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a b s t r a c t

In an earlier paper (Feroze, 2010 [21]), the existence of new conserved quantities (Noether
invariants) for spaces of different curvatures was discussed. There, it was conjectured that
the number of new conserved quantities for spaces with anm-dimensional section of zero
curvature ism. Here, alongwith the proof of this conjecture, the form of the new conserved
quantities is also presented. For the illustration of the theorem, an example of conformally
flat spacetime is constructed which also demonstrates that the conformal Killing vectors
(CKVs), in general, are not symmetries of the Lagrangian for the geodesic equation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Noether symmetries or symmetries of Lagrangians and Lie symmetries or symmetries of the corresponding Euler–
Lagrangian equations (in general symmetries of differential equations (DEs)) play an important role in finding solutions
of DEs [1]. They can be used to reduce the order of ordinary differential equations (ODEs). In the case of partial differential
equations (PDEs) they reduce the number of independent variables [2]. They are also used for the linearization of non-linear
DEs [3–6]. Among these two type of symmetries, the Noether symmetries are more useful (for variational problems only)
in the sense that they give double reduction of DEs. From the physical point of view Noether symmetries are also important
as they yield conservation laws via Noether theorem [7].

Conservation laws or conserved quantities are extensively studied in the literature (e.g. [8–16]). Recently, it was proved
that there exist new conserved quantities only for spaces of zero curvature or having a section of zero curvature. For
completeness, wemust know the number and form of these quantities. Zero curvature sections have their own importance,
e.g., in quantum gravity, string theory [17] and foliation of spacetimes [18–20]. It has been seen that an n-dimensional space
of zero curvature admits n + 2 new conserved quantities, which are discussed in [21]. It was conjectured that spaces with
anm-dimensional section of zero curvature admitm new conserved quantities and the corresponding Noether symmetries
have the form s ∂

∂xi
; i = 1, 2, . . . ,m. Here it is proved as a theorem.

On the other hand, spacetime symmetries have their own importance in General Relativity (GR) [22]. Spacetime
symmetries, e.g. isometries or Killing vectors (KVs), conformal Killing vectors (CKVs), homothetic vectors (HVs) and curvature
collineations (CCs) are extensively used in the classification of spacetimes [23–28]. They are also used for finding exact
solutions of Einstein Field Equations [29]. Among these spacetime symmetries, the set of KVs is the basic one in the sense
that this set is always contained in the set of all other types of spacetime symmetries, e.g. CKVs, HVs, CCs, etc. (for details
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see [30]). The algebra of KVs form a subalgebra of the symmetries of the geodesic equations (Euler–Lagrange equations) of
the underlying spaces [31]. It is also known that the set of Noether symmetries always contained in the set of symmetries of
the corresponding Euler–Lagrange equations [32]. This gives rise to the question how the Noether symmetries are related
with the spacetime symmetries, e.g. CKVs, HVs, etc.

For theMinkowski spacetime, an answer to the above question is already known. Minkowski spacetimewhich is flat and
hence conformally flat, admits 15 CKVs [33]. A Lagrangian for the geodesic equations for this spacetime admits 17 Noether
symmetries which properly contains the 15 CKVs [34]. Since KVs and HVs form subalgebras of the CKVs, for the Minkowski
spacetime all these spacetime symmetries are contained in the set of 17 Noether symmetries. On the basis of this result, it
was conjectured, that the CKVs form a subalgebra of the symmetries of the Lagrangian that minimizes the arc length for any
spacetime [34]. A counter example of a cylindrically symmetric static spacetime with non-zero curvature was constructed
for which the set of symmetries of the Lagrangian for the geodesic equations only contain the KVs and not the HVs and
CKVs. Hence the conjecture was proved false [35]. The Lagrangian for the geodesic equation depends on the metric tensor
and not on its conformal structure; therefore it seems reasonable that the Lagrangianmay only admit the symmetries of the
metric tensor i.e. KVs and not the CKVs. Since for conformally flat spacetimes themetric is transformed conformally, one can
expect that the Lagrangian for geodesic equations may admit the CKVs for conformally flat spacetimes. With this a question
comes to mind: ‘‘Is the above-mentioned conjecture (regarding CKVs and Noether symmetries) true for conformally flat
spacetime?’’. Here an answer is given to this question.

The plan of the paper is as follows. In the next section, mathematical formalism to be used is given. In Section 3, the
conjecture about the conserved quantities for spaceswith a section of zero curvature is proved. The example of a conformally
flat spacetime is discussed in Section 4. A summary and discussion are given in the last section.

2. Preliminaries

The vector field X is known as a CKV if the following condition holds [30]
£Xgµν = ψgµν, (1)

where ψ = ψ(xσ ) is a conformal factor and £ denotes the Lie derivative operator. If ψ,σ = 0, then X is known as HV field
and KV field if ψ = 0, where the comma denotes the partial derivative. If we replace in (1) the metric tensor gµν with the
Riemann curvature tensor Rµνλσ and put ψ = 0, then the vector field X is known as a CC. Here all the indices µ, ν, λ and σ
run from 0 to 3.

Noether point symmetries are defined as follows. Consider a vector field [1]

X = ξ(s, xµ)
∂

∂s
+ ην(s, xµ)

∂

∂xν
, (2)

where s, the arc length parameter, is the independent variable and xµ is the dependent variable. The first prolongation of
the above vector field, is

X[1]
= X + (ην,s + ην,µẋ

µ
− ξ,sẋν − ξ,µẋµẋν)

∂

∂ ẋν
. (3)

Then X is a Noether point symmetry of the Lagrangian

L(s, xµ, ẋµ) = gµν(xσ )ẋµẋν, (4)
if there exists a gauge function, A(s, xµ), such that

X[1]L + (Dsξ)L = DsA, (5)
where

Ds =
∂

∂s
+ ẋµ

∂

∂xµ
, (6)

and ‘‘·’’ denotes differentiation with respect to s.
The significance of Noether symmetries is clear from the following theorem [1].

Theorem 1. If X is a Noether point symmetry corresponding to a Lagrangian L(s, xµ, ẋµ) of a second-order ODE ẍµ = g(s, x, ẋµ),
then

T = ξL + (ηµ − ẋµξ)
∂L
∂ ẋµ

− A, (7)

is a first integral (conserved quantity) of the ODE associated with X.
A spacetime is said to be conformally flat if all the components of the Weyl tensor

Cµνλσ = Rµνλσ − 2δ[µ

[λ R
ν]
σ ]

+
1
3
δ
µ

[λδ
ν
σ ]
R, (8)

are equal to zero. Here Rµν is the Ricci tensor and R is the Ricci scalar. From (8) it is trivially evident that every flat spacetimes
is conformally flat but the converse is not true in general.
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3. Conserved quantities for spaces with a section of zero curvature

The classification of spherically symmetric, plane symmetric and cylindrically symmetric spacetimes according to their
KVs [23,36] shows that the spacetimesmayhave zero curvature, section of zero curvature or non-zero curvature everywhere.
Conserved quantities for the first and the last cases were discussed in [21] and the conjecture given there, about the
conserved quantities of spaces having a section of zero curvature, is proved now.

Theorem 2. Spaces with an m-dimensional section of zero curvature admit m new conserved quantities and the corresponding
Noether symmetries have the form s ∂

∂xi
, i = 1, 2, . . . ,m.

Proof. To find the total number of new Noether symmetries appearing for spaces having anm-dimensional section of zero
curvature, one may divide these spaces into two parts; one containing the whole section of zero curvature and the other
having non-zero curvature everywhere. It has been proved in Theorem 2 of [21] that the Noether symmetries appearing in
the former part (i.e. having non-zero curvature) can only be the isometries and the symmetry Y0 =

∂
∂s . In the later part, there

are 1
2 (m

2
+3m+6)Noether symmetries amongwhich m

2 (m−1) are rotations,m are translations, one Y0 =
∂
∂s corresponds

to the Lagrangian and the remainingm + 2 are

Y1 = s2
∂

∂s
+ sxi

∂

∂xi
, with gauge term A =

m−
i=1

(xi)2 (9)

Y2 = 2s
∂

∂s
+ xi

∂

∂xi
, with gauge term A = 0, (10)

Yi = s
∂

∂xi
, with gauge term A = 2xi; i = 1, 2, . . . ,m. (11)

The first two symmetries have the scaling of all (m) coordinates on the part of zero curvature. (If we transform these
symmetries into spherical coordinates then they give scaling of radial parameter, [34]). When we combine the two parts
these two Noether symmetries will disappear andm symmetries along with the isometries of both parts will be left.

Notice that these m symmetries given by (11) come from the flat part of the space and they give us the required new
i.e. other than the Lagrangian and those corresponding to the isometries, conserved quantities

T i
= sẋi − xi. (12)

They are expressed as

xi =
1
2
spix − T i, (13)

with xi-intercepts of the trajectories whose slopes are 1
2p

i
x = ẋi. �

4. Noether symmetries of conformally flat spacetimes

In this sectionwe construct an example fromGR, i.e. of a plane symmetric static spacetime to illustrate the above theorem.
The general line element of plane symmetric static spacetime is given by

ds2 = eν(x)dt2 − dx2 − eµ(x)(dy2 + dz2), (14)

where ν, and µ are arbitrary functions of x. This spacetime admits four KVs in general, which form the Lie group
SO(2)⊗s R2

⊗ R, (where ⊗s and ⊗ denote semi-direct and direct product respectively) with generators [29]

X0 =
∂

∂t
, X1 =

∂

∂y
, X2 =

∂

∂z
, X3 = y

∂

∂z
− z

∂

∂y
. (15)

Here we choose the anti-Einstein spacetime for which the metric coefficients in (14) are defined as [36]

eν = 1, eµ = ex/a, (16)

where a is a constant having dimensions of length. For this spacetime the non-zero components of the Riemann curvature
tensor are

R1
212 = −

e(x/a)

4a2
= R1

313 = R2
323. (17)

For a diagonal and static (plane, spherically and cylindrically symmetric) spacetime there are six independent non-zero
components of the Riemann curvature tensor [37] i.e. Ri

0i0, R
1
j1j and R2

323, where i = 1, 2, 3 and j = 2, 3. For the anti-Einstein
spacetime the temporal part of the curvature tensor is zero i.e. Ri

0i0 = 0. Hence there is a one-dimensional section of zero
curvature.
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This spacetime admit 7 KVs which form the Lie group SO(1, 3)⊗ R, with symmetry generators other than given in (15)

X4 = y
∂

∂x
−

[
1
2a
(y2 − z2)− ae(x/a)

]
∂

∂y
−

1
a
yz
∂

∂z
, (18)

X5 = z
∂

∂x
−

[
1
2a
(z2 − y2)− ae(x/a)

]
∂

∂z
−

1
a
yz
∂

∂y
, (19)

X6 =
∂

∂x
−

1
a

[
y
∂

∂y
+ z

∂

∂z

]
. (20)

There is no proper HV for this spacetime and CCs are infinite [26]. Since anti-Einstein spacetimes are conformally flat they
admit 15 CKVs. Note that the choice (16) is not the only possible choice that annihilate the Weyl tensor. In GR, the stress-
energy tensor Tµν acts as a source of spacetime curvature, and is the current density associated with gauge transformations
of gravity which are general curvilinear coordinate transformations. The non-zero components of stress-energy tensor for
the spacetime (14) with the choice (16) are

T00 = −3T11 =
3
4a2

, T22 = T33 =
ex/a
4a2

. (21)

For detailed relation of stress-energy tensor and Noether symmetries, one can see e.g. [38,39].
The Lagrangian that minimize arc length in the above anti-Einstein spacetime is

L = ṫ2 − ẋ2 − e(x/a)(ẏ2 + ż2). (22)

This Lagrangian admits nine Noether symmetry generators. Seven of these are the KVs given by (15) and (18)–(20). The
other two generators are

Y0 =
∂

∂s
, Y1 = s

∂

∂t
. (23)

Here the gauge function comes out

A = c0 + 2c1t, (24)

where c0 and c1 are constants of integration. The generator Y0 always exists for a Lagrangian for the geodesic equations [6].
Since there is one section of zero curvature for the above discussed spacetime, we get one new conservation law
corresponding to the generator Y1

T = sṫ − t. (25)

It is known that corresponding to X0 the conserved quantity is energy [40], i.e.

E =
∂L
∂ ṫ

= 2ṫ. (26)

Therefore the new conserved quantity corresponding to Y1 can be expressed as

t =
1
2
sE − T , (27)

with t-intercept of the trajectory whose slope is E
2 .

Beside, we also see that for the above spacetime only the KVs are the symmetries of the Lagrangian for the geodesic
equations and not the HVs or CKVs. This point is further discussed in the next section.

5. Summary and discussion

The conjecture about the conserved quantities for spaces with a section of zero curvature stated in [21], is proved here as
a theorem. Them symmetry generators given by (11), disappear if the gauge function becomes a constant. Then an example
of conformally flat spacetime with one-dimensional section of zero curvature is constructed which illustrated the theorem.
For the Lagrangian which minimize the arc length in this spacetime we obtained one new symmetry generator s ∂

∂t along
with the KVs and the trivial symmetry generator ∂

∂s . We calculated the new conserved quantity corresponding to this new
generator given by (27). Another example having two-dimensional section of zero curvature is discussed in [21].

From the example discussed herewe also got some new insights about the relationship between the Noether symmetries
and spacetime symmetries. The conformally flat spacetime discussed in Section 4 admits 7 KVs and 15 CKVs. The Lagrangian
for the geodesic equation in this spacetime admits nine symmetry generators which includes the 7 KVs given in (15) and
(18)–(20) and the other two symmetry generators are given in (23). Herewe see that the symmetry algebra of the Lagrangian
for the geodesic equation in this conformally flat spacetime only contains the KVs and not the CKVs. Hence the conjecture
stated in [34] which was proved false in [35] for non-flat and non-conformally flat spacetimes is also false in the case of
conformally flat (non-flat) spacetimes.
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It was claimed that the Lagrangian for conformally transformed Friedman model admits 17 Noether symmetries [41].
Unfortunately this claim is not true. The metric considered there was not conformally transformed Friedman model
but was the Minkowski metric in another coordinate representation. One can easily check that the metric taken there
can be transformed to Minkowski by the coordinate transformation τ = 3t(1/3), for which we already know that the
Lagrangian admits 17 Noether symmetries [34]. Thus the above-mentioned claim does not provide an example of non-
trivial conformally flat (i.e. non-flat conformally flat) spacetime for which the Lagrangian admits the maximam number 17
Noether symmetries.
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