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a b s t r a c t

We study point symmetries, the corresponding conserved densities and hierarchies of
four new bi-Hamiltonian heavenly systems in 3 + 1 dimensions which we discovered
recently. We exhibit an important role played by the inverse recursion operators in the
description of the hierarchies. Their use is twofold, either to provide the correct bi-
Hamiltonian representation or to generate nonlocal symmetry flows. Invariant solutions
w.r.t. nonlocal symmetries will generate (anti-)self-dual gravitational metrics which do
not admit Killing vectors which is a characteristic feature of K3 gravitational instanton.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In our previous paper [22] we considered (3+1)-dimensional second-order evolutionary PDEs

f (uij) − uttg(uij) = 0

where the unknown u = u(t, {zi}) enters only in the form of the 2nd-order partial derivatives uij, uti (i, j = 1, 2, 3)
and there is no explicit dependence on independent variables. We have proved that all such equations, which possess a
Lagrangian, have the Monge–Ampère form which is defined as a linear relation among all possible minors of the Hessian
matrix of u. In a two-component form all these equations become Hamiltonian systems. Using our approach of ‘‘skew-
factorization’’ of the determining equation for symmetries as a tool for producing recursion operators, we discovered four
nonequivalent new bi-Hamiltonian systems integrable in the sense of Magri [9]. The method for finding the recursion
operators in [22] extends the method of A. Sergyeyev from [17]. An invariant differential–geometric characterization of
the Monge–Ampère property is given in [4].
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Our interest to this class of equations is caused by the fact that all known heavenly equations governing (anti-)self-dual
gravity belong to this class [3,12,13,16,19,23]. We are interested in gravitational instanton solutions [6], and most of all in
the famous K3 instanton [24] which explicit gravitational metric is still unknown. One of the main properties of K3 is that
it does not admit Killing vectors, i.e. continuous symmetries. For this property to be satisfied we need solutions of heavenly
equations that are noninvariant w.r.t. any point symmetries to avoid symmetry reduction in a number of independent
variables in the solutions. Our tool for constructing such solutions is their invariance w.r.t. nonlocal symmetries which
does not require symmetry reduction. We must point out that there is a fairly extensive literature on solutions invariant
under nonlocal symmetries, e.g. [2] and references therein.

In a subsequent publication we will obtain (anti-)self-dual gravitational metrics which are governed by our new
heavenly bi-Hamiltonian systems using the methods which we applied earlier to the general heavenly equation and
modified heavenly equation [10,20].

In this paper we study the new bi-Hamiltonian systems in more detail. We determine point symmetries and associated
conservation laws (integrals of motion) for these systems together with an algorithm of reconstructing the integral
generating a given symmetry. We utilize the Magri integrability by studying hierarchies of the bi-Hamiltonian systems.
The objects of special interest to us are nonlocal symmetry flows. Due to the nonlocality, invariant (stationary) solutions
of nonlocal flows will not experience symmetry reductions in the number of independent variables and generate
gravitational metrics without Killing vectors.

The paper is organized as follows. In Section 2, we gather results on point symmetries of our new bi-Hamiltonian
systems which we call system I , system II , system III and system IV . In Sections 2.1–2.4 we present point symmetries and
their commutator algebras for systems I , II , III and IV , respectively. In Section 3, we present an algorithm for determining
conserved densities which generate known symmetries via the Hamiltonian structure and apply it in Sections 3.1–3.4 to
obtain the conserved densities for systems I , II , III and IV , respectively. In Section 4, we review some basic properties
of hierarchies of bi-Hamiltonian systems. A new feature is the utilization of inverse recursion operators which allows us
to move along the hierarchy chain not only in the right direction but also in the left direction. In Sections 4.1–4.4 we
describe in detail the hierarchies of systems I , II , III and IV , respectively. The most important for us are nonlocal flows in
each hierarchy because their stationary (invariant) solutions need not to experience symmetry reduction and hence the
corresponding gravitational metrics will not admit Killing vectors, which is a characteristic property of the K3 instanton.

2. Point symmetries

In this section we study point symmetries and corresponding integrals of each of our new bi-Hamiltonian systems
(7.3), (9.11), (9.22) and (9.33) from our preceding paper [22], which we call now as systems I , II , III and IV , respectively.
We skip system (9.2) from [22] because it can be obtained from system I by a permutation of indices combined with an
appropriate permutation of coefficients.

For the sake of compactness, in the following we utilize the operators Lij(k) = ujkDi − uikDj where Di denotes the total
derivative with respect to zi.

2.1. System I

System I reads

ut = v, vt =
1
u23

{v2v3 − c4L12(3)[v] − c5L23(2)[v] − c8L23(1)[v]

−c9L12(3)[u1] − c10L23(2)[u1]} = q (2.1.1)

with the condition c10 = c5c9/c8.
Generators of point symmetries have the form (∂i = ∂zi )

X1 = ∂1, X2 = u∂u + v∂v, X3 = ∂t

X4 = t∂t + z1∂1 + z2∂2 + u∂u, Xa = a(z3)∂u, Yb = b(z3)∂3
X∞ = c(ζ )∂2 +

(
A(ω+) + B(ω−) + e(ζ )

)
∂u (2.1.2)

+

{(
c4 +

√
c24 − 4c9

)
A′(ω+) +

(
c4 −

√
c24 − 4c9

)
B′(ω−)

}
∂v

where ζ = c5z1 − c8z2, ω± =

(
c4 ±

√
c24 − 4c9

)
t − 2z1.

The corresponding two-component symmetry characteristics read

ϕ1 = −u1, ψ1 = −v1, ϕ2 = u, ψ2 = v,

ϕ3 = −v, ψ3 = −q, ϕ4 = u − tv − z1u1 − z2u2 − z3u3

ψ4 = −tq − z1v1 − z2v2 − z3v3, ϕa = a(z3), ψa = 0, ϕb = −b(z3)u3
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Table 1
Commutators of point symmetries of the system I.

X1 X2 X3 X4 Xa Yb X(c,e)

X1 0 0 0 X1 0 0 c5X(c′,e′)
X2 0 0 0 0 −Xa 0 −X(0,e)
X3 0 0 0 X3 0 0 0
X4 −X1 0 −X3 0 −Xa 0 X(c̃,ẽ)
Xa 0 Xa 0 Xa 0 0 0
Yb 0 0 0 0 0 0 0
X(σ ,ε) −c5X(σ ′,ε′) X(0,ε) 0 −X(σ̃ ,ε̃) 0 0 X(ĉ,ê)

ψb = −b(z3)v3, ϕ∞ = A(ω+) + B(ω−) + e(ζ ) − c(ζ )u2 (2.1.3)

ψ∞ =

(
c4 +

√
c24 − 4c9

)
A′(ω+) +

(
c4 −

√
c24 − 4c9

)
B′(ω−) − c(ζ )v2.

For simplicity, we will determine Hamiltonian density for the flow generated by X∞ in (2.1.2) only if it commutes with
∂t and so has no t-dependence

X∞ = X(c,e) = c(ζ )∂2 + e(ζ )∂u (2.1.4)

with the characteristic

ϕ(c,e) = e(ζ ) − c(ζ )u2, ψ(c,e) = −c(ζ )v2. (2.1.5)

In Table 1 of commutators of point symmetries the commutator [Xi, Xj] stands at the intersection of ith row and jth
column, c̃ = ζ c ′

− c , ẽ = ζ e′
− e, ĉ = σ c ′

− cσ ′, ê = εe′
− eε′ and similarly for σ̃ and ε̃.

2.2. System II

System II has the form

ut = v, vt = q =
1
∆

{
v2
(
∆̂[v] − ĉ[u3]

)
+ v3ĉ[u2]

}
(2.2.1)

where we use the notation from our paper [22]

∆̂ = a8D1 + a10D2 + a11D3, ∆ = ∆̂[u2], ĉ = c8D1 + c7D3. (2.2.2)

Generators of point symmetries have the form

X1 = u∂u + v∂v, Xa = a(z1) {(a8z3 + c8t)∂u + c8∂v}
Yb = −bv(z1, v)∂t + (b − vbv)∂u
X∞ =

{
c8(a8z3 + c8t)c ′(z1) + a8

(
δE(ζ ) − c7c(z1)

)}
∂t + c8c(z1)∂1

+
{
g(σ ) − a10c28E(ζ )

}
∂2 − c8

(
E(ζ ) − c7c(z1)

)
∂3

+ (Φ(σ ) − d(ζ )) ∂u − c28c
′(z1)v∂v. (2.2.3)

Here ζ = c7z1 − c8z3, σ = a10ζ + δz2, δ = a11c8 − a8c7.
We will determine Hamiltonian density for the flow generated by X∞ in (2.2.3) only if it commutes with ∂t : [∂t , X∞] =

c28c
′(z1)∂t = 0. Hence c is constant and X∞ becomes

X̂ = a8δe(ζ )∂t + cc28∂1 + Ĝ(σ , ζ )∂2 − c8δe(ζ )∂3 +Φ(σ )∂u ≡ X̂(c,e,Ĝ,Φ̂) (2.2.4)

where e(ζ ) = E(ζ ) − cc7/δ, Ĝ(σ , ζ ) = g(σ ) − a10c28c7c/δ − a10c28e(ζ ), Φ̂(σ , ζ ) = Φ(σ ) − d(ζ ) are new arbitrary functions
of σ and ζ .

We note that some obvious symmetries are obtained as particular cases of the generators (2.2.3) and (2.2.4),
e.g. Yb=−v = ∂t , X̂(c=1,e=Ĝ=Φ̂=0) = c28∂1, X̂(c=e=Φ̂=0,Ĝ=1) = ∂2, X̂(e=1,c=Ĝ=Φ̂=0) = δ(a8∂t − c8∂3) which is effectively ∂3
because we have already obtained the symmetry ∂t .

Two-component symmetry characteristics of the generators (2.2.3) and (2.2.4) read

ϕ1 = u, ψ1 = v, ϕa = a(z1)(a8z3 + c8t), ψa = c8a(z1),
ϕb = b(z1, v), ψb = bvq, ϕ̂ = Φ̂(σ , ζ ) − a8δe(ζ )v − c28cu1

−Ĝ(σ , ζ )u2 + c8δe(ζ )u3, ψ̂ = −
a8δe(ζ )
∆

{
v2
(
∆̂[v] − ĉ[u3]

)
+ v3ĉ[u2]

}
−c28cv1 − Ĝ(σ , ζ )v2 + c8δe(ζ )v3. (2.2.5)
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Table 2 of commutators of point symmetries generators of the system II has the form
Table 2
Commutators of point symmetries of the system II.

X1 Xa Yb X̂

X1 0 −Xa Yvbv−b −X̂(c=e=Ĝ=0)

Xa Xa 0 c8aYbv −cc28Xa′(z1)

Yb −Yvbv−b −c8aYbv 0 −cc28Ybz1

X̂ X̂(c=e=Ĝ=0) cc28Xa′(z1) cc28Ybz1
0

2.3. System III

System III reads

ut = v, vt = q =
1
u33

{
v23 − c5(v2u23 − v3u22) − c6(v1u33 − v3u13)

−c7(v2u33 − v3u23) − c8(v2u13 − v3u12)
}
. (2.3.1)

Generators of point symmetries have the form

X1 = u∂u + v∂v, X∞ = −
(
fv(ρ, v) − b(z1)

)
∂t + c6b(z1)∂1

+
1
c8

(
E(ζ ) + c5c6b(z1)

)
∂2 +

{
Ω(ζ ) −

δ

c28

(
E ′(ζ )z1 + c6b(z1)

)
−z3E ′(ζ )

}
∂3 +

{(
c8z3
δ

+
z1
c8

)
χ (ζ ) + α(ζ ) −

1
c28

A(z1)

+f (ρ, v) − vfv} ∂u − c6fρ(ρ, v)∂v (2.3.2)

where ρ = z1 − c6t , ζ = c5z1 − c8z2, δ = c5c6 − c7c8. We impose again the condition [∂t , X∞] = 0 which implies
that f = f (v) is independent of ρ in (2.3.2). We denote X̂ = X∞|f=f (v) which after appropriate redefinitions of arbitrary
functions in (2.3.2) becomes

X̂ =
(
c28b(z1) − f ′(v)

)
∂t + c6c28b(z1)∂1 + c8

(
E(ζ ) + c5c6b(z1)

)
∂2

−
{
ω(ζ ) + c6b(z1) + (δz1 + c28z3)E

′(ζ )
}
∂3

+
{
(δz1 + c28z3)d(ζ ) + g(ζ ) − a(z1) + f (v) − vf ′(v)

}
∂u (2.3.3)

The two-component characteristics of symmetries X1 in (2.3.2) and X̂ in (2.3.3) read

ϕ1 = u, ψ1 = v

ϕ̂ = f (v) − c28b(z1)v + (δz1 + c28z3)d(ζ ) + g(ζ ) − a(z1) − c6c28b(z1)u1

−c8
(
E(ζ ) + c5c6b(z1)

)
u2 +

{
(δz1 + c28z3)E

′(ζ ) + δc6b(z1) + ω(ζ )
}
u3 (2.3.4)

ψ̂ =
(
f ′(v) − c28b(z1)

)
q − c6c28b(z1)v1 − c8

(
E(ζ ) + c5c6b(z1)

)
v2

+
{
(δz1 + c28z3)E

′(ζ ) + δc6b(z1) + ω(ζ )
}
v3

where q is defined in (2.3.1).

2.4. System IV

System IV reads

ut = v, vt = q

q =
1

a7u11 + a8u12 + a9u13

{
(a7v1 + a8v2 + a9v3)v1 − c1(v1u12 − v2u11)

−c3(v1u22 − v2u12) − c4(v1u23 − v2u13)
}

(2.4.1)

Generators of point symmetries have the form

X1 = u∂u + v∂v, Ya = −av(z3, v)∂t + (a − vav)∂u
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Table 3
Commutators of point symmetries of the system IV.

X1 Ya X̂

X1 0 Yvav−a −X̂(E=G=0)
Ya −Yvav−a 0 0
X̂ X̂(E=G=0) 0 0

X∞ =
{
c24c

′(z3)t + a9
[
c4z2c ′(z3) − c3c(z3) + αE(ζ )

]}
∂t

+ [c1c4c(z3) − c4βE(ζ ) + G(σ )] ∂1 + c4
(
c3c(z3) − αE(ζ )

)
∂2

+c24c(z3)∂3 +
{
c4(c4t + a9z2)b ′(z3) − a9c3b(z3) − ω(ζ ) + F (σ )

}
∂u

+c4
(
b ′(z3) − c ′(z3)v

)
∂v (2.4.2)

where ζ = c4z2 − c3z3, σ = αz1 − βz2 − γ z3, α = a8c4 − a9c3, β = a7c4 − a9c1, γ = a8c1 − a7c3.
The condition [∂t , X∞] = 0 becomes c24 (c

′(z3)∂t + b ′(z3)∂u) = 0 so that b and c are constants and X∞ = X̂ +

c (−a9c3∂t + c4(c3∂2 + c4∂3)) where

X̂ = αE(ζ )(a9∂t − c4∂2) + (G(σ ) − c4βE(ζ )) ∂1
+ [F (σ ) −Ω(ζ )] ∂u. (2.4.3)

We note that we have the obvious translational symmetries ∂t and ∂zi for i = 1, 2, 3 as particular cases of (combinations
of) symmetries Ya and X∞ and hence we can skip the obvious symmetry c (−a9c3∂t + c4(c3∂2 + c4∂3)) and consider X̂
instead of X∞ (see Table 3).

Two-component symmetry characteristics read

ϕ1 = u, ψ1 = v, ϕa = a(z3, v), ψa = av(z3, v)q
ϕ̂ = F (σ ) −Ω(ζ ) − a9αE(ζ )v − (G(σ ) − c4βE(ζ )) u1 + c4αE(ζ )u2

ψ̂ = −a9αE(ζ )q − (G(σ ) − c4βE(ζ )) v1 + c4αE(ζ )v2 (2.4.4)

where q is defined in (2.4.1).

3. Conserved densities

All the systems considered in [22] were shown to have the Hamiltonian form(
ut
vt

)
= J0

(
δuH1
δvH1

)
(3.0.1)

where J0 is the Hamiltonian operator determining the structure of the Poisson bracket, δu, δv are Euler–Lagrange
operators [15] and H1 is the Hamiltonian density. The Hamiltonian structure provides a link between characteristics of
symmetries and integrals of motion conserved by the Hamiltonian flows (3.0.1). Replacing time t by the group parameter
τ in (3.0.1) and using uτ = ϕ, vτ = ψ for symmetries in the evolutionary form, we arrive at the Hamiltonian form of the
Noether theorem for any conserved density H of an integral of motion(

ϕ

ψ

)
= J0

(
δuH
δvH

)
. (3.0.2)

To determine a conserved density H that corresponds to a known symmetry with the characteristic (ϕ,ψ) we use the
inverse Noether theorem(

δuH
δvH

)
= K

(
ϕ

ψ

)
(3.0.3)

where the symplectic operator K = J−1
0 inverse to the Hamiltonian operator has the following structure

K =

(
K11 K12

−K12 0

)
(3.0.4)

and is defined in (4.5)–(4.8) in [22]. Here (3.0.3) is obtained by applying the operator K to both sides of (3.0.2).
Let us now apply the formula (3.0.3) to determine conserved densities H i corresponding to all variational symmetries

with characteristics (ϕi, ψ i) from the lists given above for the systems I, II, III and IV . Using the expression (3.0.4) for K ,
we rewrite the formula (3.0.3) in an explicit form(

δuH i

δvH i

)
=

(
K11 K12

−K12 0

)(
ϕi

ψ i

)
(3.0.5)
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which provides the formulas determining Hamiltonian densities H i generating the known symmetries (ϕi, ψ i) from the
lists in Section 2

δuH i
= K11ϕ

i
+ K12ψ

i, δvH i
= −K12ϕ

i. (3.0.6)

We always start with solving the second equation in (3.0.6) in which we assume that H i does not depend on derivatives
of v, since ϕi never contain such derivatives. Hence δvH i is reduced to the partial derivative H i

v with respect to v, so that
the equation H i

v = −K12ϕi is easily integrated with respect to v with the ‘‘constant of integration’’ hi
[u] depending only

on u and its derivatives. Then the operator δu is applied to the resulting H i, which involves the unknown δuhi
[u], and the

result is equated to δuH i following from the first equation in (3.0.6) to determine δuhi
[u]. Finally, we reconstruct hi

[u] and
hence H i. If we encounter a contradiction, then this particular symmetry is not a variational one and does not lead to an
integral.

3.1. System I

For the system I formulas (3.0.6) become

δuH i
= K11ϕ

i
+ K12ψ

i
=
{
v3D2 + v2D3 + v23 + c4(u13D2 − u23D1)

+c5(u22D3 − u23D2) + c8(u12D3 − u13D2)
}
ϕi

− u23ψ
i

δvH i
= −K12ϕ

i
= u23ϕ

i. (3.1.1)

The solution algorithm for symmetry characteristics in Section 2.1 of Section 2 yields the following results for
Hamiltonian densities

H1
= −vu1u23 +

u
3

{
c4(u11u23 − u12u13) + c5(u12u23 − u22u13)

}
,

Ha
= a(z3)vu23 −

a′(z3)
2

(c5u2
2 + c8u1u2), (3.1.2)

Hb
= −

b(z3)
2

{
3vu3u23 + c5(u2u3u23 − u2

3u22) + c8(u1u3u23 − u2
3u12)

}
,

H (c,e)
= vu23(e(ζ ) − c(ζ )u2) +

c4
6
(u1u23 − u2u13)(3e(ζ ) − 2c(ζ )u2)

−c8u1u23(e(ζ ) − c(ζ )u2) (3.1.3)

where ζ = c5z1 − c8z2, whereas X2 and X4 generate non-variational symmetries.

3.2. System II

For the system II formulas (3.0.6) become

δuH i
=
{
a8(v2D1 + D2v1) + a10(v2D2 + D2v2) + a11(v3D2 + D3v2)

−c7L23(3) − c8L23(1)
}
ϕi

−∆ψ i, δvH i
= ∆ϕi. (3.2.1)

The solution algorithm for the symmetry characteristics in Section 2.2 ends up with the following results: X1 is not a
variational symmetry,

Ha
= a(z1)

{
(a8z3 + c8t)∆v −

1
2
(δ u23 + c8a10u22)

}
,

Hb
= B(v)∆ (3.2.2)

where B is the antiderivative for b (B′(v) = b(v)) and we have used the notation (2.2.2), or explicitly ∆ = a8u12 +a10u22 +

a11u23. Since determining Hamiltonian density for X̂ is a more complicated problem, we provide here more details of the
computation. We use symmetry characteristics (2.2.5) for ϕ̂ and ψ̂ in the formulas (3.2.1). We start with δvĤ = ∆ϕ̂ and
integrate it with respect to v to obtain

Ĥ = ∆
{
Φ̂(σ , ζ )v −

1
2
a8δe(ζ )v2 − cc28u1v − Ĝ(σ , ζ )u2v + c8δe(ζ )u3v

}
+ĥ[u]. (3.2.3)

Then we apply to this expression the variational derivative δu and equate the result to the first formula in (3.2.1) for δuĤ .
All terms containing v are canceled in both sides of this equation and we end up with the following equation for ĥ[u]

δuĥ[u] = c7
{
(Ĝu2 − Φ̂)2u33 − (Ĝu2 − Φ̂)3u23

}
+c8

{
(Ĝu2 − Φ̂)2u13 − (Ĝu2 − Φ̂)3u12

}
+c28 {[(δe + c7c)u3]3u12 − [(δe + c7c)u3]1u23}
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with the solution

ĥ[u] =
Ĝ
2

[
c7

(
u2u3u23 −

1
2
u2
2u33

)
+ c8

(
u2u3u12 −

1
2
u2
2u13

)]
+
Φ̂

2
[c7 (u2u33 − u3u23)+ c8 (u2u13 − u3u12)]

+c28 (δe + c7c)u1u3u23. (3.2.4)

The sum of the two expressions (3.2.3) and (3.2.4) presents the Hamiltonian density Ĥ which generates the symmetry
flow of X̂ . This is the conserved density for the flow of system II .

3.3. System III

For the system III formulas (3.0.6) become

δuH i
=
{
2v3D3 + v33 + c5(u22D3 − u23D2) + c6(u13D3 − u33D1)

+c7(u23D3 − u33D2) + c8(u12D3 − u13D2)
}
ϕi

− u33ψ
i

δvH i
= u33ϕ

i. (3.3.1)

It turns out that X1 is not a variational symmetry. To determine the Hamiltonian density Ĥ for the symmetry X̂ , we first
integrate the second equation in (3.3.1) with H i

= Ĥ with respect to v assuming that Ĥ depends only on v but not on
derivatives of v with the ‘‘constant of integration’’ ĥ[u] depending only on u and its derivatives

Ĥ = u33

⟨
F (v) −

1
2
c28b(z1)v

2
+ v

{
(δz1 + c28z3)d(ζ ) + g(ζ ) − a(z1)

−c6c28b(z1)u1 − c8
(
E(ζ ) + c5c6b(z1)

)
u2

+
[
(δz1 + c28z3)(E

′(ζ ) + c6δb(z1)) + ω(ζ )
]
u3
}⟩

+ ĥ[u] (3.3.2)

where F ′(v) = f (v). To determine ĥ[u], we plug in the variational derivative of Ĥ from (3.3.2) to the l.h.s. of the first
equation (3.3.1), with an unknown term δu[ĥ[u]], while we utilize ϕ̂ and ψ̂ from (2.3.4) in the r.h.s of the first equation
(3.3.1). We observe that all the terms which depend on v and its derivatives cancel in both sides of the resulting equation,
so that we have only δu[ĥ[u]] remaining on the left and terms depending only on derivatives of u on the right.

The next step is to reconstruct ĥ[u] from its known variational derivative for which we apply the homotopy formula
from P. Olver’s book [15]

ĥ[u] =

∫ 1

0
u δu

[
ĥ[λu]

]
dλ (3.3.3)

which yields the extra factor u and either 1/3 or 1/2 for terms bilinear or linear in u, respectively, in the variational
derivative δu[ĥ[u]]. We obtain the following result

ĥ[u] =
u
3

⟨
c8E(ζ )

[
c6(u12u33 − u13u23) + c7(u22u33 − u2

23)

− c8(u12u23 − u22u13)
]
+ c28E

′(ζ )
[
c8(u12u3 − u13u2)

+ c5(u22u3 − u23u2) + c7(u23u3 − u33u2)
]

+ c6E ′(ζ )(c28u13u3 + c8c5u33u2 − δu33u3)

+ (δz1 + c28z3)
{
E ′′(ζ )(c28u13 + c8c5u23 − δu33)u3

+E ′(ζ )
[
c8(u12u33 − u13u23) + c5(u22u33 − u2

23)
]}

+ c26
{
c28
[
b(z1)(u11u33 − u2

13) + b′(z1)u1u33
]

+ c8c5
[
2b(z1)(u12u33 − u13u23) + b′(z1)u2u33

]
+c25b(z1)(u22u33 − u2

23) − δb′(z1)u3u33
}

+ ω(ζ )
[
c8(u12u33 − u13u23) + c5(u22u33 − u2

23)
]

+ω′(ζ )(c28u13 + c8c5u23 − δu33)u3
⟩

(3.3.4)

+
u
2

{
d(ζ )

[
c28 (c8u12 + c5u22 + c7u23 + c6u13) − c6δu33

]
+
[
(δz1 + c28z3)d

′(ζ ) + g ′(ζ )
]
(c28u13 + c8c5u23 − δu33) + c6a′(z1)u33

}
where primes denote derivatives.
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The sum of expressions (3.3.2) and (3.3.4) yields the Hamiltonian density for the symmetry X̂ which is conserved by
the flow of the system III .

3.4. System IV

For the system IV formulas (3.0.6) become

δuH i
=
{
a7(2v1D1 + v11) + a8(v2D1 + v1D2 + v12) +

+a9(v3D1 + v1D3 + v13) + c1(u11D2 − u12D1)
+c3(u12D2 − u22D1) + c4(u13D2 − u23D1)

}
ϕi

−(a7u11 + a8u12 + a9u13)ψ i

δvH i
= (a7u11 + a8u12 + a9u13)ϕi. (3.4.1)

We apply the solution algorithm at the beginning of this section to the symmetry characteristics in Section 2.4. Introduce
the shorthand notation ∆ = a7u11 + a8u12 + a9u13.

Symmetry X1 is not a variational symmetry.
For the symmetry Ya, we start with the relation

δvHa
= ∆ϕa = ∆a(z3, v).

Introducing A(z3, v) as the antiderivative of a, a(z3, v) = Av(z3, v), we integrate the last equation with respect to v to
obtain

Ha
= (a7u11 + a8u12 + a9u13)A(z3, v) + ha

[u]. (3.4.2)

Next, we calculate the variational derivative δuHa containing yet unknown term δuha
[u] and equate it to the expression

for δuHa from (3.4.1) with ϕi
= ϕa and ψ i

= ψa. The resulting equation can be satisfied only if a = a(v) is independent
of z3, same as A = A(v). Then it follows that δuha

[u] = 0, so that we can choose ha
[u] = 0 and from (3.4.2) we have

Ha
= (a7u11 + a8u12 + a9u13)A(v), A′(v) = a(v). (3.4.3)

For the symmetry X̂ , we start again with the second equation in (3.4.1)

δvĤ = ∆ϕ̂ = ∆
[
F (σ ) −Ω(ζ ) − a9αE(ζ )v −

(
G(σ ) − c4βE(ζ )

)
u1

+c4αE(ζ )u2
]
.

Integrating this equation in v we obtain

Ĥ = (a7u11 + a8u12 + a9u13)
{
−

a9
2
αE(ζ )v2 + v

[
F (σ ) −Ω(ζ )

−
(
G(σ ) − c4βE(ζ )

)
u1

]
+ c4αE(ζ )u2

}
+ ĥ[u] (3.4.4)

with ĥ[u] as a ‘‘constant’’ of integration. We compute the variational derivative δuĤ of (3.4.4) and equate it to the
expression for δuĤ from (3.4.1) with ϕi

= ϕ̂ and ψ i
= ψ̂ taken from (2.4.4). Then all the terms containing v and its

derivatives are canceled on both sides of the resulting equation and we end up with the equation

δuĥ[u] = (c1u12 + c3u22 + c4u23)
[
α
(
G′(σ )u1 − F ′(σ )

)
+
(
G(σ ) − c4βE(ζ )

)
u11 − c4αE(ζ )u12

]
+(c1u11 + c3u12 + c4u13)

[
β
(
G′(σ )u1 − F ′(σ )

)
+c4

(
c4βE ′(ζ )u1 −Ω ′(ζ )

)
−
(
G(σ ) − c4βE(ζ )

)
u12

+c4α
(
c4E ′(ζ )u2 + E(ζ )u22

)]
(3.4.5)

We reconstruct ĥ[u] from (3.4.5) using the homotopy formula (3.3.3). It modifies (3.4.5) by the extra factor u and either
1/3 or 1/2 for the terms that bilinear or linear in u, respectively, in the variational derivative δu[ĥ[u]]. Thus, we obtain
the following result

ĥ[u] = u(c1u12 + c3u22 + c4u23)
{
1
3

[
αG′(σ )u1

+
(
G(σ ) − c4βE(ζ )

)
u11 − c4αE(ζ )u12

]
−

1
2
αF ′(σ )

}
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+u(c1u11 + c3u12 + c4u13)
{
1
3

[(
βG′(σ ) + c24βE

′(ζ )
)
u1

−
(
G(σ ) − c4βE(ζ )

)
u12 + c4α

(
c4E ′(ζ )u2 + E(ζ )u22

)]
−

1
2

(
βF ′(σ ) + c4Ω ′(ζ )

)}
. (3.4.6)

Using this result in (3.4.4), we obtain the Hamiltonian density generating the symmetry flow of X̂ which is conserved by
the system IV .

Since we have eliminated from X̂ in (2.4.3) the obvious translational symmetries X2 = −∂2 and X3 = −∂3, for
completeness we present below the Hamiltonian densities H2 and H3 for these symmetries, which are conserved by
the system IV

H2
= vu2(a7u11 + a8u12 + a9u13) +

1
3

[
c1u2(u1u12 − u2u11)

−c4u1(u3u22 − u2u23)
]
,

H3
= vu3(a7u11 + a8u12 + a9u13) +

1
3

[
c1u3(u1u12 − u2u11)

+c3u1(u3u22 − u2u23)
]
. (3.4.7)

Concerning our results for conservation laws for systems III and IV where we have used the homotopy formula, we
should note that the conserved densities are by no means unique, so that we could add or subtract total divergences to
them in order to obtain more compact expressions.

4. Recursion operators and hierarchies of the new bi-Hamiltonian systems

So far, we have not used the Magri integrability [9] of new bi-Hamiltonian systems studied above. Now we will consider
hierarchies of our systems I, II, III and IV related to their bi-Hamiltonian property. We first review main properties
of hierarchies of bi-Hamiltonian systems (see, e.g., [5] and [18]) with some new features related to our use of inverse
recursion operators.

Any bi-Hamiltonian system has the form(
ut
vt

)
= J0

(
δuH1
δvH1

)
= J1

(
δuH0
δvH0

)
(4.0.1)

where J0 and J1 are compatible Hamiltonian operators which determine the structures of Poisson brackets, H1 and H0
being the corresponding Hamiltonian densities, respectively, δu, δv are Euler–Lagrange operators [15].

Hamiltonian operators are skew-symmetric: J† = −J , where † denotes the (formal) adjoint operator, and they satisfy
the Jacobi identities. The compatibility of J0 and J1 requires the Jacobi identities to hold also for linear combinations of these
operators with arbitrary constant coefficients. A check of the Jacobi identities and compatibility of the two Hamiltonian
structures J0 and J1 is straightforward but too lengthy to be presented here. Therefore, we restrict ourselves here by
demonstrating that all our candidates for Hamiltonian operators are indeed manifestly skew-symmetric. The method
of the functional multi-vectors for checking the Jacobi identity and the compatibility of the Hamiltonian operators is
developed by P. Olver in [15], chapter 7, that we have recently applied for checking bi-Hamiltonian structure of the general
heavenly equation [23] and the first heavenly equation of Plebański [21] under the well-founded conjecture that this
method is applicable for nonlocal Hamiltonian operators as well. We note that our operators Lij(k) are also skew-symmetric.

A recursion operator R maps any symmetry again into a symmetry. Operator R provides a relation J1 = RJ0
between Hamiltonian operators in the bi-Hamiltonian representation (4.0.1), so that R admits the symplectic–implectic
factorization R = J1J−1

0 . Here K = J−1
0 is a symplectic operator and ‘‘implectic’’ is another name for Hamiltonian

operator. Fuchssteiner and Fokas [5] showed that if a recursion operator has the form R = J1J−1
0 , where J0 and J1 are

compatible Hamiltonian operators, then it is hereditary (Nijenhuis). In order that the repeated applications of the adjoint
of a hereditary recursion operator to a vector of variational derivatives of an integral produce again vectors of variational
derivatives of (another) integral, it is necessary (but not sufficient) that the result of the first such application will be a
vector of variational derivatives (see e.g. Hilfssatz 4 c) in [14]). This condition is satisfied in our case because Eq. (4.0.1)
can be rewritten in the form(

δuH1
δvH1

)
= R†

(
δuH0
δvH0

)
(4.0.2)

where R†
= J−1

0 J1. Therefore, applying R† we can determine the next Hamiltonian density H2 in the hierarchy from the
equation(

δuH2
δvH2

)
= R†

(
δuH1
δvH1

)
= (R†)2

(
δuH0
δvH0

)
(4.0.3)
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and so on. More generally, we have(
δuHn
δvHn

)
= (R†)n

(
δuH0
δvH0

)
. (4.0.4)

Taking the adjoint of J1 = RJ0 we have

J1 = J0R†
⇒ Jn = J0(R†)n (4.0.5)

and as a consequence of (4.0.4) and (4.0.5)(
uτm+n
vτm+n

)
= Jm

(
δuHn
δvHn

)
= Jn

(
δuHm
δvHm

)
= Jk

(
δuHl
δvHl

)
(4.0.6)

where m + n = k + l and m, n, k, l are nonnegative integers. We will see that sometimes, in order to generate nonlocal
(higher) flows in a hierarchy and even to obtain bi-Hamiltonian representation, we also need the inverse recursion
operator R−1 which satisfies the relations RR−1

= R−1R = I where I is the unit operator. If we have

R =

(
a b
c d

)
(4.0.7)

with noncommuting entries, then the inverse operator is determined by the formula

R−1
=

(
e f
g h

)
=

(
(a − bd−1c)−1, (c − db−1a)−1

(b − ac−1d)−1, (d − ca−1b)−1

)
(4.0.8)

which we derived earlier in [23] in a slightly different context. Here each operator x−1 can make sense merely as a formal
inverse of x.

A proper way to deal with inversion of operators in total derivatives like W (below) is through the theory of differential
coverings, see e.g. the reference [8] and references therein. Specifically for the inversion of recursion operators and the
proper definition of their action, see also [7,11].

We can always properly define the inverse operators in a similar way as we did in [23], so that xx−1
= x−1x = I .

Using R−1, we define J−1 = R−1J0 = J0(R−1)†, so that J0 = RJ−1 and J0 = R−1J1 = J1(R−1)†. By virtue of (4.0.2)(
δuH0
δvH0

)
= (R−1)†

(
δuH1
δvH1

)
(4.0.9)

we have bi-Hamiltonian representation in the form

J−1

(
δuH1
δvH1

)
= J0

(
δuH0
δvH0

)
. (4.0.10)

More generally, we define J−m = R−mJ0 = J0(R−m)† for positive integer m which implies

J−m

(
δuHn
δvHn

)
= Jn−m

(
δuH0
δvH0

)
= Jn−k−m

(
δuHk
δvHk

)
, (4.0.11)

e.g., for n = 4, m = 1, k = 2 this yields

J−1

(
δuH4
δvH4

)
= J1

(
δuH2
δvH2

)
.

Relations (4.0.6) are now valid for any integer m, n, k, l satisfying m + n = k + l, including their negative values.
There is a fairly extensive literature on negative (‘‘minus first") flows, e.g. [1] and references therein.

4.1. Hierarchy of system I

Recursion operator for the system I , as given in [22], with a11 = 1 and the notation W = c8L13(2) + c5L23(2) has the
form

R =

⎛⎜⎜⎜⎝
−L−1

12(3)(W − v2D3), −L−1
12(3)u23

1
c8u23

[
c8(c8 − c4)v2D3 + c9W

]
−
v3

u23
D2L−1

12(3)(W − v2D3),
−
v3

u23
D2L−1

12(3)u23 + c4 − c8

⎞⎟⎟⎟⎠ (4.1.1)

where the relation c8c10 = c5c9 has been used. The first Hamiltonian operator for system I reads [22]

J0 =
1
u23

( 0 1

−1 K11
1
u23

)
(4.1.2)
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where K11 = v3D2 + D3v2 −
[
(c4 − c8)L12(3) + W

]
. The corresponding Hamiltonian density reads

H1 =
v2

2
u23 +

c9
3c8

uW [u1] (4.1.3)

with the variational derivatives

δuH1 = D2(vv3) +
c9
c8

W [u1], δvH1 = vu23.

In the bi-Hamiltonian representation (4.0.1) for the system I we have the second Hamiltonian operator

J1 =

⎛⎜⎝ L−1
12(3) −

(
L−1
12(3)D2v3 + c8 − c4

) 1
u23

1
u23

(
v3D2L−1

12(3) + c8 − c4
)

J221

⎞⎟⎠ (4.1.4)

where the entry J221 is defined by

J221 =
1
u23

(c9L13(2) + c10L23(2))
1
u23

−
v3

u23
D2L−1

12(3)D2
v3

u23
(4.1.5)

+
c4 − c8
u23

{
D2v3 + v3D2 − (c4L12(3) + c5L23(2) + c8L23(1))

} 1
u23

.

Here J1 is manifestly skew-symmetric. The corresponding Hamiltonian density is determined by the formula (4.0.9)

H0 = −k
{
v2

2
+

c9
2c8

[
2u1v + (c4 − c8)u2

1

]}
u23 (4.1.6)

where k =
c8

[c8(c8 − c4) + c9]
. To obtain the next Hamiltonian density in the hierarchy of system I , we use the relation

(4.0.3)(
δuH2
δvH2

)
= R†

(
δuH1
δvH1

)
(4.1.7)

with the result

H2 =

{
1
2
(c4 − c8)v2 + (c9u1 + c10u2)v

}
u23 (4.1.8)

−
c8
3

{c9u2(u1u13 − u3u11) + c10u1(u3u22 − u2u23)} .

The corresponding Hamiltonian flow(
uτ2
vτ2

)
= J0

(
δuH2
δvH2

)
= J1

(
δuH1
δvH1

)
(4.1.9)

is the local one

uτ2 = (c4 − c8)v + c9u1 + c10u2

vτ2 = (c4 − c8)q + c9v1 + c10v2 (4.1.10)

where q is defined in (2.1.1). This flow is generated by the following combination of symmetry generators (2.1.2), (2.1.4)
X (1)

= −c9X1 − c10X(c=1,e=0) − (c4 − c8)X3.
Another flow is generated by H2 via the next Hamiltonian operator J2 = J1R†

= J0(R†)2 in the form(
uτ3
vτ3

)
= J1

(
δuH2
δvH2

)
= J2

(
δuH1
δvH1

)
(4.1.11)

where we can avoid the explicit use of operator J2. The explicit form of the flow

uτ3 = {(c4 − c8)2 − c9}v + c9(c4 − 2c8)u1 + (c4c10 − 2c5c9)u2

vτ3 = {(c4 − c8)2 − c9}q + c9(c4 − 2c8)v1 + (c4c10 − 2c5c9)v2 (4.1.12)

shows that it is still a local one. This flow is generated by the following combination of symmetry generators (2.1.2),
(2.1.4) X (2)

= (c4 − c8)X (1)
+ c9(X3 + c5X(c=−1,e=0)).

Since we are looking for nonlocal (higher) flows, we continue applying powers of the adjoint recursion operator(
δuH3
δvH3

)
= R†

(
δuH2
δvH2

)
(4.1.13)
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which yields the next Hamiltonian density in the hierarchy

H3 =

{
1
2

[
(c4 − c8)2 − c9

]
v2 + (c4 − 2c8)(c9u1 + c10u2)v

}
u23

+
1
3
(c28 − c9) {c9u2(u1u13 − u3u11) + c10u1(u3u22 − u2u23)} . (4.1.14)

The corresponding Hamiltonian flow(
uτ4
vτ4

)
= J1

(
δuH3
δvH3

)
= J2

(
δuH2
δvH2

)
(4.1.15)

has the explicit form

uτ4 = {(c4 − c8)3 + c9(3c8 − 2c4)}v + {(c24 − c9) + 3c8(c8 − c4)}(c9u1 + c10u2)

vτ4 = {(c4 − c8)3 + c9(3c8 − 2c4)}q + {(c24 − c9) + 3c8(c8 − c4)}(c9v1 + c10v2) (4.1.16)

which is again local.
Thus, applying positive powers of R† we obtain only local flows of point symmetries with a similar dependence on

u and v and transformed coefficients. Hence, to obtain nonlocal (or higher) flows we need the inverse recursion operator

R−1 which will allow us to move along the hierarchy in the opposite direction. Let R =

(
a b
c d

)
and R−1

=

(
e f
g h

)
.

The solution to equations RR−1
= R−1R = I is given by the formula (4.0.8) where the values of the entries a, b, c, d are

given in the formula (4.1.1) for R. However, we will use here more simple formulas

f = (c − db−1a)−1, e = −fdb−1, h = −b−1af , g = −hca−1 (4.1.17)

equivalent to (4.0.8). We obtain the result

R−1
= k

{(
−W−1

[
(c8 − c4)L12(3) + v3D2

]
, W−1u23

−
v2

u23
D3W−1[(c8 − c4)L12(3) + v3D2

]
,

v2

u23
D3W−1u23

)

+

( 0, 0
1

c8u23
(c8v3D2 − c9L12(3)), −1

)}
(4.1.18)

where k =
c8

[c8(c8 − c4) + c9]
. Using its adjoint (R−1)†, we define the Hamiltonian operator J−1 = J0(R−1)† in the form

J−1 = k

⎛⎜⎝ −W−1, (W−1D3v2 − 1)
1
u23

1
u23

(1 − v2D3W−1), J22
−1

⎞⎟⎠ (4.1.19)

where

J22
−1 =

1
u23

[
v2D3W−1D3v2 − (D3v2 + v2D3) + W −

1
k
L12(3)

]
1
u23

. (4.1.20)

Here J−1 is manifestly skew-symmetric. Now we can consider the Hamiltonian flow(
uτ−1
vτ−1

)
= J−1

(
δuH0
δvH0

)
(4.1.21)

with H0 defined in (4.1.6), or in an explicit form

uτ−1 = k2
{
−

c9
c8

W−1L13(2)
[
v + (c4 − c8)u1

]
+ v +

c9
c8

u1

}
vτ−1 =

k2

u23

{
−

c9
c8
v2D3W−1L13(2)

[
v + (c4 − c8)u1

]
+

c9
c8

L13(2)
[
v + (c4 − c8)u1

]
+

1
k
L12(3)

[
v +

c9
c8

u1

]
(4.1.22)

−W
[
v +

c9
c8

u1

]
+ v2

(
v3 +

c9
c8

u13

)}
.

Due to W−1, this is a nonlocal flow, so that its stationary solutions uτ−1 = vτ−1 = 0 need not to admit the reduction in
the number of independent variables.
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Eqs. (4.1.22) imply

vτ−1 =
v2

u23
D3uτ−1 +

k2

u23

{
c9
c8

L13(2)[v + (c4 − c8)u1]

−W
[
v +

c9
c8

u1

]
+

1
k
L12(3)

[
v +

c9
c8

u1

]}
. (4.1.23)

For stationary solutions from (4.1.22) we have

W [c8v + c9u1] = c9L13(2)[v + (c4 − c8)u1] (4.1.24)

and (4.1.23) implies

L12(3)[c8v + c9u1] = 0. (4.1.25)

Further analysis is needed to determine an explicit solution to these equations which we postpone for future
publications.

Due to the greater simplicity of a similar problem for the system II , we defer to the next subsection the detailed
exposition of the procedure of studying the compatibility of the original bi-Hamiltonian system and its first nonlocal
flow, which shows that both flows commute and hence the latter flow is indeed a nonlocal symmetry of the first flow.
We will also show there how to treat the corresponding stationary equations.

4.2. Hierarchy of system II

The system II has the form (2.2.1) where we have used the notation (2.2.2). Recursion operator has the form [22]

R =

⎛⎝ −L−1
23(t)v2∆̂, L−1

23(t)∆

−
q
v2

D2L−1
23(t)v2∆̂+ ĉ,

1
v2

{
qD2L−1

23(t)∆− ĉ[u2]
}
⎞⎠ . (4.2.1)

The first Hamiltonian operator reads

J0 =

(
0, ∆−1

−∆−1, ∆−1K11∆
−1

)
(4.2.2)

where K11 = v2∆̂+ D2∆̂[v] − ĉ[u3]D2 + ĉ[u2]D3. The second Hamiltonian operator reads

J1 = RJ0 =

⎛⎜⎝ −L−1
23(t), (L−1

23(t)D2q∆− ĉ[u2])
1
v2∆

−
1
v2∆

(q∆D2L−1
23(t) − ĉ[u2]), J221

⎞⎟⎠ (4.2.3)

where

J221 = ĉ
1
∆

− ĉ[u2]
1
∆
∆̂

1
∆

+
q
v2

D2L−1
23(t)D2

q
v2

−
q
v2

D2
ĉ[u2]

v2∆

−
ĉ[u2]

v2∆
D2

q
v2

+
ĉ[u2]

v2∆
L23(t)

ĉ[u2]

v2∆
(4.2.4)

and q = vt is given by the r.h.s. (2.2.1) of system II . Formulas (4.2.3) and (4.2.4) show that J1 is manifestly skew-symmetric:
J†1 = −J1. The Hamiltonian density corresponding to J0 reads

H1 =
v2

2
∆ =

v2

2
(a8u12 + a10u22 + a11u23). (4.2.5)

However, there is a problem with the Hamiltonian density H0 corresponding to J1, related to the fact that v belongs to the
kernel of the operator L23(t), so that to enforce the relation L−1

23(t)L23(t) = 1 we had to skip v which is needed to reproduce
the correct second equation in (4.0.1).

To determine the correct H0 we apply the relation(
δuH0
δvH0

)
= (R†)−1

(
δuH1
δvH1

)
(4.2.6)

using an adjoint inverse recursion operator, inverse to R†. Operator R† reads

R†
=

⎛⎜⎝ −∆̂v2L−1
23(t), ∆̂v2L−1

23(t)D2
q
v2

− ĉ

−∆L−1
23(t),

{
∆L−1

23(t)D2q − ĉ[u2]
} 1
v2

⎞⎟⎠ . (4.2.7)
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The inverse operator is determined by the formula

R−1
=⎛⎝ W−1

{
(ĉ[u3] − ∆̂[v])D2 − ĉ[u2]D3

}
, W−1∆

v2

∆
∆̂W−1

{
(ĉ[u3] − ∆̂[v])D2 −∆ĉ∆̂−1D3

}
+
v3

∆
D2,

v2

∆
∆̂W−1∆

⎞⎠ (4.2.8)

where W = ∆ĉ − ĉ[u2]∆̂. Using its adjoint in the formula (4.2.6) we obtain the null result H0 = 0.
Hence we need the next Hamiltonian density H2 in the hierarchy of the system II . We apply the relation (4.1.7) to

obtain

H2 = vĉ[u]∆ = v(c7u3 + c8u1)(a8u12 + a10u22 + a11u23) (4.2.9)

with the variational derivatives

δuH2 = ∆̂
[
v2ĉ[u]

]
+ ∆̂[v]ĉ[u2] −∆ĉ[v], δvH2 = ∆ĉ[u].

We also need the Hamiltonian operator J−1 = J0(R−1)† with the result

J−1 =

⎛⎝ −W−1, W−1∆̂
v2

∆

−
v2

∆
∆̂W−1,

1
∆

(v2∆̂W−1∆̂v2 + v3D2 − v2D3)
1
∆

⎞⎠ (4.2.10)

which is manifestly skew-symmetric.
Then we can easily check the validity of bi-Hamiltonian representation for the system II in the form(

ut
vt

)
= J0

(
δuH1
δvH1

)
= J−1

(
δuH2
δvH2

)
. (4.2.11)

The first nonlocal flow is obtained by(
uτ3
vτ3

)
= J1

(
δuH2
δvH2

)
(4.2.12)

with the explicit form

uτ3 = L−1
23(t)

{
∆ĉ[v] − v2∆̂

[
ĉ[u]

]}
vτ3 =

q
v2

D2L−1
23(t)

{
∆ĉ[v] − v2∆̂

[
ĉ[u]

]}
+ ĉ2[u] −

ĉ[u2]ĉ[v]
v2

. (4.2.13)

We must show that this flow commutes with our original flow ut = v, vt = q of the system II . The straightforward
check of this fact is impossible because of the nonlocal operator in (4.2.13). Therefore, we apply the following more
sophisticated procedure of checking the compatibility of the system II with the symmetry flow (4.2.13). We rewrite the
Eqs. (4.2.13) in the local form

L23(t)[uτ3 ] = ∆ĉ[v] − v2∆̂
[
ĉ[u]

]
, vτ3 =

q
v2

D2uτ3 + ĉ2[u] −
ĉ[u2]ĉ[v]
v2

. (4.2.14)

We solve the first equation in (4.2.14) with respect to uτ3z3 , differentiate this equation with respect to t and substitute
ut = v and vt = q. We will also need D2[vτ3 ] and D3[vτ3 ] which we obtain by differentiating the second equation in
(4.2.14). After some tedious calculation we find that the first equation in (4.2.14) differentiated w.r.t. t with ut = v, vt = q
determined by system II is identically satisfied as a consequence of Eqs. (4.2.13), which proves the compatibility of the
system II and the flow (4.2.13).

The invariant solution with respect to this flow is determined by the condition uτ3 = 0, which implies vτ3 = 0 which,
due to (4.2.14) implies the equations

∆ĉ[v] − v2∆̂
[
ĉ[u]

]
= 0, ĉ[u2]ĉ[v] − v2ĉ2[u] = 0 (4.2.15)

or, equivalently,

ĉ[u2]ĉ
[
∆̂[u]

]
−∆ĉ2[u] = 0, ∆ĉ[v] − v2∆̂

[
ĉ[u]

]
= 0. (4.2.16)

Here we have to solve the first equation to determine u and then the second equation to determine v or, alternatively,
we can just use v = ut with the same result. No symmetry reduction in the number of independent variables needs to
occur because of the nonlocality of the flow.

One may wonder if we could obtain another independent equation for v by differentiating the first equation (4.2.16)
w.r.t. t (which would be bad)

ĉ[v2]ĉ
[
∆̂[u]

]
+ ĉ[u2]ĉ

[
∆̂[v]

]
− ∆̂[v2]ĉ2[u] −∆ĉ2[v] = 0. (4.2.17)
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We apply the operator ∆̂ to the second equation in (4.2.15) and combine the resulting equation with (4.2.17) to obtain

ĉ
[
∆ĉ[v] − v2∆̂

[
ĉ[u]

]]
= 0

which is identically satisfied due to the second equation in (4.2.16). Thus, t-differentiation of the first equation (4.2.16)
does not yield an independent equation which is again a confirmation of the compatibility of the flow (4.2.13) with the
system II .

4.3. Hierarchy of system III

According to (2.3.1), system III has the form

ut = v (4.3.1)

vt = q =
1
u33

{
v23 − c5L23(2)[v] − c6L13(3)[v] − c7L23(3)[v] − c8L23(1)[v]

}
.

Recursion operator for the system (4.3.1) was obtained in [22]. We present it here in a more compact form by using the
relation Lij(k)[v]Dj + ujkLij(t) = vjLij(k) (with ut = v) and definitions

W = c5L23(3) + c8L13(3), L = c5L23(2) + c6L13(3) + c7L23(3) + c8L23(1).

The recursion operator takes the form

R =

⎛⎝ W−1(v3D3 − L), −W−1u33
1
u33

{
v3D3W−1(v3D3 − L) − L23(t)

}
, −

v3

u33
D3W−1u33

⎞⎠ . (4.3.2)

The first Hamiltonian operator [22]

J0 =
1
u33

( 0, 1

−1, (v3D3 + D3v3 − L)
1
u33

)
(4.3.3)

together with the corresponding Hamiltonian density

H1 =
1
2
v2u33 (4.3.4)

yields the first Hamiltonian form of the system III in (4.0.1). The second Hamiltonian operator J1 = RJ0 is obtained by
composing the recursion operator (4.3.2) with the Hamiltonian operator (4.3.3) with the result

J1 =

⎛⎜⎝ W−1, −W−1D3
v3

u33
v3

u33
D3W−1, −

1
u33

(
v3D3W−1D3v3 + L23(t)

) 1
u33

⎞⎟⎠ (4.3.5)

which is manifestly skew-symmetric. For the corresponding Hamiltonian density H0 we assume the simplest possible
ansatz of its dependence only on v but not on derivatives of v which ends up with the expression

H0 =
[
k(t, z1)v2 − (c8u1 + c5u2 + c7u3)v

]
u33 (4.3.6)

together with the existence condition c6 = 0 for such a density. We should note that the second Hamiltonian operator
(4.3.5) is valid with no such extra conditions and probably it admits the corresponding Hamiltonian density more general
than (4.3.6) with no additional restrictions. The same remark applies also for the existence condition c8c10 = c5c9 of
density H0 for system I in (4.1.6). With the condition c6 = 0, the obtained expressions for J0, H1, J1 and H0 yield the
bi-Hamiltonian representation (4.0.1) for the system III .

The next Hamiltonian density H2 in the hierarchy of the system III should be generated by the formal adjoint of the
recursion operator(

δuH2
δvH2

)
= R†

(
δuH1
δvH1

)
=

(
0
0

)
(4.3.7)

but the null result implies that H2 = 0 and so are all the next members of the hierarchy in the right direction.
Hence, to obtain nontrivial results we need an inverse recursion operator R−1 determined by the formulas (4.0.8) to be

able to move in the left direction along the hierarchy chain. We again use more simple formulas given above in (4.1.17)
with the result

R−1
= (4.3.8)⎛⎝ L−1

23(t)v3D3, −L−1
23(t)u33

1
u33

{
(v3D3 − L)L−1

23(t)v3D3 − W
}
, −

1
u33

(v3D3 − L)L−1
23(t)u33

⎞⎠ .
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We use the operator adjoint to R−1 to generate the Hamiltonian operator J−1 moving in the left direction along the
hierarchy chain

J−1 = J0(R−1)† = (4.3.9)⎛⎜⎝ L−1
23(t), −L−1

23(t)(D3v3 − L)
1
u33

1
u33

(v3D3 − L)L−1
23(t),

1
u33

{
W − (v3D3 − L)L−1

23(t)(D3v3 − L)
} 1
u33

⎞⎟⎠ .
Thus, J−1 is manifestly skew-symmetric. The first nonlocal flow is generated by the formula(

uτ−1
vτ−1

)
= J−1

(
δuH0
δvH0

)
(4.3.10)

with the explicit result for the flow (4.3.10)

uτ−1 = L−1
23(t)(W + 2kL)[v] (4.3.11)

vτ−1 =
1
u33

{
(v3D3 − L)L−1

23(t)(W + 2kL)[v] − W [2kv − c5u2 − c8u1]
}

where the identities L[c5u2+c7u3+c8u1] = 0 and W [u3] = 0 have been used. The first equation in (4.3.11) can be written
in the local form

L23(t)[uτ−1 ] = (W + 2kL)[v] (4.3.12)

while the second equation becomes

vτ−1 =
1
u33

{
(v3D3 − L)uτ−1 − W [2kv − c5u2 − c8u1]

}
(4.3.13)

which is more convenient for studying the commutativity of the flow (4.3.11) with the system III , similar to the way it
was done at the end of Section 4.2.

For the stationary flow uτ−1 = 0, vτ−1 = 0 we have W [v] + 2kL[v] = 0 and the second equation in (4.3.11) becomes
W [2kv − c5u2 − c8u1] = 0. Explicit solutions to these equations need further analysis and will be published elsewhere.

4.4. Hierarchy of system IV

System IV can be written in the compact form

ut = v, vt = q =
1
∆

{
v1(∆̂[v] − ĉ[u2]) + v2ĉ[u1]

}
(4.4.1)

where

∆̂ = a7D1 + a8D2 + a9D3, ĉ = c1D1 + c3D2 + c4D3 (4.4.2)

and ∆ = ∆̂[u1]. The notation is similar to the one for the system II but the definitions of ∆̂ and ĉ are different and the
two systems are also completely different, the system II depending on five parameters whereas the system IV depends
on six parameters.

Recursion operator for system IV , as obtained in [22], has the form

R =

⎛⎝ L−1
12(t)v1∆̂, −L−1

12(t)∆

q
v1

D1L−1
12(t)v1∆̂− ĉ,

1
v1

(
ĉ[u1] − qD1L−1

12(t)∆
)
⎞⎠ (4.4.3)

where L12(t) = v2D1 − v1D2 which implies L12(t)[v] ≡ 0. The first Hamiltonian operator has the form

J0 =
1
∆

(
0 1

−1 K11
1
∆

)
(4.4.4)

where K11 = v1∆̂+ D1∆̂[v] + ĉ[u1]D2 − ĉ[u2]D1, with the corresponding Hamiltonian density

H1 =
v2

2
∆. (4.4.5)

The second Hamiltonian operator J1 = RJ0 reads [22]

J1 =

⎛⎜⎜⎝ L−1
12(t), −

(
L−1
12(t)D1q −

ĉ[u1]

∆

)
1
v1

1
v1

(
qD1L−1

12(t) −
ĉ[u1]

∆

)
, J221

⎞⎟⎟⎠ (4.4.6)
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where

J221 = −ĉ
1
∆

+
ĉ[u1]

∆
∆̂

1
∆

−
q
v1

D1L−1
12(t)D1

q
v1

+
q
v1

D1
ĉ[u1]

v1∆

+
ĉ[u1]

∆v1
D1

q
v1

−
ĉ[u1]

∆v1
L12(t)

ĉ[u1]

v1∆
. (4.4.7)

Formulas (4.4.6) and (4.4.7) show that J1 is manifestly skew-symmetric: J†1 = −J1.
However, we encounter difficulties, similar to the ones for the system II , in finding the Hamiltonian density H0

corresponding to J1 in the bi-Hamiltonian representation (4.0.1) of system IV . They are related to the fact that v belongs
to the kernel of the operator L12(t), so that to enforce the relation L−1

12(t)L12(t) = 1 we had to skip v which is needed to
reproduce the correct second equation in (4.0.1). Therefore, to determine the correct H0 we apply the relation(

δuH0
δvH0

)
= (R†)−1

(
δuH1
δvH1

)
(4.4.8)

inverse to (4.0.2). Hence at this point we again need an adjoint inverse recursion operator. Let the recursion operator
(4.4.3) and its inverse be written in the form

R =

(
a b
c d

)
, R−1

=

(
e f
g h

)
.

Then R−1 is determined by the relations (4.1.17)

f =

(
ĉ[u1]∆̂−∆ĉ

)−1
∆, e = −fdb−1

=

(
ĉ[u1]∆̂−∆ĉ

)−1
{
ĉ[u1]

v1
L12(t) −

(
∆̂[v] +

1
v1

L12(t)[ĉ[u]]
)
D1

}
h = −b−1af =

v1

∆
∆̂

(
ĉ[u1]∆̂−∆ĉ

)−1
∆

g = −hca−1 (4.4.9)

= −
v1

∆
∆̂

(
ĉ[u1]∆̂−∆ĉ

)−1
{(
∆̂[v] +

1
v1

L12(t)[ĉ[u]]
)
D1 −∆ĉ∆̂−1 1

v1
L12(t)

}
and its adjoint has the form

(R−1)† = (R†)−1
=

(
e† g†

f † h†

)
where

e† =

{
L12(t)

ĉ[u1]

v1
− D1

(
∆̂[v] +

1
v1

L12(t)[ĉ[u]]
)}

W−1

g†
=

{
D1

(
∆̂[v] + L12(t)[ĉ[u]]

1
v1

)
− L12(t)

1
v1
∆̂−1ĉ∆

}
W−1∆̂

v1

∆

f †
= −∆W−1, h†

= ∆W−1∆̂
v1

∆
(4.4.10)

where W = ∆̂ĉ[u1] − ĉ∆ and we keep in mind that the square brackets denote the value of an operator.
Using the formula (4.4.8) with δuH1 = ∆̂[vv1], δvH1 = v∆, we obtain the result δuH0 = 0, δvH0 = 0 and H0 = 0. Hence

the bi-Hamiltonian representation of the system IV in the form (4.0.1) is not valid. Therefore, we search for a satisfactory
Hamiltonian density moving in opposite direction from H1 to H2 via the relation(

δuH2
δvH2

)
= R†

(
δuH1
δvH1

)
. (4.4.11)

The result is

H2 = −vĉ[u]∆ (4.4.12)

with the variational derivatives

δuH2 = ĉ[v]∆− ∆̂[v]ĉ[u1] − ∆̂
[
v1ĉ[u]

]
, δvH2 = −∆ĉ[u].
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As we will immediately see, H2 corresponds naturally to the Hamiltonian operator J−1 = J0(R−1)† with the explicit
expression

J−1 =

⎛⎝ −W−1, W−1∆̂
v1

∆

−
v1

∆
∆̂W−1,

1
∆

(
v1∆̂W−1∆̂v1 − L12(t)

) 1
∆

⎞⎠ (4.4.13)

which is manifestly skew-symmetric. Now, a straightforward check proves the validity of the following bi-Hamiltonian
representation of the system IV(

ut
vt

)
= J0

(
δuH1
δvH1

)
= J−1

(
δuH2
δvH2

)
. (4.4.14)

To discover higher (nonlocal) flows, we consider(
uτ3
vτ3

)
= J1

(
δuH2
δvH2

)
. (4.4.15)

The explicit form of the flow (4.4.15) reads

uτ3 = L−1
12(t)

{
∆ĉ[v] − v1∆̂

[
ĉ[u]

]}
vτ3 =

1
∆

(
∆̂[v] +

1
v1

L12(t)
[
ĉ[u]

])
D1L−1

12(t)

{
∆ĉ[v] − v1∆̂

[
ĉ[u]

]}
−

ĉ[u1]ĉ[v]
v1

+ ĉ2[u]. (4.4.16)

The second equation (4.4.16) can be rewritten as

vτ3 =
1
∆

(
∆̂[v] +

1
v1

L12(t)
[
ĉ[u]

])
D1uτ3 −

ĉ[u1]ĉ[v]
v1

+ ĉ2[u]. (4.4.17)

Commutativity of system IV flow and nonlocal symmetry flow (4.4.16) can be proved by the procedure similar to the one
presented at the end of Section 4.2.

Stationary solutions uτ3 = 0, vτ3 = 0 of the flow (4.4.16) are determined by the equations

∆ĉ[v] − v1∆̂
[
ĉ[u]

]
= 0

ĉ[u1]ĉ[v] − v1ĉ2[u] = 0. (4.4.18)

Solutions of these equations will be published elsewhere. They will not experience symmetry reduction in the number of
independent variables because of nonlocality of the flow.

5. Conclusion

We have carried out a detailed analysis of our four new bi-Hamiltonian systems in 3+1 dimensions. Point symmetries
and conserved densities generating these symmetries have been presented. Hierarchies of these four systems were studied
showing the important role played by the inverse recursion operators R−1. For systems II and IV such operators are
necessary to obtain a correct bi-Hamiltonian representation of the system, while for systems I and III operators R−1

are utilized to discover nonlocal symmetry flows. We have explicitly constructed first nonlocal symmetry flows in the
hierarchy for each of the four heavenly systems. Stationary solutions of the latter flows do not need to admit symmetry
reduction in the number of independent variables and therefore the corresponding (anti-)self-dual gravitational metrics
will not admit Killing vectors, which is a characteristic feature of the K3 gravitational instanton. Explicit form of solutions
invariant w.r.t. nonlocal symmetry flows is now in progress. The description of (anti-)self-dual gravity governed by our
new bi-Hamiltonian heavenly systems will be published elsewhere.
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