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a b s t r a c t

LetM be a 7-manifoldwith a G2-structure induced by a closed ‘positive’ differential 3-form.
We study deformations of a compact coassociative 4-submanifold N ⊂ M with non-empty
boundary ∂N contained in a fixed, codimension 1 submanifold S of M with a compatible
Hermitian symplectic structure. We show that ‘small’ coassociative deformations of N
with special Lagrangian boundary in S form a smooth moduli space of finite dimension
not greater than the Betti number b1(∂N). It is also shown that N is ‘stable’ under small
deformations of the closed G2 3-form on the ambient 7-manifold M . The results can be
compared to those for minimal Lagrangian submanifolds of Calabi–Yau manifolds proved
in [A. Butscher, Deformations of minimal Lagrangian submanifolds with boundary, Proc.
Amer. Math. Soc. 131 (2002), 1953–1964]. Some examples are also discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Coassociative 4-folds are a particular class of 4-dimensional submanifolds which may be defined in a 7-dimensional
manifold M endowed with a ‘G2 form’ ϕ. The latter is a differential 3-form which is invariant at each point under the
action of the exceptional Lie group G2. This 3-form induces a G2-structure on M and, consequently, a Riemannian metric
and orientation. If the form ϕ is coclosed then every coassociative 4-fold inM is calibrated and henceminimal. See Section 2
for precise definitions and a summary of the relevant theory. Coassociative submanifolds were introduced by Harvey
and Lawson [8] who also gave SU(2)-invariant examples of these submanifolds in Euclidean R7. Examples of compact
coassociative submanifolds of compact 7-manifolds with holonomy G2 were given by Joyce [11] and later by the first
author [15].
McLean [17] showed that, when the G2-structure 3-form is closed, the deformations of a compact coassociative 4-fold

without boundary are unobstructed and the moduli space of local deformations is a finite-dimensional smooth manifold.
There is some analogy between coassociative submanifolds of G2-manifolds and special Lagrangian submanifolds of

Calabi–Yau manifolds. Both are calibrated minimal submanifolds and may be equivalently defined by the vanishing of
appropriate differential forms on the ambient manifold. Compact closed special Lagrangian submanifolds also have an
unobstructed deformation theory and finite-dimensional moduli space, a result due again to McLean [17]. Butscher [3]
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extended this result to compact minimal Lagrangian submanifolds with boundary and showed that these have a finite-
dimensional moduli space of deformations if the boundary lies in an appropriately chosen symplectic submanifold which
he called a scaffold.
On a 7-manifold endowed with a G2-structure, there is also a distinguished class of 3-dimensional submanifolds known

as associative 3-folds. Recently, compact associative 3-foldswith boundary in a coassociative 4-foldwere studied in [5]. Here
the deformation theory is obstructed, but the expected dimension of the moduli space is given in terms of the boundary of
the associative 3-fold.
In this article, we study the deformations of compact coassociative 4-folds N with boundary in a particular fixed 6-

dimensional submanifold S ⊂ M which, by analogy with [3], we also call a scaffold (Definition 3.5). The condition on S is
that it has a Hermitian symplectic structure compatible with the SU(3)-structure it inherits fromM . We also require that the
normal vectors to S at ∂N are tangent to N . The culmination of the research presented here is the following two theorems.

Theorem 1.1. Suppose that M is a 7-manifold with a G2-structure given by a closed 3-form. The moduli space of compact
coassociative local deformations of N inM with boundary ∂N in a scaffold S is a finite-dimensional smoothmanifold of dimension
not greater than b1(∂N).

Theorem 1.2. Let ϕ(t) be a smooth 1-parameter family of closed 3-forms defining G2-structures on M. Suppose that a compact
submanifold N ⊂ M with boundary is coassociative with respect to the G2-structure of ϕ(0) and the boundary ∂N is contained
in a scaffold S.
If ϕ(t)|N and the normal part of ϕ(t)|N on ∂N are exact for all t then N can be extended to a smooth family N(t) for small |t|,

with N(0) = N, such that N(t) is coassociative with respect to ϕ(t) and the boundary of N(t) is in S.

The principal ingredient in the proof of Theorems 1.1 and 1.2 is the construction of an appropriate boundary value
problem with Fredholm properties. For geometric reasons, the boundary value problem for coassociative 4-folds with
boundary cannot be of a standard Dirichlet or Neumann type (see Remark on Section 3.2). Our study of coassociative
deformations leads to a boundary value problem of second-order and altogether quite different from that for the minimal
Lagrangians in [3], which is Neumann first-order.
We set-up the infinitesimal deformation problem for coassociative submanifoldswith boundary in a scaffold in Section 4,

where we also study the Fredholm properties and give a version of the Tubular Neighbourhood Theorem which is adapted
to our needs. Then, in Section 4, we define a ‘deformation map’ and apply the Implicit Function Theorem to it in order to
prove Theorems 1.1 and 1.2. We also briefly discuss some applications of the deformation theory in Section 4.4.

Note. Submanifolds are taken to be embedded, for convenience, since the results hold for immersed submanifolds by simple
modification of the arguments given. Smooth functions (and,more generally, sections of vector bundles) onN are understood
as ‘smooth up to the boundary’, so at each point of ∂N these have one-sided partial derivatives of any order in the inward-
pointing normal direction.

2. Coassociative 4-folds

The key to defining coassociative 4-folds lies with the introduction of a distinguished 3-form on the Euclidean space R7.

Definition 2.1. Let (x1, . . . , x7) be coordinates on R7 and write dxij...k for the form dxi ∧ dxj ∧ · · · ∧ dxk. Define a 3-form
ϕ0 ∈ Λ

3(R7)∗ by:

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356. (1)

The Hodge dual of ϕ0 is a 4-form given by:
∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.

The usual basis of R7 may be identified with the standard basis of the cross-product algebra of pure imaginary octonions.
Then

ϕ0(x, y, z) = g0(x× y, z) for any x, y, z ∈ R7, (2)
where g0 denotes the Euclidean metric.
The subgroup of GL(7,R) preserving the cross-product is the Lie group G2, which is also a subgroup of SO(7), so G2 is the

stabilizer of ϕ0 in the action of GL(7,R). In light of this property, ϕ0 is sometimes called a ‘G2 3-form’ on R7; our choice of
expression (1) for ϕ0 follows that of [12, Definition 11.1.1].

Remark. We note, for later use, that the stabilizer of a non-zero vector e ∈ R7 in the action of G2 is a maximal subgroup of
G2 isomorphic to SU(3). Thus SU(3) is the stabilizer of a pair (ω,Υ ), for a 2-form ω = (eyϕ0)|e⊥ and a 3-form Υ = ϕ0|e⊥ ,
in the action of GL(6,R) on the orthogonal complement e⊥ ∼= R6 (cf. [10]).

Definition 2.2. A 4-dimensional submanifold P of R7 is coassociative if and only if ϕ0|P ≡ 0.
The condition ϕ0|P ≡ 0 forces ∗ϕ0 to be a non-vanishing 4-form on P . Thus ∗ϕ0|P induces a canonical orientation on P .
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Definition 2.2 is equivalent to the definition used in calibrated geometry [7,12]. That is, a coassociative 4-fold P is a
submanifold calibrated by ∗ϕ0, which means that ∗ϕ0|P is the volume form for the Riemannian metric induced by g0 on
P with the canonical orientation [12, Proposition 12.1.4]. Every coassociative submanifold ofR7 is aminimal submanifold [8,
Theorem II.4.2] and, moreover, volume minimizing [7, Theorem 7.5].
So that we may describe coassociative submanifolds of more general 7-manifolds, we make two definitions following

[2, p. 7].

Definition 2.3. Let M be an oriented 7-manifold. A 3-form ϕ on M is positive if ϕ(x) = ι∗x (ϕ0) for all x ∈ M for some
orientation preserving linear isomorphism ιx : TxM → R7, where ϕ0 is given in Eq. (1). Denote the subbundle of positive
3-forms onM byΛ3

+
T ∗M ⊂ Λ3T ∗M and the fibre of this subbundle over x ∈ M byΛ3

+
T ∗x M . We writeΩ

3
+
(M) for the space

of all (smooth) positive 3-forms onM .

For each x ∈ M ,Λ3
+
T ∗x M is the image of the open GL+(7,R)-orbit of ϕ0 inΛ

3(R7)∗ under ι∗x given in the above definition. It
follows thatΛ3

+
T ∗M is an open subbundle ofΛ3T ∗M .

Since a positive 3-form ϕ is identified at each point inM with the 3-form ϕ0 stabilized by G2, it determines a G2-structure
onM . We shall sometimes simply say that ϕ ∈ Ω3

+
(M) is a G2-structure on the oriented 7-manifoldM .

Furthermore, as G2 ⊂ SO(7), we can uniquely associate to each ϕ ∈ Ω3+(M) a Riemannian metric g = g(ϕ) and the
Hodge dual 4-form ∗ϕ relative to the Hodge star of g . The triple (ϕ, ∗ϕ, g) corresponds to (ϕ0, ∗ϕ0, g0) at each point.

Definition 2.4 ([12, pp. 228, 264]). Let M be an oriented 7-manifold. We call a G2-structure ϕ ∈ Ω3+(M) torsion-free if ϕ is
closed and coclosed with respect to the induced metric g(ϕ).
An almost G2-manifold (M, ϕ) is a 7-manifold endowed with a G2-structure ϕ such that dϕ = 0. If a G2-structure ϕ is

torsion-free then (M, ϕ) is called a G2-manifold.

Remark. By [19, Lemma 11.5], the holonomy of a metric g onM is contained in G2 if and only if g = g(ϕ) for some torsion-
free G2-structure ϕ on M . Manifolds with a closed G2 3-form are important in the constructions of examples of compact
irreducible G2-manifolds in [11,14].

We are now able to give a more general version of Definition 2.2.

Definition 2.5. Let M be an oriented 7-manifold and ϕ ∈ Ω3
+
(M) a G2-structure on M . A 4-dimensional submanifold P of

M is coassociative if and only if ϕ|P ≡ 0.

The deformation theory of compact coassociative submanifolds was studied by McLean [17]. His results, summarized in
Theorem 2.7 below, were stated for G2-manifolds but it was later observed in [6] that the proof does not use the coclosed
condition on the G2 3-form ϕ.
By way of preparation, we note a standard consequence of the proof of the Tubular Neighbourhood Theorem in [16,

Chapter IV, Theorem 9].

Proposition 2.6. Let P be a closed submanifold of a Riemannian manifold M. There exist an open subset VP of the normal
bundle νM(P) of P in M, containing the zero section, and a tubular neighbourhood TP of P in M, such that the exponential map
expM |VP : VP → TP is a diffeomorphism onto TP .

The local deformations of P are understood as submanifolds of the form expv(P), where v is a C1-section of the normal
bundle νM(P) and v is assumed sufficiently small in the sup-norm. We shall call sections of νM(P) the normal vector fields
at P .
Now suppose that (M, ϕ) is an almost G2-manifold and a submanifold P ⊂ M is coassociative. Then the local

deformations of P may equivalently be given by self-dual 2-forms on P using an isometry of vector bundles (cf. [17,
Proposition 4.2])

ȷP : v ∈ νM(P)→ (v yϕ)|P ∈ Λ2+T
∗P; (3)

whereΛ2
+
T ∗P denotes the bundle of self-dual 2-forms. The map

F : α ∈ Ω2
+
(P)→ exp∗v(ϕ) ∈ Ω

3(P), v= ȷ−1P (α), (4)

is defined for ‘small’ α, and F(α) = 0 precisely if expv(P) is a coassociative deformation.

Theorem 2.7 (Cf. [17, Theorem 4.5], [13, Theorem 2.5]). Let (M, ϕ) be an almost G2-manifold and P ⊂ M a coassociative
submanifold (not necessarily closed).
(a) Then for each α ∈ Ω2

+
(P), one has dF |0(α) = dα and the 3-form F(α) (if defined) is exact.

(b) If, in addition, P is compact and without boundary then every closed self-dual 2-form α on P arises as α= ȷP(v), for some
normal vector field v tangent to a smooth 1-parameter family of coassociative submanifolds containing P. Thus, in this case,
the space of local coassociative deformations of P is a smooth manifold parameterized by the space H2

+
(P) of closed self-

dual 2-forms on P.
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Remark. Self-dual 2-forms on a compact manifold without boundary are closed precisely if they are harmonic. By Hodge
theory, the dimension ofH2

+
(P) is therefore equal to the dimension b2

+
(P) of amaximal positive subspace for the intersection

form on P . It is thus a topological quantity.

Finally, there is a useful extension of Theorem 2.7 in the situation where the G2-structure is allowed to vary. This result is
stated in [12, Theorem 12.3.6] and can be proved using the techniques of [17, Section 4].

Theorem 2.8. Let ϕ(t) ∈ Ω3
+
(M), t ∈ R, be a smooth path of closed G2-structure forms on M. Suppose that P is a compact

submanifold of M without boundary such that ϕ(0)|P = 0 and the form ϕ(t)|P is exact for each t.
Then there is an ε > 0 and, for each |t| < ε, a section v(t) of νM(P) smoothly depending on t, such that v(0) = 0 and ϕ(t)

vanishes on the submanifold P(t) = expv(t)(P). Thus P(t) is a coassociative 4-fold in (M, ϕ(t)). Here the normal bundle νM(P)
and the exponential map are understood with respect to the metric induced by ϕ(0).

Roughly speaking, this result says that compact coassociative 4-folds are ‘stable’ under small variations of the ambient closed
G2-structure.

3. The infinitesimal deformation problem

Throughout this section, (M, ϕ) is an almost G2-manifold, g = g(ϕ) is the metric induced by ϕ and N is a compact
coassociative submanifold ofM .

3.1. SU(3)-structures on 6-dimensional submanifolds

In order to explain and motivate our choice of the boundary condition in the next subsection, we recall some results on
SU(3)-structures and Calabi–Yau geometry and their relation to G2 geometry.
To begin, suppose that S is an orientable 6-dimensional submanifold of M . Then the normal bundle of S is trivial and,

by the Tubular Neighbourhood Theorem (Proposition 2.6), there exists a neighbourhood TS of S which is diffeomorphic to
S × {−εS < s < εS}, for some εS > 0, so that S = {s = 0} and nS = ∂

∂s is a unit vector field on TS , with nS |S orthogonal to S.
We shall sometimes call s the normal coordinate near S. We can write

ϕ|TS = ωs ∧ ds+ Υs (5)
for some 1-parameter family of 2-forms and 3-forms ωs and Υs on S.
It is not difficult to see, from the remark following Definition 2.1, that the forms ω0 = (nSyϕ)|S and Υ0 = ϕ|S together

induce an SU(3)-structure (in general, with torsion) on S. In particular, S is oriented by
ω30

3!
=
1
4
Υ0 ∧ ∗6 Υ0

and has an induced almost complex structure I , compatible with the orientation, which may be given by I(u) = nS × u for
all u ∈ TxS ⊂ TxM . Here we denoted by ∗6 the Hodge star on the 6-manifold S with respect to the induced metric from
M , and we used the cross-product on TxM given by a G2-invariant identification with the standard G2 3-form on R7 as in
Definition 2.3.
Themetric induced on S is Hermitianwith respect to I and its fundamental (1, 1)-form isω0. The non-vanishing complex

3-formΩ0 = ∗6 Υ0 − iΥ0 has type (3, 0) relative to I . We also note that, as ds is a unit 1-form, the pointwise model Eq. (1)
for ϕ yields the relation

ω30 =
3i
4
Ω0 ∧ Ω̄0 (6)

at each point in S.
Denote by dS the exterior derivative on S.

Lemma 3.1. Let S be an oriented 6-dimensional submanifold of an almost G2-manifold (M, ϕ) and suppose that dS ω0 = 0,
whereω0 ∈ Ω2(S) is defined in Eq. (5). Let N ⊂ M be a coassociative submanifold intersecting S in a 3-dimensional submanifold
L such that nS |L is tangent to N. Then ω0|L = 0 and Υ0|L = 0.
Proof. The last assertion is clear as Υ0|L = ϕ|L, L ⊂ N and ϕ|N = 0. As

0 = dϕ|TS =
(
dSωs −

∂

∂s
Υs

)
∧ ds+ dSΥs

we find that ∂
∂sΥs|s=0 = 0. The submanifolds S and N intersect transversely, so ds never vanishes on a neighbourhood of L

in N . Restricting Eq. (5) to this neighbourhood we obtain ω0|L = 0 as nS is a normal vector field at S. �

The property ω0|L = 0 means that L is a Lagrangian submanifold of a symplectic manifold (S, ω0). To explain the role of the
additional condition Υ0|L = ϕ|L = 0, we begin with the following.

Definition 3.2. An orientable 6-dimensional submanifold S is a symplectic submanifold of the almost G2-manifold (M, ϕ) if
dSω0 = 0, where ω0 = (nSyϕ)|S and s is the normal coordinate near S.
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A 3-dimensional submanifold L ⊂ S of a symplectic submanifold S ⊂ M is said to be special Lagrangian if ω0|L = 0 and
ϕ|L = 0.

It is not difficult to see, using the pointwise model Eq. (1), that every special Lagrangian submanifold of S is oriented by a
nowhere-vanishing 3-form ∗6 Υ0 = (nSy ∗ ϕ)|L.
Definition 3.2 extends the concept of special Lagrangian submanifolds usually found in the literature to a more general

class of ambient manifolds, similar to [20]. To clarify this generalisation we note the following.

Proposition 3.3. Let S be a symplectic submanifold of an almost G2-manifold. The almost complex structure I on S is integrable
if and only if dS ∗6 Υ0 = 0. Furthermore, in this case the Kähler metric defined by ω0 is Ricci-flat.

Proof. As dϕ = 0 onM , we obtain from Eq. (5) that dSΥ0 = 0. Thus, dSΩ0 = 0 if and only if dS ∗6 Υ0 = 0. The proposition
now follows by the arguments in [9, Section 2]; we omit the details. �

When I is integrable the nowhere-vanishing (3, 0)-form is automatically holomorphic. A Kähler metric is Ricci-flat if and
only if its restricted holonomy group is contained in SU(3). A complex 3-fold (S, ω0,Ω0) endowedwith the Ricci-flat Kähler
metric and a holomorphic (3, 0)-form satisfying (6) is sometimes called a Calabi–Yau 3-fold. Thus, a symplectic submanifold
of an almost G2-manifold is a natural generalisation of a Calabi–Yau 3-fold by weakening the condition on the complex
structure.
Deformations of compact closed special Lagrangian submanifolds in Calabi–Yau manifolds are unobstructed: there is a

theoremof a similar type to Theorem2.7 and due again toMcLean [17, Theorem3.6]. Salur [20] showed that the integrability
of the complex structure on the Calabi–Yau manifold is unnecessary for the deformation theory result to hold. Thus, the
deformation theory remains valid for symplectic submanifolds S of an almost G2-manifold (M, ϕ).
The next result provides motivation for our choice of boundary conditions for coassociative submanifolds later.

Theorem 3.4 (Cf. [20]). Let (S, ω0) be a symplectic submanifold of an almost G2-manifold and let L ⊂ S be a compact special
Lagrangian submanifold without boundary. Then
(a) ȷL : v 7→ (vyω0)|L defines a vector bundle isometry between the normal bundle of L in S, νS(L), and T ∗L.
(b) The normal vector fields at L defining infinitesimal special Lagrangian deformations correspond, via ȷL, to closed and coclosed 1-
forms on L. Conversely, every closed and coclosed 1-form on L corresponds via ȷL to a normal vector field v at L which is tangent
to a path of special Lagrangian deformations of L.

Proof. This is immediate from the proof of the main theorem in [20]. �

3.2. Boundary conditions

From now on we assume that a compact coassociative submanifold N ⊂ M has non-empty boundary ∂N . To achieve
the Fredholm property of our deformation problem for a coassociative submanifold N with boundary, we need to impose
a condition that the boundary is confined to move in a suitable submanifold of M . We call this submanifold a scaffold,
borrowing the terminology of [3, Definition 1], where the deformations of minimal Lagrangians with boundary are studied.

Definition 3.5. We say that an orientable 6-dimensional submanifold S ofM is a scaffold for N if
(a) ∂N ⊂ S, n ∈ νM(S)|∂N and
(b) S is a symplectic submanifold of (M, ϕ).

The condition (a) implies that ∂N ⊂ S is special Lagrangian, by Lemma 3.1. Then, by Theorem 3.4, (b) ensures that
special Lagrangian deformations of ∂N in S are unobstructed with a smooth moduli space. Thus it is suggestive to consider
coassociative deformations of N which remain ‘orthogonal to S’, i.e. nS is tangent to the deformation.
We shall always assume that n = nS |∂N ∈ C∞(TN|∂N) is a unit inward-pointing normal vector field on N at ∂N .

Respectively, sn = s|N is a normal coordinate near the boundary of N . That is, a map

(x, sn) 7→ expN (snn(x)) (7)

is defined for all (x, sn) ∈ ∂N × [0, εN) and gives a diffeomorphism of ∂N × [0, εN) onto a collar neighbourhood C∂N of ∂N
in N . In particular, n = ∂

∂sn
.

Recall from Theorem 2.7 that infinitesimal deformations of N are given by closed self-dual 2-forms α on N . On the collar
neighbourhood C∂N = TS ∩ N of ∂N in N , we can write a self-dual 2-form α as

α|C∂N = ξs ∧ ds+ ∗s ξs (8)

for a 1-parameter family of 1-forms ξs on ∂N , where ∗s denotes the Hodge star on the submanifold (∂N) × {s} ⊂ C∂N
corresponding to a fixed value of s.
For a self-dual 2-form α on N , we easily calculate, using Eq. (8) and restricting to C∂N , that dα = 0 implies that

d∂Nξs +
∂

∂s
(∗s ξs) = 0 and d∂N ∗s ξs = 0. (9)
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The infinitesimal special Lagrangian deformations correspond to closed and coclosed 1-forms by Theorem 3.4. Therefore,
dα = 0 leads to infinitesimal special Lagrangian deformations of the boundary if and only if

∂

∂s
(∗s ξs)|s=0 = 0. (10)

Notice that

d∂N(nyα) = −d∂Nξ0. (11)

Hence, the equations

dα = 0 on N and d∂N(nyα) = 0 on ∂N, (12)

by Eq. (9), are equivalent to dα = 0 with condition (10).
We can describe the boundary condition corresponding to (10) for normal vector fields v= ȷ−1N (α) atN directly as follows.

Recall that, in a neighbourhood TS of S, ϕ|TS = ωs ∧ ds+ Υs with ω0 closed as S is a scaffold, hence
∂Υs
∂s |s=0 = 0 as dϕ = 0.

The equation (10) that α satisfies is equivalent to the condition ∂
∂s (vsyΥs)|s=0 = 0,whence

∂vs
∂s

∣∣∣∣
s=0
yΥ0 = 0 on ∂N (13)

where we have expressed v on the collar neighbourhood of ∂N as a 1-parameter family of vector fields on ∂N .

Remark. For a general 2-form α̃ = ατ + αν ∧ ds, the familiar Dirichlet and Neumann boundary conditions are given by,
respectively, ατ = 0 and αν = 0. For a self-dual α, the two conditions are equivalent and force α and the corresponding
normal vector field ȷ−1N (α) to vanish at each point of ∂N . However, if dα = 0 and α vanishes on the boundary then α = 0
by [4, Lemma 2]. This may be understood as an extension of [8, Theorem IV.4.3], which states that there is a locally unique
coassociative submanifold containing any real analytic 3-dimensional submanifold upon which ϕ vanishes.

For a coassociative submanifold without boundary, a self-dual 2-form is closed if and only if it is harmonic, i.e. satisfies
∆α = d∗

+
dα = 0. When there is a non-empty boundary a harmonic self-dual 2-form need not in general be closed. The

following lemma is a direct corollary of [21, Proposition 3.4.5] proved by integration by parts.

Lemma 3.6. For α ∈ Ω2
+
(N), dα = 0 if and only if

d∗
+
dα = 0 on N and nydα = 0 on ∂N, (14)

where d∗
+
=
1
2 (d
∗
+ ∗d∗) : Ω3(N)→ Ω2

+
(N) is the L2-adjoint of d|Ω2

+
.

Our next proposition relates the infinitesimal coassociative deformations ofN to solutions of a Fredholm linear boundary
value problem.

Proposition 3.7. For p > 1 and k ≥ 1, the map

α ∈ Lpk+1Ω
2
+
(N)→

(
d∗
+
dα, d∂N(nyα), d∂N(α|∂N)

)
∈ Lpk−1Ω

2
+
(N)⊕ Lp

k− 1p

(
dΩ1(∂N)⊕ dΩ2(∂N)

)
, (15)

is surjective. The kernel of (15) consists of smooth forms and has dimension b1(∂N). In particular, the map (15) is Fredholm.

Proof. By [21, Theorem 3.4.10], for each η ∈ Ω2(N), the solution α of ∆α = η on N exists and is uniquely determined by
its tangential α|∂N = ξτ ∈ Ω

2(∂N) and normal nyα = ξν ∈ Ω
1(∂N) components at the boundary. Now if η ∈ Ω2

+
(N),

ξτ = ∗∂N ξν and α is a solution of the latter boundary value problem, then so is ∗α, so α is self-dual by uniqueness. Thus
α ∈ Ω2

+
(N) is uniquely determined in this case by ∆α and α|∂N . As the manifold ∂N is compact and without boundary, it

now follows from the Hodge theory on ∂N that the values of d∂N(nyα) and d∂N(α|∂N) can be prescribed independently and
the operator (15) is surjective. These values are both zero precisely when nyα is a harmonic 1-form on ∂N , which gives the
dimension b1(∂N) of the kernel of (15).
We see from [21, Theorem 3.4.10], that solutions to ∆α = 0 with α = ψ on ∂N are smooth if ψ is smooth. A similar

result holds if the first derivatives of α = ψ on ∂N are smooth, so the kernel of (15) consists of smooth forms. �

In light of the work in this section, we shall be interested in the following subspace of self-dual 2-forms:

Ω2
+
(N)bc = {α ∈ Ω2+(N) : nydα = 0 and d∂N(nyα) = 0 on ∂N}. (16)

Our next result follows immediately from Lemma 3.6 and Proposition 3.7.
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Corollary 3.8. The image of Lpk+1Ω
2
+
(N)bc under the map (15) is a closed subspace

V pk−1 ⊆ L
p
k−1Ω

2
+
(N)⊕ Lp

k− 1p

(
dΩ1(∂N)⊕ dΩ2(∂N)

)
. (17)

The kernel of (15) intersects Lpk+1Ω
2
+
(N)bc in the subspace of (smooth) closed forms inΩ2+(N)bc,

(H2
+
)bc = {α ∈ Ω

2
+
(N) : dα = 0 on N and d∂N(nyα) = 0 on ∂N}, (18)

and dim(H2
+
)bc ≤ b1(∂N).

An example when strict inequality dim(H2
+
)bc < b1(∂N) occurs is given in Section 4.4.

4. Coassociative local deformations

In this section, like in Section 3, (M, ϕ) is an almost G2-manifold and N ⊂ M is a compact coassociative submanifold
with boundary in a scaffold S.
We shall now define a version of a deformation map Gwhose linearization gives the linear problem set up in the previous

section. The role of G for the study of deformations of N with boundary in S is similar to the role of F in Eq. (4) for the closed
coassociative submanifolds. However, our deformationmapmodifies (4) in twoways. First, we use the exponentialmapping
êxp of a metric ĝ defined in Section 4.1 which in general is not the metric g(ϕ) induced by the G2-structure ϕ. Second, our
non-linear differential operator G is of second-order, with the derivative at zero given by (15) restricted toΩ2

+
(N)bc, defined

in Eq. (16). An application of the Implicit Function Theorem to Gwill show that the space of local coassociative deformations
of N is smooth and has finite dimension equal to that of the space of closed forms (H2

+
)bc inΩ2+(N)bc.

4.1. Adapted tubular neighbourhoods

Wewish to parameterize nearby deformations of N with boundary in the scaffold S by normal vector fields (or self-dual
2-forms on N) via an exponential map. In general, we cannot use, as in Section 2, exponential deformations of N given by
g(ϕ), since the scaffold may not be preserved under these deformations. Therefore, we shall define onM a modified metric
whose related exponential map does preserve the scaffold; that is, the scaffold is totally geodesic with respect to the new
metric. A similar approach was previously used in [3] for minimal Lagrangian submanifolds with boundary.
We first describe the local structure of the almost G2-manifold M near S, applying a tubular neighbourhood argument

(cf. Proposition 2.6).

Lemma 4.1. There exist εS > 0, an open neighbourhood TS of S in M and a diffeomorphism ηS : S × (−εS, εS)→ TS , such that
ηS(x, 0) = x, and dηS |(x,0) : TxS ×R→ TxM satisfies dηS |(x,0)(0, 1) = nS(x) for all x ∈ S, where nS is the unit normal to S in M
as in Section 3.1. Furthermore, ηS can be chosen so that

ηS(x, sn) = expN (snn(x))

for all x ∈ ∂N and sn ∈ [0, εS).
Proof. Recall that νM(S) is trivialised by nS . Therefore, from the proof of the Tubular Neighbourhood Theorem in [16], we
obtain ε > 0, an open neighbourhood T of S inM and a diffeomorphism η : S × (−ε, ε)→ T given by

η(x, sn) = expM (snnS(x)) .
The map η satisfies all but the last of the required conditions, as expM(snn) need not agree with expN(snn), even if

0 < εS ≤ εN (with εN as in the beginning of Section 3). However, since T(x,0)η−1(N) = T(x,0)∂N ⊕ Rn, a standard inverse
mapping argument shows that, by composingηwith a diffeomorphismψ of S×(−ε, ε) such that dψ |(x,0) = id, and choosing
a sufficiently small εS > 0, we obtain ηS : S × (−εS, εS)→ TS having all the required properties. �

We can now construct the new metric.

Proposition 4.2 (Cf. [3, Proposition 6]). There is a metric ĝ on M, which equals g outside of TS , such that S is totally geodesic
with respect to ĝ .
Proof. First recall Lemma 4.1 and define a metric h on S × (−εS, εS) by

h = η∗S (g|S)+ dsn ⊗ dsn.

Let χ : M → [0, 1] be a smooth function such that χ = 0 outside TS and χ = 1 in some tubular neighbourhood of S
contained in TS . We then define ĝ onM by

ĝ = χ(η−1S )
∗(h)+ (1− χ)g.

As in the proof of [3, Proposition 6], we see that S is totally geodesic with respect to ĝ . �

We shall need a variant of the isomorphism (3) for the normal bundle of N with respect to ĝ .
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Proposition 4.3. Let ν̂M(N) denote the normal bundle of N relative to the metric ĝ given by Proposition 4.2. The map ȷN :
ν̂M(N)→ (Λ2

+
)gT ∗N given by ȷN(v) = (vyϕ)|TN is an isomorphism. Moreover, ν̂M(N)|∂N ⊆ TS|∂N .

Proof. Recall from Eq. (3) that ȷN : νM(N) → (Λ2
+
)gT ∗N is an isomorphism. Since TM|N = TN ⊕ νM(N) = TN ⊕ ν̂M(N),

νM(N) ∼= ν̂M(N). Moreover, the fibres of ν̂M(N) are transverse to those of TN and ȷN maps TM|N to (Λ2+)gT
∗N sinceϕ vanishes

on TN . So ȷN defines an isomorphism between the vector bundles ν̂M(N) and (Λ2+)gT
∗N .

The final claim follows because ĝ(x) coincides with g(x) at each x ∈ ∂N . �

As a consequence of Propositions 2.6, 4.2 and 4.3 we obtain a version of the Tubular Neighbourhood Theorem which is
adapted to local deformations of N with boundary in S. Denote the exponential map on M with respect to ĝ by êxpM .
However, we emphasise that the self-dual forms on N are always taken with respect to the metric g = g(ϕ). For an open
subsetW of a vector bundleW on N , we define a subset of the smooth sections Γ (W ) onW by

Γ (W) = {w ∈ Γ (W ) : w(N) ⊂ W}.

We also make similar definitions for subsets of Banach spaces of sections when the Banach spaces consist of continuous
sections.

Proposition 4.4. There exist an open subset VN of ν̂M(N), containing the zero section, and a 7-dimensional submanifold TN of
M with boundary, containing N, such that êxpM : VN → TN is a diffeomorphism such that if v ∈ Γ (VN), then êxpM(v(x)) ∈ S
for all x ∈ ∂N.
Respectively, UN = ȷN(VN) is an open neighbourhood of the zero section in Λ2+T

∗N and δN = êxpM ◦ȷ
−1
N : UN → TN is a

diffeomorphism such that, if α ∈ Γ (UN), then δN(α(x)) ∈ S for all x ∈ ∂N, soNα := δN(α(N)) ⊂ TN is a compact 4-dimensional
submanifold of M with boundary ∂Nα ⊂ S.

4.2. The deformation map

Definition 4.5. Let ȷN , êxp, VN andUN be as defined in Section 4.1. Denote

F̂ : α ∈ Γ (UN)→ êxp∗v
(
ϕ|Nα

)
∈ Ω3(N), (19)

where v= ȷ−1N (α) ∈ Γ (VN). We shall call the second-order non-linear differential operator

G = d∗
+
◦ F̂ : Γ (UN)→ Ω2

+
(N) (20)

the deformation map for N .

Notice that the argument in [17, p. 731] proving Theorem 2.7(a) does not depend on the choice of metric for the exponential
map, so we obtain the same result for F̂ given in Eq. (19).

Lemma 4.6.

dF̂ |0(α) = dα and dG|0(α) = d∗+dα (21)

for all α ∈ Γ (UN).

Nextwe impose boundary conditions on the deformations of the special Lagrangian submanifold ∂N in S. By Theorem3.4,
there exists an isomorphism ȷ∂N between ν̂S(∂N) and T ∗∂N (noting that we can use the normal bundle with respect to the
metric ĝ). From the neighbourhoods given in Proposition 4.4, one deduces that there exist open neighbourhoods V∂N and
U∂N of the zero sections in ν̂S(∂N) and T ∗∂N respectively, withU∂N = ȷ∂N(V∂N), and a tubular neighbourhood T∂N of ∂N in
S such that êxpS : V∂N → T∂N is a diffeomorphism. Define

F̂∂N : β ∈ Γ (U∂N)→ êxp∗v(nSyϕ|∂Nβ ) ∈ dΩ
1(∂N), (22)

where v= ȷ−1∂N (β) and ∂Nβ = êxpv(∂N). The kernel of F̂∂N characterises the Lagrangian (but not necessarily special
Lagrangian) local deformations of ∂N in S. The fact that F̂∂N maps into the space of forms claimed is a consequence of
arguments in [17, Section 3] since the form nSyϕ is exact near ∂N as it is closed and vanishes on ∂N . Define

Γ (UN)bc = {α ∈ Γ (UN) : F̂∂N(nyα) = 0 and nyF̂(α) = 0 on ∂N}. (23)
It follows from the deformation theory for ∂N in S and the work in Section 3.2 that, by taking completion in the appropriate
Sobolev norm, Lpk+1(UN)bc becomes a Banach submanifold of L

p
k+1Ω

2
+
(N) and its tangent space at α = 0 is Lpk+1Ω

2
+
(N)bc

defined in Eq. (16).
The next result shows that we can define coassociative local deformations with boundary in S using a second-order

differential operator.

Proposition 4.7. For α ∈ Γ (UN)bc, G(α) = 0 if and only if Nα is coassociative. For any coassociative deformationα ∈ Γ (UN)bc
defined by G(α) = 0, the local deformation ∂Nnyα ⊂ S is special Lagrangian.
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Proof. It is clear that Nα is coassociative precisely if F̂(α) = 0. Therefore, we suppose that G(α) = 0 and show that then
F̂(α) = 0.
We know that the 3-form F̂(α) is exact on N by the work in [17, Section 4] since ϕ is exact near N as it is closed and

vanishes on N . As the last condition in Eq. (23) asserts the vanishing of the normal component nyF̂(α) at the boundary of N ,
the integration by parts argument applies to show that F̂(α) = 0.
For the last part of the Proposition, recall that the metric ĝ constructed in the proof of Proposition 4.2 is a product metric

near S, independent of the normal coordinate s, and the exponential map for ĝ has the same s-invariant property. It can be
checked that êxp∗v|∂N (ϕ|∂Nnyα ) = F̂(α)|∂N (in the notation of Eq. (22)). The latter vanishes since F̂(α) = 0, thus the Lagrangian
deformation nyα is in fact special Lagrangian. �

To apply the Banach space version of the Implicit Function Theoremwe note the following, by application of [1, Theorem
2.2.15] or [13, Section 2.2].

Proposition 4.8. The map G given in Eq. (20) extends to a smooth map of Sobolev spaces G : Lpk+1(UN)bc → Lpk−1Ω
2
+
(N), for

any p > 4, k ≥ 2.

Remark. The conditions p > 4 and k ≥ 2 ensure that the map G of Sobolev spaces in Proposition 4.8 is well-defined since
Lpk+1 ↪→ C2 in four dimensions, by the Sobolev Embedding Theorem.

Recall the space V pk−1 defined in Eq. (17). Let Π denote the L
2-orthogonal projection Lpk−1Ω

2
+
(N) ⊕ Lp

k− 1p
(dΩ1(∂N) ⊕

dΩ2(∂N))
→ V pk−1 and define

G̃(α) = Π ◦ (G(α), F̂∂N(nyα),nyF̂(α)), (24)

where α ∈ Lpk+1(UN) and F̂∂N is given in Eq. (22). As L
p
kΩ

2
+
(N)bc is the tangent space to L

p
k+1(UN)bc at α = 0 and G is smooth,

we find, by reducing the neighbourhoodUN if necessary, that G̃(α) = 0 if and only if α ∈ L
p
k+1(UN)bc and G(α) = 0.

Proposition 4.9. Let p > 4 and k ≥ 2. If α ∈ Lpk+1(UN)bc and G̃(α) = 0 then α is smooth.

Proof. We can apply to G̃ the general elliptic regularity result [18, Theorem 6.8.2], which implies that C2 solutions to a
(non-linear) second-order elliptic equation (with suitable boundary conditions) are smooth. �

Our first main theorem, Theorem 1.1, now follows from this technical result.

Theorem 4.10. Let ϕ ∈ Ω3
+
(M) be a closed positive 3-form on a 7-manifold M. Recall the map G given in Eq. (20) and the space

Γ (UN)bc defined in Eq. (23). Let N be a compact coassociative submanifold of (M, ϕ)with non-empty boundary ∂N ⊂ S, where
S is a scaffold for N. For p > 4, k ≥ 2, an Lpk+1-neighbourhood of zero in the space

M(N, S) = {α ∈ Γ (UN)bc : G(α) = 0}

of coassociative local deformations of N is a smooth manifold parameterized by the finite-dimensional vector space (H2
+
)bc given

in Corollary 3.8.
Proof. For p > 4 and k ≥ 2, let W = Lpk+1(UN)bc and X = L

p
k+1Ω

2
+
(N)bc. We see that X is a Banach space and an open

neighbourhood of zero in X parameterizes an open neighbourhood of zero in the Banach submanifold W ⊂ Lpk+1Ω
2
+
(N).

Further, G̃, given in Eq. (24), satisfies G̃(W ) ⊂ V = V pk−1, G̃(0) = 0 and, by construction, d̃G|0 : X → V is the surjective
linear operator (15).
Therefore, we can apply the Implicit Function Theorem to deduce that, as G̃ is a smooth map, the kernel of G̃ inW near

zero is a manifold smoothly parameterized by a neighbourhood of zero in the kernel (H2
+
)bc of d̃G|0 in X . By Proposition 4.9,

elements of the kernel of G̃ near zero are smooth, so by further reducing, if necessary, the neighbourhood UN of the zero
section we obtain, noting also the comments after Proposition 4.8, that G̃−1(0) inW near zero is exactlyM(N, S). �

4.3. Varying the G2-structure

In this subsection we prove our second main result, Theorem 1.2, which shows that coassociative submanifolds with
boundary are ‘stable’ under small perturbations of the G2-structure on the ambient 7-manifold.

Theorem 4.11. Let ϕ(t) ∈ Ω3
+
(M), t ∈ R, be a smooth path of closed positive 3-forms on a 7-manifold M. Let N be a compact

coassociative submanifold of (M, ϕ(0)) with non-empty boundary ∂N ⊂ S, where S is a scaffold for N. Suppose that ϕ(t)|N is
exact on N and ny(ϕ(t)|N) is exact on ∂N for each t.
There is an ε > 0 and, for each |t| < ε, a normal vector field v(t) ∈ Γ (ν̂M(N)) smoothly depending on t and such that

v(0) = 0, ∂N(t) ⊂ S and ϕ(t) vanishes on N(t) = êxpv(t)(N).

Here the normal bundle ν̂M(N) and the exponential map are taken with respect to the metric ĝ given by Proposition 4.2 applied
to g(ϕ(0)).
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Remarks. Observe that S need not be a scaffold for N(t) relative to the G2-structure ϕ(t) when t 6= 0. Furthermore, the
normal vectors v(t) can be chosen to satisfy the boundary condition (13).
Proof. Let ȷN : ν̂M(N) → (Λ2

+
)g0T

∗N be the isomorphism given by Proposition 4.3 and let p > 4 and k ≥ 2. Let
W0 = L

p
k+1(UN)0 denote a Banach submanifold of L

p
k+1(UN)bc such that the tangent space of W0 at the zero form is the

L2-orthogonal complement X0 to (H2
+
)bc in L

p
k+1Ω

2
+
(N)bc, in the metric g0 = g(ϕ(0)). Let Γ (UN)0 be the subset of smooth

sections inW0. We use a ‘parametric’ version of the deformation map (19) which we still denote by F̂ ,

F̂ : (t, α) ∈ R× Γ (UN)→ êxp∗v
(
ϕ(t)|Nα

)
∈ Ω3(N),

where v= ȷ−1N (α). Further, define ‘parametric’ versions of the maps G = d
∗
+
◦ F̂ (where d∗

+
is calculated using g0) and F̂∂N ,

given in Eqs. (20) and (22), by replacing ϕ with ϕ(t) throughout, so these maps now take an additional argument t . Notice
that, if

Ĝ(t, α) = (G(t, α), F̂∂N(t,nyα),nyF̂(t, α)),

then its partial derivative d2Ĝ|(0,0) acts on (t, α) ∈ R ⊕ Lpk+1Ω
2
+
(N) as (t, α) → L(α), where L is the surjective linear

operator (15). Thus, the image of d2Ĝ|(0,0) restricted to R× X0 is the Banach space V0 = V
p
k−1 given in Eq. (17). LetΠ be the

L2-orthogonal projection to V0 defined using the metric g0 and let G̃ = Π ◦ Ĝ.
Since ϕ(t)|N and its normal part on ∂N are exact for each t , a simple adaptation of the argument in Proposition 4.7 shows

that, for α ∈ Γ (UN)0, G̃(t, α) = 0 if and only if Nα is coassociative relative to ϕ(t). Moreover, G̃(R×W0) ⊂ V0, G̃(0, 0) = 0
and d2G̃|(0,0) : R⊕ X0 → V0 is an isomorphism.
By the Implicit Function Theorem for G̃(t, α) and an analogous regularity result to Proposition 4.9 (valid for t small as

G̃(0, α) is elliptic and ellipticity is an open condition), there is a smooth map h defined on a neighbourhood E0 of zero in
R× (H2

+
)bc, taking values in X0, such that h(0, 0) = 0 and

G̃ (t, α0 + h(t, α0)) = 0, (t, α0) ∈ E0,

are all the zeros of G̃ near (0, 0). The required v(t), for small |t|, may be taken to be ȷ−1N (h(t, 0)). �

4.4. Examples

We now give some simple examples for this deformation theory.

Example 4.12 (G2-manifoldswith Symplectic Boundary). Suppose (M, ϕ) is an (almost) G2-manifoldwith boundary ∂M . Then
∂M has trivial normal bundle and it receives an induced SU(3)-structure fromM . If n∂Myϕ|∂M is a closed form on ∂M , where
n∂M is the unit normal vector field at ∂M , then ∂M is a scaffold for coassociative submanifolds of N ⊂ M with boundary in
∂M and with n∂M tangent to N . Our deformation theory results apply to this situation.

Example 4.13 (G2-manifolds with Nearly Kähler Boundary). Perhaps the most obvious G2-manifold with boundary to study
is the unit ball B inR7. The boundary of B is the nearly Kähler 6-sphere S6. SupposeN is a compact coassociative submanifold
of B with boundary in S6. Then ∂N is a Lagrangian (also called totally real) submanifold of S6: the non-degenerate, but not
closed, 2-form on S6 vanishes on ∂N . Current work in progress of the second author shows that, for any nearly Kähler 6-
manifold, the deformation theory of a Lagrangian submanifold is expected to be obstructed up to rigid motion. Therefore,
one could not hope, in general, for a smooth moduli space of deformations of N in the unit ball B in R7. This negative result
extends to any G2-manifold with nearly Kähler boundary, or any coassociative 4-fold with boundary in a nearly Kähler
‘scaffold’. This gives another motivation for our definition of a scaffold.

Example 4.14 (Product G2-manifolds 1). A Kähler complex 3-fold (S, ω) is called almost Calabi–Yau if it admits a nowhere
vanishing holomorphic (3, 0)-formΩ . ThenM = S× S1 is an almost G2-manifold with G2-structure ω∧ dθ + ReΩ , where
θ is a coordinate on S1. Let N = L × S1 ⊂ M be a compact coassociative 4-fold. Then L is special Lagrangian in S. We can
think of N as an embedding of a manifold L × [0, 1] whose two boundary components, L × {0} and L × {1}, are mapped
to L in S. It is not difficult to see that S × pt is a scaffold for N . Theorem 4.10 gives us that N has a smooth moduli space of
coassociative deformationsM(N, S)with dimension≤ 2b1(L).
Let α ∈ Ω2

+
(N). Then α = ξθ ∧ dθ + ∗L ξθ , for some path of 1-forms ξθ on L. It follows from [21, Theorem 3.4.10]

that a harmonic self-dual 2-form on N is uniquely determined by its values ξ0, ξ1 on the boundary. The subspace of
harmonic α ∈ Ω2

+
(N) such that ξ0 and ξ1 are harmonic on L has dimension 2b1(L) and corresponds precisely to the paths

ξθ = (1 − θ)ξ0 + θξ1. On the other hand, α ∈ (H2
+
)bc if and only if α is harmonic and

∂ξθ
∂θ
= 0, so ξ0 = ξ1. Thus

dim(H2
+
)bc = b1(L) < b1 ((L× {0}) t (L× {1})) in this example.

This can also be seen geometrically. If the deformations of the aforementioned two boundary components coincide in
S × pt then, by taking a product with S1, we obtain a coassociative deformation of N = L× S1 defining a point inM(N, S).
On the other hand, if a coassociative deformation Ñ of N is such that the deformations L̃0 and L̃1 of L × {0} and L × {1}
are special Lagrangian but distinct, then Ñ and L̃0 × S1 are two distinct coassociative 4-folds intersecting in a real analytic
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3-fold on which ϕ vanishes, which contradicts [8, Theorem IV.4.3]. Therefore,M(N, S) is identified with special Lagrangian
deformations of L in the almost Calabi–Yaumanifold S. It is well known that these deformations have a smoothmoduli space
of dimension b1(L) [12, Theorem 8.4.5].
Moreover, suppose that we have a smooth path of closed positive 3-forms ϕ(t) onM with ϕ(0) = ϕ. Suppose that ϕ(t)|N

is exact and the normal part of ϕ(t)|N on ∂N is exact. Theorem 4.11 says that N extends to a smooth family N(t) of compact
4-folds with boundary in S such that N(t) is coassociative in (M, ϕ(t)).
Now, we can write

ϕ(t) = ω(t) ∧ dθ + Υ (t)

withω(0) = ω andΥ (0) = Υ . The conditions onϕ(t) are equivalent to the exactness ofω(t)|L andΥ (t)|L on L, togetherwith
the fact that ω(t) and Υ (t) define an (almost) Calabi–Yau structure on S. These are precisely the necessary and sufficient
conditions, by [12, Theorem 8.4.7], for L to be extended to a smooth family L(t) of compact 3-folds in S such that L(t) is
special Lagrangian in S with respect to (ω(t),Υ (t)). This applies to embeddings of N(t) = L(t) × S1 and to the more
general embeddings of N(t) = L(t)× [0, 1]with images of L(t)× {0} and L(t)× {1} in S × pt.

Finally we relate our work to the theory presented in [3].

Example 4.15 (ProductG2-manifolds 2). SupposeM = S×S1 is as in the previous example andN = L×S1 is a coassociative
4-fold inM . However, now suppose that the special Lagrangian 3-fold L has boundary ∂L in a (real) 4-dimensional scaffold
W in the almost Calabi–Yaumanifold S in the sense of [3]. ThusN has boundary ∂N = ∂L×S1 inW×S1. The 5-dimensional
submanifold W × S1 is obviously not a scaffold in the sense of Definition 3.5, so our deformation theory does not apply.
However the result of Butscher’s work [3] is that the deformation theory of L as aminimal Lagrangian in S with boundary in
W is unobstructed and the dimension of the moduli space is b1(L).
Motivated by this example the authors considered the possibility of a 5-dimensional ‘scaffold’ and derived the conditions

that it would have to satisfy if it were to be a generalisation of Butscher’s scaffold. Unfortunately, the resulting deformation
problem turned out not to be elliptic and, moreover, that the deformation theory of coassociative submanifolds in such a
5-dimensional ‘scaffold’ would be obstructed in general. We can see this problem as follows.
The deformation theory we need for a coassociative N with boundary inW ×S1 is for special Lagrangians with boundary

inW . These are deformations of minimal Lagrangians with ‘fixed phase’ which means the vanishing of Im(eiλΩ) for some
λ ∈ R fixed once and for all. However, the deformation theory of special Lagrangians with boundary in W is obstructed.
Therefore, even in this simplest case of a 5-dimensional ‘scaffold’ we do not get a smooth moduli space of deformations.
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