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Abstract

We study Frobenius manifolds of rank three and dimension one that are related
to submanifolds of certain Frobenius manifolds arising in mirror symmetry of
elliptic orbifolds. We classify such Frobenius manifolds that are defined over an
arbitrary field K ⊂ C via the theory of modular forms. By an arithmetic property
of an elliptic curve Eτ defined over K associated to such a Frobenius manifold, it is
proved that there are only two such Frobenius manifolds defined over C satisfying
a certain symmetry assumption and thirteen Frobenius manifolds defined over Q
satisfying a weak symmetry assumption on the potential.
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Introduction

The notion of a Frobenius manifold was introduced by Boris Dubrovin in the
90s (cf. [1]) as the mathematical axiomatization of a 2D topological conformal
field theory. A special class of Frobenius manifolds is given by certain struc-
tures on the base space of the universal unfolding of a hypersurface singularity.
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These structures were introduced in the early 80s by Kyoji Saito (cf. [3] for an
introduction to this theory) and called at that time Saito’s flat structures.

Actually, Saito found a richer structure than his flat structure, consisting
of the filtered de Rham cohomology with the Gauß–Manin connection, higher
residue pairings and a primitive form [4]. Unlike the general setting of a Frobe-
nius manifold it has much more geometric data coming naturally from singularity
theory. It is also now generalized as a so-called non-commutative Hodge theory
by [5] which will be a necessary tool to understand the classical mirror symme-
try (isomorphism of Frobenius manifolds) via a Kontsevich’s homological mirror
symmetry.

It is a very important problem to study some arithmetic aspect of a Saito
structure with a geometric origin such as singularity theory. However, it is quite
difficult at this moment. Therefore we start our consideration from the larger
setting of Frobenius manifolds.

Namely we define particular GL(2,C)-action on the Frobenius manifolds of
the rank 3 and dimension 1. This action corresponds to the change of the prim-
itive form of the simple elliptic singularities. More precisely, we shall define the
Frobenius manifold M (τ0,ω0) of rank three and dimension one obtained by acting
with a certain element A(τ0,ω0) ∈ GL(2,C) depending on τ0 ∈ H, ω0 ∈ C\{0}
(see Subsection 2.5) on the “basic” Frobenius manifold M∞ (see Proposition 2.9
for the definition of M∞). The Frobenius manifold M∞ itself is connected to
the Gromov-Witten Frobenius structures of the orbifold projective lines P1

2,2,2,2,
P1

3,3,3, P1
4,4,2, P1

6,3,2. These orbifold projective lines provide Calabi-Yau/Landau-
Ginzburg mirror symmetry for simple elliptic singularities, what involves choos-
ing the primitive form at the so-called large complex structure limit (LCSL for
brevity). Therefore we can consider M∞ as corresponding to the primitive form
choice at the LCSL.

The general context of the global mirror symmetry requires existence of the
so-called orbifolded Landau-Ginzburg A-model that is the Frobenius manifold,
associated to the pair - singularity and a symmetry group of it. The system-
atic approach to this problem was given in [2] and is now called FJRW-theory.
However it appears to be very hard to compute.

Looking for the Frobenius manifold that could potentially serve an orbifolded
Landau-Ginzburg A-model it is natural to assume it to have some special prop-
erties. Namely to be defined over Q and have some “symmetries”. By the global
mirror symmetry assumption the orbifolded Landau-Ginzburg A-model should
also correspond to some primitive form choice. This motivates our classification
of the Frobenius manifolds M (τ0,ω0) defined over the field K ⊂ C and also having
“symmetries”.
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Results
Let K ⊂ C be a field. We say that a Frobenius manifold M is defined over

K if there exist flat coordinates t1, . . . , tµ in which the Frobenius potential of M
belongs to K{t1, . . . , tµ} and is defined at the point t1 = · · · = tµ = 0.

We associate the elliptic curve Eτ0 with the modulus τ0 to M (τ0,ω0). The first
theorem of this paper states several criterion of the Frobenius manifold M (τ0,ω0)

to be defined over K. The criterion are given in terms of the values of the modular
forms at the point τ0 ∈ H.

In what follows we translate some properties of the elliptic curve Eτ0 into
special properties of the Frobenius manifold M (τ0,ω0). Considering the SL(2,R)-
action on M (τ0,ω0) we define the property of the Frobenius manifold M (τ0,ω0) to be
“symmetric” and “weakly symmetric” (Definition 4.2). Namely we call M (τ0,ω0)

symmetric if its potential is preserved by the action of some A ∈ SL(2,R) and
weakly symmetric if its potential is rescaled by the action of A.

In the second theorem of this paper we show that the Frobenius manifold
M (τ0,ω0) has a “symmetry” if and only if τ0 is in the SL(2,Z) orbit of

√
−1 or

exp(2π
√
−1/3) and the Frobenius manifold M (τ0,ω0) defined over Q has a “weak

symmetry” if and only if Eτ0 is isomorphic to one of 13 elliptic curves listed in
Corollary 4.3.

Organization of the paper
After recalling some basic definitions and terminologies in Section 1, we shall

study a rational structure on M (τ0,ω0). The GL(2,C)-action and in particular
A(τ0,ω0)-action are defined in Section 2. In Section 3 we shall prove the first
theorem of this paper and also give two natural examples of M (τ0,ω0) defined over
Q. Section 4 is devoted to the study of the symmetries of M (τ0,ω0). It contains
the second theorem of this paper. Finally, some useful data are given in the
Appendix.

1. Preliminaries

1.1. Frobenius manifolds
We give some basic properties of a Frobenius manifold [1]. Let us recall the

equivalent definition taken from Saito-Takahashi [3].

Definition. Let M = (M,OM ) be a connected complex manifold of dimension
µ whose holomorphic tangent sheaf and cotangent sheaf are denoted by TM and
Ω1

M respectively and let d be a complex number.
A Frobenius structure of rank µ and dimension d on M is a tuple (η, ◦, e, E),

where η is a non-degenerate OM -symmetric bilinear form on TM , ◦ is an OM -
bilinear product on TM , defining an associative and commutative OM -algebra
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structure with a unit e, and E is a holomorphic vector field on M , called the
Euler vector field, which are subject to the following axioms:

1. The product ◦ is self-adjoint with respect to η: that is,

η(δ ◦ δ′, δ′′) = η(δ, δ′ ◦ δ′′), δ, δ′, δ′′ ∈ TM .

2. The Levi–Civita connection ∇/ : TM ⊗OM
TM → TM with respect to η is

flat: that is,
[∇/δ,∇/δ′ ] = ∇/[δ,δ′], δ, δ′ ∈ TM .

3. The tensor C : TM ⊗OM
TM → TM defined by Cδδ

′ := δ ◦ δ′, (δ, δ′ ∈ TM ) is
flat: that is,

∇/C = 0.

4. The unit element e of the ◦-algebra is a ∇/-flat holomorphic vector field:
that is,

∇/e = 0.

5. The metric η and the product ◦ are homogeneous of degree 2−d (d ∈ C) and
1 respectively with respect to the Lie derivative LieE of the Euler vector
field E: that is,

LieE(η) = (2− d)η, LieE(◦) = ◦.

A manifold M equipped with a Frobenius structure (η, ◦, e, E) is called a Frobe-
nius manifold.

From now on in this section, we shall always denote by M a Frobenius man-
ifold. We expose some basic properties of Frobenius manifolds without their
proofs.

Let us consider the space of horizontal sections of the connection ∇/:

T f
M := {δ ∈ TM | ∇/δ′δ = 0 for all δ′ ∈ TM}

which is a local system of rank µ on M such that the metric η takes a constant
value on T f

M . Namely, we have

η(δ, δ′) ∈ C, δ, δ′ ∈ T f
M .

Proposition 1.1. At each point of M , there exist local coordinates (t1, . . . , tµ),
called flat coordinates, such that e = ∂1, T f

M is spanned by ∂1, . . . , ∂µ and η(∂i, ∂j) ∈
C for all i, j = 1, . . . , µ, where we denote ∂/∂ti by ∂i.

The axiom ∇/C = 0 implies the following:
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Proposition 1.2. At each point of M , there exists a local holomorphic function
F , called Frobenius potential, satisfying

η(∂i ◦ ∂j , ∂k) = η(∂i, ∂j ◦ ∂k) = ∂i∂j∂kF , i, j, k = 1, . . . , µ,

for any system of flat coordinates. In particular, one has

ηij := η(∂i, ∂j) = ∂1∂i∂jF .

The product structure on TM is described locally by F as

∂i ◦ ∂j =
µ∑

k=1

ckij∂k i, j = 1, · · · , µ,

ckij :=
µ∑

l=1

ηkl∂i∂j∂lF , (ηij) = (ηij)−1, i, j, k = 1, · · · , µ.

In what follows we rely on the following proposition proved by B. Dubrovin:

Proposition 1.3 (cf. Lemma 1.2 in [1]). Locally a Frobenius manifold with the
diagonalizable ∇E is described by its potential and vice versa.

We finish this subsection by introducing the notion of a Frobenius manifold
defined over a field.

Definition. Let K ⊂ C be a field. We say that a Frobenius manifold M is defined
over K if there exist flat coordinates t1, . . . , tµ such that the Frobenius potential
F belongs to K{t1, . . . , tµ} and is defined at the point t1 = · · · = tµ = 0.

1.2. Eisenstein series
Throughout this paper, we denote by H the complex upper half plane {τ ∈

C | Im(τ) > 0}. Recall the following famous facts on Eisenstein series.

Proposition 1.4. Let E2(τ), E4(τ) and E6(τ) be the Eisenstein series defined
by

E2(τ) := 1− 24
∞∑

n=1

σ1(n)qn,

E4(τ) := 1 + 240
∞∑

n=1

σ3(n)qn,

E6(τ) := 1− 504
∞∑

n=1

σ5(n)qn,

where σk(n) =
∑

d|n
dk and q = exp(2π

√
−1τ).
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1. For any
(
a b
c d

)
∈ SL(2,Z), we have

E2(τ) =
1

(cτ + d)2
E2

(
aτ + b

cτ + d

)
− 6c
π
√
−1(cτ + d)

, (2a)

E4(τ) =
1

(cτ + d)4
E4

(
aτ + b

cτ + d

)
, (2b)

E6(τ) =
1

(cτ + d)6
E6

(
aτ + b

cτ + d

)
. (2c)

2. The derivatives of the Eisenstein series satisfy the following identities due
to Ramanujan:

1
2π
√
−1

dE2(τ)
dτ

=
1
12

(
E2(τ)2 − E4(τ)

)
, (3a)

1
2π
√
−1

dE4(τ)
dτ

=
1
3

(E2(τ)E4(τ)− E6(τ)) , (3b)

1
2π
√
−1

dE6(τ)
dτ

=
1
2

(
E2(τ)E6(τ)− E4(τ)2

)
. (3c)

We shall also consider the complex-valued real-analytic function E∗
2(τ) on H

defined by

E∗
2(τ) := E2(τ)−

3
πIm(τ)

,

which is a so-called almost holomorphic modular form of weight two since we
have the following.

Proposition 1.5. We have

E∗
2(τ) =

1
(cτ + d)2

E∗
2

(
aτ + b

cτ + d

)
for any

(
a b
c d

)
∈ SL(2,Z).

Proof. The formula
(

Im
(
aτ + b

cτ + d

))−1

=
|cτ + d|2
Im(τ)

,

(
a b
c d

)
∈ SL(2,Z), (4)

yields the statement.

In general, an almost holomorphic modular form is defined as follows.
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Definition. A polynomial f(τ) in Im(τ)−1 over the ring of holomorphic functions
on H satisfying

f(τ) =
1

(cτ + d)k
f

(
aτ + b

cτ + d

)
for any

(
a b
c d

)
∈ SL(2,Z),

is called an almost holomorphic modular form of weight k.

Proposition 1.6 (cf. Paragraph 5.1. in [6]). Let f(τ) be an almost holomorphic
modular form of weight k. Then the almost holomorphic derivative of f(τ) defined
by

∂kf(τ) :=
1

2π
√
−1

∂f(τ)
∂τ

− k

4πIm(τ)
f(τ), (5)

is an almost holomorphic modular form of weight k + 2.

Proof. One can check this directly by using the equations (2a) and (4). We
briefly explain for the reader’s convenience the modularity property of ∂2E

∗
2(τ).

We have:

∂2E
∗
2 =

1
12

(
E2(τ)2 − E4(τ)

)
− 3

4π(Im(τ))2
− 1

2πIm(τ)
E∗

2(τ).

=
1
12

(
E2(τ)2 −

6E2(τ)
πIm(τ)

+
9

(πIm(τ))2

)
− 1

12
E4(τ).

=
1
12
E∗

2(τ)2 − 1
12
E4(τ).

Due to the modularity properties of E4 and E∗
2 the proposition follows.

In what follows we will drop the subscript k in the derivative keeping in mind
that it is always fixed as we are given a modular form of weight k to differentiate.
We will use the notation ∂p meaning:

∂pg := ∂k+2(p−1) . . . ∂kg,

for g - an almost holomorphic modular form of weight k.

Proposition 1.7. We have

∂E∗
2(τ) =

1
12

(
E∗

2(τ)2 − E4(τ)
)
,

∂2E∗
2(τ) =

1
36

(
E6(τ)−

3
2
E∗

2(τ)E4(τ) +
1
2
E∗

2(τ)2
)
.

Proof. This follows from direct calculations using the equations (3).
7



1.3. Elliptic curves
We have a family of elliptic curves parameterized by H :

π : E := {(x, y, τ) ∈ C2 ×H | y2 = 4x3 − g2(τ)x− g3(τ)} −→ H,

where

g2(τ) :=
4π4

3
E4(τ), g3(τ) :=

8π6

27
E6(τ). (7)

Denote by Eτ0 the fiber of π over a point τ0 ∈ H.

Definition. Let K ⊂ C be a field. Choose a point τ0 ∈ H. We say that an elliptic
curve Eτ0 is defined over K if there exist g2, g3 ∈ K such that the algebraic variety

Eg2,g3 := {(x, y) ∈ C2 | y2 = 4x3 − g2x− g3}

is isomorphic to Eτ0 .

2. Frobenius manifolds of rank three and dimension one

From now on, we shall consider a Frobenius manifold M of rank three and
dimension one with flat coordinates t1, t2, t satisfying the following conditions:

• The unit vector field e is given by ∂
∂t1

.

• The Euler vector field E is given by E = t1
∂

∂t1
+ 1

2t2
∂

∂t2
.

• The Frobenius potential F is given by

F =
1
2
t21t+ t1t

2
2 + t42f(t) (8)

where f(t) is a holomorphic function in t on an open domain in C.

Our particular interest is attached to the concrete Frobenius manifolds obtained
from the “basic” rank 3 Frobenius manifold by the certain group action. However
in order to introduce it we have to develop the general theory of the GL(2,C)
group action on the space of rank 3 Frobenius manifolds as above. Unlike the
heavy machinery of the Givental’s action on the space of Frobenius manifolds
this GL(2,C)-action is defined in the easy and straightforward way and therefore
deserves to be studied separately.
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2.1. Solutions of the WDVV equation
Proposition 2.1. The WDVV equation is equivalent to the following differential
equation.

d3f(t)
dt3

= −24f(t)
d2f(t)
dt2

+ 36
(
df(t)
dt

)2

. (9)

Proof. This is obtained by a straightforward calculation.

Remark 2.2. Put
γ(t) := −4f(t).

By a straightforward calculation, it turns out that the holomorphic function γ(t)
satisfies the following differential equation

d3γ(t)
dt3

= 6
d2γ(t)
dt2

γ(t)− 9
(
dγ(t)
dt

)2

. (10)

The differential equation (10) is classically known as Chazy’s equation.

Proposition 2.3. Suppose that f(t) is a convergent power series in t given as

f(t) =
∞∑

n=0

cn
n!
tn, then the differential equation (9) is equivalent to the following

recursion relation:

cn+3 =
n∑

a=0

(
n

a

)
(−24cacn−a+2 + 36ca+1cn−a+1) . (11)

In particular, we have
c3 = −24c2c0 + 36c21.

Proof. This is also obtained by a straightforward calculation.

Therefore, the first three coefficients c0, c1 and c2 are enough to determine
all the coefficients cn, n ≥ 3 due to the recursion relation (11).

2.2. GL(2,C)-action on the set of Frobenius structures
Proposition 2.4. Suppose that a holomorphic function f(t) on a domain in C

is a solution of the differential equation (9). For any A =
(
a b
c d

)
∈ GL(2,C),

define a holomorphic function fA(t) on a suitable domain in C as

fA(t) :=
det(A)

(ct+ d)2
f

(
at+ b

ct+ d

)
+

c

2(ct+ d)
. (12)

Then fA(t) becomes a solution of the differential equation (9).
9



Proof. This is obtained by a straightforward calculation.

It is important to note that this GL(2,C)-action is the inverse action of the
GL(2,C)-action on the set of solutions of the WDVV equations for the potential
(8) given in Appendix B in [1]. Indeed, we have the following.

Proposition 2.5. Consider Dubrovin’s inversion I of the Frobenius manifold
defined as follows:

t̂1 := t1 +
1
4
t22
t
, t̂2 :=

t2
t
, t̂ := −1

t
,

F̂(t̂) :=
1
t2

[
F(t) − t21t−

1
4
t1t

2
2

]
.

Then, the new Frobenius manifold given by the new flat coordinates t̂1, t̂2, t̂ to-
gether with the new Frobenius potential F̂ coincides with the one associated to

the solution fA(t) of (9) with A =
(

0 −1
1 0

)
.

Proof. Some calculations yield the statement.

2.3. GL(2,C)-orbit of constant solutions
The differential equation (9) obviously has constant solutions. Therefore, we

have the following.

Proposition 2.6. For any e ∈ C and any point [c : d] ∈ P1, the meromorphic
function on C

f(t) :=
e

(ct+ d)2
+

c

2(ct+ d)
(13)

is a solution of the differential equation (9).

Proof. This is clear.

Definition. We will call the solution f(t) as above constant solution of the
equation (9).

Corollary 2.7. If f(t) is holomorphic at t = 0 and belongs to the GL(2,C)-orbit
of constant solutions, then there exist α, β ∈ C such that

f(t) :=
α

(1 + βt)2
+

β

2(1 + βt)
. (14)

Proof. One can set α := e/d2 and β := c/d in (13) since d cannot be zero.
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The Taylor expansion at t = 0 of f(t) in the equation (14) is given by

f(t) = c0(α, β) + c1(α, β)t + c2(α, β)
t2

2
+ . . . ,

c0(α, β) = α+
β

2
, c1(α, β) = −2αβ − 1

2
β2, c2(α, β) = 6αβ2 + β3.

For some c0, c1, c2 ∈ C, consider the cubic curve in C2 defined by

y2 = 4x3 − 12c0x2 − 6c1x−
c2
2
.

Note that if ci = ci(α, β) for i = 1, 2, 3, then the cubic curve is singular since we
have

4x3 − 12c0(α, β)x2 − 6c1(α, β)x − c2(α, β)
2

=
1
2
(2x− 6α− β)(2x − β)2.

Proposition 2.8. Suppose that c0, c1, c2 ∈ C satisfy the equation

32(c1 + 2c20)
3 − (c2 + 12c1c0 + 16c30)

2 = 0.

Then there exist α(c0, c1, c2), β(c0, c1, c2) ∈ C such that

c0 =α(c0, c1, c2) +
β(c0, c1, c2)

2
,

c1 =− 2α(c0, c1, c2)β(c0, c1, c2)−
1
2
β(c0, c1, c2)2,

c2 =6α(c0, c1, c2)β(c0, c1, c2)2 + β(c0, c1, c2)3,

and the unique solution f(t) of the differential equation (9) holomorphic at t = 0
satisfying

f(0) = c0,
df

dt
(0) = c1,

d2f

dt2
(0) = c2

is given by

f(t) :=
α(c0, c1, c2)

(1 + β(c0, c1, c2)t)2
+

β(c0, c1, c2)
2(1 + β(c0, c1, c2)t)

.

Proof. Consider the system of PDE’s called Halphen’s system of equations:




d
dt(X2(t) +X3(t)) = 2X2(t)X3(t),
d
dt(X3(t) +X4(t)) = 2X3(t)X4(t),
d
dt(X4(t) +X2(t)) = 2X4(t)X2(t),

One can check that the function defined by f(t) := −1
6(X2(t) +X3(t) +X4(t)) is

a solution of the equation (9). Consider the third order equation in x:

4x3 − 12f(t)x2 − 6f ′(t)x− f ′′(t)
2

= 0,
11



where t is considered as a parameter. Let {xk(t)} be the triplet of solutions of a
this third order equation. By straightforward computations one checks that the
unordered triplet {−2Xk(t)} is equal to the triplet {xk(t)}.

The discriminant ∆Q of the third order equation at t = 0 is equal to 32(c1 +
2c20)

3− (c2 +12c1c0 +16c30)
2 = 0. In this case it is easy to solve Halphen’s system

to get:

X3(t) = X4(t) = − β

1 + βt
, X2(t) = − β

1 + βt
− 6

α

(1 + βt)2
.

Hence the function f(t) is of the right form and solves equation (9).

2.4. Special solution
Under the change of variables t = 2π

√
−1τ the equation (9) transforms to:

d3f(τ)
dτ3

= −48π
√
−1

d2f(τ)
dτ2

f(τ) + 72π
√
−1

(
df(τ)
dτ

)2

. (16)

Proposition 2.9. The holomorphic function f∞(τ) defined on H by:

f∞(τ) := − 1
24
E2 (τ) (17)

satisfies the differential equation (16). Therefore, the holomorphic function F∞

on M∞ := C2 ×H given by

F∞ =
1
2
t21(2π

√
−1τ) + t1t

2
2 + t42f

∞(τ)

defines on M∞ a Frobenius structure of rank three and dimension one.

Proof. This follows from a direct calculation by the use of the equations (3).

Remark 2.10. It is a well-known consequence of the equations (3) that the
function π

√
−1
3 E2(τ) satisfies the Chazy equation (10) with t = τ (cf. Appendix C

in [1]).

Proposition 2.11. The holomorphic function 2π
√
−1f∞(τ) is invariant under

the SL(2,Z)-action (12).

Proof. This follows from a direct calculation using the modular property (2a) of
E2(τ).
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2.5. Choice of a primitive form and a GL(2,C)-action

Consider the Frobenius manifold MD
(1,1)
4 constructed from the invariant the-

ory of the elliptic Weyl group of type D(1,1)
4 . The Frobenius manifold M∞ could

be considered as a Frobenius submanifold in MD
(1,1)
4 , which is connected to the

GW Frobenius structures of the orbifold projective lines P1
2,2,2,2, P1

3,3,3, P1
4,4,2,

P1
6,3,2. These orbifold projective lines provide Calabi-Yau/Landau-Ginzburg mir-

ror symmetry for simple elliptic singularities. The Frobenius manifold structure
associated to D(1,1)

4 varies according to a choice of the vector which is identified
with a cycle in the homology group of the elliptic curve (see also Example 2 in
Section 3.3 in [4]). Based on this observation we consider M∞ as correspond-
ing to the primitive form choice at the LCSL. We introduce a special class of
GL(2,C)-actions on the function 2π

√
−1f∞(τ) motivated by this.

Consider a free abelian group HZ generated by two letters α, β

HZ := Zα⊕ Zβ

equipped with a symplectic form (−,−) such that (α, β) = 1. We can identify
HZ with the homology group H1(E√−1,Z) of an elliptic curve E√−1, the fiber at√
−1 ∈ H of the family of elliptic curves π : E −→ H (see Subsection 1.3). Then

H∗
C := (HC)∗ := (HZ ⊗Z C)∗ = Cα∨ ⊕ Cβ∨,

where {α∨, β∨} is the dual basis of {α, β}, can be identified with the cohomology
group H1(E√−1,Z). In particular, the relative holomorphic volume form Ω ∈
Γ(H,Ω1

E/H) is described in terms of α∨, β∨ as

Ω = x(τ)
(
α∨ + τβ∨

)

for some nowhere vanishing holomorphic function x(τ) on H.
The relative holomorphic volume form ζ∞ = α∨+τβ∨ is, very roughly speak-

ing, the primitive form associated to the choice of the vector α ∈ HC, which
satisfies ∫

α
ζ∞ = 1 and

∫

β
ζ∞ = τ,

and gives the Frobenius structure M∞. There is a systematic way to obtain
a primitive form by the use of the canonical opposite filtration to the Hodge
filtration corresponding to a point τ0 ∈ H as follows.

Proposition 2.12. For τ0 ∈ H and ω0 ∈ C\{0}, there exists a unique relative
holomorphic volume form ζ ∈ Γ(H,Ω1

E/H) such that
∫

α′
ζ = 1, α′ :=

1
ω0(τ̄0 − τ0)

(τ̄0α− β) .

13



Proof. Some calculation yields

ζ = ω0
τ̄0 − τ0
τ̄0 − τ

(
α∨ + τβ∨

)
.

This holomorphic volume form ζ is the primitive form uniquely determined
by the choice of the vector α′ ∈ HC. We first fix τ0 ∈ H and ω0 ∈ C\{0} so that
we have ∫

α
ζ = ω0 and

∫

β
ζ = ω0τ0 at τ = τ0.

Next we choose β′ ∈ HC so that
∫
β′ ζ = 0 at τ = τ0 and (α′, β′) = 1. It is easy to

see that
β′ := −ω0 (τ0α− β) .

As the flat coordinate 2π
√
−1τ of the Frobenius manifold M∞ associated to the

primitive form ζ∞, define the coordinate t(τ) by the period

t(τ)
2π
√
−1

:=
∫

β′
ζ = 2

√
−1ω2

0Im(τ0)
τ0 − τ

τ̄0 − τ
.

This motivates the following GL(2,C)-action A(τ0,ω0) and the Frobenius manifold
M (τ0,ω0).

Definition. Choose τ0 ∈ H and ω0 ∈ C\{0}.
1. Define a holomorphic function f (τ0,ω0)(t) on {t ∈ C | |t| < | − 4πω2

0Im(τ0)|}
applying the GL(2,C)-action (12) specified by

A(τ0,ω0) :=




τ̄0
4πω0Im(τ0)

ω0τ0

1
4πω0Im(τ0)

ω0




to the function 2π
√
−1f∞(τ).

2. Define complex numbers ci(τ0, ω0), i ∈ Z≥0, by the coefficients of the Taylor
expansion of f (τ0,ω0)(t) at t = 0 :

f (τ0,ω0)(t) =
∞∑

n=0

cn(τ0, ω0)
n!

tn.

3. Denote by M (τ0,ω0) := C2 × {t ∈ C | |t| < | − 4πω2
0Im(τ0)|} the Frobenius

manifold given by the Frobenius potential

F (τ0,ω0) =
1
2
t21t+ t1t

2
2 + t42f

(τ0,ω0)(t).

14



3. Frobenius manifolds M (τ0,ω0) defined over K via modular forms

The essential technique dealing with the GL(2,C)-action is provided by the
theory of modular forms. We use it to give a complete classification of the Frobe-
nius manifolds M (τ0,ω0) defined over K ⊂ C (recall the definition given in Sec-
tion 1).

3.1. Classification of M (τ0,ω0) defined over K
Theorem 3.1. Let K ⊂ C be a field. Let τ0 ∈ H and ω0 ∈ C\{0}. The following
are equivalent:

1. The Frobenius manifold M (τ0,ω0) is defined over K.
2. All the coefficients of f (τ0,ω0)(t) series expansion are in K.
3. We have

E∗
2(τ0) ∈ Kω2

0, E4(τ0) ∈ Kω4
0, E6(τ0) ∈ Kω6

0.

4. Let ∂ be the almost holomorphic derivative defined by (5). We have

− 1
24
E∗

2(τ0) ∈ Kω2
0, − 1

24
∂E∗

2(τ0) ∈ Kω4
0, − 1

24
∂2E∗

2(τ0) ∈ Kω6
0.

5. We have
E∗

2(τ0) ∈ Kω2
0, Eτ0 is defined over K.

Proof. By definition, the Frobenius manifoldM (τ0,ω0) is defined over K if and only
if there are flat coordinates t1, t̃2, t̃ such that the Frobenius potential is given by

F (τ0,ω0) =
1
2
η1t

2
1t̃+ η2t1t̃

2
2 + t̃42f̃(t̃) for some η1, η2 ∈ K and f̃(t̃) ∈ K{t}.

However, this immediately implies that t22 = η2t̃
2
2, t = η1t̃ and f (τ0,ω0)(t) =

η−2
2 f̃(t̃), and hence the equivalence between the conditions (i) and (ii).

Due to the recursion relation (11) to get (iii) it is enough to check that
ci(τ0, ω0) ∈ K for 2 ≥ i ≥ 0. By definition of f∞(τ) (see (17)), we have

f (τ0,ω0)(t) = − (4πω2
0Im(τ0))2

24ω2
0(t+ 4πω2

0Im(τ0))2
E2

(
τ̄0t+ 4πω2

0Im(τ0)τ0
t+ 4πω2

0Im(τ0)

)
+

1
2(t+ 4πω2

0Im(τ0))
.

Setting t = 0, we get

c0(τ0, ω0) = − 1
24ω2

0

E2(τ0) +
1

8πω2
0Im(τ0)

= − 1
24ω2

0

(
E2(τ0)−

3
πIm(τ0)

)
.

15



Using the formula (3), we compute the derivative of f (τ0,ω0)(t) at t = 0 and we
obtain

c1(τ0, ω0) =
1

12ω2
0(4πω

2
0Im(τ0))

E2(τ0)−
1

288ω4
0

(
E2(τ0)2 − E4(τ0)

)
− 1

2(4πω2
0Im(τ0))2

=− 2
(
− 1

24ω2
0

E2(τ0) +
1

8πω2
0Im(τ0)

)2

+
1

288ω4
0

E4(τ0)

=− 2c0(τ0, ω0)2 +
1

288ω4
0

E4(τ0).

In a similar way, after some calculations, we get

c2(τ0, ω0) = − 1
864ω6

0

E6(τ0)− 12c0(τ0, ω0)c1(τ0, ω0)− 16c0(τ0, ω0)3.

To summarize, we obtain

E∗
2(τ0) = −24c0(τ0, ω0)ω2

0 , (18a)

E4(τ0) = 288
(
c1(τ0, ω0) + 2c0(τ0, ω0)2

)
ω4

0, (18b)

E6(τ0) = −864
(
c2(τ0, ω0) + 12c0(τ0, ω0)c1(τ0, ω0) + 16c0(τ0, ω0)3

)
ω6

0. (18c)

Equivalently, we have
E∗

2(τ0) = −24c0(τ0, ω0)ω2
0 , (19a)

∂E∗
2(τ0) = −24c1(τ0, ω0)ω4

0 , (19b)

∂2E∗
2(τ0) = −24c2(τ0, ω0)ω6

0. (19c)

This proves the theorem.

3.2. Examples
Proposition 3.2 (cf. Lemma 3.2 in [8]). The equation

E∗
2(τ) = 0 (20)

holds if and only if τ ∈ SL(2,Z)
√
−1 or τ ∈ SL(2,Z)ρ where ρ := exp

(
2π
√−1
3

)
.

The values of the Eisenstein series at τ =
√
−1 are

E2(
√
−1) =

3
π
, E4(

√
−1) = 3

Γ
(

1
4

)8

64π6
, E6(

√
−1) = 0. (21)

If

ω0 ∈ Q
Γ

(
1
4

)2

4π
3
2

16



then c0(
√
−1, ω0) = c2(

√
−1, ω0) = 0 and c1(

√
−1, ω0) ∈ Q.

The values of the Eisenstein series at τ = ρ are

E2(ρ) =
2
√

3
π

, E4(ρ) = 0, E6(ρ) =
27
2

Γ
(

1
3

)18

28π12
. (22)

If

ω0 ∈ Q
Γ

(
1
3

)3

4π2

then c0(ρ, ω0) = c1(ρ, ω0) = 0 and c2(ρ, ω0) ∈ Q.

4. SL-action on the set of Frobenius manifolds M (τ0,ω0)

Let A :=
(
a b
c d

)
be an element of SL(2,R). The correspondence

τ0 7→ τ1 :=
aτ0 + b

cτ0 + d
, ω0 7→ ω1 := (cτ0 + d)ω0

defines a SL(2,R)-action on the set {(τ0, ω0) | τ0 ∈ H, ω0 ∈ C \ {0}}. This is
exactly the SL(2,R)-action induced by (12) since

A




τ̄0
4πω0Im(τ0)

ω0τ0

1
4πω0Im(τ0)

ω0


 =




(aτ̄0 + b)
4πω0Im(τ0)

(aτ0 + b)ω0

(cτ̄0 + d)
4πω0Im(τ0)

(cτ0 + d)ω0


 =




τ̄1
4πω1Im(τ1)

ω1τ1

1
4πω1Im(τ1)

ω1


 .

4.1. SL(2,Z)-action
The equations (18) yield the following.

Proposition 4.1. Let τ0, τ1 ∈ H and ω0, ω1 ∈ C\{0}. The following are equivalent:

1. There is an isomorphism of Frobenius manifolds M (τ0,ω0) ∼= M (τ1,ω1).
2. The equality f (τ0,ω0)(t) = f (τ1,ω1)(t) holds.

3. There exists an element
(
a b
c d

)
∈ SL(2,Z) such that

τ1 =
aτ0 + b

cτ0 + d
, ωk

1 = (cτ0 + d)kωk
0 ,

where k = 4 if τ0 ∈ SL(2,Z)
√
−1, k = 6 if τ0 ∈ SL(2,Z)ρ and k = 2

otherwise.
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Proof. It is almost clear that condition (i) is equivalent to (ii). By the equations
(18), condition (ii) is equivalent to the equations

E∗
2(τ0)
ω2

0

=
E∗

2(τ1)
ω2

1

,
E4(τ0)
ω4

0

=
E4(τ1)
ω4

1

,
E6(τ0)
ω6

0

=
E6(τ1)
ω6

1

. (23)

The equations (23) imply that j(τ0) = j(τ1) and hence

τ1 =
aτ0 + b

cτ0 + d
, for some

(
a b
c d

)
∈ SL(2,Z). (24)

Therefore we obtain

E∗
2(τ0)
ω2

0

=
(cτ0 + d)2E∗

2(τ0)
ω2

1

,
E4(τ0)
ω4

0

=
(cτ0 + d)4E4(τ0)

ω4
1

,
E6(τ0)
ω6

0

=
(cτ0 + d)6E6(τ0)

ω6
1

,

which implies, by the use of (20), (21) and (22), ωk
1 = (cτ0 + d)kωk

0 where k = 4
if τ0 ∈ SL(2,Z)

√
−1, k = 6 if τ0 ∈ SL(2,Z)ρ and k = 2 otherwise.

It is easy to show that the condition (iii) yields the equations (23). The
proposition is proved.

4.2. SL(2,Q)-action and complex multiplication
Definition. An elliptic curve Eτ is said to have complex multiplication if its
modulus τ is imaginary quadratic. Namely τ ∈ Q(

√
−D) for a positive integer

D.

A profound result of the theory of elliptic curves is that elliptic curves over
Q with complex multiplication are easily classified:

Theorem 4.2 (cf. Paragraph II.2 in [9]). Up to isomorphism there are only 13
elliptic curves defined over Q that have complex multiplication.

We give the list of the Weierstrass models of these elliptic curves in the Ap-
pendix.

Corollary 4.3. The modulus τ0 of the elliptic curve Eτ0 with complex multipli-
cation defined over Q is in the SL(2,C) orbit of one of:

√
−D, D ∈ {1, 2, 3, 4, 7},

or
−1 +

√
−D

2
, D ∈ {3, 7, 11, 19, 27, 43, 67, 163}.

Imaginary quadratic τ0 ∈ C are amazing from the point of view of the theory
of modular forms too:
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Proposition 4.4 (cf. Theorem A1 in [8]). Let τ ∈ C be imaginary quadratic and
τ 6∈ SL(2,Z)

√
−1. Then we have:

E∗
2(τ)E4(τ)
E6(τ)

∈ Q(j(τ)),

where j(τ) is the value of the j-invariant of the elliptic curve Eτ .

We build up the connection between the elliptic curve Eτ0 having some special
properties and the Frobenius manifold M (τ0,ω0) by introducing the property of
the latter one to have symmetry and weak symmetry.

Definition. Let τ0 ∈ H, ω0 ∈ C\{0}.
1. The Frobenius manifold M (τ0,ω0) is said to have a symmetry if there exists

an element A ∈ SL(2,R) \ {1} such that

(
f (τ0,ω0)

)A
(t) = f (τ0,ω0)(t).

2. The Frobenius manifold M (τ0,ω0) is said to have a weak symmetry if there
exists an element A ∈ SL(2,R) \ {1,−1} such that

(
f (τ0,ω0)

)A
(t) = f (τ0,ω′

0)(t) for some ω′0 ∈ C\{0}.

Remark 4.5. It is important to note that weak symmetry is not a symmetry
of the Frobenius manifold unless ω0 = ω′0, because the corresponding A-action
relates different points in the space of all Frobenius manifolds of rank three.

These two properties allows us to get the classification result that is rather
unusual for the Frobenius manifolds theory.

Theorem 4.6. Let τ0 ∈ H and ω0 ∈ C\{0}.
1. The Frobenius manifold M (τ0,ω0) has a symmetry if and only if τ0 is in the

SL(2,Z) orbit of
√
−1 or ρ.

2. The Frobenius manifold M (τ0,ω0) defined over Q has a weak symmetry if
and only if τ0 is from the list given in Corollary 4.3.

Proof. From Proposition 4.1 M (τ0,ω0) has a symmetry if and only if aτ0+b
cτ0+d = τ0

and
ω4

0 = (cτ0 + d)4ω4
0 for τ0 ∈ SL(2,Z)

√
−1,

or
ω6

0 = (cτ0 + d)6ω6
0 for τ0 ∈ SL(2,Z)ρ,
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or otherwise
ω2

0 = (cτ0 + d)2ω2
0.

The last equation is satisfied if and only if (cτ0 + d)2 = 1. It has no solutions
for τ0 ∈ H and c, d ∈ Z. It is an easy exercise to show that there is a suitable
A ∈ SL(2,Z) solving the first two equations. This proves (i).

Let M (τ0,ω0) be defined over Q and have a weak symmetry. By Theorem 3.1
the elliptic curve Eτ0 is defined over Q.

Due to Proposition 4.1 we have aτ0+b
cτ0+d = τ0. It is an easy exercise to show that

τ0 satisfies a quadratic equation with negative discriminant. Hence the elliptic
curve Eτ0 has complex multiplication. From Proposition 4.2 we know that there
are only 13 such τ0 up to the SL(2,Z)-action. Hence τ0 is from the given list.

Assume that τ0 is the modulus of one of the elliptic curves from this list.
From the rationality assumption on the elliptic curve Eτ0 we have j(τ0) ∈ Q.
The case of τ0 = SL(2,Z)

√
−1 was treated in Example 3.2 and we can apply

Proposition 4.4. Its statement reads:

E∗
2(τ0)E4(τ0)
E6(τ0)

∈ Q.

At the same time, since the elliptic curve is defined over Q, there exists
a ∈ C\{0} such that:

a2g2(τ0) ∈ Q, a3g3(τ0) ∈ Q.

From the equations (7) we have:

a2π4E4(τ0) = a2g2(τ0)
3
4
∈ Q, a3π6E6(τ0) = a3g3(τ0)

27
8
∈ Q.

We conclude:
aπ2E∗

2(τ0) ∈ Q.

Summing up:

E∗
2(τ0) ∈ Q(aπ2)−1, E4(τ0) ∈ Q(aπ2)−2, E6(τ0) ∈ Q(aπ2)−3.

Taking ω2
0 := (aπ2)−1 we get M (τ0,ω0) defined over Q because of Theorem 3.1.

Note that Eτ0 for τ0 ∈ SL(2,Z)
√
−1 and τ0 ∈ SL(2,Z)ρ are only elliptic curves

with non-trivial automorphisms.

Remark 4.7. We can rephrase Theorem 4.6 (i) above as: a Frobenius manifold
M (τ0,ω0) has a symmetry if and only if Eτ0 has non-trivial automorphisms.
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Appendix

In the following table we give Weierstrass models and modulus of 13 elliptic
curves defined over Q with complex multiplication.

Modulus τ Weierstrass equation j-invariant ∆E

(−1 +
√
−3)/2 y2 = 4x3 + 1 0 33

√
−3 y2 = 4x3 − 60x+ 88 243353 2833

(−1 + 3
√
−3)/2 y2 = 4x3 − 120x+ 253 −215353 35

√
−1 y2 = 4x3 + 4x 2633 25

2
√
−1 y2 = 4x3 − 44x+ 64 2333113 29

(−1 +
√
−7)/2 y2 = 4x3 − 35

4 x− 49
8 −3353 73

√
−7 y2 = 4x3 − 2380x + 22344 3353173 21273

√
−2 y2 = 4x3 − 120x+ 224 2653 29

(−1 +
√
−11)/2 y2 = 4x3 − 88

3 x− 847
27 −215 113

(−1 +
√
−19)/2 y2 = 4x3 − 152x+ 361 −21533 193

(−1 +
√
−43)/2 y2 = 4x3 − 3440x + 38829 −2183353 433

(−1 +
√
−67)/2 y2 = 4x3 − 29480x + 974113 −2153353113 673

(−1 +
√
−163)/2 y2 = 4x3 − 8697680x + 4936546769 −2183353233293 1633

Table 1: 13 elliptic curves over Q with complex multiplication.

Introduce the notation:

ψ(τ) :=
3E∗

2(τ)E4(τ)
2E6(τ)

.

The values of this function where computed in [8]. Using g2, g3 given by the
Weierstrass forms of the previous table we compute c0(τ, ω), c1(τ, ω), c2(τ, ω) for
some choice of ω:
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Modulus τ ψ(τ) c0(τ, ω) c1(τ, ω) c2(τ, ω)
(−1 +

√
−3)/2 0 0 0 −1/256√

−3 15/22 1/16 −21/128 −115/512
(−1 + 3

√
−3)/2 240/253 1/8 −11/32 −129/256√

−1 ∞ 0 1/96 0
2
√
−1 11/14 1/16 −47/384 −67/512

(−1 +
√
−7)/2 5/14 −1/64 −143/6144 643/32768√

−7 255/266 9/16 −2623/384 −22539/512√
−2 15/28 1/48 −41/1152 −109/4608

(−1 +
√
−11)/2 48/77 1/24 −23/288 −193/2304

(−1 +
√
−19)/2 16/19 1/8 −41/96 −205/256

(−1 +
√
−43)/2 320/301 3/4 −121/12 −17325/256

(−1 +
√
−67)/2 16720/14539 19/8 −8453/96 −386557/256

(−1 +
√
−163)/2 38632640/30285563 181/4 −80236/3 −1598234897/256

Table 2: c0(τ, ω), c1(τ, ω), c2(τ, ω) for elliptic curves from Table 1.
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