15) 



C. Ahn et al. /Journal of Geometry and Physics 28 (1998) 163-194 181 

which can be written as 

cG + dC = -be, d+cC=ae (3.16) 

for arbitrary rational function e. Plugging the values of c and d into the (3.14), it turns 
out e = S/(Hv*). By combining all the information for b and d, we get the most general 
rational function w2 which has no poles for finite value of u* is 

UJ~=N+ 
at + cHST/v* - aC 
ct - CC + aS/(Hv2) ’ 

(3.17) 

where N, a, c, H are arbitrary polynomials. As we choose two tu2’s, each of them possess- 
ing different polynomials a and c and subtract them, the numerator of it will be proportional 
to t* - 2Ct + G which vanishes according to (3.1). This means W* does not depend on a 
and c. Therefore, when c = 0, the form of W* is very simple. That is, 

w2=N+ 
U2H 
yt - c*NJ~*). 

This result will be used throughout the remaining part of this paper. Now we want to impose 
the boundary conditions on W* from the most general solution (3.18). From the previous 
relation, by recognizing T’i2 = v*(t - C2N, /v*)/S, 

w*(t+(v*), u*) = N f Hfi (3.19) 

and from the boundary condition w + 0 for u + 03, r = t_(v) - v*~~-* it is easy to see 
the value of N(v*), 

N(u’) = W(u*>~l+, (3.20) 

where [H(v*),/m] + means only nonnegative power of v* when we expand around 
2(2Nc.-2-Nf) 

u = 00. Next, by applying the other boundary condition u + co. t - A,=, 

112~1 -2N~f2, we obtain 

w* = [2H(v*),/?$j]+ + O(V-2). (3.21) 

By noting that w* satisfies the following equation: 

w~-~N~*+N*-TH*=~ (3.22) 

andrestrictingthefo~ofN,TandHlikeasN-c~v2+c~,T-c~u6+c~v~+csu’+ 
c6, H - q/v2, it leads to 

w4 + (cs + c&w* + Cl0 = 0 (3.23) 

for some constants Ci (i = 1, . . . , 10). Then we can solve for II* in terms of w2 to reproduce 
the result of [33]. As all the couplings i_L2k are becoming very large, H(u2> and N(u’) go 
to infinity. From (3.22) N* - TH* goes to zero as we take the limit of AN=2 + 0. This 
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tells us that w2 becomes (N* - TH2)/2N and as N(v*) goes to zero, w* += 00 showing 
the findings in [6]. 

The brane configuration was constructed only at the singular point in the N = 2 moduli 
space of vacua where (v, t)-plane curves are degenerate to curves of genus 2N, - 2Z- 1 
given in (2.17). The general solution for w* is 

w* = N(u*) + v2H(v2) t - c21v@*m2 

nf=l f (v2 - P,“) ’ 
(3.24) 

where H ( v2) and N( v*) are arbitrary polynomials of u* . The boundary condition determines 
N(u2) as follows: 

[ 

2N,-21 
N(u*) = H(u*) n (u2 -q;)“* . (3.25) 

j=l 1 + 

The other boundary condition shows that w* behaves as w* --f Et:;’ 2k~2ku*(~-t) 
from (3.4). Then by expanding w2 in powers of u* we can identify H(u*) with parameter 
p2k. Using T’i2 = u*(t - C/u2)/s and t = 2C/u2 + . . - from (3.1) we get 

w* = 2u*H(u*) c2N, (v2)/v2 
r-I;=, (u2 - pi”) + WV-*) 

NC-1 

= = 
c 2k/.L2ku2(k-‘), 
k=l 

(3.26) 

where we used the definition of Heven in (2.24) and the generating function of j.&Zk in (2.23). 
From this result one can find the explicit form of H (u*) in terms of j_L2k by comparing both 
sides in the above relation. This is an explanation for field theory results of (2.23) and (2.24) 
which determine the N = 1 moduli space of vacua after the perturbation, from the point 
of view of M theory fivebrane. It reproduces the equations which determine the vevs of 
massless dyons along the singular locus. The dyon vevs rnf dy, given by (2.25) 

2 
%, dy = v’&,%ven (P,+(P;), (3.27) 

are nothing but the difference between the two finite values of u*w*. This can be seen by 
taking v = &pi in (3.19) and (3.20). The N = 2 curve of (3.1) and (2.17) contains double 
points at u = fpi and t = c2N, (pf). The perturbation A W of (2.11) splits these into sep- 
arate points in (u, t, w) space and the difference in u2w2 between these points becomes the 
dyon vevs. This is a geometric interpretation of dyon vevs in M theory brane configuration. 

3.1.2. SO(2N, + 1) case 
The curve .E for N = 2 SO(2N, + 1) gauge theory with Nf flavors reads in (u, t) space 

t2 _ 2c2N, (U”, u2k) 

U 

Nr 

i=l 

(3.28) 
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where t is related to y by 

Vt = y + c2h’,(V2, U2k). (3.29) 

The configuration of M theory fivebrane corresponding to type IIA brane configuration has 
the following boundary conditions: 

N< 
w2 + c 2kj.qkv2(k-‘) asv -+ co, t--A WN -I-&)V2~,-2~,+] 

IV=2 
k=l ’ (3.30) 

w+O asv-+cc, t _ V2K-1 

After doing the similar procedure as in S 0 (2N,) case, we arrive at the final expression 

w2 = 2vH(v2) ;;;;v(:$) + o(V-2) 

’ c2Nc(v2)@i NC = c i=l (v2 - Pi’) = k=l c 2kj&v2(k-‘), (3.31) 

where we used the definition of Hodd in (2.28) and the generating function of ,_L2k in (2.27). 
One can find the explicit form of H (v2) in terms of p2k by comparing both sides. 

3.2. Yang-Mills theory with massless matter 

Wehaveseenthat(V, t= j/V2+C2(N,._r)(V2, U2k)/V2)curve(2.3)ofgenus2NC-2r-1 
degenerates to a curve of genus 2N, - 2r - 21 - 1 by redefining $zven = Y&,/v~~ to get 
the 2r branches of the curve. Now it is straightforward to get the most general form of the 
solution by looking at Eq. (3.18), 

w2 = N(v2) + v2H(v2) 
f - c2(NC-,)(V2)/V2 

n;=, (v2 - P?) ’ 
(3.32) 

where H ( v2) and N ( v2) are arbitrary polynomials of v2. Once again the boundary condition 
w -+ 0 as v -+ cc and i - A~z~-2-r)V-2N,-+2r+2 gives the form of N(v2) 

[ 

2(N,-r-I) 
N(v2) = H(v2) n (I? -q;,“’ 1 (3.33) 

j=l + 

The other boundary condition w2 + cf:T’ 2kp2kv2(k-‘) as v + 00, f - v~(~~-~-‘) and 
the relation f = 2c~(N,_~) + . . . yield to 

d”,” = 2v2H(v2) c2(N,.-r)(V2)/V2 
nf=, (V2 - pi’) + 0(V-2) 

(3.34) 
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which is precisely in agreement with Eq. (2.39) which determines the relation between the 
function H(v*), wi anddyonvevsmf, dy afterperturbation.Alsowewill seethe SO(2N,+l) 
result analogous to the SO(2N,). For most general deformation of the brane, it is 

w* = N(v2) + VH(V2) f - q2N,-2r-1)oJ2)l~ 

r-If=, (v2 - Pi’) 
(3.35) 

and 

2(N,-r-l) 

A@> = H(v2) n (v2 - qj2)“2 . 
j=l I + 

By applying the second boundary condition, we arrive at 

(3.36) 

w& = 2uH(u2) 
q*N,-*r-1)(~*)/~ 

nf=, (9 - pf) + 0(v-2) 

I C*N,-*r-I(~*) Nc = c i=* cu* -Pi”> wi = kc1 c 2kp2kv2(k-‘), (3.37) 

which is again the same as Eq. (2.40). 

4. Brane confIguration and field theory 

In this section we continue to study for the meson vevs from the singularity structure of 
N = 2 Riemann surface. The vevs of meson will depend on the moduli structure of N = 2 
Coulomb branch (see, for example, (4.8)). Also, the finite values of w* can be determined 
fully by using the property of boundary conditions of w* when v goes to be very large. We 
will illustrate some examples which studied before in field theory analysis that was limited 
for the case of a small number of N, because it becomes very difficult to find the vacua 
from the quantum discriminant when NC is very large. 

4.1. SO(2N,) case 

Let us consider the case of finite w* at t = 0, v = fmi and we want to compare with 
the meson vevs we have studied in (2.48). At a point where there exists a single massless 
dyon (in other words, by putting I = 1 into (2.17)) and recalling the definition of T(v*), 
we have for Yang-Mills with matter 

Nf 
CINc (II*) - A~~~4-2Nf v4 n(u* - mf) = (v* - pf)*T(v*) (4.1) 

i=l 
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and the function w2 according to (3.19) and (3.20) reads 

w2=[$q+*~JTG% (4.2) 

where in this case 1 = 1 means that the polynomial u2H(v2) has the degree of zero and we 
denote it by a constant h. From (4.1) we see for Nf < 2N, - 2 

Jrn C2N, (v2) 
y?--= v2(u2 - pf) 

+ 0W4) 

and we decompose ~2~~ as 

C2N, (v2) C2N, (P:) 
u2 = 

d 
+ (V2 - pf)~2Nc-4(~2) 

(4.3) 

(4.4) 

for some polynomial u2C2Nc_4( u2) of degree 2N, - 2 which can be determined completely. 
This means that the coefficients of C2Nc_4(v2) can be fixed from the explicit form of the 
polynomial CON,. Through (4.3) and (4.4) the part with nonnegative powers of u2 in 
dm/u2 becomes C2Nc-4(v2) as follows: 

m = t2N _4(U2) + 0(U-2) + m 
u2 c 

[ 1 U2 
= l?2N,._4(U2). (4.5) 

+ 

Thus as u + fmi the finite value of w2, denoted by wf, can be written 

w; = w2(u2 + mf) = ht?2NC-4(m;) f -$ 
T--- T(m;). 

I 
(4.6) 

From (4.1), the relation = C2,v, (m~)/m?(m~ - pf) + O(WZ;~) holds and the 
decomposition of (4.4) yields the following relation: 

J Thf) c2N, (p;) -----= 
rn; p:(m? - P:> 

+ c2Nc--4(& (4.7) 

By plugging this value into (4.6) and taking the minus sign which corresponds to f + 0, 
we end up with 

h c2N,(Pf) 
wf = - 

P: (P? - m’> ’ 

In order to find C2N, (pf) we evaluate it from (4.1) at u2 = p: to arrive at 

wT = hA2Nc-2-Nf det(pf - m2)1’2 
I N=2 

(P: - mT> ’ 

(4.8) 

(4.9) 
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In the above expression we need to know the values of h and ~1. On the other hand the 
boundary condition for w2 for large u leads to 

w2 _ 2k C2NJU2) 

v2 Y2 - p; 
- 2hv2(f+2) + 2f&2(Nc-3) + . . . , (4.10) 

which should be equal to ~~~~’ 2kp2kV 2(k-1). Then we can read off the values of h and 
pr by comparing both sides term by term: 

2h = 2wc - l)P2(Nc-I)~ 
(NC - 2)P2(Nc-2) 

py = (NC - UP2(iv,.-I)’ 

Finally, the finite value for w2 can be written as 

2~ _2_~~ det(a: - m2) ‘I2 
w: = (Nc - U112(,v-1)ANf2 

(u? - ma) ’ 

(4.11) 

(4.12) 

which is exactly, up to constant, the same expression for meson vevs (2.48) obtained from 
field theory analysis in the low energy superpotential (2.46). This illustrates the fact that at 
vacua with enhanced gauge group SU(2) the effective superpotential by “integrating in” 
method with the assumption of WA = 0 is really exact. 

4.1.1. Example I: SO(6) with onejlavor 
We would like to demonstrate the above descriptions by taking the specific models. The 

N = 2 theory in this model is described by the curve C: 

t2 _ 2c6(v2, u2k) 

V2 
t + Atz2(u2 - my> = 0, (4.13) 

where the polynomial Cs(u2) is given as (2.4) 

Ce(V2, U2k) = lJ6 + S2V4 + S4U2 + Sfj (4.14) 

in terms of s or 

in terms of U. When one dyon becomes massless the locus in the moduli space becomes 

(4.16) 

By putting u 2 = pf in Eq. (4.16) we get one relation and by differentiating with respect 
to u2 and evaluating the derived equation at v2 = 2 p1 we obtain a second relation between 
$2, s4 and &5. So one of those vevs will remain undetermined. This is because for only one 
massless dyon there exist only terms with u4 so after taking two derivatives, in the right- 
hand side of (4.16) we would have only terms that cannot cancel at v2 = pf. For several 
massless dyons the power of v2 in the right-hand side of (4.16) would be bigger than u4 
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and we could take two derivatives with respect to IJ *. Now we express s:! and s4 in terms of 
Sg whose classical vev vanishes 

sz=-2p:+%-, A;=, 

P;’ 
2sg A3 

34 = P? - p: f NZhJ_ 
2b 2mT - pf, 

(4.17) 

where b = J p: - m:. These vevs of gauge invariant variables are exactly the same as those 

obtained in [35] from the low energy effective super-potential, for NC = 2, FzTr(@z,) + 

LL4s;’ + hPf@,l f 2A&*) where the classical vacua of @,I = 02 @ diag(ar , al, q) breaks 
SO(6) into SU(2) x U(1) x U( 1). For the case of pure Yang-Mills theory, it is known 
from [72] that only six points remain as mutually local dyons for SO (8) gauge theory while 
in SO (6) four points give the correct N = 1 vacua. By using relation (4.4) it is easy to find 
the value of N(v*) and from (4.16) one obtains T(v*): 

N* - h*T = h* -2~; - 2~:s~ - 2~4 - SC + 
p: 

4pf + A;=, - 6&z 

-2~:s; - 4pTs4 - 2~2~4 - 4s6 - - 

- 5~; + A6,=,(2pt - m:> - 8~7~2 - 3~;s; 

_ 6p;S4 -4p:S2S4 -Sj -4p:SS - 2~6 + “6 . 
Also we get the dyon vevs from the relation rn: d,, = 2h2 T (p:), 

m4 ,, dy = 2h2( 15pf - A6,=,(3p: - mf) + 20~7~2 + 6~;s; 

+12p$Y4 + 6p&4 + s; + 6~:s~ + 2~2~5). 

The boundary condition for W* gives the relation between ~4 and h, 

h = 2~4. (4.20) 

By explicitly calculating Cc(p:), we get the meson vevs, 

Gk,b 
wf = h-----. 

P: - m: (4.21) 

(4.18) 

(4.19) 
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4.1.2. Example 2: SO(6) with twojavors 
Let us consider the previous example with two flavors which is described by the curve: 

t2 _ 2c6(v2, ~2~) 

V* 
t + A4Nz2(V2 - m:)(v* - rng) = 0, (4.22) 

where m 1, m2 are the masses for the two flavors and C6 is the same as before. When one 
dyon becomes massless the locus in the moduli space becomes as in (4.16): 

C,2 - Ai,2v4(v2 - m:)(v* - rnt) = (v* - p:)*T(v*). (4.23) 

From this equation we again obtain the values for S2k. As in Example 1, for one massless 
dyon we have only two equations for three variables ~2, s4 and Se and we can solve ~2, s4 
in terms Of Se. Our results are 

(4.24) 

where B = f (pf - mT)(pt - rni) and we take only the plus sign. Remark that B has 

dimension 2 while b has dimension 1. The value for N(v*) remains the same as in Eq. (4.18) 
given different s2 and s4 as in (4.24) and from the explicit form of T(v*) we obtain the 
following relation: 

N*-h*T=h* 2s6 -2p;l+ Ai=, - 2pfs2 - 2~4 - 2 
PI 

- 4pf + ~4,=,(2pf - rn: - m$ - 6p;‘s2 

2S2S6 -2pfSz - 4pfS4 - %2S4 - 4&j - - 
p: ) 

++4 
( 

- 5pf + A:=2(3pT - 2pfm: - 2pfm~ + mTm$ - 8~;s~ 

2 
-3~;s; - 6pfs4 - 4pfS2S4 - S; - 4pfs6 - 2s2s6 + “6 

p; )I (4.25) 

and the dyon vevs are given by 

4 mi, dy = 2h2(15py + A~=2(-6p~ + 3pfmy + 3pfmi - rnTrn$ + 20~:s~ 

+6p;s; + 12p;s4 + 6p&s4 + si + 6pfs6 + 2S2S6). (4.26) 

Finally for meson vevs, we get 

A*B 
(4.27) 
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4.2. SO(2N, + 1) case 

At the locus where there is one dyon which becomes massless, we have 

Nf 
CZN, (2) - Ayz;2-2Nf v* fl (I? - m;> = (v2 - pf)*T(v*). (4.28) 

i=l 

The function of w* is 

w2 = [HJT(V211+ f H,/*, (4.29) 

where H is a constant. For the finite values of w* as r -+ 0 and v + fmi we find 

wf = H C2N, (Pi) 

(P: - m:) ’ 
(4.30) 

By inserting v * = p: into (4.28) and writing C2N, (pf) as ANz2 2Nc-‘-Nfpl nz,(Pf-m?)1/2, 

we obtain 

WY = ff&Nz;l-Nf p, 
det(pt - m*)‘/* 

@f-m?) ’ 

The asymptotic behavior of w* for large v leads to 

u12 _ 2H c*N,.(v2) 
v* - pf 

rv 2~+‘,.-~) + ~H~;~*(Nc-~) + . . . , 

which is the same as cc:, 2kp2kv 2(k-1). From this relation we get 

2H = ~N&N<, 
pf = (Nc - l)p2(N,-I) 

N&~N,. 

(4.31) 

(4.32) 

(4.33) 

Therefore we find w! completely 

2N._t_N det(af -m*)‘/* 
W; = 2 NAN, - 1)12N#2(N, -l,AN:2 ’ 

(a: - my) ’ 
(4.34) 

which exactly coincides with the meson vevs (2.56) from field theory results in the low 
energy superpotential (2.54) in Section 2. 

4.2.1. Example 3: SO(5) with one flavor 
As we did in the case of SO (6), the N = 2 theory of this model is given by the curve 

t2 _ 2c4(IJ2, u2k) 

V 
t + A~,2(v2 - m:) = 0, 

whereC4(v2,u2k) = v4+s~v2+s~intermsof~~~orC~(v2) = v”-~u2~*--(~u4-~$u~) 

in terrIIs of U2k. 
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When one dyon becomes massless, the locus in the moduli space becomes 

(u~-~,,L(~_~))2 - A$,~u~(v~ - m:) = (u2 - p;)2T(~2). (4.36) 

By inserting v2 = pf in Eq. (4.36) and its derivative with respect to v2 we obtain two 
equations for ~2, u4 which are solved to give 

u2 = 4p: f Ai=, 
( > 

F+; I 

u4 = 4pf f Ai=, (4pf(Pl+;) 2p;m:)+!.$($+g2, (4.37) 

where b = f 
J 

pf - m2 and we take only the plus sign for b. It is easy to see that these vevs of 
gauge invariant variables are exactly coincident with those of [35,73] obtained from the low 
energy effective superpotential, for NC = 2, ~2Tr(~,:)+~4s~1f2A~~~2~ where the classical 
vacuaof QCt = a2@diag(at, at, 0) breaks SO(5) into SU(2) x U( 1). Notethat thepurecase 
has been discussed in [74] where the three intersection points correspond to a pair of mutually 
local dyons becoming massless. We want to see the dyon vev and the finite value for w2. 
The sum of two solutions of w2 satisfying (3.22) and product of them can be summarized as 

N=H u’+pf-y), 
( 

N2 - H2T = H2(-2~; + A;=, - 2~ + p&2). 

The dyon vevs are obtained from the explicit form of T(pf) as follows: 

mi,,, = 2H2T(p:) = 2H2 -2plbAi=, + *A:‘,=, 
4pfb2 

Also we have the parameter ~4 

H = 2~~ 

and the meson vevs w: 

w2 _ HAL2Plb 
I- pf -rni. 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

4.3. Several massless dyons 

We discuss the even case SO(2N,), the odd case SO(2N, + 1) going exactly the same. 
If there are I massless dyons, the curve can be factorized as in (2.17): 

4N,.-4-2Nf 4 
c;,.(v2) - A,tj=2 u fi(u’ - mf) = h(u2 - P?)~T(v~) 

i=l i=l 

(4.42) 
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and w2 is given by 

w2 = [ym] *F&q, + (4.43) 

where now h(u2) is a polynomial of degree 21 - 2 in u. The degree of h comes from the 
degree of w2(v2) which is 2N, - 4 from (3.4) and the degree of T(u2) is 4N, - 41 giving 
the degree 21 - 2 for h(v2>. As in the case with one massless dyon, for Nf < 2N,. - 2 we 
can write 

and we decompose 

WWm,(~2) 
u2 

= G, (p;> + G2b2) hCu2 - P,‘>. 
i=l 

(4.44) 

(4.45) 

we obtain W; = w2(v2 -+ m;) = G1 (r$)/l$=, (rn: - py). The value for GI (P?> is 

G1 (p;) = h(pi) (4.46) 

Then again the discussion goes the same way as in [3 l] and is similar to the one involving 
only one massless dyon. We determined the coefficients of the polynomial G 1 (mf ) and we 
plugged back into the expression for wf to obtain 

w,2 = 
. 

(4.47) 

Because the unbroken gauge group is the same as the one obtained in the SU case, formulas 
(2.60) and (4.47) agree only for 11 = . . . = q = 2 by identifying ai with pi and 4 with h. 

So in S 0 (2N,) case as one of the ri ‘s is greater than 2, we have a disagreement between the 
field theory and brane configuration result. This implies that WA # 0 in the “integrating in” 
method. It would be very interesting how to obtain the singular submanifolds of the N = 2 
Coulomb branch the low energy effective superpotential parametrizes. 

5. Conclusions 

In the present work we have considered N = 2 supersymmetric gauge theories with 
gauge groups SO (NC) by using field theory approach. By adding a general superpoten- 
tial (2.11) corresponding to the relative orientation between two NS5 branes, we obtained 
the description of the resulting N = 1 gauge theory in both field theory and string/h4 theory. 
The nonsingular locus of the N = 2 Coulomb branch is lifted while the only singular points 
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remain, where massless monopoles condense by perturbation. We explicitly calculated the 
monopole vevs, in field theory by studying a point in the N = 2 moduli space of vacua 
and in M theory by exploiting the M theory fivebrane configuration. We have obtained 
the same contradiction as in the case of SU(N,) groups given by the low energy effective 
superpotential obtained by the “integrated in” method. In other words, this is zero for the 
enhanced gauge group SU(2) but is different from zero for SU(r) with r > 2. We have also 
given the examples of S 0 (5) and S 0 (6) gauge groups in order to illustrate our methods. 

As in the case of the simplest mass super-potential studied previously [33], we did not 
obtain any information about the particles at singular points, i.e., about their exact electric 
and magnetic charges. This remains an interesting direction to pursue both in field theory 
and in M theory. Also, it is extremely important to obtain the corrections to WA in order to 
see a complete match between field theory and M theory. It would be related to calculate the 
super-potential using the fivebrane configuration. These two directions are very important 
and deserve further study. 
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