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a b s t r a c t

In this paper, we establish the stability and superstability of J∗-derivations in J∗-algebras
for the generalized Jensen–type functional equation

rf
(
x+ y
r

)
+ rf

(
x− y
r

)
= 2f (x).

Finally, we investigate the stability of J∗-derivations by using the fixed point alternative.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

LetH ,K be two Hilbert spaces and letB(H,K) be the space of all bounded operators fromH intoK . By a J∗-algebra
we mean a closed subspace A of B(H,K) such that xx∗x ∈ A whenever x ∈ A. Many familiar spaces are J∗-algebras [1].
Of course J∗-algebras are not algebras in the ordinary sense. However from the point of view they may be considered a
generalization of C∗-algebras; see [2,1,3]. In particular any Hilbert space may be thought of as a J∗-algebra identified with
L(H,C). Also any C∗-algebra in B(H) is a J∗-algebra. Other important examples of J∗-algebras are the so-called Cartan
factors of type I, II, III and IV. A J∗-derivation on a J∗-algebraA is defined to be a C-linear mapping d : A→ A such that

d(aa∗a) = d(a)a∗a+ a(d(a))∗a+ aa∗d(a)

for all a ∈ A.
In particular, every ∗-derivation on a C∗-algebra is a J∗-derivation.
The stability of functional equations was first introduced by Ulam [4] in 1940. More precisely, he proposed the following

problem: Given a group G1, a metric group (G2, d) and a positive number ε, does there exist a δ > 0 such that if a function
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f : G1 −→ G2 satisfies the inequality d(f (xy), f (x)f (y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 → G2 such that d(f (x), T (x)) < ε for all x ∈ G1? As mentioned above, when this problem has a solution, we say that
the homomorphisms from G1 to G2 are stable. In 1941, Hyers [5] gave a partial solution of Ulam,s problem for the case of
approximate additivemappings under the assumption that G1 and G2 are Banach spaces. In 1978, Rassias [6] generalized the
theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability
that was introduced by Rassias [6] is called the Hyers–Ulam–Rassias stability.

Theorem 1.1. Let f : E −→ E ′ be a mapping from a normed space E into a Banach space E ′ subject to the inequality

‖f (x+ y)− f (x)− f (y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique additive mapping T : E −→ E ′
such that

‖f (x)− T (x)‖ ≤
2ε
2− 2p

‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for all x, y 6= 0, and (1.2) for x 6= 0. Also, if the function t 7→ f (tx) from R into
E ′ is continuous for each fixed x ∈ E, then T is linear.

During the last decades several stability problems of functional equations have been investigated by many
mathematicians. A large list of references concerning the stability of functional equations can be found in [7–11].
Recently, Cădariu and Radu applied the fixed pointmethod to the investigation of the functional equations. (see also [12–

17]). In [18], Park establish the stability of homomorphisms between C∗-algebras (see also [19,20,15]). In Section 2 of the
present paper, we establish the stability and superstability of J∗-derivations in J∗-algebras for the generalized Jensen–type
functional equation

rf
(
x+ y
r

)
+ rf

(
x− y
r

)
= 2f (x). (1.3)

In Section 3, we will use the fixed point alternative of Cădariu and Radu to prove the stability and superstability of J∗-
derivations on J∗-algebras for the generalized Jensen–type functional equation (1.3).
Throughout this paper assume thatA is a J∗-algebra.

2. Stability

We start our work by a theorem in superstability of J∗-derivations.

Theorem 2.1. Let r, s ∈ (1,∞), and let D : A→ A be a mapping for which D(sa) = sD(a) for all a ∈ A. Suppose there exists
a function φ : A3 → [0,∞) such that

lim
n
s−nφ(sna, snb, snc) = 0,∥∥∥∥rµD(a+ br

)
+ rµD

(
a− b
r

)
− 2D(µa)+ D(cc∗c)− D(c)(c)∗c − cD(c)∗c − cc∗D(c)

∥∥∥∥ ≤ φ(a, b, c), (2.1)

for all µ ∈ T and all a, b, c ∈ A. Then D is a J∗-derivation.

Proof. Put µ = a = b = 0 in (2.1). Then

‖D(cc∗c)− D(c)c∗c − cD(c∗)c − cc∗D(c)‖ =
1
s3n
‖D((snc)(snc∗)(snc))− D(snc)(snc∗)(snc)− (snc)D(snc∗)(snc)

− (snc)(snc∗)D(snc)‖ ≤
1
s3n
φ(0, 0, snc) ≤

1
sn
φ(0, 0, snc)

for all c ∈ A. The right-hand side tends to zero as n→∞. So

D(cc∗c) = D(c)c∗c + cD(c∗)c + cc∗D(c)

for all c ∈ A. Similarly, put c = 0 in (2.1). Then∥∥∥∥rµD(a+ br
)
+ rµD

(
a− b
r

)
− 2D(µa)

∥∥∥∥ = 1
sn

∥∥∥∥rµD( sna+ snbr

)
+ rµD

(
sna− snb
r

)
− 2D(µsna)

∥∥∥∥
≤
1
sn
φ(sna, snb, 0)
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for all a, b ∈ A. The right-hand side tends to zero as n→∞. So,

rµD
(
a+ b
r

)
+ rµD

(
a− b
r

)
= 2D(µa) (2.2)

for all µ ∈ T and all a, b ∈ A. Put µ = 1 in above equation. Then

rD
(
a+ b
r

)
+ rD

(
a− b
r

)
= 2D(a)

for all a, b ∈ A. This means that D satisfies (1.3). It is easy to show that D is additive. Putting µ = 1, b = 0 in (2.2), we get

rD
(a
r

)
= D(a)

for all a ∈ A. Then by (2.2), we obtain that

µD(a+ b)+ µD(a− b) = 2D(µa)

for all µ ∈ T and all a, b ∈ A. Replacing bwith a in above equation, then by additivity of D, we obtain that µD(a) = D(µa)
for all a ∈ A and all µ ∈ T. So it is easy to show that D is C-linear (see for example Theorem 1 of [21]). �

Theorem 2.2. Let r ∈ (1,∞), and let f : A → A be a mapping with f (0) = 0 for which there exists a function
φ : A3 → [0,∞) such that

Φ(a, b, c) :=
∞∑
0

r−nφ(rna, rnb, rnc) <∞,∥∥∥∥rµf (a+ br
)
+ rµf

(
a− b
r

)
− 2f (µa)+ f (cc∗c)− f (c)(c)∗c − cf (c)∗c − cc∗f (c)

∥∥∥∥ ≤ φ(a, b, c), (2.3)

for all µ ∈ T and all a, b, c ∈ A. Then there exists a unique J∗-derivation D : A→ A such that

‖f (a)− D(a)‖ ≤
1
2
Φ(a, 0, 0) (2.4)

for all a ∈ A.

Proof. Put µ = 1 and b = c = 0 in (2.3). It follows that

‖f (a)− r−1f (ra)‖ ≤
1
2
φ(ra, 0, 0)

for all a ∈ A. By induction, we can show that

‖f (a)− r−nf (rna)‖ ≤
1
2

n∑
k=1

r−kφ(rka, 0, 0) (2.5)

for all a ∈ A. Replacing a by am in (2.5) and then dividing by rm, we get

‖f (am)− r−n−mf (rn+ma)‖ ≤
1
2rm

m+n∑
m

φ(rka, 0, 0)

for all a ∈ A. Hence, {r−nf (rna)} is a Cauchy sequence. Since A is complete,

D(a) := lim
n
r−nf (rna)

exists for all a ∈ A. Now, (2.4) follows from (2.5). By using (2.1) one can show that∥∥∥∥rD(a+ br
)
+ rD

(
a− b
r

)
− 2D(a)

∥∥∥∥ = limn 1
rn
‖rf (rn−1(a+ b))+ rf (rn−1(a− b))− 2f (rna)‖

≤ lim
n

1
rn
φ(rna, rnb, 0) = 0

for all a, b ∈ A. So

rD
(
a+ b
r

)
+ rD

(
a− b
r

)
= 2D(a)
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for all a, b ∈ A. Putting U = a+b
r , V =

a−b
r in above equation, we get

r(D(U)+ D(V )) = 2D
(
r(U + V )
2

)
for all U, V ∈ A. Hence, D is a Jensen type function. On the other hand, we have

‖D(µa)− µD(a)‖ = lim
n

1
rn
‖f (µrna)− µf (rna)‖ ≤ lim

n

1
rn
φ(rna, rna, 0) = 0

for all µ ∈ T, and all a ∈ A. So it is easy to show that D is C-linear. It follows from (2.1) that

‖D(cc∗c)− D(c)c∗c − cD(c∗)c − cc∗D(c)‖ = lim
n

∥∥∥∥ 1r3n f ((rnc)(rnc∗)(rnc))− 1rn f (rnc) rnc∗rn rncrn
−
rnc
rn
1
rn
f (rnc∗)

rnc
rn
−
rnc
rn
rnc∗

rn
1
rn
f (rnc)

∥∥∥∥ ≤ limn 1
r3n
φ(0, 0, rnc) ≤ lim

n

1
rn
φ(0, 0, rnc) = 0

for all c ∈ A. Thus D : A→ A is a J∗-derivation satisfying (2.4), as desired. �

We prove the following Hyers–Ulam–Rassias stability problem for J∗-derivations on J∗-algebras.

Corollary 2.3. Let p ∈ (0, 1), θ ∈ [0,∞) and r ∈ (1,∞) be real numbers. Suppose f : A→ A satisfies∥∥∥∥rµf (a+ br
)
+ rµf

(
a− b
r

)
− 2f (µa)+ f (cc∗c)− f (c)(c)∗c − cf (c)∗c − cc∗f (c)

∥∥∥∥ ≤ θ(‖a‖p + ‖b‖p + ‖cp‖),
for all µ ∈ T and all a, b, c ∈ A. Then there exists a unique J∗-derivation D : A→ A such that

‖f (a)− D(a)‖ ≤
2pθ

2p−1 − 1
‖a‖p

for all a ∈ A.

Proof. It follows from Theorem 2.2 by putting φ(a, b, c) := θ(‖a‖p + ‖b‖p + ‖c‖p) for all a, b, c ∈ A. �

3. Stability by using alternative fixed point

Before proceeding to the main results of this section, we will state the following theorem.

Theorem 3.1 (The Alternative of Fixed Point [22]). Suppose that we are given a complete generalized metric space (Ω, d) and a
strictly contractive mapping T : Ω → Ω with Lipschitz constant L. Then for each given x ∈ Ω , either
d(Tmx, Tm+1x) = ∞ for all m ≥ 0, or other exists a natural number m0 such that

? d(Tmx, Tm+1x) <∞ for all m ≥ m0;
? the sequence {Tmx} is convergent to a fixed point y∗ of T ;
? y∗ is the unique fixed point of T in the set Λ = {y ∈ Ω : d(Tm0x, y) <∞};
? d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ Λ.

Theorem 3.2. Let r ∈ (1,∞) be a real number. Let f : A→ A be amapping for which there exists a functionφ : A3 → [0,∞)
such that∥∥∥∥rµf (a+ br

)
+ rµf

(
a− b
r

)
− 2f (µa)+ f (cc∗c)− f (c)(c)∗c − cf (c)∗c − cc∗f (c)

∥∥∥∥ ≤ φ(a, b, c), (3.1)

for all µ ∈ T and all a, b, c ∈ A. If there exists an L < 1 such that

φ(a, b, c) ≤ rLφ
(
a
r
,
b
r
,
c
r

)
(3.2)

for all a, b, c ∈ A, then there exists a unique J∗-derivation D : A→ A such that

‖f (a)− D(a)‖ ≤
L
1− L

φ(a, 0, 0) (3.3)

for all a ∈ A.
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Proof. Putting µ = 1, b = c = 0 in (3.1), we obtain∥∥∥2rf (a
r

)
− 2f (a)

∥∥∥ ≤ φ(a, 0, 0) (3.4)

for all a ∈ A. Hence,∥∥∥∥1r f (ra)− f (a)
∥∥∥∥ ≤ 1

2r
φ(ra, 0, 0) ≤ Lφ(ra, 0, 0) (3.5)

for all a ∈ A.
Consider the set X := {g | g : A→ A} and introduce the generalized metric on X:

d(h, g) := inf {C ∈ R+ : ‖g(a)− h(a)‖ ≤ Cφ(a, 0, 0)∀a ∈ A}.

It is easy to show that (X, d) is complete. Now we define the linear mapping J : X → X by

J(h)(a) =
1
r
h(ra)

for all a ∈ A. By Theorem 3.1 of [22],

d(J(g), J(h)) ≤ Ld(g, h)

for all g, h ∈ X .
It follows from (3.5) that

d(f , J(f )) ≤ L.

By Theorem 3.1, J has a unique fixed point in the set X1 := {h ∈ X : d(f , h) < ∞}. Let D be the fixed point of J . D is the
unique mapping satisfying

D(ra) = rD(a)

for all a ∈ A such that there exists C ∈ (0,∞) satisfying

‖D(a)− f (a)‖ ≤ Cφ(a, 0, 0)

for all a ∈ A. On the other hand we have limn d(Jn(f ),D) = 0. It follows that

lim
n

1
2n
f (2na) = D(a)

for all a ∈ A. It follows from d(f , h) ≤ 1
1−Ld(f , J(f )), that

d(f , h) ≤
L
1− L

.

This implies the inequality (3.3).
It follows from (3.2) that

lim
j
r−jφ(r ja, r jb, r jc) = 0

for all a, b, c ∈ A.
By the same reasoning as in the proof of Theorem 2.2, one can show that the mapping D : A → A is a J∗-derivation

satisfying (3.3), as desired. �

We prove the following Hyers–Ulam–Rassias stability problem for J∗-derivations on J∗-algebras.

Corollary 3.3. Let p ∈ (0, 1), θ ∈ [0,∞) be real numbers. Suppose f : A→ A satisfies∥∥∥∥rµf (a+ br
)
+ rµf

(
a− b
r

)
− 2f (µa)+ f (cc∗c)− f (c)(c)∗c − cf (c)∗c − cc∗f (c)

∥∥∥∥ ≤ θ(‖a‖p + ‖b‖p + ‖cp‖),
for all µ ∈ T and all a, b, c ∈ A. Then there exists a unique J∗-derivation D : A→ A such that

‖f (a)− D(a)‖ ≤
2pθ
2− 2p

‖a‖p

for all a ∈ A.

Proof. Set φ(a, b, c) := θ(‖a‖p + ‖b‖p + ‖c‖p) all a, b, c ∈ A. Letting L = 2p−1, we get the desired result. �
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Now we establish the superstability of J∗-derivations by using the alternative of a fixed point.

Theorem 3.4. Let s > 1, and let f : A→ A be a mapping satisfying f (sx) = sf (x) for all x ∈ A. Let φ : A3 → [0,∞) be a
mapping satisfying (3.1). If there exists an L < 1 such that

φ(x, y, z) ≤ rLφ
(x
r
,
y
r
,
z
r

)
for all x, y, z ∈ A, then f is a J∗-derivation.

Proof. It is similar to the proof of Theorem 2.1. �

Corollary 3.5. Let r, p ∈ (0, 1), θ ∈ [0,∞) be real numbers. Suppose that f : A→ A is a function satisfying f (rx) = rf (x) for
all x ∈ A. Let φ : A3 → [0,∞) be a mapping satisfying (3.1). Then f is a J∗-derivation.

Proof. Set φ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) all x, y, z ∈ A. Letting L = 2p−1, we get the desired result. �
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