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1. Introduction

In differential geometry, one of most fundamental research problem is to find the relationships between intrinsic and
extrinsic invariants. For example; on the surfaces M? of the Euclidean space E>, the Euler inequality

G < |H|?

is fulfilled, where G is the Gauss curvature (an intrinsic invariant) of M? and ||H||? is the squared mean curvature (an
extrinsic invariant) of M2. Furthermore, the equality holds of above inequality if and only if M? is totally umbilical, or
still, by a theorem of Meusnier, if and only if M? is a plane E? or, it is a sphere S? in E3.

In [24], P. Wintgen proved that the Gauss curvature G, the squared mean curvature ||H||?> and the normal curvature
G* of any surface M? in E* always satisfy the inequality

G+G < |H|? (1.1)
and the equality holds if and only if the ellipse of curvature of M? in E* is a circle. The inequality (1.1) is called Wintgen
inequality and the Whitney 2-sphere satisfies the equality case of Wintgen inequality.
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Later, the Wintgen inequality was extended for the surfaces M? of codimension m in real space form M™2(¢) in [22]
and [12] independently as:
G+G < |H|*+c.

The equality case was also investigated.
In 1999, De Smet, Dillen, Verstraelen, Vrancken [7] developed the generalized Wintgen inequality named as DDVV
conjecture for the submanifolds in real space forms as follows:

Conjecture 1. Let f : M" — M™™(c) be an isometric immersion, where M™™m(c) is a real space form of constant sectional
curvature c. Then
1 2
p+p- Z|H|I"+c.

where p is the normalized scalar curvature (intrinsic invariant) and p is the normalized scalar normal curvature (extrinsic
invariant).

If K and R the sectional curvature function and the normal curvature tensor on M", respectively in M"™(c), then the
normalized scalar curvature p is given by

2T 2
e s R e | > Keig) (1.2)

1<i<j<n
where 7 is the scalar curvature, and the normalized scalar normal curvature p* by

2¢t 5
P= =1 " nn—-1) Y ) (RHengene) (1.3)

I<i<j<nn+1<r<s<m+n

The Conjecture 1 was proven in [7] for a submanifold M" of arbitrary dimension n > 2 and codimension 2 in the real
space form M™2(c) of constant sectional curvature c. Later, the DDVV conjecture was proved for general case in [15] and
in [11] independently.

For a normally flat submanifold, i.e., Rt = 0, this conjecture is proved by B.-Y. Chen in [5,6]. Hence, the conjecture is
true for the hypersurfaces of real space forms. In [16,17], some related inequalities are derived for normal scalar curvature
in complex space forms.

Recently, I. Mihai proved DDVV conjecture for Lagrangian submanifolds in complex space forms [18] and Legendrian
submanifolds in Sasakian space forms [19].

Next, in 1985, the concept of statistical manifolds was introduced by Amari [1] which provide a setting for the
field of information geometry. The applications of statistical manifold in information geometry attracts the attention of
distinguished geometers. Statistical manifolds are Riemannian manifolds with an affine connection besides the Levi-Civita
connection. Moreover, submanifolds of statistical manifolds have been demonstrated by various different authors (for
instance, see [4,8,9]). Recently, in [ 10] Furuhata et al. demonstrated Kenmotsu statistical manifolds and warped products.

The Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature has been studied in
(for instance, see [2-4,20,21]).

In this paper, we establish the generalized Wintgen inequality (DDVV conjecture) for statistical submanifolds in
Kenmotsu statistical manifolds of constant ¢-sectional curvature. As a consequence, we give some applications of derived
inequality.

2. Statistical manifolds and their submanifolds

In this section, we provide some basic formulas and preliminaries on statistical manifold and their submanifolds.

A statistical manifold is a Riemannian manifold (N"**, g, V, V*) with a couple of torsion free affine connections V and
V* fascinating

(VxEXY,Z) = (W)X, Z), 2.1)

XE(Y,Z) =&(VxY,Z)+ (Y, V;Z), (2.2)

forX,Y,Z e F(TN). An affine connection V* is the dual (or conjugate) connection, i.e., (V¥)* = V.
The definition of the dual (or conjugate) connection V* can be seen in the following remark:

Remark 1 ([23]). (V*, &) is also a statistical structure where V* is defined as
V + V* =2V°, (2.3)

Here, V° is the Levi-Civita connection for N.
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Now, first we give the definition of statistical submanifolds of a statistical manifold and then we give some notations
and general formulas.
Let M™ be a submanifold of a statistical manifold (sz+1 g). Then, (M", g) is the statistical submanifold with:

induced connections, Vv, V¥
second fundamentalforms, h, h*;
shape operators, A, A%,
normal connections, vi vl

Moreover, the induced metric g is unique, V and V* are induced conjugate statistical connections on the submanifold M.
Let us denote I'(TM) and I'(T+M) to be the set of all sections of ' tangent and normal bundle to M respectively. Then,
with X, Y € I'(TM), the Gauss formulas for the connections V and V* are outlined by [23]

ViY = VxY + h(X, Y), (2.4)

ViY = ViY + h*(X, Y). (2.5)

respectively, where h and h* are bilinear maps from which the bilinear transformations A, and A}, are given by [23]

g(AX,Y) = g(h(X, Y), v), (2.6)
g(ATX,Y)=g(h*(X,Y), v), (2.7)

for any v € I'(TM™). Furthermore, the Weingarten formulas for the connections V and V* follow [23]
Vxv = —A*X + Vv, (2.8)
Viv = —AX + Vitu, (2.9)

respectively, where the normal dual connections v+ and V¥ are the Riemannian dual connections on M L
Let us denote R and R* (R and R*) to be the curvature tensor fields of V and V* (V and V*), respectlvely. Then, the
basic fundamental equations namely Gauss equations and Ricci equations respectively are [23]

8(RXX, Y)Z, W) = g(R(X, Y)Z, W) + &(h(X, Z), h*(Y, W)) — g(h*(X, W), (Y, Z)), (2.10)

SR (X, Y)Z, W) = g(R*(X, Y)Z, W) + &(h*(X, Z), h(Y, W)) — g(h(X, W), h*(Y, Z)), (2.11)
and

g(RJ-(Xv Y)U1’ UZ) = g(R(X’ Y)U], UZ) +g([AT;1’AU2]X’ Y)7 (212)

g(R*J_(X’ Y)U1! UZ) = g(k*(xv Y)U1’ UZ) +g([AU1 ’ A* ]Xv Y)! (213)

where Rt is the curvature tensor of normal connection V+on I'(T*M) and vy, v, € I'(TM).
The curvature tensor fields R and R* of dual connections satisfy

Now, let {e;}] and {er}zm+1 be an orthonormal tangent and an orthonormal normal frames respectively on M". The
mean curvature vector flelds H and H* have the following forms [14].

2m+1 n
Zh e, e) = Z (Zh) - (2.15)

r=n+1
1 n 1 2m+1 n
= > hieie) = - > (Z h;:f) er, (2.16)
i=1 r=n+1 \i=1

where b}, = Z(h(e;, ¢)), e;) and hi" = g(h*(ei, ¢), ey).
Moreover, the squared mean curvatures are stated by [14]

2m+1 n 2m+1 n 2
IHIP = — S (Zm) IHI = Ly (Zhﬁ) :
i=1

r=n+1 r=n+1
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We set
2m+1 n 2m+1 n
2 2
A" = E E (R, (I*)1* = E E (hy"y?
r=n+1i,j=1 r=n+1i,j=1

The Casorati curvatures C and C* of the submanifold M can be expressed as

2m+1 n 2m+1 n

LS S ||h|| o= 1Y Sy _||h*||2

rn+11] 1 rn+11]_

For the orthonormal vector fields X, Y e I'(TM), the sectional curvature K on statistical submanifold M" of statistical
manifold N?™*1 is given by [2]

KX,Y) = ;[g(R(X, Y)Y, X) + g(R'(X, Y)Y, X)]. (2.17)

3. Kenmotsu statistical manifolds

Recently, one of the well-known geometer Furuhata [10] in 2017 deliberate a statistical structure on an almost contact
metric manifold named as Kenmotsu statistical structure. _

Let N be a (2m + 1)-dimensional smooth manifold with a Riemannian metric g € I'(TN©2), a structure tensor field
@ € I'(TNY) and a structure vector field £ € I'(TN) such that

(1) (g, ¢, &) defines an almost contact metric structure on N satisfying [13]

né)=1nop=0, p§ =0,
@*’X = =X + n(X)s, (3.1)
g2(pX, pY) = g(X,Y) — n(X)n(Y),

for X, Y e I'(TN) ) )
(2) (g, ¢, &) defines Kenmotsu structure on N if (g, ¢, £) is an almost contact metric structure on N and satisfies

(Vo) = g(pX. )5 — n(Y)gX, (3.2)
where X, Y € F(TN).
Then, (N, g, @, &) is called a Kenmotsu manifold. Moreover, we have
VEE =X — (X, (33)
for any X € I'(TN).

Definition 1 ([10]). Let (N, g, ¢, &) be a Kenmotsu manifold with statistical structure (V = V° 4+ K,g) on N. Then,
(V g, @, &) is called Kenmotsu statistical structure on N if

KX, oY)+ pK(X,Y) =0, (3.4)

for X, Y € I'(TN). A manifold equipped with a Kenmotsu statistical structure is known as Kenmotsu statistical manifold.
Remark 2 ([10]). If (N, V, g, ¢, &) is a Kenmotsu statistical manifold, then so is (N, V*, g, ¢, £).

Definition 2 ([10]). A Kenmotsu statistical manifold (N, v,g, @, &) is said to be of constant ¢—sectional curvature ¢ € R

if
R(x,y)zz(;g){g(yax a(X. Z)Y } (

— n(Y)n(Z)X +n(X)n(Z)Y +n(Y)g(Z, X)§ — n(X)g(Z, Y)S} (3.5)

) { (0Y,Z)pX — (X, Z)pY — 2g(@X, Y)pZ

for X, Y,Z € I'(TN) and symbolized by N2™t1(c).

Then, from (3.5), we obtain

Theorem 1. On a Kenmotsu statistical manifold N, we have the following relations:

(1) RX, Y)E = n(Y)X — n(X)Y
(2) RE, X)Y = g(X, Y)E — n(Y)X
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(3) R(pX, E)Y = n(Y)pX — g(X, V)&
(4) RIX, Y )E + R(E, X)pY = —R(pY, €)X

forany X, Y € I'(TN).

On putting X = W = ¢; in (2.10) and considering (3.5), the expression for the Ricci curvature of M can be derived as

-3 1
Rier.2)= (£ )(n— (Y. 2)+ (%) [38(eY . 92) — (n — 2n(Y)n(2) — (Y. 2)]
2m+1-n
+ [8(Ae, Y. Z)trA; — g(A% Y, A Z)]
r=1
-3 1
- (5 )(n — 8. 2)+ (%) [28(Y.2) - (n + Dn(¥n(2)]
2m+1-n
+ [8(Ae, Y, Z)trA; — g(A% Y, A Z)].

Similarly, we have the dual Ricci curvature Ric* of M,

-3 1
Ric*(Y, Z) = (C _ )(n —1)g(Y,2)+ (%) [28(Y,Z) — (n+ Dn(Yn(2)]

2m+1-n
+ Z (ALY, Z)trAe, — g(A,, Y, AL Z)].

Thus, we have the following useful result.

Theorem 2. Let M" be a statistical submanifold of a Kenmotsu statistical manifold sz“(c). Then, the Ricci tensor Q and the
dual Ricci tensor Q* of M satisfy the following:

2m+1-n

oX) = (T) (n—1)X + <C : 1) [2X — (n+ Dn(X)E] + Z [(trA% )Ae, X — Ae, AL X].
r=1

2m+1-n

Q" (X) = (c ; 3) (n—1)X + (%) [2X — (n+ DnXE]+ D [(trA )AL X — A3 Ao X].,

r=1

forall X € I'(TM).

Now, from (1.2) and (2.17) together with (2.10) and (2.11) and (2.14), we obtain

~3 +1
2T = <CT> n(n—1)+ <CT> Bllel* —2(n—1) + 1<i2<]~:<n [g(h(ej, &), h*(ei, e;)) — g (h(ei. e)), h*(ej, e))
+g(H' ey, €. hei, ) — (i (ew. ). hej )
= (c ; 3) nn— 1)+ (T) (Gllel® —2(n — 1)) +2n°g(H, H*) =2 Y glhei, &), h(ej, ), (3.6)

1<i<j<n

which gives

-3 1
21 = (C . )n(n 4 (%) (3191 = 2(n — 1)) + 20°g(H. H*) — 2] A |1"]

c—3 c+1
= < > ) nin—1)+ (T) (3llell* = 2(n — 1)) + 2n°g(H, H*) — 2nv/cc*. (3.7)
Moreover, we know hfj = g(h(e;, €;), e;). Then, Eq. (3.6) can be expressed as
2m+1-n
c—3 c+1
p= ( > ) + (Zn(n — 1)) Bllel* —2(n - 1) + Z > [mhi — 25k + hish]. (3.8)
1<i<j<n

Thus, from (1.2) and (3.7), we have
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Theorem 3. Let M" be a statistical submanifold of Kenmotsu statistical manifold N2™+'(c) of constant ¢-sectional curvature
c. Then, the normalized scalar curvature satisfies

c—3 c+1 , m ) 5 *
pz( 2 )+<2n(n_1)>(3ll<pll _2(”_”)+<m>g<”ﬂ>—(m)¢c?

As a consequence, we have the following applications of Theorem 3.
1. If 6 is the angle between the mean curvature vectors H and H* of M, then from Theorem 3, we derive

-3 1 2 2
R T

2. If the mean curvature vectors H and H* of M are parallel, then the normalized scalar curvature satisfies

pz( 2 )+<2”("—“>(3||¢||2_2("_”)+<ﬁ> IHIIH ||—(n_—1)@.

3. If the mean curvature vectors H and H* of M are orthogonal, then the normalized scalar curvature p satisfies

c-3 c+1 ) i
S T

4. Generalized Wintgen inequality

In this section, we derive the main result namely the generalized Wintgen inequality for statistical submanifolds of
Kenmotsu statistical manifolds. First, we have the following relation for scalar normal curvature v+ [2]

1 2714
‘L'J-=2{ > > [ (i, SS,S[)+g(R*L(e,,€])§‘S,‘§[)i| } : (4.1)

1<s<t<2m+1-n 1<i<j<n

By the virtue of (2.12) and (2.13) for the dual connections V and V*,

1 i 2)3
L= 5 Z Z g(1A;,. A lei. &) + &([Ae,. AL e, ej)} }
1<s<t<2m+1-n 1<i<j<n™-
1 < 213
= 5 Z Z Z(hlk ik hjk ik hzk ik T lskh;;f)] }
1<s<t<2m+1-n 1<i<j<n™-k=1
1 [ 212
= 2 Z Z Z( (hlk Jk — hi h ) (?kh;k_hgkhj) (h h hzk ]k))] }
1<s<t<2m+1-n1<i<j<n™-=k=1
\/§ n 2 n 2
52{ Z Z (16[Z(h?l<[hfks hflfhﬁf)} +|:Z(htskhﬂ< hikh;lc)j|
k=1

1<s<t<2m+1-n 1<i<j<n k=1

s o))

where we have used the Cauchy-Schwarz inequality 3(a® + b> +c?)—(a+b+c)* > 0, Ya, b, c € R. Moreover, we have
a well-known algebraic inequality [15]

X X -21,, ((m—15)") + (hﬁ)z}z[ > > (Z s bl mm}m)T (43)

1<s<t<2m+1-—nl1<i<j<n*- 1<s<t<2m+1-—n1<i<j<n \k=
Similarly above relation also holds for the connection V* and V° as follows.
_ - . 2
NP (R A S DYDY ( (hiehit — hihi )> ] (44)
1<s<t<2m+1-n 1<i<j<n*™- B Li<s<t<2m+1-n1<i<j<n \k=1

and

> > % ((hzs—h;S)z) +(h,§)2_ > [ > > (2“: — highg! ))2]5. (4.5)

1<s<t<2m+1-n 1<i<j<n*™ - —1<s<t<2m+1-—nl<i<j<n \k=1
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Thus, using (4.2)-(4.5) yields

\/§ os os *S *S s s
T 7{5 o X [6( ) 4 (= )+ (= )]
1<s<t<2m+1-n 1<i<j<n

X [y )+ (h,?j)z]}. (46)
1<s<t<2m+1-n 1<i<j<n

Furthermore, the norm of H can be rewritten as

2

2m+1—n 2m+1-n 2m+1-n

2n
2 2 __ S _ S LS
LIS M I o] ST S S D i (47)
s=1 1<i<j<n 1<i<j<n s=1 1<i<j<n
Similarly, we have the same relation for the connections V* and V° as
2m+1-n 2 2m+1-n n 2m+1-n
2 2 __ *S _ *S *s %S 1, %S
WIHE= Q| oW =i X X (W) Ty ) ) W (48)
s=1 1<i<j<n 1<i<j<n s=1 1<i<j<n
and
2m+1-n 2 2m+1-n n 2m+1-n
2 2 __ oS _ os os 051,08
WIHE= 3| X W) =iy X X (W) Ty 2L ) e (49)
s=1 1<i<j<n 1<i<j<n s=1 1<i<j<n

Substituting above relation for connections V, V* and V°, the relation (1.3) together with (4.6) yields

2m+1-n
0 <f{ (IHI? + 16]H°|1* + [IH*]|?) — 1)[ Z > (mhs+ h;’;Sh;;SJrleh;;Sh;S)]
1<i<j<n
2m+1-n
o; #5) 2 2
T D IDY [ms #0757
1<i<j<n
f . f 2m+1-n e . i .
S LIHI? 4 161H° 1 4 [1H7)7] Z > [20h,,‘h; 20n¢° — (hihy + hihs; — Zh?jhfﬁ)]-
1<i<j<n

Inserting (3.8) in above relation, we have

L < B 4+ 161812 + 1) +¢§<p _ 053) V3t

2n(n — 1)

P Bllel* —2(n— 1))

\/* 2m+1-n
~ =T Z > [20h;;5h;5—20nc]

1<i<j<n

which implies that

f * * * f 2m+1 - 0§ 1,08
—V3p < —[4||H|| + A H* ) + 4(2g(H, H*) + |HI* + IH*1*)] - Z > | 20n°hs — 20nc°

i "'jj
—f(c_3) (ﬁ(:j:)))(3||<ﬂ||2—2(n—1)).

1<i<j<n

Finally, we derive

2m+1-n
53 c—3
—V3p < \TF(HHHZ + IH*1?) + 4+/3g(H. H*) — ﬁ( ) V3 Z > [zOh;;Sh;f 20nC°:|

2 nn—1)

1<i<j<n

V3(c+1) 2
- <2n(n—1)> (3||<P|| —2(”—1))~

Hence, we are able to state the generalized Wintgen inequality (DDVV conjecture) involving normalized scalar curvature
and normalized scalar normal curvature with Casorati curvature for a statistical submanifold of a Kenmotsu statistical
manifold.
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Theorem 4. Let M" be a statistical submanifold of a Kenmotsu statistical manifold N2m+1(c). Then,

2m+1-n
5.3 c—3
—V3p < T[(HHHZ + [IH*1?) + 4+/3g(H, H*) — ﬁ( > ) n{] Z > [20h;°fh;s — 20nc° }

1<i<j<n

) Bllel* —2(n—1)). (4.10)

_ V3(c+1)
2n(n—1)

5. Some applications of generalized Wintgen inequality

We have the following applications of Theorem 4.

Corollary 1. Let M" be a statistical submanifold of Kenmotsu statistical manifold sz“(c) such that the angle between H and
H* is 6. Then,

54/3 c—3
—3p < T(IIHII2 + [IH*1?) + 4v/3||H|[|H* || cos 6 — f3< 5 )

f e 051,08 o ﬁ(c + ])
- n(n—1) Z Z [ZOhll h]] —20nC j| - m (3”(;0”2 —2(n— 1)) . (5.1)

1<i<j<n

Corollary 2. Let M" be a statistical submanifold of Kenmotsu statistical manifold N2m+1(¢). Then,

H and H* on M" Inequalities

Parallel pt —3p < 3B (H|I+IHAD? — V3 (52) — n(n 25 I DI (20h;;5h;f
—20nc° ) = () (3l1lP-2(n — 1)

Orthogonal —V3p = 3 (HIPHIHIR) - V3 () — 725 " Srciagen (208505
—20nc° ) - (zfm(;jj;) (GliglP—2(n — 1))

Corollary 3. Let M" be a statistical submanifold of Kenmotsu statistical manifold N2™+1(c) such that M" is totally geodesic
with respect to V°. Then,

5v3 c—3 V3(c+1)
—/3p < == (IHI + IH*|I*) + 4v/3g(H, H") = V3 - Bllel* —2(n—-1)). (52

2 2 2n(n—1)
Remark 3 ([10]). Here, one can easily see that local version of any Kenmotsu manifold. Let (Mo, g,J) be an almost
Hermitian manifold. Denote N = My x R, § = e2gy + (dt)?, the structure vector field & = % € I'(TN), the structure

tensor field ¢ € I'(TN(1). Then

(1) The triple (g, ¢, &) is an almost contact metric structure on N. _
(2) The pair (g,J) is a Kaehler structure on My if and only if the triple (g, ¢, &) is a Kenmotsu structure on N.

Remark 4 ([10]). Let (Mo, go,]) be a Kaehler manifold and (N My x R, g, ¢, &) be the Kenmotsu manifold as §1ven in
Remark 3. Let (V = V& + K, &) be a statistical structure on N. We denote A € I'(TN©? g TMo), A € (M) and
K e I'(TMS"?) defined by K(X,Y) = A(X,Y)+ A(X, Y)E and K(U, V) = A(U, V) for X,Y € I'(TN) and U, V € I'(TMp).
Then, the following are equivalent:

(1) (V = V& + £, §) is a Kenmotsu statistical structure on N.

(2) (V = V& + K, go,]) is a holomorphic statistical structure on My and A(X, &) = 0, A(X, V) = 0 hold for X € I'(TM)
and V € I'(TMp).

Further, if the Kenmotsu statistical manifold (N = Mo x R, V = V& + £, &, ¢, &) is of constant ¢-sectional curvature ¢
then it implies that, c = —1 and (Mp, V = V& + K, go,]) is of constant holomorphic sectional curvature 0.
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Thus, we have the following results

Theorem 5. Let (N =My x R,V =VE+ K, g, 0, &) be the Kenmotsu statistical manifold of constant ¢-sectional curvature
c as given in Remark 4. If M™ is a statistical submanifold of N. Then,

2m+1-n
fp<i(|H|| + |H*[1%) + 4v/3g(H, H* +2f— f Z > [zon;fh;f—mnw]. (5.3)

1<i<j<n

Proposition 1. Let (N=MyxR,V =VE+K, g. ¢, &) be the Kenmotsu statistical manifold of constant ¢-sectional curvature
c as given in Remark 4. If M" is a statistical submanifold of N such that the angle between H and H* is 6. Then,

5V3
pt —+3p < T(||H||2 + IH*1%) + 4v/3||H|||H*|| cos 6 + 23

\/* 2m+1-n
0S 1,08 o
T Z‘ Z |:20hii h —20nc]. (5.4)

1<i<j<n

Corollary 4. Let (N =My x R,V =VE + K. &, ¢, &) be the Kenmotsu statistical manifold of constant ¢-sectional curvature
c as given in Remark 4. If M" is a statistical submanifold of N. Then,

H and H* on M" Inequalities

Parallel —V/3p < 3 (IHIIHIIH)® + 23 — 3 31 el " ¥ cicjen (20R5H — 20nC°)
* 2m+1— 05 1,0. o

Orthogonal 0 —fp < % (IHIP+H|2) + 23 — 22 1>Z T S icjen (20h°hE — 20nC°)

Corollary 5. Let (N =My xR, V=VE4+RK 5, @, &) be the Kenmotsu statistical manifold of constant g-sectional curvature
c as given in Remark 4. If M" is a statistical submanifold of N such that M" is totally geodesic with respect to V°. Then,

—/3p < # (IHI? + I1H*11%) + 4v/3g(H, H*) + 2+/3.

Example 1. Consider the Kenmotsu manifold (H?"*1,g, ¢, £) (see [10], Example 3.3) where H>™1 = (x!, ..., x",
yl. .y z) e R¥H .z > 0.
Here, we denote

KX, Y) = faXm(Y)s,

for any X, Y € I'(TH*™') and f € C®(H2™t!), where 5 is the 1-form on H?™"*!. Then, (H2"t!,V = V& + £, &, ¢, &) is a
Kenmotsu statistical manifold with constant g-sectional curvature ¢ = —1 ( see ([10], Example 3.10)).
Next, let M" be a submanifold of H?™*!, Then, the inequalities (5.3) and (5.4) are satisfied.
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