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Abstract

Using a general method [C. Moeglin, M.-F. Vignéras. J.-L. Waldspurger. Correspondances de
Howe sur un Corps p-adique. Lecture Notes in Mathematics. Vol. 1291, Springer. Berlin, 1987]
we derive a complete list of conjugacy classes of reductive Howe dual pairs of groups of isometries
of real, complex. and quaternionic Hermitian spaces. Moreover. we establish the natural partial
ordering on the sct of reductive Howe dual pairs which is defined by inclusion modulo conjugacy.
As an application. we determine the singularity structure of the orbit space of a pure SU(n) gauge
theory over space—time S*. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of a reductive dual pair of subgroups of a symplectic group has been intro-
duced in the late 1970s by Howe [5] in order to establish a duality relation (which is now
called Howe correspondence) between representations of different classical Lie groups.
It was this relation, rather than the reductive dual pairs themselves. which has attracted
a lot of interest and found many applications. Since Howe correspondence is beyond the
scope of this paper, for the reader interested in details we give a few references. There
are, at first, Howe's articles [5-7] which develop the relevant ideas very clearly. Then in
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[3] some examples are discussed explicitly. More detailed expositions one may find, for
instance, in [12,13,16] (though [12] actually addresses the case of p-adic groups). Ap-
plications to problems in theoretical physics can be found, for example, in [6,11]. Both
these papers, as well as [16], provide, in addition, excellent reference resources for further
reading.

Our interest in reductive Howe dual pairs, on the other hand, originates from gauge theory.
Let us consider a pure gauge theory, defined on a principal bundle over a compact space—
time, with structure group G. The physical degrees of freedom of the theory are contained
in the orbit space M of the action of the gauge group on the space of gauge potentials.
So in order to get a deeper insight into the theory, and especially into its quantization, it is
necessary to analyze the topological and geometrical structure of M. For non-Abelian G
it is clear that M, in general, will not be a smooth manifold. However, as was shown in
(8.9], M is a stratified manifold, i.e. a manifold with singularities which themselves are
smooth manifolds again. Moreover, the information about which singularities may occur
and how they are patched together is encoded in the partially ordered set of orbit types of
the gauge group action (or some derived action, see Section 9). Now, the determination
of this set, which may be viewed as a first step towards a detailed study of the structure
of M, presupposes knowledge of the reductive Howe dual pairs of the structure group
G.

To our knowledge, the classification of reductive Howe dual pairs has been treated
explicitly in the literature only for:

(a) symplectic groups, as a special case of groups of isometries of Hermitian spaces. Here
one uses tensor product decompositions of the symplectic form (see, for instance,
[5,12,13]) and

(b) complex semisimple Lie algebras, using the calculus of roots (see the comprehensive
article [14]).

Both in setup (a) and (b) there have been obtained only partial results on the natural partial
ordering of reductive Howe dual pairs (see [10] for (a) and [14] for (b)). So in the present
paper we aim to give, in a setup similar to (a), a detailed and self-contained exposition
of the theory of reductive Howe dual pairs of groups of isometries of real, complex, and
quaternionic Hermitian spaces (these groups are listed in Table 1), primarily addressed
to the non-specialist. The method we use is taken from [12], Chapter I. We only slightly
reformulate it in order to avoid involved tensor products.

The paper is organized as follows: In Section 2 we give the basic definitions and intro-
duce the notion of an irreducible Howe dual pair. As it comes out there are two types of
irreducibility. In Section 3 we discuss, as a prerequisite, the case of general linear algebras.
Type 1 and type 2 pairs are then classified in Sections 4 and 5, respectively. The results are
displayed in Table 4. Section 6 establishes the partial ordering of reductive Howe dual pairs.
In Section 7 we discuss some simple examples in detail. As a minor remark, in Section 8
we note that knowledge of the partial ordering provides, in particular, a classification of
Kudla’s seesaw pairs [10]. Finally, in Section 9 we discuss, by the example of SU(#), how
one can use the results obtained to determine the singularity structure of the orbit space of
a pure gauge theory over space—time S*.
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2. Basic definitions
2.1. Reductive Howe dual pairs

Let G denote a group. A Howe dual pair in G is an ordered pair of subgroups (H,. H>)
obeying

Ci(H)Y) =Hy. Cg(H)) = Hy.

Here C¢; means the centralizer in G. The constituents H| and H- are called Howe subgroups.
Equivalently, a Howe subgroup is characterized by the property

C; (Cg(HY) = H.

The identification of H with the pair (H. C¢(H)) yields a l:1-relation between Howe
subgroups and Howe dual pairs.

Any group G possesses the trivial dual pair (C(G). G). A non-trivial pair is, for example.
(SO(2). SO(2)) in the real orthogonal group O(2).

Let (H|. H») and (D;. D>) be Howe dual pairs in G. Clearly. if Ay and D, are conjugate
in G then so are H-~ and D>. Hence conjugacy defines an equivalence relation in the set of
Howe dual pairs of G. Now assume that G is a linear Lie group acting on a vector space V.
Then a Howe dual pair (Hy, H») is called reductive iff the induced representations of both
H; and H> on V are completely reducible. Let H(G) denote the set of conjugacy classes of
reductive Howe dual pairs of G. H(G) carries a natural partial ordering: conjugacy classes
a, B € H(G) obey @ < B iff there are representatives (H. H2) of @ and (D;, D7) of 8
such that H, € D, (then H2 D D»).

The notion of reductive Howe dual pair as well as the relations of equivalence and partial
ordering extend in an obvious way to algebras.

2.2. Hermitian vector spaces

Let I be an involutive field. Denote the involution by « and the center of K by kK'. We
restrict our attention to R (real numbers with identical involution), C; and T, (complex
numbers with identical involution and conjugation, respectively), and H (quaternions with
conjugation). A Hermitian metric of dimension n over K is a matrix I € GL(n. ) for
which there exists ¢ € I’ such that

1" =¢l.

Here + means transposition of matrix and conjugation of entries by «. The factor ¢ will be
referred to as flip factor of 1. It obeys

Kk(e)e=1.
Hermitian metrics I, J over K are isometric iff (i) they have the same dimension n and
(ii) there exists T € GL(n, K) such that

J=TIT.



286 M. Schmidt/ Journal of Geometry and Physics 29 (1999) 283-318
They are similar iff there exists T € GL(n, K) and 8 € K such that
J =BT IT.

Any n-dimensional Hermitian metric [ over K defines an involution A — A’ on the
associative algebra gl(n, ) by

Al =171471 (1)
By means of this involution the unitary group of I is defined as
Uy :={Aegln.K): ATA =1).

One sees that Uy (/) consists exactly of the self-isometries of /. Moreover, Hermitian
metrics (over one and the same involutive field) are similar iff their unitary groups are
isomorphic.

We remark that there is a 1:1-relation between n-dimensional Hermitian metrics / over
I and Hermitian forms / on the right iK-vector space IK". It is given by

n
Itx.y) = Z k) Lkye ¥V x, vy e K. 2
jok=1

The notions of isometry and similarity of Hermitian metrics originate, of course, from the
geometric ones defined for Hermitian forms. We shall refer to the pair (K", I) as a Hermitian
space over K. Finally, a Hermitian subspace of (K", I) is a subspace V of K" for which
the restriction / |v is non-degenerate.

In order to classify Hermitian metrics up to isometry (resp. similarity) one occasionally
needs, besides dimension n and flip factor ¢, the signature s (resp. its modulus) as a third
invariant. Recall that it is defined, for metrics which have real eigenvalues, as the number
of positive minus the number of negative eigenvalues.

Table 1 lists the isometry and similarity classes of Hermitian metricsover K = R, C;. C,,
H. together with the corresponding unitary groups (cf., for instance, [12, Section I.11-
[.157). Note that in case I = C, the flip factor ¢ is an invariant w.r.t. isometries but not
w.r.t. similarity transformations.

We can now formulate the following problem:

Problem. Calculate H (Ui (1)) for the unitary groups listed in Table 1.
2.3. Irreducibility

Assume that we are given a unitary representation of a group G on a Hermitian space
(", I). Since a G-invariant subspace V C K" need not be Hermitian there are two notions
of irreducibility: one may require either
(A) Thereis no G-invariant Hermitian subspace (irreducibility in the category of Hermitian

spaces over [K), or
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Table 1
Real, complex, and quaternionic Hermitian spaces and their unitary groups (the numbers p and ¢ in the last
column are defined as p = %(n +s)andg = %(n - )

8 Dimension Isometry classes Similarity classes Unitary group
£ § £ s

R nely +1 non—=2..... —-n 41 non—=2...20 Otp.oyi
nonel -1 - 1 - Spon. i)

C,y nelN +1 - +1 - O(n, )
n.nelN -1 - -1 - Sptn. )

C, nef u(t) non—2 ... —n — non=2...>0 Utp.g)

H nehy +1 non—2 ... —n +1 non=2...>0 Spip.q)

nel -1 — -1 - Oy

(B) There is no G-invariant subspace at all (irreducibility in the category of vector spaces
over K).

Obviously, (B) implies (A). Moreover, if I has signature 0 (i.e. if the form defined by /
is a scalar product), the conditions are equivalent.

We shall call a unitary representation irreducible iff it satisfies condition (A). Evidently,
with this definition any finite dimensional unitary representation of G is completely re-
ducible. An irreducible unitary representation of G we shall call rype | iff it satisties con-
dition (B), and nvpe 2 iff not. (This coincides with the terminology of Howe [6].) Finally.
one carries over these notions to Howe dual pairs in U~ (/): Call (H;. H>) irreducible (of
types 1 and 2) ift the induced unitary representation of the subgroup HyH-> of U. (/) on
(1", 1) is irreducible (of corresponding type). Irreducible reductive Howe dual pairs will
be abbreviated by IRHDP.

In a similar way one defines irreducible Howe dual pairs in GL(n. [K) and gl(n. k). Since
here the corresponding representations are not unitary one has irreducibility in the usual
sense.

The following lemma states that it suffices to classify IRHDP.

Lemma 1. Let I be a metric of dimension n over . Let
,
(K" 1= 1 (3)
i1
be a Hermitian decomposition and let (Hf. Hé) be IRHDP in Up(I'), i =1..... r. Then
(HlI X - X H,",H:I X - x H3)

is a reductive Howe dual pair in Uy (I). Conversely. any reductive Howe dual pair of U= (1)
is of this form.

Proof. Let a Hermitian decomposition (3) be given. Without loss of generality assume
= 2 and write operators 7 € gl(n. K) as (2 x 2)-matrices w.r.t. this decomposition. One
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only has to check that the centralizer of Hl' X le is contained in H2I X H22. So assume that
T € Uk (/) commutes with HIl X HIZ. Then, for any Al e H{,

Ab 0 T T )| _ [A', Tui) ATz — TpA° -0
[( 0 Az)‘<rzl Tzz)] B (AZT:. ~TyaA' (A% T )_ ‘
Since H{ always contains +1, one may put A| = 11 and A, = —1,.2. It follows that
Tin=Ty =0,and T € H, x H;.

Conversely, let (H|. H>) be areductive Howe dual pair in Uy (7). By complete reducibility
of unitary representations, there is a decomposition of (I€". ) into a direct orthogonal sum
of HiHy-irreducible Hermitian subspaces (V', ). Put H] := Hjly., j = 1.2. Then
(H{, H) are IRHDP in Ux(I') and H; = H} x - x H, j = 1,2. O

As for the equivalence relation, it is clear that reductive Howe dual pairs are conjugate
in Uy (/) iff
(i) the corresponding irreducible orthogonal decompositions of (I", /) are isomorphic,
(i1) the irreducible factors are equivalent in the respective subgroups Uy (/ 4,

The classification of IRHDP of types 1 and 2 will be obtained in different ways. As a
prerequisite for both though it is necessary to study the irreducible Howe dual pairs of the
algebra gl(n. K) first.

3. The irreducible Howe dual pairs of gl(n, [)

Before stating the result we shall introduce the notion of [K-dual division algebras. Let
L, be a division algebra over [K’ (i.e. an algebra the elements of which are either invertible
or zero). As is well known, there are the following possibilities: L} = R, C, H for K = R
orH,and L, =C for K = C. Put

L:=0 VUK

Since either L1 € K or Ly D K, L is a field. Moreover, L is the unique simple (L;, I)-
bimodule. Put

L> := End, i) (L). 4)

By Schur’s lemma, L is also a division algebra over I". We shall say that L; is I{-dual to
L. (In order to justify the name ‘dual’ note that, since simple subalgebras are always Howe
[15, Section IIL.4], L) and L can be interchanged in (4).) By definition, L | and L have the
center in common:

[L/I =ﬂ,|ﬂ|L3=|L/3.

The values of L and L for given L are displayed in Table 2.
Here H” denotes the field opposite to H, with multiplication & o 8 := Bea. The left action
ofx € H" on B € H is given by « o 8.
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Table 2
Division algebras L, over K', their [{-duals L, and their simple (L. [€)-bimodules L
K R C H
Ly R C H C R L
> R C W C H C
1 R C H C H H
Theorem 1[12]. Let K = R, C, H and let n be a positive integer.
(a) Assume that the following data are given:
(1) A division algebra L) over X', Let L» denote its K-dual and put L .= L} UK.
(i1) Positive integers 1y, | such that
Ll dimg (L) = n. (5)
Define imbeddings ¢; - ghl;. ;) — gl(l112, 1), A’ > ¢;(A') by
I
(Alll'lz Alllnl":
pir(al):= | : o
I 1
A,,I | 1"3 T Anm] 1”:
AT 0
2
;A =0 A ] (6)

Then ¢(gl{l). L)) and ¢(gl(2.L2)) constitute an irreducible Howe dual pair in
gl(n. K).

(b} Any irreducible Howe dual pair of gl(n, K) has this form.

(¢) Irreducible Howe dual pairs of gl(n.K) are equivalent iff their first (resp. second)
constituents are isomorphic.

Remarks.

1. In (a), the elements of ¢;(gl(/;. L;)) act as L;-matrices on L'". By condition (ii), L''"*
and K" are isomorphic over K. So in order to obtain the corresponding I{-matrices
acting on K", i.e. to realize ¢; (gl(/;, L;)) as subalgebras of gl(n. i), one has to exploita
particular [{-isomorphism L/ — K. Assertion (c) ensures that one may forget about
this isomorphism if one is interested in equivalence classes only.

2. Therole of ¢| and ¢; is symmetric because it may be interchanged by a [<-automorphism
of LI commuting with L; and L.

3. By (b), any irreducible Howe dual pair of gl(n, K) is reductive.

4. The theorem traces back to Weyl’s double commutant theorem [15, Section [11.4]. It
applies also to general linear groups if one replaces g/ by GL.

Proof. (cf.[12, Section 1.18]) (a) Choose a K-isomorphism L/'> — K" to identify gl(n. K)
with Endy (L/12). Obviously, ¢, (gl(/y, L)) and ¢2(gl({2. L»)) commute. In order to show
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that they centralize each other in Endy(L/12), assume that 7 € Endy (L""?) commutes, for
example, with ¢ (gl(/;. Ly)). Then T = diag($, ..., S) (/, blocks) where § is a [K-linear
endomorphism of L commuting with L. Hence § € gl(/2, L>), and T € ¢a(gl(/2, 12)).

(b) Let (6, h2) be an irreducible Howe dual pair in gl(n. [£). Decompose K" into ba-
invariant subspaces. Since these subspaces are permuted by b, they are all isomorphic and
the decomposition is

K' = wh (7
for some f>-irreducible subspace W and positive integer /,. Define
Li := Cend.(w)(h2lw). (8)

By I’ € L, L is an algebra over [{'. By Schur’s lemma, it is a division algebra. Denote
the [€-dual division algebraby L and put L := L UK. Since L is the unique simple (L, , K)-
bimodule, W is isomorphic, as such bimodule, to L’ for some positive integer /. Then K"
is isomorphic, over K, to L"12, Thus we have constructed data (i) and (ii). It remains to
check

bi = ¢i(gll;, L)) (9

fori = 1, 2. Since b is a Howe subalgebra, (8) implies that b |w centralizes L; in Endx (W).
Then b2 centralizes ¢ (gl(/;. L)) in Endy (W!"), which is identified with gl(n, K). By (a),
this yields (9) fori = 2 and, in turn, fori = 1.

(c) One only has to show that isomorphy implies equivalence. So let (, h2) and (f), t2)
be irreducible Howe dual pairs in gl(n. [K) and assume that f; and f; are isomorphic, as
algebras over [". Then they are isomorphic to some gl(/;.L;), with /; and L, uniquely
determined. By (b), there are IK-isomorphisms ¢, ¥ : L1 — K", such that

b =godi(gld;,Li)og ' and f; =y o (gltly. L))oy ™"

It follows that b, and f| are conjugate by ¥ o ¢~' € GL(n, K). m]

We remark that, equivalently, Howe dual pairs may be constructed using tensor product
decompositions

K' =1 ®u L5,

where the field M depends on I and L . In fact, this is the standard setup used by most authors
[5,12,13]. Here the imbeddings ¢; : gl(/;, L;) — gl(n., K), Al @i (A') are defined by

(AN ®y) =(A'x)®y and ¢:(AH(x ® ) 1= x ® (A%y).

In simple situations, this construction is very obvious. In general, however, we think that
the viewpoint we have adopted above (and in what follows) is somewhat easier to handle,
especially for explicit calculations.
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3.1. Explicit imbeddings
Let L; be a division algebra over ', with [-dual 1, and simple bimodule L = L U [,
and let Iy, [> be positive integers obeying (5). For explicit calculations it is useful to have
standard [§-isomorphisms 1/12 — K" at hand. We shall choose them as products of K-

isomorphisms j : L — [K?, where b = dimy . Such an isomorphism induces an imbedding
gl(m. L) — gl(bm, K), A — A by requiring

A (x) = j"(Ax)) (10)

forany x € L, A € gl(m, L).
In case L = I we put, of course, j =id. ForL = C, K =R, put

j:C— R% x > (Re(x), Im(x)). (1

Then the imbedding gl(m, C) — gl(2m,R), A — A, is given by replacing the entry A;;
by the block

Re(A;;) —Im(A;)) (12)
Im(A;;) Re(A;) |-

Forl = H, I = C write x € Has x! + jx2, where x!, x? € C, and put
JiH—> C x> (x' xY). (13)

The imbedding gl(m, H) — gl(2m, C), A > ;\\, then replaces 4;; by

Al —A2
(4 7).
Ajj A

Finally, for L = H, K = R, take the superposition of the two isomorphisms above. Then

jiHo RY x> (! 22 X3, =xh, (15)

where x = x!+x?%i4+x3 j+x*k. Moreover, the imbedding gl(m, H) — gl(4m,R), A > A,
replaces A;; by

Ay —AG —A) A

Ay Ay AL -A (16)
Ay AL Ay AL |

—-Al AL —AL A

As a result, the imbeddings

& el L) & g, L) = gl(n, K) (17

assign to gl(/;, L;) explicit subalgebras of gl(n, I).
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Table 3

Admissible involutive division algebras L; over I’ and their K-duals [,

K R C C. H

L, R €, C H C C. R C.
L, R ¢ ¢C W C C. H C

4. Type 1 irreducible reductive Howe dual pairs

Let [K denote a field with involution «. To begin with, in analogy to the discussion of
gl(n, K) we shall introduce the notion of KK-dual involutive division algebras first. Let L
be a division algebra over I’ with involution A,. We shall call L; admissible iff A, and
k coincide on the common subfield L; N €. Let L, be the dual of the underlying division
algebra of L; w.r.t. the underlying field of I€. As one immediately realizes, there is a unique
involution A7 on 1> making L, admissible and coinciding with A on the common center
L} = L5. We shall call L, equipped with A», the K-dual involutive division algebra of
L;. The admissible involutive division algebras over K’ and their K-duals are listed in
Table 3.

The classification result is a natural modification of Theorem 1:

Theorem 2 [12]. Ler K = R, Cy, C..H and let I be a Hermitian metric of dimension n
over K. Exclude the case where K = H, n = | and I has flip factor —1.
(a) Assume that the following data are given:
(i) Anadmissible involutive division algebra L, over K'. Let L3 denote its K-dual and
putl =1, UK
(i1) Positive integers [, I obeying (5).
(iii) Hermitian metrics J; of dimension l; over L;, i = 1, 2 such that for bothi = 1,2
the following two conditions are satisfied:

¢i(A”) = ¢ (A) (18)
forany A € gl(l;. ;) and
ghl;, ;) = spany; (Ug, (J;)). (19)

Then ¢ (Ui, (J1)) and ¢2(U;,(J2)) constitute a type | IRHDP of U (1).
(b) Any type | IRHDP of Uy (1) is of this form.
(c) Type | IRHDP are equivalent iff they are isomorphic, as ordered pairs of Lie groups.

Remarks.

1. The formulation of Eq. (18) presupposes that a particular K-isomorphism L2 — K"
has been fixed. By (c) one may, as in the case of gl(n, [K), forget about this isomorphism
if one is interested in conjugacy classes of Howe dual pairs only.
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2. The type 1 IRHDP of the group O*(1), which are not covered by the theorem, are easily
determined in a direct way. One may use, for instance, the complex imaginary unit i as
a metric.

Proof. (cf. [12, Section 1.18]) Denote U := Ux (/). (a) By (19), ¢1(Uy,(J))) and
¢ (gl(/1. L)) have the same centralizer in gl{n. [K). By Theorem 1 this is ¢2(gl(/>. L>)).
Hence the centralizer of ¢ (U:, (/1)) in U is

U Nga(glilz. 1o)).

By (18) the intersection is ¢2 (U, (J2)). Similarly, ¢, (Uy, (J1)) centralizes ¢»(Uy.(J>)) in
U so that indeed they constitute a Howe dual pair. Reductivity and type 1 irreducibility are
evident.

(b) Let a type 1 IRHDP (H;, H») be given. Define

h‘ = Cglln‘K)(HZ)‘ h: = Cglm‘m(h')'
One easily verifies
H=nnU. i=12 20)

The subalgebras b and > constitute an irreducible Howe dual pair in gl(n. ). So Theorem
1 provides division algebras L, L2, dual w.r.t. K (still without involution), and numbers /.
> such that

b = ¢i(gl(l;. L)).

(Here a particular identification, over [, of L2 and K" has been fixed.) Since h; and b» are
invariant under the involution induced by /, / defines involutionson gl(/;, L;).i = 1. 2. Asa
basic fact, these involutions are induced, via (1), by involutions A; on L; and /; -dimensional
Hermitian metrics J; over the involutive fields ;. By construction, J; and J» satisfy (18).
As a consequence,

Hy =t;NU =¢;(U. . (Ji).
Next check condition (19): Let ¥; be a complement (over K") of span, . (H;) in b;. By
U Nspan. (H) 2 H;

and (20), U does not intersect with Y;. On the other hand, U spans gl{n, K) over K’ (cf.
the remark in [12, Section 1.14]; for this argument to hold it is necessary that U # O*(1)).
Hence Y, = 0.

It remains to show that L, and L» are K-dual: For any o € L; N I one has

k@)1, = (aly) = ¢i(@l)! = ¢il(@l;)”) = ¢i(ri(a)]y,).
This shows A;(«) € L; N K, and A;(a) = «(a), i = 1. 2. Moreover, forany ¢ € L N L>,
D1 ()] = ¢|((0!1/,)J') =¢i(aly) = ¢2(011/3)l = ¢r(ra(a)1;y).

Since L N L. as the center of 1, is invariant under A, this implies A () = A>(«).
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(c) In order to prove assertion (c), we shall proceed in the following way: At first we
list, for any given /, the isomorphism types of type 1 IRHDP. Then we shall show that
isomorphy implies conjugacy.

4.1. Compatible metrics

Let L}, L» be K-dual involutive fields and let/;, [ be positive integers subject to condition
(5). In order to identify L'z with K" we shall use the isomorphisms defined in (11). (13).
and (15). The corresponding imbeddings gl(/1/>.L) — gl(n, K), A — A, are then given
by (12), (14), and (16), respectively. These provide imbeddings i : gl(l;, ;) — glin. K)
by (17).

Our task is to find the solutions of Eq. (18). In order to do so we shall take arbitrary
Hermitian metrics J;, J; and ask for metrics / over I satisfying this equation. Such metrics
we shall call compatible with the pair J;, J;.

Lemma 2. Let Jy, J> be Hermitian metrics over Ly, La, of dimension [, l; and with flip
factor €. €3, respectively. Let A, denote the n-dimensional alternating diagonal matrix
diag(1. —1.1, —1....). Then the Hermitian metrics over K which are compatible with J,
and J, are given by

Ly = Anr (@ J))P2(J2), if K=R.L; =Cy,

Iy = $| ((XJ|)$2(13), otherwise, n
where o € L such that
C(_IM((I)S]&‘: c K. (22)

Proof. Let us introduce the notation

Ip=A,. fK=R, L, =C,,
Iy :=1,, otherwise.

Clearly, I is a Hermitian metric over I. One checks that for any A € gl(/;, L;),i = 1, 2,
Gi(AT) = g (AP, (23)
where 1; means the canonical involution on gl(/;, L;), and superscript Iy means the involu-
tion induced by Iy via (1).
To begin with, assume at first that there is given an o € L} satisfying (22). Then /(4),
defined by (21), is a Hermitian metric over [K: To see this, write
I(Z) = 1)) $2(02) Iy = o1 (@) g2 (J2)"
= o1 (A (@)J,)d2(J5)
= Iod1 ((a™ " A (@)E182)a )2 (J2).

By (22) the RHS becomes a_')q (@)er1&21iay.
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Next check that /,,, is compatible with Jy, J>: Forany A € gl(/;. L;),

di(A") =i (J)) " i (A7) (Ui)
=¢2(J) o1 @) T ¢ (AT (@ (). (24)

Insert g (A™) = In_l¢i(A)+10 to obtain @i (A”) = ¢ (A)".
As for the converse assertion, assume that / is a Hermitian metric over K, compatible
with J,, J>. Then, on the one hand, one has (24) with @« = 1. On the other hand.

& (AT = ¢ (A) = I""I()¢,~(A)"’I(')"l =1 "IypiATHIS'L

Thus, I;'1¢2(J2) " '¢1(J))" commutes with ¢; (gl(/;. I;)) for both i = 1.2. Hence it
equals @) (al;)) for some @ € L|. Then I = /. r

Now one may proceed in the following way: for each combination of similarity classes
of Hermitian metrics over [}, L (listed in Table 1) one chooses a pair of representatives J.
J> and determines, by use of (21), the similarity class of [, for each admissible value of
«. Finally one has to check condition (19). In order to see this procedure working we shall
discuss some examples in detail. The complete list of type 1 IRHDP then is contained in
Table 4 (See also Table 5.)

In the examples, we shall stick to i = R. The admissible involutive division algebras L,
and their duals L> can be read off from Table 3.

Example 1. Let us begin with the most simple case L} = R. Then L, = Rand L =
L, JK = R. Hence dimensions obey /,/> = n and imbeddings ¢; and ¢; coincide. Though
any value of « satisfies (22), running « does not change the similarity class of /,,. So one
may put @ = 1. Moreover, condition (19) is satisfied for any real Hermitian metric.

We shall derive relations between the invariants. If J,. J> have flip factor £, £> then [y,
has flip factor ¢ = €1¢2. There are three combinations possible: In case £ = £> = 1. both
Ji and J» have a signature, say s, and s>. Then /|, has signature s = s,5>. With the notation

p= %(n +5)., gqg= %(n - s
[7,‘:%(1,‘*‘.8‘,‘), q,‘=%(1/_5/)- i=1.2.

this yields the IRHDP
(O(p1.g1). O(p2.42)) in O(p, q).
where

p=pip2+qiq2. g = piq2 + pgi.

Incase ey = 1,62 = —1, /> iseven and ¢ = —1, for any signature of J,. Hence there is a
sequence of IRHDP

(O(p1.q1). Sp(='_;lg, R)) in Sp(%n, R). wheren = (p; + qi)l>.
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Table 4
IRHDP of U (/)
U (1) Type IRHDP Conditions
O(p.q) 1 O(p1.41). O(p2. q2) p=pip2t+q1920 g =p1g2 +q1p2
U(pi.q1), Ulpa. g2) p=2pip2+q192); 4 =2(p1q2 + q1p2)
Sp(p1.91). Sp(p2.q2) p=4pip2t+qi192): g =4p1gq2 +q1p2)
Sp(n;.R). Sp(ny. R) p=q. p=2nn;
0O(n.C). 0(n3.C) p=gq. p=nna. n,n#l
Sp(n;. C), Sp(na, C) p=q: p=4nn
0*(ny). 0*(n2) p=gq. p=2mni;, ny.nx»#1
2 GL(n.R).GL(n2. R) p=gq. p=nn
GL(n,.C). GL(n3,C) p=gq. p=2nn
GL(n,.H).GL(n>. H) p=gq. p=4nn
Sp(n. R) 1 O(pi.q1). Sp(na. R) n={(p+q)n
U(pr.q1). U(p2.92) n={(pr+q)(p2+q)
O(n;.C). Sp(na. €) n=2nn: n #1
Sp(p1.q1). O*(n2) n=2p1 +qn2 na#1
2 Same asO(n, n)
0. C) 1 O(n,.C). O(ny. ©O) n=nn
Sp(n;.C). Sp(n2.C) n=4nn>
2 GL(n,.C).GL(n>.0C) n=2nn
Sp(n.C) 1 O(n.C). Spny. ©) n=nn
2 GL(n;,C).GL(n,.©) n=nn;
Uip.q) 1 U(pi1.q1). U(pa.q2) p=pip2+q192: 9= p1g> +q1p2
2 GL(n,.C).GL(n>.C) p=gqg. p=nn
Sp(p. q) 1 O(pi1. q1). Sp(p2. 42) p=pip2tq192: ¢ =pi92 +qip2
Sp(n. R). 0*(n2) p=gq. p=nn
U(pi1.q1). U(p2. q2) p=pip2tq192 9 =p1@2+qi1p2
2 GL(n.R). GL(n>».H) p=gq. p=nn
GL(n,.C).GL(n>.C) p=q. p=nn
O*(n) 1 O(pi.q).0%(ny) n=(py+qnx nr#1lifn#1
Sp(n;. R). Sp(p2. g2) n=2n1(p2+q2)
U(p1.41). Ulp2. q2) n={(p +q)p2+q)
2 GL(n|.R). GL(n>. H) n=2nn
GL(n,.C),GL(n>.C) n=2nn
4 NOTE. Keep p; > g; throughout.
Finally, in case ) = ¢, = —1, ¢ = 1 and I(;, possesses a signature. In order to calculate it,

choose for Ji, J the usual symplectic matrices. One half of their eigenvalues is i, the other
half is —i. Then /|, has eigenvalues 1 and —1, with the same multiplicity. Hence s = 0.
So this combination gives rise to the IRHDP

(Sp(%ll,R),Sp(%lz.R)) in O(p, p), where2p =1,15.

Example 2. Now letustum to l; = Cj. Here >, = C;and L = L, UK = C. As
a consequence, dimensions are related by n = 2/|/>. Hermitian metrics J, and J» are
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classified by their flip factors £y, €2, which may take values +1. Moreover, (22) imposes
no constraint on the factor «.

Again derive relations between the invariants. I, has flip factore = ¢)62. It ¢) = &2 =
1 then /4, has flip factor ¢ = 1. In order to calculate the signature s of I,,,,. choose, for
instance. J; = 1; . Then

lyy = Ana;l (0'1/|)
is block diagonal, with /,{> blocks
Re(a) —Im(a)
—Im(a) —Re(a) |
Since each block has eigenvalues £ ||, one obtains s = 0. One sees that also in this example
a does not change the similarity class of /. (In general, however, it may do.)
Itremains to check condition (19): Obviously, O(1, C) = {1. — 1} doesnotspangl(1. C) =

C over R. One convinces oneself that this is the only exception in case L} = ). Thus the
type | IRHDP constructed here is

(0(),.C). 0. ©)) in O(p. p). wherep=1ILlrandl) £1.1#1.
If &y = 1 and &2 = —1 then ¢ = —1 and we obtain the IRHDP
(0. €). Sp(41.€)) in Sp(in.R). where 2lilx=n. [, # I.

Finally, if &y = &o = —1 then ¢ = |, and both /; and /> are even. In order to compute the
signature s of I4,, choose for J;, J> the usual symplectic metrics and write

Ly = Dy (0111 (J))B2(J2).

Since A,,$| (al;,)and $| (Ji )(753 (J2) commute, s is the product of their signatures. It follows
that s = 0. The corresponding IRHDP is

(Sp(%/..C).Sp(%[:.C)) in O(p. p). wherelyjl> = p.

Example 3. As a last example, consider L} = C.. Here Ll =C,andL =L, UK = C.
Hence dimensions are subject to n = 2/1/>. Moreover. metrics over C,. are classified up to
similarity by their signature, and not by their flip factor, which may take any complex value
of modulus 1. So choose decompositions /; = p; + ¢;,i = 1.2, and put

J; = diag(1,,. —1,). i=1.2.

By (22) the range of « is then restricted by the requirement that @ ~'& be real. Up to a real
factor, which does not change the similarity class of /), there are two solutions: o = 1
and o = i. I}, has flip factor ¢ = | and signature s = 2552, whereas /;, has flip factor
—1 (and therefore no further invariant). The corresponding IRHDP are

(U(py.g). U(p2.g2)) in O(p. g).
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where
p=2pip2+qq2) and g =2piq2+qip2)
and
(U(p1.q1). Ulp2,¢2)) in Sp(%n. R).  where 2(p1 + q1)(p2 + q2) = n,
respectively. (Note that here the imbeddings of U(p;. ¢;) into gl(n, R) are different, de-

pending on whether they lead to a Howe subgroup in O(p, ¢) or Sp(m. R).)

4.2. Puassage to conjugacy classes

In this section we shall prove assertion (c) of Theorem 2, i.e. that isomorphy implies
equivalence. So let (H,. H>) and (D, D;) be type 1 IRHDP. By assertion (b), there are
admissible division algebras L and M, with K-duals L, and M and simple bimodules
L=01UKand M = M; UK, metrics Jy, J» and K. K> of dimension /|, [» and m|, m>,
and [-isomorphisms ¢ : L2 — K" and ¢ : M"'™2 — K" such that

H; = ¢;(U:,(J) and D; = ¢;(Upy, (K)). =12
respectively. Here the imbeddings ¢;. ¥; : gl(/;, L;) — gl(n, K) are defined by
9i(A)=po¢i(A) oy and ¥ =Y ogi(A) oy

for A € gl({;. L;),i = 1, 2. If the pairs are isomorphic, L; = M;,/; = m;, and J; and K; are
similar, i = 1, 2. In fact, J; and K; may be chosen isometric, and by possibly modifying v/
one may even assume J; = K;,i = 1, 2. Then ¢; and ; are two representations of U: (J;).
Define

T :=vye .
T intertwines ¢; and ;.
Togi(A)=vi(A)ecT YAegli. L), i=12. (25)

Hence D; = TH;T~',i = 1,2, i.e. the pairs are conjugate in GL(n, K). Unfortunately,
in general T is not necessarily unitary w.r.t. I': Since ¢;, ¥, preserve involution, (25) implies

T'Togi(A)=gi(A)oT'T YAeglU, L) i=12.
It follows that
T'T = ¢1(B1)

for some B € L|. Therefore, in order to obtain conjugacy in Ux(I), one has to find § €
gl(n, K) normalizing H; such that T o § € Uy (]).
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Obviously, ) (8) = 8. From Table 3 one learns that this implies 8 € K'. except for the
case K = Rand L, = C,. However, in this case there exists y € C such that y= = 8. So
one may put

S:=@iy '1)).

In any of the other cases one may assume f € K. Let us investigate which values 8 may
take then. To this end, for given involutive field M and metric J of dimension m over M let
W (J) denote the set of scalars 8 € M’ for which there exists A € gl(m. M) such that

AlA =81,

Determine W (J) for the Hermitian spaces, listed in Table 1. by means of the following
simple criterion: Anelement 8 € M’ belongs to W (J) iff the metrics J and 8J are isometric.
(Because in this case there exists A € gl(m. M) such that

Bl =A"JA=JA'A)
Then check. using Table 4, that all but two type 1 IRHDP obey

W C oW DWW (). (26)
The exceptions are

(@ (Upi.q1). U(p2,¢2)) in Sp(n. R)
and

(b) (U(pi.q1). U(pa.q2))in O™ (n),

where (p1 + ¢1)(p2 + g2) = n for both pairs.
In case (26) holds one finds operators S; € GL(/;. [;) satisfying

S"S =g, i=12 and =8
So one may put
S = (¢1(S)e2(S2)) "

For the exceptions (a) and (b) we shall give an S explicitly. Obviously, it is sufficient that §
satisfies

§'s = ~1,. (27)
Choose. in the setup explained in Section 3.1, the following metrics:
Jy =idiag(1,,. —1,,). J» =diag(lpy. —1,). [ = ¢1(J))$a(J2).
Put S := A, incase (a) and S := j1,, in case (b). Then § obeys (27), as well as
$61(A)S " = 1 (A)

for any A € gl{p, + ¢q1.C). Since U(p,. qy). if defined by J; above, is invariant under
conjugation A — A, S normalizes H; and. consequently, also H>.
This concludes the proof of Theorem 2 and the discussion of type | IRHDP. C:
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5. Type 2 irreducible reductive Howe dual pairs

The occurrence of type 2 IRHDP is restricted to the unitary groups of hyperbolic
Hermitian spaces. As it comes out, these pairs are closely related to Lagrangian subspaces.
Let us briefly recall the relevant notions:

A Hermitian metric / of dimension n over K is called Ayperbolic iff K" is the direct sum of
two isotropic subspaces. These subspaces are necessarily maximal isotropic and of the same
dimension. It follows that a hyperbolic Hermitian space has even dimension. Generally, a
maximal isotropic subspace of a hyperbolic Hermitian space is called Lagrangian.

Let X be a Lagrangian subspace and let

SX)={T eUxtl): TX = X} (28)

denote its stabilizer in Ux (/). As a basic fact, restriction to X yields aLie group isomorphism
S(X) — GL(X). In particular, any transformation 7° € GL(X) possesses a unique unitary
prolongation T € Ux (/).

We shall need the following two special properties of isotropic subspaces:

Lemma 3. Let [ be a Hermitian metric of dimension n over I and let X C K" be an
isotropic subspace. Then

(@) X~— =X,

(b)if X = X then I is hyperbolic and X is a Lagrangian subspace.

Remarks. Orthogonal complements are taken in K" and w.r.t. /.

Proof. Choose a basis {e). ..., en) in X. Then there exist f; € K", i = 1....,m, such
that

Itei. fj) =8ij and I(fi. fj) =0.

Here I denotes the Hermitian form defined by I via(2). PutY = spany(fi...., fm)- Then
Y is isotropic and X @ Y is a hyperbolic Hermitian subspace of K". Moreover,

K'=(X®Y)®(X]Y) .

where the sum is orthogonal w.r.t. /. As a consequence,

X-=X@Xer". (29)
So if X = X< then (X @ Y)- = 0. This proves assertion (b). As for (a), (29) implies
X+~ =XtNn(X YY)~ By (X ® YY) = X & Y (as for any Hermitian subspace), the
intersection equals X. O

Lemma 4. Let [ be a Hermitian metric of dimension n over K. If U (I) possesses a type
2 IRHDP (H,. H>) then I is hyperbolic and there exists a Lagrangian subspace invariant
under H\ H>.
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Proof. By assumption, there is a degenerate H) H>-invartant subspace Xy C K. Put X :=
Xo N X ;. X is non-trivial, isotropic, and H| H>-invanant. Moreover, X C X - . where X -
ts also invariant. Since the Howe dual pair (H,, H») is reductive, one finds an invariant
subspace W C X1 suchthat X— = X & W.

W is non-degenerate: To see this, let u € W.If v € W- then v € X-1. Lemma 3(a)
implies w € X, hence w = 0.

Thus, irreducibility of (H). H>) implies W = {0} and, consequently. X = X . Then. by
Lemma 3(b). / is hyperbolic and X 1s a Lagrangian subspace.

Theorem 3 [12]. Let I be a hyperbolic Hermitian metric of dimension n over K.

(a) Let X C K" be a Lagrangian subspace and let (H, . H.) be an irreducible Howe dual
pair in GL(X). Then the unitary prolongations H; of H. . i = 1. 2. constitute a type 2
IRHDP of U ().

(b) Any nvpe 2 IRHDP of U (1) is of this form.

(¢) Type 2 IRHDP are equivalent iff they are isomorphic.

Proof. (cf. [12, Section 1.18]) Again denote the stabilizer (28) of X in U= (/) by S(X).

(a) Given X one finds a complementary Lagrangian subspace ¥ C K" with S(X) =
S(Y). Write operators T € gl(n. ) as (2 x 2)-block matrices w.r.t. the decomposition
K" = X@Y.Put Ay := diag(21y. %lx). Ag is in the center of S(X). hence Ay € H\ N H-.
Now assume that there is given T € Uy (/) commuting with H,. Then. in particular,

0 -37»
[T. Ap]l = 2 - =0.
'§T3| 0

Thus T € S(X), and T|x € H,. Since unitary prolongation is unique, 7 € H>. So H->
centralizes H, (and vice versa by the same argument).

(b) Let (H,. H») be a type 2 IRHDP of U« (/). By Lemma 4 there is a H| H>-invariant
Lagrangian subspace X. Since H, and H> are contained in S(X ), (H). H>) is a Howe dual
pair in S(X). So restriction to X yields a Howe dual pair (obviously irreducible) in GL(X).
with unitary prolongation (H;. H>).

(c) As usual, one only has to show that isomorphy implies equivalence. As a basic fact.
any two Lagrangian subspaces are conjugate w.r.t. the action of Uy (/). Hence for any two
type 2 IRHDP of Ux (/) one finds equivalent pairs leaving invariant a given Lagrangian
subspace X. Now if these pairs are isomorphic then. by Theorem 1., their restrictions to X
are equivalent in GL(X). Hence the pairs are equivalent in S(X). C

To complete the classification it suffices to list the hyperbolic ones among the Hermitian
spaces over K = R, C;, C,., H. As is well known, these are the ones which have either zero
signature, or no signature and even dimension. Their unitary groups are: O(n. n). Sp(n. R).
0(2n.C), Sp(n, C), U(n, n), Sp(n, n), O* (2n). where n is a positive integer.

This concludes the classification of IRHDP of the classical Lie groups. The results are
listed in Table 4.
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6. The natural partial ordering of reductive Howe dual pairs

Throughout this section, let { be a Hermitian metric of dimension » over K. In order to
establish the natural partial ordering relation on H (U (/)) we shall determine the direct
successors of each element.

A remark on terminology: when talking about Howe dual pairs in the following we shall
always mean conjugacy classes. Moreover, if H|, H2, H3 are subgroups of Usx (/) then we
shall say that H» separates H, and H; iff H) C H» C Hj (proper inclusion).

To begin with, we state that it suffices to know the direct successors of IRHDP:

Lemma 5. Let (H), H>) be a reductive Howe dual pair in Uy (1). Then those direct
successors of (Hy, Hv) which have the same or a greater number of irreducible factors are
obtained from (H\, H2) by replacing precisely one of the irreducible factors by any one of
its direct successors.

Proof. The reductive Howe dual pairs produced in this way are obviously direct succes-
sors of (Hy, Hy). Conversely, let (D), D3) be a direct successor of (H,. Hz). Choose
representatives (denoted by the same letters) s.t. H| € D;. Consider the subgroup L of
Uy (1) generated by Ha and D;. Decompose (K", I) = ﬁ:l (W', I'y into L-irreducible
Hermitian subspaces. Since this decomposition is coarser than both the H| H>-irreducible
and the D) Ds-irreducible one, (H, |y, H2ly/) and (D], D2]y.i) are Howe dual pairs
in UK(Ii), and

(Hy. Hy) = (Hi|y1 x -+ x Hi|yi, H2lyr X -+ - X Halya),
(Dy. D2) = (Dylyr x -+ x Dylyt, Dafyr X -+ x Da2|yi).

Now if H;|y: # D|y: for more than one index i, say fori = 1, 2, then
D]lwl X H||W2 X - X H|le

is a Howe subgroup of Uy (/) separating H| and D,. Thus H,|y. # Dily. for precisely
one index i = k. It is clear that then (D)|y«. D2|y+) has to be a direct successor of
(Hylw, Hylye) in U (7%,

It remains to show that (Hy |+, Halw+) 1s an irreducible factor of (H\, H>), i.e. that
H\ H> acts irreducibly on WX In order to see that, consider the subgroup H| D> of Ux(/)
and decompose

7
WY = @Pwr Tty (30)
i=lI

into H; D>-irreducible Hermitian subspaces. This decomposition is finer than both the de-
compositions of (W*, I*%) into H; H»- and into D; Da-irreducible subspaces. Now if both
H\H> and D D> would act reducibly on (WX, IX) then it was properly finer (otherwise
(W*, I*) was not L-irreducible). Then H, |wt and D[y would be separated by the Howe
subgroup Hi |y« X+« - X Hy| i of Uy (/%). Thus, at least one of the groups HyH> or Dy D>
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acts irreducibly on (W*, I*). By the assumption on the number of irreducible factors, this
is H H>. C

Note that if (D). D2) is a direct successor of (H|. H) with less irreducible factors. then
(H>. Hy) is a direct successor of (D>, D)) with more irreducible factors, hence meets the
assumption of the lemma.

We proceed with the determination of the direct successors of IRHDP. Thereby we shall
discuss the following cases separately, in the following order: reducible direct successors.
type 2 irreducible direct successors of type 2 IRHDP, type | irreducible direct successors
of type | IRHDP, and type 2 irreducible direct successors of type 1 IRHDP.

6.1. Reducible direct successors of IRHDP

Proposition 1. Let (H|, H») be an IRHDP of Uy (I). Assume that
K= hYe (v
is an H|-invariant Hermitian decomposition. Then
(Dy. Dy = (Hilyo x Hyly2 Gy, (Hhp) X Cp gz (Hyipe)) (3

is a reducible direct successor of (H|. H»). Conversely, any reducible direct successor of
(H\, H») is of this form.

Remarks. We shall say that the direct successor (Dy. D>) of (H,. H>) is obtained by
splitting. and that the direct successor ( H>. H)) of (Da, D)) is obtained by inverse splitting.

Proof. Assume at first that a Hermitian decomposition is given. One straightforwardly
checks that (31) is a reductive Howe dual pair in U (/). Clearly, ) C D;. Assume that
(T\. T>) 1s a Howe dual pair obeying H, € T\ € D). Then restriction to V' of this relation
yields Ty |y = Hil|y.,i = 1.2.Henceeither (7). T>) = (H,. H2) (if (T}, T>) isirreducible)
or (T). T») = (D). D») (if it is reducible).

Conversely, let (T\, T>) be a reducible direct successor of (H). H>). Then there is a
T T>-invariant (hence, in particular, H)-invariant) Hermitian decomposition (KK". /) =
(V. I"Y@® (V2. I7). Let (D). D») denote the direct successor (31) of (H|. H>) defined by
this decomposition. By (7. 72) = (T |1 x Ti |2, T2l x T5]y2). Dy commutes with 7.
Hence 7, € Dy. It follows 77 = D, and, inturn, 7> = D». L

Example 4. Consider the IRHDP (O(n). O(m)) in O(rmm). Here any decomposition is
Hermitian. Since the dimension of O(n)-invariant subspaces is a multiple of n, possible
decompositions are R"" = R™' @ R™™* where m| + m> = m. The corresponding direct
successors are

(Q(n) x On). O(my) x O(m»)).
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6.2. Type 2 irreducible direct successors of type 2 IRHDP

Proposition 2. Assume that 1 is hyperbolic and let (H\|, H>) be a type 2 IRHDP in U (1).
Then (H,, H>) has the following direct type 2 irreducible successors (D), D7):

H) D, Condition

GL(n,, R) GL(n,,C) n> even

GL(n,.C) GL(n, H) n»> even
GL(2n, R) -

GL(n, H) GL2n,0) -

(32)

Remarks.

1. Since a type 2 IRHDP is uniquely determined by the isomorphism type of each of its
constituents, in Table (32) it suffices to list the first one.

2. Asimbeddings GL(/, C) € GL(2/y, R) and GL(/,, H) € GL(2!/,. C) one may choose,
for instance, (12) and (14), respectively.

3. One sees that in case I = C, or C,. type 2 IRHDP do not have type 2 irreducible direct
SUCCeSSOrs.

4. The proposition provides, in particular, the irreducible direct successors of irreducible
Howe dual pairs in GL(m, [K), where 2m = n.

Proof. To begin with, assume that (D;. D) is one of the pairs in Table (32). Choose a
representative, denoted by the same letters. H|, as a subgroup of D|, generates a Howe
subgroup S of Uy (/). S is either a unitary or a general linear group or a product thereof.
Since there is no such group separating H, and D, S = H,. Thus H), imbedded into
Uk (1) in this way, is Howe, and (D), D») is a direct successor of the Howe dual pair
(Hy. Cy.()(Hy)). By Remark |, Cuy (1)(Hy) = Ha.

Now turn to the converse assertion. Let (H,, H>)=(GL(/,, L), GL(/>, L>))and (D,. D3)
= (GL(m, M), GL(m3, M>)) be type 2 IRHDP in Uyx(/). Assume that (D, D>) is a
direct successor of (H), H>). Then Hj acts, as a subgroup of Dy, on M'l"'. By (7), this
representation decomposes, over the center I’ of [, into a number of fundamental irreps
of H;:

M'I"l — ([LIII )u'

On the other hand, this representation is irreducible over M : otherwise there was an H-
invariant decomposition M"' = X & Y over M, and GL(X) x GL(Y) would generate, as
a subgroup of D, a Howe subgroup of Uy (/) separating H, and D,.
Thus, irreducibility implies:
- If [ € M then a = dimy, M. Hence in this case m; = {,.
- If M) € 1, then a = I, since irreducibility over M, implies irreducibility over L,. So in
this case m| = bl|, where b = dimgg, 1.
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As an immediate consequence, L; # M). Moreover, it is obvious that in the field ex-
tensions Ly C M, or M C Ly, respectively, the situation R € H cannot occur. So D, is
contained in Table (32). -

6.3. Type I irreducible direct successors of type | IRHDP

In this section, for brevity of notation we shall call the passage from R to C or C,.. and
from C,. to H a minimal involutive field extension.

Proposition 3. Let (H,, H») = Uy, (J1). U, (N2))and (D). Da) = (U (K1), Ung, (K2))
be IRHDP of type | in Uy (I). Then (D|, D1) is a direct successor of (H|. Hy) iff either
(a) M is a minimal involutive field extension of L, and

L=m. K =Jy.

Ky  K=R My#C,
Jo=1 ALKy, K=R M =G,
K>, K=H,

or
(b) Ly is a minimal involutive field extension of M| and

Remarks.

1. Depending on the values of L; and M;, i = 1, 2, the matrices K> and 7, are the images
of K> and J; under the imbeddings (12) or (14), respectively.

2. We shall say that (D, D) arises from (H). H») by involutive field extension (case (a))
or restriction (case (b)), respectively.

3. Note that the relations between metrics are understood modulo similarity. So in order to
obtain all solutions Ky, K> one has to run J;, J» through the respective similarity class,
with the constraint that (D), D>) is a Howe dual pair in Uk ().

4. Similar to type 2, for i = C there are no type 1 irreducible direct successors of type 1
IRHDP.

Proof. To begin with, we shall show that any type 1 direct successor of (H|. H>) is subject
to either condition (a) or (b). [

Lemma 6. Assume that (D, D,) is a direct successor of (H\, H2). Then either L| C M
andly = m|, orM| C Ly and my = bl|, where b = dim-|, M.

Proof. The proof goes along the lines of the second part of the proof of Proposition 2. At

first we shall show that the action of gl(/;,1,) on M'l" '. which is induced by the inclusion

Hi C Dy, is irreducible: Assume that there is a non-trivial subspace X C MY invariant
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under gl(/y, ;). Let X+ denote its orthogonal complement in (M}"', K)). Consider the
Howe subgroup § of U (/) generated by the stabilizer

So:={AeD :AXNXYH cXxnx}

of XN X+ wrt. D). By Hy € § C Dy, either S = H| or S = D,. Moreover, by Witt’s
theorem, prolongation to MY'' yields an imbedding GL(X N X=) € So. Hence S = D).
Then, however, X N X+ = 0, since otherwise there was A € D, commuting with S but
not with D). As a consequence,

(M’lnly Kl) = (X, K]‘)@(X_L\ K|2)

for some Hermitian metrics Kll, Kl2 over M. Then Upy, (KI') x U, (K,z) generates a Howe
subgroup of Uy (/) separating /| and D, (contradiction). Thus, gl(/|, L;) acts irreducibly
on MY"".

Now an argumentation similar to the one in the proof of Proposition 2 shows that either
Ly cMyand!y =m,orM; C Ly and m; = bly, where b = dim;, M.

It remains to check that these field extensions are involutive. In case K = H this is
obvious. In case K = R, on the other hand, one may assume L; C M, and /|, = m,
(otherwise M> C L; and m> = [3). Then the inclusion is induced by the imbedding H, C
Dy and hence is involutive by (19).

To proceed with the proof of the proposition, we shall derive relations between K and
Ji, and between K> and J> by exploiting the inclusion relations H, C D, and D> C H>,
respectively. To this end we shall sort these relations into two classes and apply the following
lemma:

Lemma 7. LerL, M be involutive fields such that L C M. Let J, K be metrics of dimension
1, m over L, M, respectively. Assume that Uy (J) and Upy (K ) are Howe subgroups of U (I).
Consider the following two types of inclusion relations:

A)Ur(J) c Un(K), wherel =m,

(B) Upe(K) C Ui (J),  wherel = mdim; M.

Assume that the RHS in both cases is a direct successor of the LHS. Then M is a minimal
involutive field extension of L. Moreover, in case (A), K = J, whereas in case (B),

7= Apmd, L=R M=C,,

] otherwise.

Proof. Consider at first case (A). Here gl(/,L) C gl(/,M) and A’ = AX forany A €
gl(, L). Then J ™! K, as an element of gld, M), commutes with gl(/, ). Hence

K = Ja forsomea € Cy(L). 33)

Now consider the possible combinations of L and M separately:
I.L=R,M=C,;,C.:a € C,hence K = J up to similarity of both J and K.
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2. L=C,M=H:« € C, hence again K = J, modulo similarity.

3. L =R M = H: @ € H, hence, up to similarity, K'"" = J, and K’ = iJ. However.
both K'!" and K '? are also metrics over C... So Uz (K'/') generates a Howe subgroup
of U~ (1) separating U- (J) and Uy(K). Thus, case 3 does not occur.

Now turn to type (B). Denote b := dim; M. [ncluslon(B)ylelds animbedding gl(m. M) C
glthm . L) which is equivalent to the standard one A A, where 4 is given by (12), (14), or
(16), respectively (deB\ndmg on the values of L and M). Then with J and K possibly modi-

fied up to similarity, AX = A7 for any A € Usg(K). Similar to (A) one obtains. using (23).

= ApmdJa. L=R, M=C,.
K=4{ _ . 3
Ju. otherwise. (34)
for some o € M. Finally, a discussion of the possible combinations of L and M yields the
assertion.
By Lemma 7 and the following table, which is derived from Lemma 6, one obtains the
relations between J; and K;, i = 1.2 which are asserted in the proposition.

K Relation between L, and M, Type of H| C D, Type of D> C H-

R L ¢ M (A) (B)
M, CL (B) (A)
H L c M, (A) (A)
My c Ly (B) (B)

For the converse direction of the proposition assume that (D), D;) obeys condition (a)
or (b) of the proposition. A standard argument indicated in the proof of Proposition 2 shows
that H|, imbedded into U (/) as a subgroup of some representative of D, is Howe. and
has direct successor D). Moreover, the centralizer fig of Hy in Uy (/) has isomorphism
class ng(jg) where J» is subject to condition (18). Since type 1 IRHDP are. in general,
not uniquely determined by one of their components it remains to check isomorphy of H>
and H-. i.e. similarity of Jo> and J».

Since (ﬁ:. Hy) 1s a direct successor of (D>, Dp), the inclusion D> C ﬁ: belongs to
either type (A) or (B). In case (A), by (33), f: = Jra, where a € Cyy,(LL2). However, both
j3 and J» have entries in L», so that « is also an element of L. It follows that @ € ll'z. and
j: and J> are similar.

This argument applies if at least one of the inclusion relations H; C D, and D> C Hais
of type (A). If both are of type (B) then [ = H. One may assume that (1,.L>) = (C...C.)
and (M, My) = (R, H) (otherwise one proves, from the beginning, that (H>. H)) is adirect
successor of (D1, Dy)). By (34), J» = J»&@, where @ € H' = R. Thus J> and J> are similar
in this case, too. 0

Since Proposition 3 is not very explicit yet, it proves useful to derive a list of type 1 direct
successors of type 1 IRHDP from it (see Table 5). The following examples shall give an
idea of how this may be done. We shall restrict our attention to O(p, p).
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Table 5
Type 1 irreducible direct successors of type 1 IRHDP in Uy (/)
Uk(!) IRHDP Direct successors Conditions
O(p. q) O(p1.91). O(p2. 42) U(p1.q). Ul pa. $42) P2.q2 even
O(p1+4,.C).O(p2. ©) n+qr#l pp=qg#1
Sptny. R). Sp(n2. R) U@y.ny). U(p2.q2) p2+4q2 =n
Sp(n.C). Sp(4ny.C) ny even
O(n).C).0(n2.C) O(n1.n1). O(pa. g2) p2+qg2=n
Sp(n;.C). Sp(n2. C) Sp(2ny, R). Sptna. R)
U(p).41). U(pz1.92) Sp(p1-41). S p2. 342) p2.qaeven
O*(p1 +¢q1).0%(p2) pi+q#FL pr=g #1
02p).241).O(p>.q2)
Sp(p1 +¢1.R). Sp(p>. R) p2=q2
Sp(p1.q1). Sp(p2.42) U2p1.291). U(pa. q2)
0™ (ny), 0*(n3) U(ny.np). U(p2. q2) pr+q2=n
Sp(n. R) O(p1.4q1).Sp(n2. R) U(p1.q1). U(p2. q2) p2tgr=m
O(p1 +41.C). Sp(3n7.C) naeven. py +q # 1
Sp(n;. R), O(p2. 92) U(m.m).U(%pz. 392) P2.q1 even
Sp(n1.C). O(p>. C) pr=q#1
O(n,.C). Spn». ©) O(ny.ny). Sp(na. R)
Sp(n;.C), 0, C) Sp(2n1. R). O(p2. q2) prtgr=m
U(p1.41). U(p2.q2) Sp(pi.41). 0% (p2) pr=qg#1
0*(p1 +41). Sp(3 p2. 92) pr+qr # 1opr.greven
O2p1.291). Spipa. R) pr=q
Sp(p1 +4¢1.R). O(p2. ¢2)
Sp(p1.41). 0% (n2) U2p1.2¢1). Ulpa. g2) p2t+q2 =n>
O*(n)). Sp(pa. 42) Uy, np). U(pa. g2} pr+q) =n
Sp(p.q) O(p1.91). Sp(p2. 42) U(pi.q1). U(pa. q2)
Sp(n|.R). 0*(n2) Uny.n). U(pa. qa) pPr+qr =n»
Upr.q1). U(pa. q2) Sp(pi-41). O(p2. q2)
0Q2pi.291).Sp(4 p2. 342) P2.92 even
O*(py + q1). Sp(p2. R) P=q. prtq #1
Sp(p1 +41.R). 0*(p2) pr=q:#1
Sp(p1.91). O(p2.92) U2p1.290). U4 p2. 392) p2.q2 even
O*(n)). Sp(na. R) Uny.ny). U(pa. q2) P2 +g>=n>
O*(n) O(p1.41). 0% (n2) Up1.q1). U(p2. q2) prtqr=n
n#£1) Sp(n. R). Sp(p1. q2) Uy n). U(pa. ¢q2)
U(p1.q1). U(p2. q2) O*(p1 +91).O(pa2. q2)
02p1.2q1). O*(p2) Pr=q2#1
Sp(p1.q1). Sp(p2. B) p2=q
Sp(p1 +41.R).Sp(3pa. $92)  pa.gaeven
0*(n1). O(p2. q2) Utny. ). UG p2. 392) P2. 42 even
Sp(pi.q1).Sp(na. R) U2p1.291). U(p2. q2) p2t+q2=n2

4 NOTE. The conditions on the pairs in the 2nd and 3rd column to appear as IRHDP in Uy (/) have
already been displayed in Table 4, and henceforth are omitted here.

Example 5. To begin with, let us derive the type 1 irreducible direct successors of the pair
(O(p1.91), O(p2, q2)). Here L} = R so that only case (a) can occur. As a consequence,

Ky =J.
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Consider at first the involutive field extension M; = C,. Since K has flip factor ¢ = 1.
Dy = O(p, + g,.C). The relation between K> and J- is l’(': = ApyeqrJ2. It can only
have a solution if p> = ¢. In this case one may choose J> = A, to obtain K> = 1,
and D> = O(p3, €). So the involutive field extension M; = C, yields the direct successor
(O(p1+41.C). O(pa. C)) of the pair (O(py. q1). O(p2. p2)). Furthermore. as an immediate
consequence,

(O(ny.n)). O(pa na — p2)). $na < pa < .

are direct successors of the pair (O(n). C), O(na. C)), which are obtained by involutive
field restriction. (Clearly, in case K = R it suffices to determine the type 1 direct successors
obtained by field extension.)

Next consider the involutive field extension M; = C.. Here D; = U(p,.q;). The
equation K>=J requires p, g2 to be even. In this case one may put J» = diag(1,,. —1,.).
thus obtaining D> = U( %p:, %qg). Again, the field extension M, = C,. also gives rise to
the direct successor (O(2py, 2¢;). O(p2. g2)) of the pair (U(py.q1). U(p2.g2)), whichis
actually obtained by field restriction.

Example 6. Now turn to the pair (Sp(n1,. R), Sp(n2. R)). For the involutive field extension
M, = C, one finds that n> must be even, and (D,. D>) = (Sp(n,.C), Sp(%n:. Chn. For
the involutive field extension M; = C,., on the other hand, one may choose for J| the
usual symplectic matrix. Then J; has eigenvalues i and —i, each one with multiplicity
ny. Thus Dy = U(n,.n|). Moreover, given a decomposition n> = p> + g2, put K» =
diag(ilp,. —il,,). Then 1?3 is a real symplectic metric, hence may serve as J>. Thus D> =
U(p>. q2). where pa + g2 = na. (Note that here it proves to be necessary to have J> run
through its similarity class.)

6.4. Tvpe 2 irreducible direct successors of type 1 IRHDP

Proposition 4. Assume that I is hyperbolic.

(@) Let (Hy. H2) = (U, (J1). Ui, (2 be a type 1 IRHDP of Uy (1). Then (H,. H))
possesses a nype 2 irreducible direct successor (D, Da) iff Ja is hyperbolic. In this
case,

(D1. D2) = (GLU1. Ly). GL(3/2. L)),

where || and I> denote the dimension of J| and J», respectively.
(b)y Let (H|. Hx) = (GL(/,. ). GL(/2. L)) be a tvpe 2 IRHDP of Uy (1). Then the type
1 irreducible direct successors of (H\. H») are

(Ug, (J1). Ug, (J2)),

where J| is hyperbolic of dimension 21,.

Proof. Obviously, assertion (b) is dual to (a) by taking the centralizer in U (/). So one
only has to prove (a).
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To begin with, assume that (D;, D>) = (GL(m, M), GL(m2, M>)) is a type 2 direct
successor of (H;, Hz). Then the unitary group H; = U, (J>) contains D> as a non-trivial
general linear subgroup. As a consequence, the Hermitian space (lLlf. J2) contains a non-
zero isotropic L,-subspace X such that D; € GL(X) € H». Since there is non-central
A € H> commuting with GL(X), the Howe subgroup of Uy (/) generated by GL(X) (and
hence GL(X) itself) coincides with D». This implies L> = M, and X = L5 In particular,
L, = M. It follows I} = m;, because otherwise GL(/|,L;) would generate a Howe
subgroup of Uy (/) separating H| and D;. By /> = 2mm>, [> = 2m;. Thus, X is an
isotropic subspace of half dimension of ( ILIZZ, J2). As a consequence, J» is hyperbolic.

Conversely, assume that J; is hyperbolic. Then [, is even and GL(%IZ, L,) C H,. Since
H> is subject to condition (19), there is no general linear nor unitary group nor a product
thereof separating GL(%IZ, L>) and H>. Hence GL(%I:, L»), imbedded into Uy (/) in this
way, is Howe and generates the Howe dual pair (D,. D;) = (GL({,, L)). GL(%I:, Ly)).
Moreover, (D), D>) is a direct successor of (H,, H»). O

This concludes the discussion of the natural partial ordering relation of Howe dual pairs.
In the next section we shall consider the set of reductive Howe dual pairs H(G) of a few
standard groups G in some detail.

7. Examples

In the following, we shall use the direct successor relations established in Section 6 to
draw, beginning with the center, Hasse diagrams of H(Uy(/)). In these diagrams, in order to
avoid arrows, we shall adopt the convention where the left vertex of a line is always less than
the right one. Moreover, vertices are labeled by the first constituents of the corresponding
Howe dual pairs only. The other constituent can be obtained by reflection at the vertical
middle axis (this operation corresponds to taking the centralizer in U (/)).

Example 7. At first, we shall discuss U(n), which is the most simple example. The IRHDP
are (U(n;), U(n2)), where nin> = n (all of type 1). Since U(n) is defined by a scalar
product on C/, any subspace is Hermitian. So Hermitian decompositions of C! are given
by sum decompositions n = n' + - .. + n”. Hence Howe dual pairs are

(U(n,') x -+ U(nl), U(né) x -+ x U(ny)), where Zn'in'ﬁ =n.
i=1
Direct successors arise solely by splitting and inverse splitting (Proposition 1). For the
factors this yields the following two generating direct successor relations:

(U(n)), Un)) < (U(n) x Uln}), Ut) x UGmb)) . where 1§ +mb = n,
(UU}) x Ulm)), Uny) x Uny)) < (U} +m)), Ulnb)).

As an example, we draw the Hasse diagrams of H(U(2)) and H(U(3)) in Fig. 1 as well
as the one of H(U(5)) in Fig. 2.
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u(1) u()? u(2) U u(1? v’ UC1)yx U(2) U(3)
[ [ J ] [ ] * [ ] [ ] L ]

Fig. 1. Hasse diagrams of H(U(2)) tleft) and H(U(3}) (right).

U uQ)? U(l)’ U(l)’xb(?) U(n)?xu(s) U(1)xt(4) u(s)
L)

°- . )
U(l)xU(2) l(l)xL(3)
L(115

ve? ve? N W U)X U(2)? *v@mu

U{ l)xb(?)

Fig. 2. Hasse diagram of H(U(S)).

N

u(1) u1)? v

Fig. 3. Hasse diagram of H(U(1. D).

Remarks.

1. At least H(U(2)) and H(U(3)) are well known. The first one, for instance, has been
used in [2], and the second one in [4].

The sets of Howe dual pairs of U(n) and GL(n. C) are isomorphic. In general, if G is a
complex Lie group and H its compact real form then the Howe dual pairs of H are the
compact real forms of the Howe dual pairs of G.

ro

Example 8. Next consider U(1, 1). Since the corresponding metric is hyperbolic, there is.
besides the trivial IRHDP, a type 2 IRHDP, namely (GL(1, C). GL(1, C)). Moreover, there
is a single Hermitian decomposition of the metric: diag(1l, —1) = (1)@ (1). Let us draw the
Hasse diagram. The center (U(1). U(1, 1)) has direct successors (U(1), U(1))” (obtained
by splitting), and (GL(1, C), GL(1, C)) (by virtue of Proposition 4). Both (U(1), U(1)) x
(U(H. U(D) and (GL(1, C), GL(1. C)) then have direct successor (U(1. 1). U(1)). Thus,
using the notation [, := GL(1, K), the Hasse diagram is as shown in Fig. 3.

Note that C,, if viewed as subgroup of the real Lie group U(1. 1). is in fact the realification
of the underlying complex group. So when complexifying again one obtains C. This shows
that the reductive Howe dual pair (C.. C,) in U(1, 1) is a real form of the reductive Howe
dual pair (C2, C2) in the complexification (GL(2. C), GL(2. C)). The other real form of
this pair which is contained in H(U(1. 1)) is (U(1)>. U(1)?).

Fig. 4 the reductive Howe dual pairs of U(1, 2). derived in a similar way:

Here there are two Howe subgroups of isomorphism class U(1)”. Thus, we see that a
reductive Howe dual pair (H,. H) in a complex group G may split into several reductive
Howe dual pairs in a real form of G not only because of the different real forms of (H,. H>)
but also because isomorphic real forms of different representatives of (H;. H>) may not be
conjugate in the real form of G.
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u(1)? U(1)xC, U(1,1)xU(1)
/.\./.\
o o ® [ ] ®
u(1) u(1)? u@)s U(2)x U(1) U(2,1)

Fig. 4. Hasse diagram of H(U(2. 1)).

S0(2)

0(2)

Fig. 5. Hasse diagram of H(O(2)).

Z,xS0(2)

* ® L
s
z3 Z;

Z3x0(2) 0O(3)

Fig. 6. Hasse diagram of H(O(3)).

Example 9. Now let us turn to the case of real orthogonal groups O(n). Here the IRHDP are:
(O(n1), O(n2)), wherenyny = n, (U(n), U(ny)), where 2nny = n,and (Sp(n)), Sp(n2)),
where 4nn> = n (all type 1). Similar to Example 1, Hermitian decompositions are given
by sum decompositions n = n' 4 --- + n". So direct successors are obtained by splitting
and its inverse, as well as involutive field extension and restriction. For O(2), for instance,
one finds that the center (O(1), O(2)) has direct successor (O(1), O(1))?2 (by splitting) and
(U(1), U(1)) (by involutive field extension). Moreover, both inverse splitting of the first
pair and field restriction of the second one yield the direct successor (O(2), O(1)). Hence if
we write Z; instead of O(1) and SO(2) instead of U(1) then the Hasse diagram is as shown
in Fig. 5.

Fig. 6 shows the Howe dual pairs of O(3). Here the non-trivial Howe subgroups have the
following meaning:
- Z%: Reflection at a plane and reflection therein, commuting with
— Z7 x O(2): Reflection at a plane and O(2) therein,
— Z; x SO(2): Reflection at a plane and rotations therein (commuting with itself),
- Zg: Reflections at three independent planes (commuting with itself, too).

Example 10. Consider, as a slightly more challenging example, Lorentz group O(3, 1) (see
Fig. 7). (Due to the lack of space brackets are omitted here.)

Example 11. Finally, let us consider Sp(2, R), as a simple example of a symplectic group.
As we have stated in Section 1, the reductive Howe dual pairs of symplectic groups are the
ones relevant in representation theory, hence they are very well known. Now, here is their
partial ordering (see Fig. 8.)
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22 z3 z3 z22x01,1 Z2%02,1

[ ] [ ) [ ] [ ] [ ]
z,/zgy Z01,1 202 \)3,1
[ ] L) ® [ ] L ] L o [ ]
L ] ® [ ] e [ ]

L ] [ ]

g

Y

z

.
Z,xR, \SO’XR'/// O2xR,
.
ngk.

Fig. 7. Hasse diagram of H(O(3. 1)).

® ———————— @ Sp(2.R)

H Sp(1,R)?
Hy Ha
® [ ] [ ]
f\\l‘?/\
. ° .
Z,xU(1) NxUV Sp(1. R)x U(})
[ ]

Z2xSp(1.R)

Fig. 8. Hasse diagram of H(Sp(2. R)) (here H) = Z» x R.. H» = Sp(1.R) x R.).

The last two examples illustrate, by the way, that the number of Howe dual pairs rapidly
increases with increasing rank. For classical groups of higher rank it will be reasonable to
use computer algebra to derive the natural partial ordering relation from direct successor
relations.

8. A remark on seesaw pairs

Knowledge of H(G) yields a solution (not very elegant, though) to the classification prob-
lem of so-called seesaw pairs [10]. These are pairs of reductive Howe dual pairs (H|. H>),
(D1, D7) in G with the property H; C D,. Clearly, the listing of these pairs, which we do
not carry out here, amounts to an inspection of H(G).
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The notion of a seesaw pair has been introduced by Kudla [10] in connection with
considerations about a unified view on identities between inner products of automorphic
forms on different groups. In [10], the author gave some examples of seesaw pairs in
Sp(n, K) and expressed the wish to have a classification result. To our knowledge, however,
such aresult has not been published yet. Now, in view of the direct successor relations derived
in Section 6 one can state that the examples given in [10], Section 2, cover all possible direct
successor relations in H(Sp(, IK)). Thus, iterated application of these examples generates
all seesaw pairs in Sp(n. K).

9. An application to Yang-Mills theory

As an application of the theory of RHDP, consider a pure gauge theory with compact
internal symmetry G, defined on a principal bundle P over compact space-time X. As
outlined in Section 1 we are interested in the singularity structure of the space of gauge
orbits M (connections in P modulo gauge transformations). It is well known (9] that M is
homeomorphic to the orbit space of a differentiable G-action on the manifold of connections
modulo pointed gauge transformations. Thus, one has the following facts which are standard
for compact group actions [1]: There is a decomposition

M= ] M,. (35)

aex,

where X p denotes the set of orbit types of this action, and M, is the subset of M consisting
of orbits of type . Usually, the decomposition (35) is called a stratification, with strata M,, .
Forany 0 € £p, M, is a smooth manifold. £ p carries a natural partial ordering which
1s defined by inclusion modulo conjugacy (recall that the elements of £ p are conjugacy
classes of subgroups of G). For any ¢ € £ p, M,, is open and dense in the union

U M,

a'>a

So one may view the strata M,,, ¢’ > o, as singularities in the union. Moreover, the
information about which strata occur and how they are patched together is encoded in the
partially ordered set £p. Let us refer to Zp as the set of orbit types associated to the
principal bundle P.

In the following, assume that space—time is homeomorphic to the sphere S*. From a
general classification result [4] it follows that, in this case, X p is the subset of H(G)
consisting of those RHDP (H;. H») for which
(a) H> has the same centralizer in G as its 1-component, and
(b) P may be reduced to Ha.

These conditions are due to the fact that any stabilizer subgroup of the action we are
considering are given as centralizer, in G, of the holonomy group of some connection
in P.
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Now specify G = SU(n). In order to derive H(SU(n)) from H(U(n)) we apply the
following simple rule: Let G C K be a subgroup. Then the RHDP of G are

(GNH|.GN H»).
where (H). H>) runs through all RHDP of K which satisfy
GNCx(HH)Y=GNCxk(GNH)., i=1.2.

Using the notation SH; := SUn) N H; we find H(SU(n)) = H(U(xn)), with elements
(SH,.SH>) instead of (H). H>). One checks that all these RHDP obey condition (a) (al-
though the subgroups S H> are not necessarily connected).

Next let us discuss condition (b). In general, principal bundles over $*. with structure
group a compact Lie group G, are determined by homotopy classes of transition functions
S? — G. and hence are classified by the elements of the homotopy group 731(G). In
particular, since m3(U(n)) = m3(SU(n)) = Z (provided n > 2). principal bundles with
structure group U(n) or SU(n) are classified by an integer k (which coincides with the
instanton number). Clearly, a G-bundle of class « € m3(G) is reducible to a subgroup
j 1 H — G iff there is a transition function f : §' — G of class & and a transition
function g : $* — H such that f = j o g. Thus. the bundle is reducible to H iff « is
contained in the image of the induced homomorphism j, : 73:(H) — m:(G).

We shall calculate 7:(S H>) and the corresponding homomorphism j, : 73(SH>) — Z
for the RHDP of SU(n). Assume

H =Um)yx---xUm). i=1.2.

where Z’/le n{né =n.Then j: H» — U(n)maps (A'. .. .. A") € Honablock diagonal
matrix, with blocks diag(A/. .. .. A7) (n] entries), j = 1..... ». Moreover,
SHa = {(A'..... A") € Ha:detj(A'. ..., AT) = 1}.

Consider the Lie group homomorphism
U(l) x SHy — Ha. . (e%. A) > eV A.

This homomorphism is surjective and has discrete kernel N. Hence the exact homotopy
sequence of the fibration N — U(1) x SH>» — H- yields

T USH>) = m3(H).

As a consequence, over space—time S*, the set of orbit types associated to an SU(n)-bundle
of class k € Z coincides with the one associated to a U(n)-bundle of the same class. Denote
this set by ).

It is easily seen that the homomorphism induced by j : H — U(n) is

Jr i mAH) > L (ke k) Y nlky, (36)
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(Here k; is zero if n; = | and an arbitrary mteger otherwise.) Let g(H,, H?) denote
the greatest common divisor of those numbers n| j=1... r, for which n7 # L. Put
g(H.H) =0 1fn2 = 1 for all j. Then (36) yields

imj. = g(H,. H) - Z.
Thus, we have the following result:
= {(H). H») € H(U(n)) : g(H,. Hy) divides k} . 37)

As an example, let us consider £ Z In the Hasse diagram of H(U(3)) we indicate g(H,, H>)
by the number of circles surrounding the vertex of (H), H>):

u(1) U&)’ u(3) U(l):U(Z) U(.:!)
[

(38)

Thus, the Hasse diagram of Ei consists of all vertices in case k = 0 (recall that all integers
divide 0), and of the vertices surrounded by a circle in case k # 0, respectively. Next
replace (H. H») by (SH;. SH>) in (38). Explicitly, replace (U(1). U(3)) by (Z3, SU(3)),
(U(1)2. U(1) x U(2)) by (U(1), U(2)), imbedded as

-1
{diag(a”z,a.a) a € U(l)} and {((deté‘i) 2) A€ U(2)] R

respectively, and (U(1 . UhH by (U(l1 )=. U(1)?) (the maximal torus), as well as the first

two pairs in the opposite order. Now we can interpret Ei as the set of strata of the orbit

space of a pure gauge theory defined on a SU(3)-bundle of class k over $*: The orbit type

(Z3, U(3)) corresponds to the generic stratum. If the bundle is trivial then there are four

additional strata, building up singularities of consecutively increasing degree. When passing

to non-trivial bundles, though, there survives only the lowest non-generic stratum.
Analogously, for H(U(5)) we find

u(1) Ub}’ Ub)a Uu)’xu(z) U(x)?xum U(l)xU(‘) u(s)
u(l)xu(z) U(l)xU(S)
U(l)"’
l(x)’ U(l)’ uu)‘ U(x)’xU(z, U(x)xU(z)’ U(?)xU(3)
U(1)x U(2)

So the Hasse diagram of Z,f consists either of all vertices (if k = 0), of the vertices
surrounded by one circle (if & is odd), or of the vertices surrounded by one or two circles (if
k # 0, even). Again, by replacing (H,. H2) by (SH;, SH>) one obtains the corresponding
orbit types for SU(5). Note that in case k # 0, even, there are two maximal orbit types (or
two maximally singular strata, if interpreted as such). By now, we do not know the physical
significance of this fact. (Features like that we are going to study in the future.)
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Finally, let us discuss which values g(H,, H>) may take in H(U(n)). Clearly.
2g(Hy, Hy) < n.
Conversely. if there is given a positive integer m obeying 2m < n then
(Hy. H2) = (U x Um). U x U2)). 1 =n—2m.
is an RDHP in U(n), and m = g(H,. H»). Thus.
gH . H)=1.2... ., [$n).

(Here {-] denotes the integer part.) Hence (X} : & € Z} splits into isomorphism classes
labeled by those positive integers & which are a least common multiple of some subset of
(1.2..... [4n]}.

To conclude, we remark that the case of U(n) (or SU{n)) bundles over space-time SHisthe
stmplest one. As arule, Z p will be more interesting for other classical Lie groups. Moreover.
% p becomes more sensitive to the topology of P when passing to more complicated space--
times. In particular, the sets of orbit types associated to U(n1) and SU(n)-bundles may
not coincide any more. Since this subject we are still working on, precise results will be
published later.
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