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a b s t r a c t

We generalize the Lagrangian–Hamiltonian formalism of Skinner and Rusk to higher order
field theories on fiber bundles. As a byproduct we solve the long standing problem of
defining, in a coordinate freemanner, a Hamiltonian formalism for higher order Lagrangian
field theories. Namely, our formalism does only depend on the action functional and,
therefore, unlike previously proposed ones, is free from any relevant ambiguity.

© 2010 Elsevier B.V. All rights reserved.

0. Introduction

First order Lagrangian mechanics can be generalized to higher order Lagrangian field theory. Moreover, the latter has
got a very elegant geometric (and homological) formulation (see, for instance, [1]) on which there is general consensus.
On the other hand, it seems that the generalization of Hamiltonian mechanics of Lagrangian systems to higher order field
theory presents some more problems. Several answers have been proposed (see, for instance, [2–10] and the references
therein) to the question: is there any reasonable, higher order, field theoretic analogue of Hamiltonian mechanics? In our
opinion, none of them is satisfactorily natural, especially because of the common emergence of ambiguities due to either the
arbitrary choice of a coordinate system [2] or the choice of a Legendre transform [7,8,10]. Namely, the latter seems not to be
uniquely definable, except in the case of first order Lagrangian field theories when a satisfactory Hamiltonian formulation
can be presented in terms of multisymplectic geometry (see, for instance, [11]—see also [12] for a recent review, and the
references therein).
Nevertheless, it is still desirable to have a Hamiltonian formulation of higher order Lagrangian field theories enjoying

the same nice properties as Hamiltonian mechanics, which (1) is natural, i.e., is independent of the choice of any structure
other than the action functional, (2) gives rise to first order equations of motion, (3) takes advantage of the (pre-)symplectic
geometry of the phase space, (4) is a natural starting point for gauge reduction, (5) is a natural starting point for quantization.
The relationship between the Euler–Lagrange equations and the Hamilton equations deserves a special mention. The
Legendre transform maps injectively solutions of the former to solutions of the latter, but, generically, Hamilton equations
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are not equivalent to Euler–Lagrange ones [11]. However, the difference between the two is a pure gauge and, therefore, it
is irrelevant from a physical point of view.
In this paper we achieve the goal of finding a natural (in the above mentioned sense), geometric, higher order, field

theoretic analogue of Hamiltonianmechanics of Lagrangian systems in two steps: first, we find a higher order, field theoretic
analogue of the Skinner and Rusk ‘‘mixed Lagrangian–Hamiltonian’’ formalism [13–15] (see also [16]), which is rather
straightforward (see [17] for a different, finite dimensional approach, to the same problem) and, second, we show that
the derived theory ‘‘projects to a smaller space’’ which is naturally interpreted as phase space. Local expressions of the
field equations on the phase space are nothing but de Donder equations [2] and, therefore, are naturally interpreted as
the higher order, field theoretic, coordinate free analogue of Hamilton equations. A central role is played in the paper by
multisymplectic geometry in the form of partial differential (PD, in the following) Hamiltonian system theory, which has
been developed in [18].
The paper is divided into nine sections. The first four sections contain reviews of the main aspects of the geometry

underlying the paper. They have been included in order to make the paper as self-consistent as possible. The next five
sections contain most of the original results.
The first section summarizes the notations and conventions adopted throughout the paper. It also contains references

to some differential geometric facts which are often used in the subsequent sections. Finally, in Section 1 we briefly review
the Skinner–Rusk formalism [14]. Section 2 is a short review of the geometric theory of partial differential equations (PDEs)
(see, for instance, [19]). Section 3 outlines the properties of the main geometric structure of jet spaces and PDEs, the Cartan
distribution, and reviews the geometric formulation of the calculus of variations [1]. Section 4 reviews the theory of PD-
Hamiltonian systems and their PD-Hamilton equations [18]. Moreover, it contains examples of morphisms of PDEs coming
from such theory. These examples are presented here for the first time.
In Section 5 we present the higher order, field theoretic analogue of Skinner–Rusk mixed Lagrangian–Hamiltonian

formalism for mechanics. In Section 5 we also discuss the relationship between the field equations in the
Lagrangian–Hamiltonian formalism (now on, ELH equations) and the Euler–Lagrange equations. In Section 6 we discuss
some natural transformations of the ELH equations. As a byproduct, we prove that they are independent of the choice of a
Lagrangian density, in the class of those yielding the same Euler–Lagrange equations, up to isomorphisms. ELH equations are,
therefore, as natural as possible. In Section 7 we present our proposal for a Hamiltonian, higher order, field theory. Since we
don’t use any additional structure other than the ELH equations and the order of a Lagrangian density, we judge our theory
satisfactorily natural. Moreover, the associated field equations (HDW equations) are first order and, more specifically, of the
PD-Hamilton kind. In Section 8we study the relationship between the HDWequations and the Euler–Lagrange equations. As
a byproduct, we derive a new (and, in our opinion, satisfactorily natural) definition of Legendre transform for higher order,
Lagrangian field theories. It is a non-local morphism of the Euler–Lagrange equations into the HDW equations. Finally, in
Section 9 we apply the theory to the KdV equation which can be derived from a second order variational principle.

1. Notations, conventions and the Skinner–Rusk formalism

In this section we collect notations and conventions about some general constructions in differential geometry that will
be used in the following.
Let N be a smooth manifold. If L ⊂ N is a submanifold, we denote by iL : L ↪→ N the inclusion. We denote by

C∞(N) the R-algebra of smooth, R-valued functions on N . We will always understand a vector field X on N as a derivation
X : C∞(N) −→ C∞(N). We denote by D(N) the C∞(N)-module of vector fields over N , byΛ(M) =

⊕
kΛ

k(N) the graded
R-algebra of differential forms over N and by d : Λ(N) −→ Λ(N) the de Rham differential. If F : N1 −→ N is a smoothmap
of manifolds, we denote by F∗ : Λ(N) −→ Λ(N1) the pull-back via F . We will understand everywhere the wedge product
∧ of differential forms, i.e., for ω,ω1 ∈ Λ(N), we will write ωω1 instead of ω ∧ ω1.
Let α : A −→ N be an affine bundle (for instance, a vector bundle) and F : N1 −→ N a smooth map of manifolds. Let A

be the affine space of smooth sections of α. For a ∈ A and x ∈ N we put, sometimes, ax := a(x). The affine bundle on N1
induced by α via F will be denoted by F ◦(α) : F ◦(A) −→ N:

F ◦(A) //

F◦(α)

��

A

α

��
N1

F // N

,

and the space of its sections by F ◦(A ). For any section a ∈ A there exists a unique section, which we denote by
F ◦(a) ∈ F ◦(A ), such that the diagram

F ◦(A) // A

N1
F //

F◦(a)

OO

N

a

OO
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commutes. If F : N1 −→ N is the embedding of a submanifold, we also write •|F (or, simply, •|N1 ) for F
◦(•), and refer to it

as the restriction of ‘‘•’’ to N1 (via F ), whatever the object ‘‘•’’ is (an affine bundle, its total space, its space of sections or a
section of it).
We will always understand the sum over repeated upper–lower (multi)indexes. Our notations about multiindexes are

the following. We will use the capital letters I, J, K for multiindexes. Let n be a positive integer. A multiindex of length k is
a ktuple of indexes I = (i1, . . . , ik), i1, . . . , ik ≤ n. We identify multiindexes differing only by the order of the entries. If I is
a multiindex of length k, we put |I| := k. Let I = (i1, . . . , ik) and J = (j1, . . . , jl) be multiindexes, and i an index. We denote
by IJ (resp. Ii) the multiindex (i1, . . . , ik, j1, . . . , jl) (resp. (i1, . . . , ik, i)).
We conclude this section by briefly reviewing those aspects of the Skinner–Rusk formalism for mechanics [13–15] that

survive in our generalization to higher order field theory.
Let Q be anm-dimensional smooth manifold and q1, . . . , qm coordinates on it. Let L ∈ C∞(TQ ) be a Lagrangian function.

Consider the induced bundle τ Ď0 := τ
◦

Q (τ
∗

Q ) : T
Ď
:= τ ◦Q (T

∗Q ) −→ TQ from the cotangent bundle τ ∗Q : T
∗Q −→ Q to Q , via

the tangent bundle τQ : TQ −→ Q . Let q : T Ď −→ T ∗Q be the canonical projection (see Diagram (1))

T Ď

τ
Ď
0

��

q // T ∗Q

τ∗Q
��

TQ
τQ // Q

. (1)

On T Ď there is a canonical function h ∈ C∞(T Ď) defined by h(v, p) := p(v), v ∈ TqQ , p ∈ T ∗q Q , q ∈ Q . Consider also
the function EL := h − τ Ď0

∗(L) ∈ C∞(T Ď). EL is locally given by EL := piq̇i − L, where . . . , qi, . . . , q̇i, . . . , pi, . . . are
standard coordinates on T Ď. Finally, put ω := q∗(ω0) ∈ Λ2(T Ď), ω0 ∈ Λ2(T ∗Q ) being the canonical symplectic form on
T ∗Q , which is locally given by ω0 = dpidqi. ω is a presymplectic form on T Ď whose kernel is made of vector fields over T Ď
which are vertical with respect to the projection q. In the following, denote by I ⊂ R a generic open interval. For a curve
γ : I 3 t 7−→ γ (t) ∈ T Ď, consider equations

iγ̇ γ ◦(ω)+ γ ◦(dEL) = 0, (2)

where γ̇ ∈ γ ◦(D(T Ď)) is the tangent field to γ . Eq. (2) read locally

d
dt
qi = q̇i

pi =
∂L
∂ q̇i

d
dt
pi =

∂L
∂qi
.

In particular, for any solution γ of Eq. (2) as above, τQ ◦ τ
Ď
0 ◦ γ : I −→ Q is a solution of the Euler–Lagrange equations

determined by L. Notice that solutions of Eq. (2) can only take values in the submanifoldP ⊂ T Ď defined as

P :=
{
P ∈ T Ď : there existsΞ ∈ TPT Ď such that iΞωP + (dEL)P = 0

}
,

and thatP is nothing but the graph of the Legendre transform FL : TQ −→ T ∗Q . Finally, considerP0 := q(P) ⊂ T ∗Q . If
P0 ⊂ T ∗Q is a submanifold and q : P −→ P0 a submersion with connected fibers, then there exists a (unique) function
H ∈ C∞(P0) such that q∗(H) = EL |P . Thus, for a curve σ : I 3 t 7−→ σ(t)∈ P0, we can consider equations

iσ̇σ ◦(ω0)+ σ ◦(dH) = 0, (3)

where σ̇ ∈ σ ◦(D(T Ď)) is the tangent field to σ . For any solution γ : I −→ Q of the Euler–Lagrange equations,
FL ◦ γ̇ : I−→ P0 is a solution of Eq. (3). If the map q : P −→ T ∗Q has maximum rank (which happens iff the matrix∥∥∂2L/∂ q̇i∂ q̇j∥∥ji has maximum rank, i.e., FL is a local diffeomorphism), then P0 ⊂ T ∗Q is an open submanifold, H is a local
function on T ∗Q , and Eq. (3) read locally

d
dt
qi =

∂H
∂pi

d
dt
pi = −

∂H
∂qi
,

which are Hamilton equations. In this case, for any solution σ : I −→ T ∗Q of Eq. (3), τ ∗Q ◦ σ : I −→ Q is a solution of the
Euler–Lagrange equations.
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2. Geometry of differential equations

In this section we recall basic facts about the geometric theory of PDEs. For more details see, for instance, [19].
Let π : E −→ M be a fiber bundle, dimM = n, dim E = m + n. In the following we denote by U ⊂ M a generic open

subset. For 0 ≤ l ≤ k ≤ ∞, let πk : Jkπ −→ M be the bundle of k-jets of local sections of π , and πk,l : Jkπ −→ J lπ the
canonical projection. For any local section s : U −→ E of π , we denote by jks : U −→ Jkπ its kth jet prolongation. For
x ∈ U , put [s]kx := (jks)(x). Any system of adapted to π coordinates (. . . , x

i, . . . , uα, . . .) on an open subset V of E gives rise
to a system of jet coordinates on π−1k,0 (V ) ⊂ J

kπ which we denote by (. . . , xi, . . . , uα |I , . . .) or simply (. . . , xi, . . . , uαI , . . .)
if this does not lead to confusion, |I| ≤ k, where we put uαO := u

α, α = 1, . . . ,m.
Now, let k < ∞, τ0 : T0 −→ Jkπ be a vector bundle, and (. . . , xi, . . . , uαI , . . . , v

a, . . .) adapted to τ0, local coordinates
on T0. A (possibly non-linear) differential operator of order ≤ k ‘acting on local sections of π , with values in τ0’ (in short ‘from
π to τ0’) is a sectionΦ : Jkπ −→ T0 of τ0.
Let π ′ : E ′ −→ M be another fiber bundle and ϕ : E −→ E ′ a morphism of bundles. For any local section s : U −→ E of

π , ϕ ◦ s : U −→ E ′ is a local section of π ′. Therefore, for all 0 ≤ k ≤ ∞, ϕ induces a morphism jkϕ : Jkπ −→ Jkπ ′ of the
bundles πk and π ′k defined by (jkϕ)[s]

k
x := [ϕ ◦ s]

k
x, x ∈ U . Diagram

J lπ
jlϕ //

πl,k

��

J lπ ′

π ′l,k
��

Jkπ
jkϕ // Jkπ ′

commutes for all 0 ≤ k ≤ l ≤ ∞. jkϕ is called the kth prolongation of ϕ.
The above construction generalizes to differential operators as shown, for instance, in [20]. IfΦ is a differential operator

as above, we denote by Φ(l) its lth prolongation. Moreover, put EΦ := {θ ∈ Jkπ : Φ(θ) = 0}. EΦ is called the (system of)
PDE(s) determined byΦ . For 0 ≤ l ≤ ∞ put also E

(l)
Φ := E Φ(l) ⊂ J

k+lπ . If EΦ is locally defined by

Φa(. . . , xi, . . . , uαI , . . .) = 0, a = 1, . . . , p (4)

. . . ,Φa := Φ∗(va), . . . being local functions on Jkπ , then E
(l)
Φ is locally defined by

(DJΦa)(. . . , xi, . . . , uαI , . . .) = 0, a = 1, . . . , p, |J| ≤ l, (5)

where D(j1,...,jl) := Dj1 ◦ · · · ◦ Djl , and Dj := ∂/∂x
j
+ uαIj∂/∂u

α
I is the jth total derivative, j, j1, . . . , jl = 1, . . . ,m. E

(l)
Φ is called

the lth prolongation of the PDE EΦ . In the following we put ∂ Iα := ∂/∂u
α
I , α = 1, . . . ,m.

A local section s of π is a (local) solution of EΦ iff, by definition, im jks⊂ E Φ or, which is the same, im jk+ls⊂ E
(l)
Φ for some

l ≤ ∞. Notice that the∞th prolongation of EΦ , E
(∞)
Φ ⊂ J∞π , is an inverse limit of the sequence of maps

M EΦ
πkoo · · ·oo E

(l)
Φ

πk+l,k+l−1oo E
(l+1)
Φ

πk+l+1,k+loo · · ·oo (6)

and consists of ‘‘formal solutions’’ of EΦ , i.e., possibly non-converging Taylor series fulfilling (5) for every l.
J∞π is not a finite dimensional smooth manifold. However, it is a pro-finite dimensional smooth manifold. For an

introduction to the geometry of pro-finite dimensional smooth manifolds see [21] (see also [20] and, for a different
approaches, [22,23]). In the following we will only consider regular PDEs, i.e., PDEs EΦ such that E

(∞)
Φ ⊂ J∞π is a smooth

pro-finite dimensional submanifold in J∞π , i.e., π∞,l(E
(∞)
Φ ) ⊂ J lπ is a smooth submanifold and πl+1,l : π∞,l+1(E

(∞)
Φ ) −→

π∞,l(E
(∞)
Φ ) is a smooth bundle for all l ≥ 0.

There is a dual concept to the one of a pro-finite dimensionalmanifold, i.e., the concept of a filtered smoothmanifoldwhich
will be used in the following. We do not give here a complete definition of a filtered manifold, which would take too much
space. Rather, we will just outline it. Basically, a filtered smooth manifold is a(n equivalence class of) set(s) O together with
a sequence of embeddings of closed submanifolds

O0
� � i0,1 // O1

� � i0,1 // · · · � � // Ok−1
� � ik−1,k // Ok

� � ik,k+1 // · · · (7)

and inclusions ik : Ok ↪→ O, k ≥ 0, such that O (together with the ik’s) is a direct limit of (7). The tower of algebra
epimorphisms

C∞(O0) · · ·oo C∞(Ok)
i∗k−1,koo C∞(Ok+1)

i∗k,k+1oo · · ·oo (8)

is associated to sequence (7). We define C∞(O) to be the inverse limit of the tower (8). Every element in C∞(O) is naturally
a function on O . Thus, we interpret C∞(O) as the algebra of smooth functions on O . Clearly, there are canonical ‘‘restriction
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homomorphisms’’ i∗k : C
∞(O) −→ C∞(Ok), k ≥ 0. Differential calculus over O may then be introduced as differential

calculus over C∞(O) [21] respecting the sequence (8). Since the main constructions (smooth maps, vector fields, differential
forms, jets and differential operators, etc.) of such calculus and their properties do not look very different from the analogous
ones in finite-dimensional differential geometrywewill not insist on this. Just as an instance,we report here the definition of
a differential formω onO: it is just a sequence of differential formsωk ∈ Λ(Ok), k ≥ 0, such that i∗k−1,k(ωk) = ωk−1 for all k.
Finally, notice that, allowing for the Ok’s in (7) to be pro-finite dimensional manifolds, we obtain a more general

object than both a pro-finite dimensional and a filtered manifold. We will generically refer to such an object as an infinite
dimensional smooth manifold or even just a smooth manifold if this does not lead to confusion. Our main example of such a
kind of infinite dimensional manifold will be presented in the beginning of Section 5.

3. The Cartan distribution and the Lagrangian formalism

Let π : E −→ M and Φ be as in the previous section. In the following we will simply write Jk for Jkπ , k ≤ ∞, and E

for E
(∞)
Φ . E will be referred to simply as a PDE (imposed on sections of π ) if this does not lead to confusion. Notice that for

Φ = 0, E = E
(∞)
Φ = J∞.

Recall that J∞ is canonically endowed with the Cartan distribution [19]
C : J∞ 3 θ 7−→ C θ ⊂ Tθ J∞

which is locally spanned by total derivatives, Di, i = 1, . . . , n. C is a flat connection in π∞ which we call the Cartan
connection. Moreover, it restricts to E in the sense that Cθ = TθE for any θ ∈ E . Therefore, the (infinite prolongation of) any
PDE is naturally endowed with an involutive distribution whose n-dimensional integral submanifolds are of the form j∞s,
with s : U −→ E a (local) solution of EΦ . In the following we will identify the space of n-dimensional integral submanifolds
of C and the space of local solutions of EΦ .
Let π ′ : E ′ −→ M be another bundle and E ′ ⊂ J∞π ′ (the infinite prolongation of) a PDE imposed on sections of π ′. A

smoothmap F : E ′ −→ E is called amorphism of PDEs iff it respects the Cartan distributions, i.e., (dθ ′F)(Cθ ′) = CF(θ ′) for any
θ ′ ∈ E ′. The idea of non-local variables in the theory of PDEs can be formalized geometrically by special morphisms of PDEs
called coverings [24] (see also [25]). A covering is a morphism ψ : Ê −→ E of PDEs which is surjective and submersive. A
coveringψ : Ê −→ E clearly sends local solutions of Ê to local solutions of E . If there exists a coveringψ : Ê −→ E of PDEs
we also say that the PDE Ê covers the PDE E (via ψ). Fiber coordinates on the total space Ê of a covering ψ : Ê −→ E are
naturally interpreted as non-local variables on E . Also notice that given a solution s of the PDE E , a covering ψ : Ê −→ E

determines a whole family of solutions of Ê ‘‘projecting onto s via ψ ’’, so that ψ may be interpreted, to some extent, as a
fibration over the space of solutions of E . Many relevant constructions in the theory of PDEs (including Lax pairs, Bäcklund
transformations, etc.) are duly formalized in geometrical terms by using coverings.
The Cartan distribution and the fibered structure π∞ : J∞ −→ M of J∞ determine a splitting of the tangent bundle

TJ∞ −→ J∞ into the Cartan or horizontal part C and the vertical (with respect to π∞) part. Accordingly, the de Rham com-
plex of J∞, (Λ(J∞), d), splits in the variational bi-complex (C •Λ⊗Λ, d, dV ), (here and in what follows tensor products will
be always over C∞(J∞) if not otherwise specified), where C •Λ andΛ• are the algebras of Cartan forms and horizontal forms
respectively. dV and d are the vertical and the horizontal de Rham differential, respectively (see, for instance, [19] for details).
The variational bicomplex allows a cohomological formulation of the calculus of variations [1,19,21,26]. In the second part
of this section we briefly review it.
In the following we will understand isomorphismΛ(J∞)' C •Λ⊗Λ. The complex

0 // C∞(J∞) d //
Λ1

d // · · · //
Λq

d //
Λq+1

d // · · ·

is called the horizontal de Rham complex. An element L ∈ Λn is naturally interpreted as a Lagrangian density and its
cohomology class [L ] ∈ Hn := Hn(Λ, d) as an action functional on sections of π . The associated Euler–Lagrange equations
can then be obtained as follows.
Consider the complex

0 // CΛ1
d // CΛ1 ⊗Λ1

d // · · · // CΛ1 ⊗Λq
d // · · · , (9)

and the C∞(J∞)-submodule ~Ď
⊂ CΛ1 ⊗ Λn generated by elements in CΛ1 ⊗ Λn ∩ Λ(J1π). ~Ď is locally spanned by

elements (duα − uαi dx
i)⊗ dnx, where we put dnx := dx1 · · · dxn.

Theorem 1 ([1]). Complex (9) is acyclic in the qth term, for q 6= n. Moreover, for any ω ∈ CΛ1 ⊗ Λn there exists a
unique element Eω ∈ ~Ď

⊂ CΛ1 ⊗ Λn such that Eω − ω = dϑ for some ϑ ∈ CΛ1 ⊗ Λn−1 and the correspondence
Hn(CΛ1 ⊗ Λ, d) 3 [ω] 7−→ Eω ∈ ~Ď is a vector space isomorphism. In particular, for ω = dVL , L ∈ Λn being a Lagrangian
density locally given byL = Ldnx, L a local function on C∞(J∞), E(L ) := Eω is locally given by E(L ) = δL

δuα (du
α
−uαi dx

i)⊗dnx
where δL

δuα := (−)
|I|DI∂ IαL are the Euler–Lagrange derivatives of L.

In viewof the above theorem, E(L ) does not depend on the choice ofL in a cohomology class [L ] ∈ Hn and it is naturally
interpreted as the left hand side of the Euler–Lagrange (EL) equations determined byL . In the following we will denote by
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EEL ⊂ J∞ the (infinite prolongation of the) EL equations determined by a Lagrangian density. Any ϑ ∈ CΛ1 ⊗ Λn−1 such
that

E(L )− dVL = dϑ (10)
will be called a Legendre form [10]. Eq. (10) may be interpreted as the first variation formula for the Lagrangian densityL . In
this respect, the existence of a global Legendre form was first discussed in [27].

Remark 1. Notice that, if ϑ ∈ CΛ1 ⊗ Λn−1 is a Legendre form for a Lagrangian density L ∈ Λn, then ϑ + dV% is a
Legendre form for the d-cohomologous Lagrangian density L + d%, % ∈ Λn−1, which determines the same EL equations
asL . Moreover, any two Legendre forms ϑ, ϑ ′ for the same Lagrangian density differ by a d-closed, and, therefore, d-exact
form, i.e., ϑ − ϑ ′ = dλ, for some λ ∈ CΛ1 ⊗Λn−2.

Remark 2. Finally, notice that complex (9) restricts to holonomic sections j∞s of π∞, s being a local sections of π , in the
sense that, for any such s, there is a (unique) complex

0 // CΛ1|j
d|j // CΛ1 ⊗Λ1|j

d|j // · · · // CΛ1 ⊗Λq|j
d|j // · · · , (11)

where j := j∞s, such that the restrictionmap CΛ1⊗Λ −→ CΛ1⊗Λ|j ' CΛ1|j⊗C∞(M)Λ(M) is a morphism of complexes.
Moreover, complex (11) is acyclic in the qth term and the correspondence defined byHn(CΛ1⊗Λn|j, d|j) 3 [ω|j] 7−→ Eω|j ∈
~Ď
|j, ω ∈ CΛ1 ⊗Λn, is a vector space isomorphism.

4. Partial differential Hamiltonian systems

In [18] we defined a PD analogue of the concept of Hamiltonian system on an abstract symplectic manifold which we
called a PD-Hamiltonian system. In this section we briefly review those definitions and results in [18] which we will need in
the following.
Letα : P −→ M be a fiber bundle,A := C∞(P), x1, . . . , xn coordinates onM, dimM = n, and q1, . . . , qm fiber coordinates

on P, dim P = n+m. Denote by C(P, α) the space of (Ehresmann) connections in α. C(P, α) identifies canonically with the
space of sections of the first jet bundle α1,0 : J1α −→ P and in the following we will understand such identification. In
particular, for ∇ ∈ C(P, α), we put . . . ,∇Ai := ∇

∗(qAi ), . . . , q
A
i , . . . being jet coordinates on J

1α.
Denote byΛ1 =

⊕
kΛ

k
1 ⊂ Λ(P) the differential (graded) ideal inΛ(P)made of differential forms on P vanishing when

pulled-back to fibers of α, byΛp =
⊕
kΛ

k
p its p-th exterior power, p ≥ 0, and by VΛ(P, α) =

⊕
k VΛ

k(P, α) the quotient
differential algebraΛ(P)/Λ1, dV : VΛ(P, α) −→ VΛ(P, α) being its (quotient) differential.

Remark 3. For instance, if α = π∞ : P = J∞ −→ M , then, using the Cartan connection C ∈ C(J∞, π∞), one can
canonically identify VΛ1(J∞, π∞) with CΛ1 and dV with the vertical de Rham differential. More generally, for any k ≥ 0,
VΛ1(Jk, πk)⊗C∞(Jkπ) C

∞(Jk+1π) identifies canonically with the C∞(Jk+1π)-module CΛ1 ∩ Λ(Jk+1π) of (k + 1)th order
Cartan forms.

Now, for any k ≥ 0, put Ωk(P, α) := Λk+n−1n−1 and Ωk(P, α) := Ωk(P, α)/Λk+n−1n . It is easy to show that Ωk(P, α) '
VΛk(P, α)⊗AΛn−1n−1. An element ω ∈ Ω

k(P, α) determines an affine map

C(P, α) 3 ∇ 7−→ i∇ω := p∇(ω) ∈ VΛk−1(P, α)⊗AΛnn, (12)
where

p∇ : Λ(P) −→ VΛk−1(P, α)⊗AΛnn
is the canonical projection determined by the connection ∇ . The linear part of the affine map (12) naturally identify with
the class ω + Λk+n−1n in Ωk(P, α) (see [18] for details). Notice that, since (12) is affine, it is actually point-wise and,
therefore, can be restricted to maps. Namely, if F : P1 −→ P is a smooth map, � ∈ F ◦(C(P, α)), then an element
i�F ◦(ω) ∈ F ◦(VΛk−1(P, α)⊗AΛnn) is defined in an obvious way.

Definition 1. A PD-Hamiltonian system on the fiber bundle α : P −→ M is an element ω ∈ Ω2(P, α) such that dω = 0. The
first order PDEs

ij1σω|σ = 0

on (local) sections σ of α are called the PD-Hamilton equations determined by ω. Geometrically, they correspond to the
submanifold

E (0)ω :=
{
θ ∈ J1α : iθωp = 0, p = α1,0(θ)

}
⊂ J1α.

Let ω be a PD-Hamiltonian system on the bundle α : P −→ M and consider the subset P1 := α1,0(E
(0)
ω ) ⊂ P . In the

following we will assume P1 ⊂ P to be a submanifold and α1 := α|P1 : P1 −→ M to be a subbundle of α. α1 is called the
first constraint subbundle of ω.
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As an example, consider the following canonical constructions. Let α : P −→ M be a fiber bundle and . . . , qA, . . . fiber
coordinates on P . Ω1(P, α) (resp. Ω1(P, α)) is the C∞(P)-module of sections of a vector bundle µ0α : Mα −→ P (resp.
τ
Ď
0α : J

Ďα −→ P), called themultimomentum bundle of α (resp. the reduced multimomentum bundle of α). Recall that there
is a tautological element Θα ∈ Ω1(Mα,µα) (resp. Θα ∈ Ω

1(JĎα, τ Ďα)), where µα := α ◦ µ0α (resp. τ Ďα := α ◦ τ
Ď
0α),

which in standard coordinates . . . , xi, . . . , qA, . . . , piA, . . . , p onMα (resp. . . . , xi, . . . , qA, . . . , piA, . . . on J
Ďα) is given by

Θα = piAdq
Adn−1xi − pdnx (resp.Θα = piAd

VqA ⊗ dn−1xi),

where dn−1xi := i∂/∂xid
nx [28]. dΘα is a PD-Hamiltonian system on µα locally given by

dΘα = dpiAdq
Adn−1xi − dpdnx.

Notice that dΘα determines empty PD-Hamilton equations.

Example 1. A PD-Hamiltonian system is canonically determined, on the fiber bundle α : P −→ M , by the following data: a
connection∇ inα and a differential formL ∈ Λnn. Let . . . , q

A, . . . be fiber coordinates in P and . . . , xi, . . . , qA, . . . , piA, . . . , p
(resp. . . . , xi, . . . , qA, . . . , piA, . . .) standard coordinates in Mα (resp. JĎα). Let L be locally given by L = Ldnx, L a local
function on P . Obviously,∇ determines a sectionΣ∇ : JĎα −→ Mα of the projectionMα −→ JĎα, which in local standard
coordinates reads Σ∗

∇
(p) = piA∇

A
i . Put Θ∇ := Σ∗

∇
(Θα). In local standard coordinates, Θ∇ = piAdq

Adn−1xi − piA∇
A
i d
nx. Put

also,

ΘL ,∇ := Θ∇ + (τ
Ď
0α)
∗(L ).

Locally,ΘL ,∇ = piAdq
Adn−1xi − EL ,∇dnx, where EL ,∇ := piA∇

A
i − L. Finally, consider ωL ,∇ := dΘL ,∇ . Locally,

ωL ,∇ = dpiAdq
Adn−1xi − dEL ,∇dnx.

ωL ,∇ is the PD-Hamiltonian system on τ Ďα determined by ∇ andL . The associated PD-Hamilton equations read locallypiA,i =
∂

∂qA
L− piB

∂

∂qA
∇
B
i

qA,i = ∇Ai ,

where we denoted by ‘‘•,i’’ the partial derivative of ‘‘•’’ with respect to the ith independent variable xi, i = 1, . . . , n.

We conclude this section by discussing two examples of morphisms of PDEs coming from the theory of PD-Hamiltonian
systems.

Example 2. Let α : P −→ M be a fiber bundle, ω a PD-Hamiltonian system on it, α′ : P ′ −→ M another fiber bundle,
β : P ′ −→ P a surjective, submersive, fiber bundle morphism, and ω′ := β∗(ω). ω′ is a PD-Hamiltonian system on α′.
Denote by E ⊂ J∞α (resp. E ′ ⊂ J∞α′) the∞th prolongation of the PD-Hamilton equations determined by ω (resp. ω′).
We want to compare E and E ′. In order to do this, notice, preliminarily, that J∞α′ covers J∞α via j∞β : J∞α′ −→ J∞α.
Moreover, it can be easily checked that a local section σ ′ of α′ is a solution of E ′ iff the section β ◦ σ ′ of α is a solution of E .
We now prove the formal version of this fact.

Proposition 2. (j∞β)(E ′) ⊂ E and j∞β : E ′ −→ E is a covering.

Proof. Consider j1β : J1α′ −→ J1α. It is easy to check that E (0)
ω′
= (j1β)−1(E (0)ω ) ⊂ J1α′. Similarly, E ′ = (j∞β)−1(E ) ⊂ J∞α′.

In particular, j∞β : E ′ −→ E is the ‘‘restriction’’ of j∞β : J∞α′ −→ J∞α to E ⊂ J∞α and, therefore, is a covering. �

Example 3. Let α : P −→ M, ω and E ⊂ J∞α be as in the above example, and α1 : P1 −→ M the first constraint
subbundle of ω. Put ω1 := i∗P1(ω). ω1 is a PD-Hamiltonian system on α1. Denote by E1 ⊂ J∞α1 the∞th prolongation of the
PD-Hamilton equations determined byω1. Wewant to compare E and E1. In order to do this, notice, preliminarily, that J∞α1
may be understood as a submanifold in J∞α via j∞iP1 : J

∞α1 ↪→ J∞α. Moreover, it can be easily checked that any solution
of E is also a solution of E1 (while the vice-versa is generically untrue). We now prove the formal version of this fact.

Proposition 3. E ⊂ E1.

Proof. Recall that the projection α1,0 : J1α −→ P sends E (0)ω to P1. As a consequence, E ⊂ J∞α1. Moreover, by definition of
∞th prolongation of a PDE, it is easy to check that

E = E ∩ J∞α1
=
{
θ = [σ ]∞x ∈ J

∞α1 : [ij1σω|σ ]
∞

x = 0, x ∈ M
}

⊂
{
θ = [σ ]∞x ∈ J

∞α1 : [ij1σω1|σ ]
∞

x = 0, x ∈ M
}

= E1. �
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5. Lagrangian–Hamiltonian formalism

In this section we show that the Skinner–Rusk mixed Lagrangian–Hamiltonian formalism for first order mechan-
ics [13–15] (see Section 1) is straightforwardly generalized to higher order Lagrangian field theories.
First of all, let us present our main example of a filtered manifold. Let π : E −→ M be a fiber bundle. Consider the

infinite jet bundle π∞ : J∞ −→ M for whichΛqq = Λq, q ≥ 0. Moreover, the C∞(J∞)-moduleΩ1(J∞, π∞) ' CΛ1⊗Λn−1

is canonically filtered by vector subspaces Wk := CΛ1 ⊗ Λn−1 ∩ Λ(Jk+1π), k ≥ 0. Denote by Ω1k ⊂ Ω1(J∞, π∞) the
C∞(J∞)-submodule generated byWk, k ≥ 0. Then, for all k,Ω1k is canonically isomorphic to C

∞(J∞)⊗C∞(Jk+1)Wk and

Ω10 ⊂ Ω
1
1 ⊂ · · · ⊂ Ω

1
k ⊂ Ω

1
k+1 ⊂ · · · ⊂ Ω

1(J∞, π∞), (13)

is a sequence of C∞(J∞)-submodules. Notice that, for any k,Ω1k is the module of sections of a finite-dimensional vector
bundle JĎk −→ J∞. Moreover, the inclusions (13) determine inclusions

JĎ0 ⊂ J
Ď
1 ⊂ · · · ⊂ J

Ď
k ⊂ J

Ď
k+1 ⊂ · · ·

of vector bundles. JĎ :=
⋃
k J

Ď
k is then an infinite dimensional (filtered) manifold and the canonical projection τ

Ď
0 :

JĎ −→ J∞ an infinite dimensional vector bundle over J∞ whose module of sections identifies naturally with Ω1(J∞, π∞).
We conclude that τ Ď0 : J

Ď
−→ J∞ is naturally interpreted as the reduced multimomentum bundle of π∞. Denote by

. . . , xi, . . . , uαI , . . . , p
I.i
α , . . . standard coordinates on J

Ď. We will also consider the bundle structures JĎk −→ M, k ≥ 0,
and τ Ď := π∞ ◦ τ

Ď
0 : J

Ď
−→ M .

In the following we denote by U ′ ⊂ J∞ a generic open subset. Notice that any (local) element ϑ ∈ CΛ1 ⊗ Λn−1 =

Ω1(J∞, π∞), in particular a (local) Legendre form, is naturally interpreted as a section ϑ : U ′ −→ JĎ of τ Ď0 . Put then
. . . , ϑ I.iα := ϑ

∗(pI.iα ), . . .which are local functions on J
∞ such that ϑ = ϑ I.iα (du

α
I − u

α
Iidx

i)⊗ dn−1xi. It follows that, locally,

dϑ = −(Diϑ I.iα + δ
I
Jiϑ
J.i
α )(du

α
I − u

α
Iidx

i)⊗ dnx ∈ CΛ1 ⊗Λn,

where δIK = 0 if I 6= K , while δ
I
K = 1 if I = K .

Now, in Example 1, put α = π∞ : P = J∞ −→ M and ∇ = C , the Cartan connection in π∞. L ∈ Λnn = Λn is then a
Lagrangian density inπ . PutΣ := ΣC ,ΘL := ΘL ,C andωL := ωL ,C .ωL is a PD-Hamiltonian system on τ Ď : JĎ −→ M
canonically determined byL . Locally,

ωL = dpI.iα du
α
I d
n−1xi − dEL dnx,

where EL := pI.iα u
α
Ii − L. Let σ : U −→ JĎ be a local section of τ Ď, and j := τ Ď0 ◦ σ : U −→ J∞. Put . . . , σ αI := σ

∗(uαI ) =
j∗(uαI ), . . . , σ

I.i
α := σ

∗(pI.iα ), . . .which are local functions onM . Then, locally,

ij1σωL |σ = [(−σ
I.i
α ,i − δ

I
Jiσ
J.i
α + ∂

I
αL ◦ j)d

VuIα|σ + (σ
α
I ,i − σ

α
Ii )d

VpI.iα |σ ] ⊗ d
nx,

and the PD-Hamilton equations determined by ωL read locally{
pI.iα ,i = ∂

I
αL− δ

I
Jip
J.i
α

uαI ,i = u
α
Ii .

Wecall such equations the Euler–Lagrange–Hamilton (ELH) equations determined by the Lagrangian densityL . Notice that they
are first order PDEs (with an infinite number of dependent variables). Denote by EELH ⊂ J∞τ Ď their infinite prolongation.
In the following theorem we characterize solutions of EELH. As a byproduct, we derive the relationship between the ELH
equations and the EL equations.

Theorem 4. A local section σ : U −→ JĎ of τ Ď is a solution of the ELH equations determined by the Lagrangian density L iff it
is locally of the form σ = ϑ ◦ j∞s where (1) s : U −→ E is a solution of the EL equations EEL and (2) ϑ : U ′ −→ JĎ is a Legendre
form for L .

Proof. Let σ : U −→ JĎ be a local section of τ Ď. First of all, let σ be of the form σ = ϑ ◦ jwhere (1) j : U −→ J∞ is a local
section of π∞ and (2) ϑ : U ′ −→ JĎ is a local section of τ Ď0 : J

Ď
−→ J∞. Then,

σ I.iα ,i = Diϑ
I.i
α ◦ j.

Therefore, locally,

ij1σωL |σ =
[
[(−Diϑ I.iα − δ

I
Jiϑ
J.i
α + ∂

I
αL) ◦ j]d

VuIα|j + (j
α
I ,i − j

α
Ii )d

VpI.iα |σ
]
⊗ dnx

= (dϑ + dVL )|j + (jαI ,i − j
α
Ii )d

VpI.iα |σ ⊗ d
nx,
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where . . . , jαI := j
∗(uαI ), . . . and they are local functions on M . Thus, if ϑ is a Legendre form and j = j∞s for some local

solution s : U −→ E of the EL equations then, in particular, jαI ,i = j
α
Ii , α = 1, . . . ,m, i = 1, . . . , n, and

ij1σωL |σ = (dϑ + dVL )|j + (jαI ,i − j
α
Ii )d

VpI.iα |σ ⊗ d
nx = E(L )|j = 0.

On the other hand, let σ : U −→ JĎ be a local section of τ Ď and j := τ
Ď
0 ◦ σ : U −→ J∞. Locally, there always exists a

section ϑ : U ′ −→ JĎ of τ Ď0 , such that σ = ϑ ◦ j. Notice, preliminarily, that ϑ is not uniquely determined by σ except for its
restriction to im j. If σ is a solution of the ELH equations then, locally,

0 = ij1σωL |σ = (dϑ + dVL )|j + (jαI ,i − j
α
Ii )d

VpI.iα |σ ⊗ d
nx.

Since (dVpI.iα )|σ ⊗ d
nx and (dϑ + dVL )|j are linearly independent, it follows that{

(dϑ + dVL )|j = 0
jαI ,i = j

α
Ii .

In particular, j = j∞s, where s = π∞,0 ◦ j.
Now, let ϑ0 be a Legendre form forL . Then dVL = E(L )− dϑ0 and, therefore, (dϑ − dϑ0 + E(L ))|j = 0. Recall that d

restricts to j = j∞s (Remark 2). Thus,

d|j(ϑ − ϑ0)|j = E(L )|j.

In particular, E(L )|j is d|j-exact. In view of Remark 2, this is only possible if E(L )|j = 0, i.e., s is a solution of the EL equations.
We conclude that

d|j(ϑ − ϑ0)|j = 0,

i.e., (ϑ − ϑ0)|j is d|j-closed. Again in view of Remark 2, this shows that, locally,

(ϑ − ϑ0)|j = d|jν|j = dν|j

for some ν ∈ CΛ1 ⊗Λn−2. In particular, we can put ϑ = ϑ0 + dν and, therefore, ϑ is a Legendre form forL as well. �

We now prove a formal version of the above theorem. Put p := τ Ď
∞,0 ◦ τ

Ď
0 : J

∞τ Ď −→ J∞.

Theorem 5. p(EELH) ⊂ EEL and p : EELH −→ EEL is a covering of PDEs.

Proof. In J∞τ Ď consider the submanifold EL made of∞th jets of (local) sections σ : U −→ JĎ of the form σ = ϑ ◦ j∞s,
where s : U −→ E is a local section of π , and ϑ : U ′ −→ JĎ is a local Legendre form. It can be easily checked that EL is
locally defined by{

pI.iα |Ki + δ
I
Jip
J.i
α |K = DK (∂

I
αL)− δ

I
ODK

δL
δuα

uαI |K = u
α
IK .

(14)

Clearly, the Cartan distribution restricts to EL and, therefore, EL can be interpreted as a PDE. Moreover, it is easily seen from
(14) that EL covers J∞ via p. Denote by

D′j =
∂

∂xj
+ uαI |Jj

∂

∂uαI |J
+ pI.iα |Jj

∂

∂pI.iα |J

the jth total derivative on J∞τ Ď, j = 1, . . . , n. EELH is locally defined by{
pI.iα |Ki = D

′

K (∂
I
αL)− δ

I
Jip
J.i
α |K

uαI |Ki = u
α
Ii |K ,

(15)

which is equivalent to{
pI.iα |Ki = DK (∂

I
αL)− δ

I
Jip
J.i
α |K

uαI |K = u
α
IK .

Moreover, on EELH

(−)|I|pI.iα |KIi = DK
δL
δuα
− (−)|I|δIJip

J.i
α |KI = DK

δL
δuα
+ (−)|I|pI.iα |KIi,

and, therefore, DK δL
δuα = 0, α = 1, . . . ,m. It then follows from (14), that EELH = EL ∩ p−1(EEL). In particular, p : EELH −→ EEL

is the ‘‘restriction’’ of p : EL −→ J∞ to EEL ⊂ J∞ and, therefore, is a covering. �
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6. Natural transformations of the Euler–Lagrange–Hamilton equations

Properties of Legendre forms discussed in Remark 1 correspond to specific properties of the ELH equations which we
discuss in this section.
First of all, notice that the ELH equations are canonically associated to a Lagrangian density. But, howdo the ELH equations

change when changing the Lagrangian density into a d-cohomology class? In particular, does an action functional uniquely
determine a system of ELH equations or not? In order to answer these questions consider ϑ ∈ CΛ1 ⊗Λn−1. ϑ determines
an automorphism Ψϑ : JĎ −→ JĎ of the fiber bundle τ Ď0 via

Ψϑ (P) := P − ϑθ , P ∈ JĎ, θ = τ Ď0 (P) ∈ J
∞.

In particular, τ Ď0 ◦ Ψϑ = τ
Ď
0 . Clearly, Ψ

−1
ϑ = Ψ−ϑ .

Lemma 6. Ψ ∗ϑ (ωL ) = ωL − τ
Ď
0
∗(dϑ).

Proof. Compute,

Ψ ∗ϑ (ωL ) = Ψ ∗ϑ (dΘL )

= dΨ ∗ϑ (ΘL )

= d[(Ψ ∗ϑ ◦Σ
∗)(Θ)+ (Ψ ∗ϑ ◦ τ

Ď
0
∗)(L )]

= d[(Ψ ∗ϑ ◦Σ
∗)(Θ)+ (τ

Ď
0 ◦ Ψϑ )

∗(L )]

= d[(Ψ ∗ϑ ◦Σ
∗)(Θ)+ τ

Ď
0
∗(L )].

Now, since, locally, . . . ,Ψ ∗ϑ (p
I.i
α ) = p

I.i
α − ϑ

I.i
α , . . . , we have

(Ψ ∗ϑ ◦Σ
∗)(pI.iα ) = p

I.i
α − ϑ

I.i
α ,

(Ψ ∗ϑ ◦Σ
∗)(p) = (pI.iα − ϑ

I.i
α )u

α
Ii .

Thus, locally

(Ψ ∗ϑ ◦Σ
∗)(Θ) = (pI.iα − ϑ

I.i
α )du

α
I d
n−1xi − (pI.iα − ϑ

I.i
α )u

α
Iid
nx

= Σ∗(Θ)− τ
Ď
0
∗(ϑ).

We conclude that

Ψ ∗ϑ (ωL ) = d[(Ψ ∗ϑ ◦Σ
∗)(Θ)+ τ

Ď
0
∗(L )]

= d[Σ∗(Θ)− τ Ď0
∗(ϑ)+ τ

Ď
0
∗(L )]

= ωL − τ
Ď
0
∗(dϑ). �

Theorem 7. Let L ′ = L + d%, % ∈ Λn−1, be another Lagrangian density (thus, L ′ determines the same EL equations as L ).
Then Ψ ∗dV %(ωL ) = ωL ′ .

Proof. Notice, preliminarily, that

τ
Ď
0
∗(ddV%) = τ Ď0

∗(ddV%)

= −τ
Ď
0
∗(dVd%)

= −τ
Ď
0
∗(dd%)

= −dτ Ď0
∗(d%).

Therefore, in view of the above lemma,

Ψ ∗dV %(ωL ) = ωL − τ
Ď
0
∗(ddV%)

= d[Σ∗(Θ)+ τ Ď0
∗(L )] + dτ Ď0

∗(d%)

= d[Σ∗(Θ)+ τ Ď0
∗(L + d%)]

= dΘL ′

= ωL ′ . �

Corollary 8. An action [L ] ∈ Hn,L ∈ Λn, uniquely determines a system of ELH equations, modulo isomorphisms of PD-
Hamiltonian systems.
We conclude that the ELH equations are basically determined by the sole action functional and not a specific Lagrangian

density.
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Theorem 9. Let ϑ ∈ CΛ1 ⊗Λn−1 be d-closed, hence d-exact. Then, for every Lagrangian densityL ∈ Λn,Ψϑ is a symmetry of
the ELH equations determined byL in the sense that j∞Ψϑ : J∞τ Ď −→ J∞τ Ď preserves EELH.

Proof. By definition of infinite prolongations of a PDE and infinite prolongation of a morphism of bundles, it is enough to
prove that j1Ψϑ : J1τ Ď −→ J1τ Ď preserves E (0)ELH := E (0)ωL

⊂ J1τ Ď. Notice, preliminarily, that, in view of the proof of Theorem4,
we have

(j1τ
Ď
0 )(E

(0)
ELH) ⊂ im C ⊂ J1π∞.

Now, let c ∈ E
(0)
ELH, P := τ

Ď
1,0(c) and ξ ∈ TP J

Ď be a tangent vector, vertical with respect to τ Ď. Consider also c ′ := (j1Ψϑ )(c),
P ′ := Ψϑ (P) = τ

Ď
1,0(c

′) and ξ ′ := dΨϑ (ξ). In particular, ξ ′ ∈ TP ′ JĎ is vertical with respect to τ Ď as well. Let us prove that
c ′ ∈ E

(0)
ELH. In view of Lemma 6,

Ψ ∗ϑ (ωL ) = ωL − τ
Ď
0
∗(dϑ) = ωL − τ

Ď
0
∗(dVϑ).

Compute

iξ ′ ic′(ωL )P ′ = iξ icΨ ∗ϑ (ωL )P = iξ ic(ωL )P − iξ ic[τ
Ď
0
∗(dVϑ)]P = −iξ ′′ iCθ

(dVϑ)θ = 0,

where θ = τ
Ď
0 (P) ∈ J

∞ and ξ ′′ = (dτ Ď0 )(ξ) ∈ Tθ J
∞ is a tangent vector, vertical with respect to π∞. It follows from the

arbitrariness of ξ ′, that ic′(ωL )P ′ = 0. �

7. Hamiltonian formalism

In this section we present our proposal of an Hamiltonian formalism for higher order Lagrangian field theories. Such
proposal is free from ambiguities in that it depends only on the choice of a Lagrangian density and its order. Moreover,
d-cohomologous Lagrangians of the same order determine equivalent ‘‘Hamiltonian theories’’.
First of all, we define a ‘‘finite dimensional version’’ of the ELH equations (see also [17]). In order to do this, notice that,

in view of Remark 3, for all k ≥ 0,Wk is canonically isomorphic to the C∞(Jk+1)-module of sections of the induced bundle
π◦k+1,k(J

Ďπk) −→ Jk+1. We conclude that JĎk −→ J∞ is canonically isomorphic to the pull-back bundle π◦
∞,k(J

Ďπk) −→

J∞, k ≥ 0. Notice that the coordinates . . . , pI.iα , . . . , |I| ≤ k, on J
Ď
k identify with the pull-backs of the corresponding natural

coordinates on JĎπk which we again denote by . . . , pI.iα , . . . .
Now, letL ∈ Λn be a Lagrangian density of order l+ 1, i.e.,L ∈ Λn ∩Λ(J l+1). Let ω′l be the pull-back of ωL onto J

Ď
l . ω

′

l
is a PD-Hamiltonian system on JĎl −→ M , and it is locally given by

ω′l =
∑
|I|≤l

dpI.iα du
α
I d
n−1xi − dEldnx,

where El =
∑
|I|≤l p

I.i
α u

α
Ii − L is the restriction of EL to JĎl . Notice that ω

′

l is also the pull-back via J
Ď
l −→ π◦l+1,l(J

Ďπl)

of a (unique) PD-Hamiltonian system ωl on π◦l+1,l(J
Ďπl) −→ M . ωl is locally given by the same formula as ω′l and it is a

constrained PD-Hamiltonian system, i.e., its first constraint bundleP −→ M is a proper subbundle of π◦l+1,l(J
Ďπl) −→ M .

Let us compute it. Let P ∈ π◦l+1,l(J
Ďπl) and θ := π◦l+1,l(τ

Ď
0πl)(P) ∈ J

l+1. Then P ∈ P iff there exists c in the first jet bundle of
π◦l+1,l(J

Ďπl) −→ M such that ic(ωl)P = 0, i.e., iff there exist real numbers . . . , caI .i, . . . , c
I.i
α
.j, . . . , |I| ≤ l, such that{

c I.iα .i = (∂
I
αL)(θ)− δ

I
Ji P
J.i
α , |I| ≤ l+ 1

cαJ .i = P
α
Ji , |J| ≤ l

where we put c I.iα .i = 0 for |I| = l + 1, and . . . , P
α
Ji := u

α
Ji (P), . . . , P

K .i
α := p

K .i
α (P), . . . , |J|, |K | ≤ l, α = 1, . . . ,m. Thus, for

|I| = l+ 1, P should be a solution of the system

∂ IαL− δ
I
Jip
J.i
α = 0, |I| = l+ 1. (16)

Eq. (16) defineP locally.

Remark 4. P is a submanifold of π◦l+1,l(J
Ďπl) of the same dimension as JĎπl, and P −→ J l+1 an affine subbundle of

π◦l+1,l(J
Ďπl) −→ J l+1.

LetP0 be the image ofP under the projection π◦l+1,l(J
Ďπl) −→ JĎπl.

Assumption 1. We assumeP0 to be a submanifold of JĎπl and τ Ďπl|P0 : P0 −→ M to be a smooth subbundle of τ Ďπl. We
also assume that the projection q : P −→ P0 is a smooth submersion with connected fibers.

Notice that, as usual, all the above regularity conditions are true if we restrict all the involved maps to suitable open
subsets.
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The following commutative diagram summarizes the above described picture:

JĎ

��

JĎl
? _oo

zzuuuuuuuuuuuuuuuuu

��
J∞

��

π◦l+1,l(J
Ďπl)

zzttttttttttttttt

��

P? _oo

q

��
J l+1

��

JĎπl

τĎπl

���������������������������
τ
Ď
0 πl

yyttttttttttttttttt
P0? _oo

yyttttttttttttttttttttttttttttttttttttt

J l

πl

��
M

.

Theorem 10. Under the regularity Assumption 1, there exists a unique PD-Hamiltonian system ω0 on P0 −→ M, such that
i∗P(ωl) is the pull-back of ω0 via q : P−→ P0.

Proof. Since q : P −→ P0 has connected fibers and i∗P(ω) is a closed form, it is enough to prove that iY i
∗
P(ωl) = 0 for all

vector fields Y ∈ D(P) vertical with respect to q. Let Y ∈ D(π◦l+1,l(J
Ďπl)) be vertical with respect to π◦l+1,l(J

Ďπl) −→ JĎπl,
and Y := Y |P . Then Y is locally of the form

Y =
∑
|K |=l+1

Y βK ∂
K
β |P,

for some . . . , Y βK , . . . local functions onP . Now Y ∈ D(P) iff, locally,∑
|I|=l+1

Y βK ∂
K
β ∂
I
αL|P = 0.

Compute

Y (El|P) =
∑
|K |=l+1

Y βK ∂
K
β El|P =

∑
|I|=l+1

Y αI (δ
I
Jip
J
α
.i
− ∂ IαL)|P = 0.

Thus El|P is the pull-back via q of a (unique) local function H onP0. Moreover,

iY i
∗

P(ωl) = −Y (El|P)d
nx = 0.

It follows from the arbitrariness of Y that i∗P(ωl) is the pull-back via q of the PD-Hamiltonian system ω0 on P0 −→ M
locally defined as

ω0 =
∑
|I|≤l

i∗P0
(dpI.iα du

α
I )d

n−1xi − dHdnx. �

Definition 2. ω0 is called the PD-Hamiltonian system determined by the (l + 1)th order Lagrangian density L , and the
corresponding PD-Hamilton equations are the Hamilton–de Donder–Weyl (HDW) equations determined byL .

Definition 3. A Lagrangian densityL of order l+ 1 is regular at the order l+ 1 iff the mapP −→ JĎπl has maximum rank.

The Lagrangian densityL of order l+ 1 is regular at the order l+ 1 iff the matrix

H(L)(θ) :=
∥∥(∂Kβ ∂ IαL)(θ)∥∥ (α,I)(β,K), |I|, |K | = l+ 1,

where the pairs (α, I) and (β, K) are understood as single indexes, has maximum rank at every point θ ∈ J l+1. In its turn,
this implies that P0 is an open submanifold of JĎπl and, in view of Remark 4 and Assumption 1, q : P −→ P0 is a
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diffeomorphism. In particular, ω0 is a PD-Hamiltonian system on an open subbundle of τ Ďπl locally given by

ω0 =
∑
|I|≤l

dpI.iα du
α
I d
n−1xi − dHdnx,

where, now, H is a local function on JĎπl. In this case, as expected, the HDW equations read locally
pI.iα ,i = −

∂H
∂uαI

uαI ,i =
∂H
∂pI.iα

.

Notice that the HDW equations are canonically associated to a Lagrangian density and its order and no additional structure
is required to define them. Moreover, in view of Theorem 7, two Lagrangian densities of the same order determining the
same system of EL equations, also determine equivalent HDW equations. Finally, to write down the HDW equations there
is no need of a distinguished Legendre transform. Actually, the emergence of ambiguities in all Hamiltonian formalisms for
higher order field theories proposed in the literature seems to rely on the common attempt to define first a higher order
analogue of the Legendre transform and, only thereafter, the ‘‘Hamiltonian theory’’. In the next section we present our own
point of view on the Legendre transform in higher order Lagrangian field theories.

8. The Legendre transform

Keeping the same notations as in the previous section, denote by lEELH the infinite prolongation of the PD-Hamilton
equations determined by ωl and by p′ : π◦l+1,l(J

Ďπl) −→ E the natural projection.

Proposition 11. (j∞p′)(lEELH) ⊂ EEL and j∞p′ : lEELH −→ EEL is a covering.

Proof. The proof is the finite dimensional version of the proof of Theorem 5 and will be omitted (see also [17]). �

Denote also by E P
H the infinite prolongation of the PD-Hamilton equations determined by i∗P(ωl) and by EH the infinite

prolongation of the HDW equations.

Proposition 12. (j∞q)(E P
H ) ⊂ EH and j∞q : E P

H −→ EH is a covering.

Proof. It immediately follows from Theorem 10 and Proposition 2. �

Notice that, in view of Propositions 3, 11 and 12, there is a diagram of morphisms of PDEs,

lEELH
� � //

j∞p′

��

E P
H

j∞q

��
EEL EH

, (17)

whose vertical arrows are coverings. Therefore, the inclusion lEELH ⊂ E P
H may be understood as a non local morphism of

EEL into EH . We interpret such morphism as Legendre transform according to the following

Definition 4. We call diagram (17) the Legendre transform determined by the Lagrangian densityL .

Any Legendre form of order l, ϑ : J∞ −→ JĎl −→ π◦l+1,l(J
Ďπl), determines a section j∞ϑ |EEL : EEL −→

lEELH of the
covering j∞p′ : lEELH −→ EEL and, therefore, via composition with j∞q, a concrete map EEL −→ EH . Nevertheless, among
these maps, there is no distinguished one.
We now prove that, if L is regular at the order l + 1, then EH itself covers EEL. This result should be interpreted as the

higher order analogue of the theorem stating the equivalence of EL equations and HDW equations for first order theories
with regular Lagrangian (see, for instance, [11]). Let us first prove the following

Lemma 13. If L is regular at the order l+ 1, then lEELH = E P
H .

Proof. The proof is in local coordinates. Let σ : U −→ π◦l+1,l(J
Ďπl) be a local section of π◦l+1,l(J

Ďπl) −→ M . Suppose
im σ ⊂ P . Then, locally,

∂ IαL ◦ σ − δ
I
Jjσ
J.j
α = 0, |I| = l+ 1.
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Now, ij1σωl|σ is locally given by

ij1σωl|σ =

[ ∑
|I|≤l+1

(−σ I.iα ,i − δ
I
Jjσ
J.j
α + ∂

I
αL ◦ σ)d

VuαI +
∑
|I|≤l

(σ αI ,i − σ
α
Ii )d

VpI.iα

]∣∣∣∣∣
σ

⊗ dnx.

As already outlined, the annihilator of D(P) inΛ1(π◦l+1,l(J
Ďπl))|P is locally spanned by 1-forms

λIα := d(∂
I
αL− δ

I
Jjp
J.j
α )|P, |I| = l+ 1.

Therefore, ij1σ i
∗
P(ωl)|σ = 0 iff, locally,

ij1σωl|σ =
∑
|I|=l+1

f aI λ
I
α|σ ⊗ d

nx, (18)

for some local functions . . . , f αI , . . . on im σ , where

λIα := d
V (∂ IαL− δ

I
Jjp
J.j
α )|P =

∑
|K |≤l+1

(∂Kβ ∂
I
αL d

VuβK − δ
I
Jjd
VpJjα)|P, |I| = l+ 1.

Eq. (18) read∑
|I|≤l+1

(
−σ I.iα ,i + ∂

I
αL ◦ σ − δ

I
Jjσ
J.j
α −

∑
|K |=l+1

f βK ∂
K
β ∂
I
αL ◦ σ

)
dVuαI |σ

+

∑
|I|<l

(
σ αI,i − σ

α
Ii

)
dVpI.iα |σ +

∑
|I|=l

(
σ αI ,i − σ

α
Ii +

I[i] + 1
l+ 1

f αIi

)
dVpI.iα |σ = 0,

where I[i] is the number of times the index i appears in the multiindex I . Since the vertical forms . . . , dVuαI |σ , . . . , d
VpI.iα |σ ,

. . . are linearly independent, ij1σ i
∗
P(ωl)|σ = 0 iff, locally,

−σ I.iα ,i + ∂
I
αL ◦ σ − δ

I
Jjσ
J.j
α −

∑
|K |=l+1

f βK ∂
K
β ∂
I
αL ◦ σ = 0, |I| ≤ l+ 1

σ αI,i − σ
α
Ii = 0, |I| < l

σ αI ,i − σ
α
Ii +

I[i] + 1
l+ 1

f αIi = 0, |I| = l,

(19)

for some . . . , f αI , . . . . It follows from the third of Eqs. (19) that

f αIi = −
l+ 1
I[i] + 1

(σ αI ,i − σ
α
Ii ), |I| = l. (20)

Moreover, since im σ ⊂ P , the first equation, for |I| = l+ 1, gives

0 =
∑
|K |=l+1

f βK ∂
K
β ∂
I
αL ◦ σ =

∑
|J|=l

J[j] + 1
l+ 1

f βJj ∂
Jj
β∂
I
αL ◦ σ = −

∑
|J|=l

(
σ
β

J ,j − σ
β

Jj

)
∂
Jj
β∂
I
αL ◦ σ ,

and, in view of the regularity ofL and Eqs. (20),

σ αI ,i − σ
α
Ii = f

α
Ii = 0, |I| = l.

Substituting again into (19), we finally find that the PD-Hamilton equations ij1σ i
∗
P(ωl)|σ = 0 are locally equivalent to

equations{
pI.iα ,i = ∂

I
αL− δ

I
Jjp
J.j
σ , |I| ≤ l+ 1

uαI ,i = u
α
Ii , |I| ≤ l,

which are the PD-Hamilton equations determined by ωl. �

Now, suppose thatL is regular at the order l+ 1. Then, as already mentioned in the previous section, q : P −→ P0 is a
diffeomorphism, and q∗(ω0) = i∗P(ωl). Therefore, j∞q : E

P
H −→ E H is an isomorphism of PDEs and the Legendre transform

(17) reduces to

lEELH

j∞p′

��

E P
H

j∞q

��

˜

EEL EH

.
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Moreover, JĎπl maps to E via πl,0 ◦ τ
Ď
0πl and such map is a morphism of bundles (over M). The induced morphism

J∞τ Ď0πl −→ J∞ restricts to a morphism of PDEs, κ : E H −→ J∞, locally defined as κ∗(uαK ) = u
α
O|K , |K | ≥ 0. It is easy

to show that diagram

lEELH

j∞p′

��

E P
H

j∞q

��

˜

��
EEL

� � // J∞ EH
κoo

,

commutes, so that κ = j∞p′ ◦ (j∞q|EH )
−1. Consequently, κ(EH) ⊂ EEL and κ : EH −→ EEL is a covering. Summarizing, we

have proved the following

Theorem 14. If L is regular at the order l+ 1, then EH covers EEL.

Finally, it should be mentioned that in most cases, even if the Lagrangian density is not regular, EH covers EEL via κ and,
therefore, E P

H itself covers EEL (see the example in the next section).

9. An example: The Korteweg–de Vries action

The celebrated Korteweg–de Vries (KdV) equation

φt − 6φφx + φxxx = 0 (21)

can be derived from a variational principle as follows. Introduce the ‘‘potential’’ u by putting ux = φ. Eq. (21) becomes the
fourth order non-linear equation

utx − 6uxuxx + uxxxx = 0 (22)

for sections of the trivial bundle π : R2 × R 3 (t, x; u) 7−→ (t, x) ∈ R2. In its turn, (22) is the EL equation determined by
the action functional∫ (

u3x −
1
2
uxut +

1
2
u2xx

)
dtdx.

Choose the second order Lagrangian density

L =

(
u3x −

1
2
uxut +

1
2
u2xx

)
dtdx. (23)

Since the matrix

H(L) =

(0 0 0
0 0 0
0 0 1

)

has rank 1,L is not regular. Let t, x, u, ut , ux, p.t , p.x, . . . , pi.j, . . . be natural coordinates on JĎπ1, i, j = t, x. Then

ω1 = dp.tdudx− dp.xdudt + dpt.tdutdx− dpt.xdutdt + dpx.tduxdx− dpx.xduxdt − dEKdVdtdx

where

EKdV := p.tut + p.xux + pt.tutt + (pt.x + px.t)utx + px.xuxx − u3x +
1
2
uxut −

1
2
u2xx.

Accordingly, 1EELH reads

1EELH :



p.t ,t + p.x,x = 0

pt.t ,t + pt.x,x = −
1
2
ux

px.t ,t + px.x,x = 3u2x −
1
2
ut

u,i = ui i = t, x
ui,j = uij i, j = t, x
pt.t = 0
pt.x + px.t = 0
px.x − uxx = 0

(24)
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which clearly cover (22). Notice that the last three equations in (24) define P . Thus, P is coordinatized by
t, x, u, ut , ux, utt , utx, pt.x, px.x and

i∗P(ω1) = dp
.tdudx− dp.xdudt − dpt.x(dutdt + duxdx)− dpx.xduxdt − dEKdV|Pdtdx,

where

EKdV|P := p.tut + p.xux +
1
2
(px.x)2 − u3x +

1
2
uxut .

Accordingly, E P
H reads

E P
H :



p.t ,t + p.x,x = 0

pt.x,x = −
1
2
ux

pt.x,t + px.x,x = −3u2x +
1
2
ut

u,i = ui i = t, x
ut ,x = ux,t
ux,x = px.x.

Notice that, even if the Lagrangian density is not regular, and variables utt , utx are undetermined, E P
H covers (22). Finally,P

is defined by the sixth and the seventh equations in (24) and, therefore, it is coordinatized by t, x, u, ut , ux, pt.x, px.x. Thus,
ω0 and EHDW are given by exactly the same coordinate formulas as i∗P(ω1) and E P

H . In particular, EHDW itself covers EEL.
Finally, recall that the KdV equation is Hamiltonian, i.e., it can be presented in the form ut = A(E(H )), whereH is a top

horizontal form in the infinite jet space of the bundle R2 3 (x; u) 7−→ x ∈ R, and A is a Hamiltonian C -differential operator
(see, for instance, [19]). Since Hamiltonian PDEs play a prominent role in the theory of integrable systems, it is worth to
mention that such property (which is based on a 1+1, ‘‘covariance breaking’’ splitting of the space of independent variables
(t, x)) is directly related with the present covariant Hamiltonian formalism as shown, for instance, in [29]. There the author
provides a multisymplectic framework for the KdV equation by choosing, along the lines of [6], a ‘‘quasi-symmetric’’ Cartan
form for the Lagrangian density (23). Such Cartan form is unique for a second order theory. Therefore, the formalism of [29]
is actually equivalent to ours, in the special case of a second order theory.

10. Conclusions

In this paper, using the geometric theory of PDEs, we solved the long standing problem of finding a reasonably
natural, higher order, field theoretic analogue of Hamiltonian mechanics of Lagrangian systems. By naturality we mean
dependence on no structure other than the action functional. We achieved our goal in two steps. First we found a higher
order, field theoretic analogue of the Skinner–Rusk mixed Lagrangian–Hamiltonian formalism [13–15] and, second, we
showed that such theory projects naturally to a PD-Hamiltonian system on a smaller space. The obtained Hamiltonian
field equations enjoy the following nice properties: (1) they are first order, (2) there is a canonical, non-local embedding of
the Euler–Lagrange equations into them, and (3) for regular Lagrangian theories, they cover the Euler–Lagrange equations.
Moreover, for regular Lagrangian theories, the coordinate expressions of the obtained field equations are nothing but the
de Donder higher order field equations. This proves that our theory is truly the coordinate-free formulation of de Donder
one [2].
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