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a b s t r a c t

We construct twisted spinor bundles as well as twisted pre-quantum bundles on quasi-
Hamiltonian G-spaces, using the spin representation of loop group and the Hilbert space
of Wess–Zumino–Witten model. We then define a Hilbert space together with a Dirac op-
erator acting on it. The main result of this paper is that we show the Dirac operator has a
well-defined index given by positive energy representation of the loop group. This gener-
alizes the geometric quantization of Hamiltonian G-spaces to quasi-Hamiltonian G-spaces.

Crown Copyright© 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

Let G be a compact, connected Lie group, and (M, ω) a compact symplectic manifold with a Hamiltonian G-action. By
choosing a G-invariant ω-compatible almost complex structure on M , we can define a G-equivariant Z2-graded spinor
bundle S±

M . If the Hamiltonian G-spaceM is pre-quantizable and has a G-equivariant pre-quantum line bundle L, we define a
Z2-graded Hilbert space by

H±
= L2(M, S±

M ⊗ L)

and a G-equivariant Spinc-Dirac operator

D±
: H±

→ H∓.

Attributed to Bott, the quantization of (M, ω) can be defined as the equivariant index

Q (M, ω) = Ind(D) = [ker(D+)] − [ker(D−)] ∈ R(G).

The goal of this paper is to generalize the quantization process to the quasi-Hamiltonian G-space introduced by
Alekseev–Malkin–Meinrenken [1]. The q-Hamiltonian G-space, arising from infinite-dimensional Hamiltonian loop group
space, differs in many respects from Hamiltonian G-space. In particular, the moment map takes values in the group G and
the 2-formω does not have to be closed or non-degenerate. Consequently, the two key ingredients in defining Q (M, ω): the
spinor bundle SM and pre-quantum line bundle Lmight not exist in general.

Given a q-Hamiltonian G-space (M, ω), we use the spin representation of loop group to construct twisted spinor bundles
Sspin on M , and the Hilbert space of Wess–Zumino–Witten model to construct twisted pre-quantum bundles Spre. Both of
themare bundles of Hilbert space and play the same roles as the spinor bundle and pre-quantum line bundle for Hamiltonian
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G-space. We analogously define a Hilbert space

H :=

L2(M, Sspin ⊗ Spre)

G
.

One key in the construction of Dirac operators on H is the algebraically defined cubic Dirac operator. It was introduced
by Kostant for finite-dimensional Lie group, and extensively studied for infinite-dimensional loop group by various people.
Our strategy is to construct a Dirac operator as a combination of algebraic cubic Dirac operators and geometric Spinc-Dirac
operators. To be more precise, we choose an open cover ofM using the symplectic cross-section theorem for q-Hamiltonian
G-space, so that every open subset U has the geometric structure:

U ∼= G×H V ,

where H is a compact subgroup of G and the slice V is a Hamiltonian H-space. Accordingly, the tangent bundle TU splits
equivariantly into ‘‘vertical direction’’ and ‘‘horizontal direction’’. We define a suitable Dirac operator on U so that it acts
as the Spinc-Dirac operator on the vertical part V and the cubic Dirac operator for loop group on the horizontal part G/H .
Using partition of unity, we obtain a global Dirac operator D on H by patching together Dirac operators on the open sets U .
The main result of this paper is that we show the Dirac operator D has a well-defined index given by positive energy
representations of loop group.

2. Loop group and positive energy representation

We first give a brief review on loop groups and their representations. We use [2] as our primary reference.

2.1. Loop group and central extension

Let G be a compact, simple and simply connected Lie group, and fix a ‘‘Sobolev level’’ s > 1. We define LG the loop group
as the Banach Lie group consisting of maps S1 → G of Sobolev class s +

1
2 with the group structure given by pointwise

multiplication. The Lie algebra Lg = Ω0(S1, g) is given by the space Lie algebra g-valued 0-forms of Sobolev class s +
1
2 and

Lg∗
= Ω1(S1, g) the space of g-valued 1-forms of Sobolev class s −

1
2 . Integration over S1 gives a natural non-degenerate

pairing between Lg with Lg∗.
Note that Lg∗ can be identified with the affine space of connections on the trivial principle G-bundle over S1. The loop

group LG acts on Lg∗ by gauge transformation

g · ξ = Adg(ξ) − dg · g−1, g ∈ LG, ξ ∈ Lg∗, (2.1)

where dg · g−1 is the pull-back of the right-invariant Maurer–Cartan form on G.
Let LG be the basic central extension of LG, defined in [2, Section 4.4]. The coadjoint action of LG onLg∗

= Lg∗
⊕ R

is given by the formula

g · (ξ , k) = (Adg(ξ) − k · g−1dg, k).

One can view the action (2.1) as the coadjoint action on the affine hyperplane Lg∗
× {1} ⊂ Lg∗

.
Fixing a maximal torus T , the choice of a set of positive roots R+ for G determines a positive Weyl chamber t∗

+
. It is

well-known that the orbits of coadjoint G-action on g∗ are parameterized by points in t∗
+
. The set of coadjoint LG-orbits can

be described as follows. Denote by α0 the highest root and

ρG =
1
2


α∈R+

α.

There is a unique ad-invariant inner product ⟨·, ·⟩g on g, rescaled so that the highest root of g has norm
√
2. The dual Coxeter

number of G is defined by

h∨
= 1 + ⟨ρG, α0⟩g,

and the fundamental Weyl alcove for G is the simplex

A = {ξ ∈ t+
⟨α0, ξ⟩g ≤ 1} ⊂ t ⊂ g.

Every coadjoint orbit of LG-action on Lg∗ contains a unique point in A.
For any ξ ∈ Lg∗, we define the holonomy map

Hol : Lg∗
→ G
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the smooth map that sends ξ to the holonomy of ξ around S1. This map satisfies the equivariance property

Hol(g · ξ) = g(0) · Hol(ξ) · g(0)−1.

It follows that the based loop group

ΩG = {g ∈ LG
g(0) = e}

acts freely on Lg∗.
The isotropy group (LG)ξ is isomorphic to GHol(ξ), and thus compact. It sets up a 1–1 correspondence between the set of

coadjoint LG-orbits and conjugacy classes. Moreover (LG)ξ with ξ ∈ t∗
+
depends only on the open face σ of A containing ξ

and will be denoted by (LG)σ . If we introduce a partial order on open faces by setting τ ≼ σ if τ ⊆ σ , then one has that

σ ≼ τ ⇒ (LG)τ ⊆ (LG)σ .

In particular, (LG)0 = G and (LG)intA = T .

2.2. Positive energy representation

Let S1rot be the rotation group on S1 and ∂ its infinitesimal generator. Consider a unitary representation of S1rot n LG on a
Hilbert space V , on which the central circle acts by scalar multiplication.

Definition 2.1. We say that V is a positive energy representation if the energy operator ∂ is self-adjoint with spectrum
bounded below. Moreover, we say that V has level k if the central circle of LG acts with weight k.

The positive energy representations of loop groups behave quite analogously to the representation theory of compact Lie
groups. For example, every irreducible positive energy representation is uniquely determined by the highest weight. To be
more precise, let T be amaximal torus of G andΛ∗ the weight lattice. We take S1rot × T × S1 as the maximal torus of S1rot n LG,
where the second S1 factor comes from the central extension. The affine weights of LG are in the forms of (m, λ, k), where
m ∈ Z is the energy, λ ∈ Λ∗ is the weight of G, and k is the level.

The affine Weyl group Waff = W n Λ acts on affine weights as follows: the Weyl group W acts as usual on Λ∗ and the
action of z ∈ Λ is given by

z · (m, λ, k) =


m + ⟨λ, z⟩ +

k
2

· ∥z∥2, λ + k · z, k


.

The level k is fixed by the affine Weyl group action and the energy is shifted so as to preserve the inner product:

(m1, λ1, k1) · (m2, λ2, k2) = ⟨λ1, λ2⟩ − m1k2 − m2k1. (2.2)

For a fixed level k, every irreducible positive energy representation V of LG is uniquely determined by the dominant weight
λ at the minimum energy m. We call λ = (m, λ, k) the highest weight of V .

Let V (n) be a subspace of the Hilbert space V , on which the energy operator ∂ acts on V (n) with weight n. The positive
energy condition asserts that there is an integer nmin so that V (n) = 0 for all n < nmin. The algebraic direct sum

V fin
:=


n

V (n)

consists of vectors of finite energy. It is a dense subspace of V . In addition, we can always normalize so that the lowest energy
level nmin equals zero.

It iswell-knownby the Borel–Weil theorem that all the irreducibleG-representations are parameterized by the dominant
weights PG,+ = Λ∗

∩ t∗
+
. Similarly there is a 1–1 correspondence between irreducible positive energy representation at level

k and weight in

Pk,+ = kA ∩ Λ∗
=


λ ∈ Λ∗

λk ∈ A


.

For any λ ∈ Pk,+, we denote by Vλ the irreducible positive energy representation at level kwith highestweight λ. In addition,
we write V ∗

λ the dual of Vλ, which can be considered as a negative energy representation. In particular, the energy operator
∂ acts on V ∗

λ with spectrum bounded above.
The abelian group Rk(LG) generated by irreducible positive energy representations at level k has a finite basis and a ring

structure known as fusion product. But we will not discuss it in this paper.

3. Dirac operators in the algebraic setting

The cubic Dirac operator is an algebraically defined operator introduced by Kostant [3] for finite-dimensional Lie algebras.
It has now been generalized to infinite-dimensional case and plays an important role in the theory of loop groups: its
application in representation theory was first demonstrated in the lecture notes of Wassermann [4]. Later Landweber and
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Posthuma generalize it to different homogeneous settings [5,6]. A family version of the cubic Dirac operator was used by
Freed–Hopkins–Teleman [7] to construct the isomorphism between the twisted K -theory and fusion ring of loop groups. In
addition Meinrenken [8] discusses its application in general Kac–Moody algebra.

3.1. Finite dimensional case

Let G be a compact Lie group and g its Lie algebra equipped with an ad-invariant inner product ⟨ , ⟩g. Let Cliff(g) be the
Z2-graded complex Clifford algebra of g and Sg an irreducible Z2-graded Cliff(g)-module.

Fix an orthonormal basis

Xa, a = 1, . . . , dimg.

We define a map adg
: g → Cliff(g) by the formula

adg(X) :=
1
4

·

dimg
a=1

[X, Xa] · Xa, X ∈ g.

Let U(g) be the universal enveloping algebra of g. We consider the non-commutative Weil algebra

U(g) ⊗ Cliff(g)

introduced by Alekseev–Meinrenken [9].

Definition 3.1. The cubic Dirac operator Dg is an element of the algebra U(g) ⊗ Cliff(g) defined as

Dg =

dimg
a=1


Xa ⊗ Xa +

1
3

⊗ adg(Xa) · Xa


.

The key property of the cubic Dirac operator is that its square is simple and nice:

D2
g = −2ΩG + constant,

where ΩG is the quadratic Casimir operator.
More generally, let H ⊂ G be a closed subgroup of the equal rank. Using the inner product we write

g = h ⊕ p, p = h⊥.

This decomposition induces isomorphisms:

Cliff(g) ∼= Cliff(h) ⊗ Cliff(p), Sg
∼= Sh ⊗ Sp,

where Sh, Sp are spinor modules of Cliff(h) and Cliff(p) respectively.

Definition 3.2. We define the relative cubic Dirac operator

Dg,h ∈ U(g) ⊗ Cliff(p)

by

Dg,h =

(p)
Xa ⊗ Xa +

1
3

⊗ adp(Xa) · Xa


. (3.1)

Here
(p) indicates the summation over the basis of p.

As it stands, the element Dg,h gives us an operator onW ⊗ Sp for any g-representationW . To exhibit the structure of Dg,h,
we decomposeW ⊗ Sp with respect to the h-action and denote byM(ν) the isotypic h-summand with highest weight ν.

Theorem 3.3 ([3]). Suppose that Wλ is an irreducible g-representation with highest weight λ. The following formula holds

D2
g,h


M(ν)

= ∥λ + ρG∥
2
− ∥ν + ρH∥

2.

3.2. Dirac operators on homogeneous spaces

Suppose now that M = G/H is an orbit of the coadjoint G-action on g∗. It is known that M has a G-invariant complex
structure so that it is compatible with the symplectic structure onM . Such a complex structure determines a H-equivariant
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splitting: p = p+
⊕ p−. One can check that the spinor bundle associated to the complex structure onM is given by

SM = G×H(∧p−) ∼= G×H(S∗

p ⊗ CρG−ρH ), (3.2)

and the canonical line bundle

KM = G×H C2·(ρG−ρH ). (3.3)

Hence, the Hilbert space L2(M, SM) can be identified with
L2(G) ⊗ S∗

p ⊗ CρG−ρH

H ∼=


λ∈PG,+

Wλ ⊗ [W ∗

λ ⊗ S∗

p ⊗ CρG−ρH ]
H , (3.4)

where the isomorphism comes from the Peter–Weyl theorem.
We define Dirac operators on M in two different ways. First of all, the Levi-Civita connection ∇

TM lifts to a Hermitian
connection ∇

SM on SM . In particular, the connection ∇
SM is compatible with the Clifford action in the sense that

[X, ∇
SM
Y ] = ∇

TM
Y X, X, Y ∈ TM.

We define a geometric Spinc-Dirac operator by

Dgeo =

dimM
a=1

Xa · ∇
SM
Xa ,

where {Xa}
dimM
i=1 is an orthonormal basis of TM .

On the other hand, since the cubic Dirac operator Dg,h is H-equivariant, it restricts to an operator on

[W ∗

λ ⊗ S∗

p ⊗ CρG−ρH ]
H .

Tensoring the identity operator on eachWλ, and summing overWλ, one obtains an operator Dalg on (3.4).

Lemma 3.4. The difference between Dalg and Dgeo on (3.4) is a bounded operator.

Proof. We rewrite the geometric connection ∇
SM as

∇
SM
X = X +

1
2
adp(X).

It follows that

Dgeo =

dimp
i=1

Xa ⊗


Xa +

1
2
adp(Xa)


.

We deduce the lemma by comparing the above with (3.1). An alternative proof can be found in [10, Chapter 9]. �

3.3. Infinite dimensional case

The definitions of spin representation and cubic Dirac operator can be extended to the infinite-dimensional loop
algebra Lg.

Let now G be a compact, simple and simply connected Lie group with Lie algebra g. The loop algebra Lg carries an inner
product defined by

B(X, Y ) =
1
2π

 2π

0
⟨X(θ), Y (θ)⟩gdθ, X, Y ∈ Lg. (3.5)

As in the finite dimensional case, we can define the Clifford algebra Cliff(Lg), and its spin representation SLg. Here SLg is a
Z2-graded complex Hilbert space, and also a positive energy LG-representation with highest weight

ρG = (0, ρG, h∨).

The explicit construction of SLg is given in [2]. For the general theory of Clifford algebras and representations on infinite
dimensional Hilbert spaces we refer to [11].

Let us fix an orthonormal basis {Xa} of g. For n ∈ Z, we write Xn
a for the loop

s → eins · Xa, s ∈ R,

and g(n) the vector space spanned by {Xn
a }

dimg

a=1 . The algebraic direct sum

Lgfin :=


n∈Z

g(n)
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is dense in LgC. The dense subspace of the spin representation SLg which consists of vectors with finite energy may be
realized as

SfinLg = Sg ⊗


k>0

Λ∗

gCzk


.

Definition 3.5. We define the cubic Dirac operator

DLg ∈ U(Lg) ⊗ Cliff(Lg)

by

DLg =


n∈Z

dimg
a=1


Xn
a ⊗ X−n

a +
1
3

⊗ adLg(Xn
a ) · X−n

a


. (3.6)

Remark 3.6. The map

adLg(X) :=
1
4


n∈Z

dimg
a=1

[X, Xn
a ] · X−n

a ∈ Cliff(Lg), X ∈ Lgfin (3.7)

is defined only on vectors with finite energy. To justify the infinite summation in (3.6) and (3.7), we refer to [8,4]. For any
positive energy LG-representation V ,DLg gives us an unbounded operator on


V ⊗SLg

fin
which is a dense subspace of V ⊗SLg.

Let h be an isotropy Lie algebra h of the coadjoint LG-action. We decompose the Lie algebra Lg = p ⊕ h, where p = h⊥.
By the multiplicative property of spin representation

SLg = Sp ⊗ Sh,

where Sp is a Z2-graded irreducible representation of the Clifford algebra Cliff(p).

Definition 3.7. We define DLg,h ∈ U(Lg) ⊗ Cliff(p) by the formula

DLg,h =

(p)
a,n


Xn
a ⊗ X−n

a +
1
3

⊗ adp(Xn
a ) · X−n

a


,

where the summation ranges over a basis of p. When h ⊆ g ⊂ Lg, DLg,h is the same operator in [6].

Wedenote byH the central extension ofH induced by the inclusionH ↩→ LG and the central extension LG.We decompose
V ⊗ Sp with respect to the S1rot × H-action and denote byM(ν) the isotypic component labeled by

ν = (n, ν, k + h∨) ∈ Z × Λ∗
× Z.

We have an analog of Theorem 3.3 for the infinite-dimensional case.

Theorem 3.8. Suppose that Vλ is an irreducible positive energy representation with highest weight λ = (0, λ, k). If we restrict
to the isotypic component M(ν) of Vλ ⊗ Sp, we have that

D2
Lg,h


M(ν)

= ∥λ + ρG∥
2
− ∥ν + ρH∥

2,

where ρG = (0, ρG, h∨) and ρH = (0, ρH , 0).

Proof. [8, Theorem 7.5]. �

4. Hamiltonian LG-spaces and q-Hamiltonian G-spaces

The theory of q-Hamiltonian G-spaces was developed in [1]. It provides a finite-dimensional model for Hamiltonian
LG-spaces. In this section, we begin by reviewing the basic definitions, and then discuss their cross-section theorems. We
assume that G is a compact, simple and simply connected Lie group.

4.1. Basic definitions

Recall that a Hamiltonian G-space is a triple (M, ω, µ), with ω the G-equivariant symplectic 2-form, and µ : M → g∗ the
moment map satisfying that

ιξMω = d⟨µ, ξ⟩, ξ ∈ g,

where ξM is the vector field onM induced by the infinitesimal action of ξ .



76 Y. Song / Journal of Geometry and Physics 106 (2016) 70–86

The above definition can be extended to the loop group setting. Let M be an infinite-dimensional Banach manifold. We
say that it is weakly symplectic if it is equipped with a closed 2-form ω ∈ Ω2(M) so that the induced map

ω♭
: TmM → T ∗

mM

is injective.

Definition 4.1. A Hamiltonian LG-space is a weakly symplectic Banach manifold (M, ω) together with a LG-action and a
LG-equivariant map µ : M → Lg∗ so that ιξMω = d⟨µ, ξ⟩ for all ξ ∈ Lg.

For example, the coadjoint LG-orbit is a Hamiltonian LG-space, with moment map the inclusion.
Let (M, ω, µ) be a Hamiltonian LG-space. Since the based loop group ΩG acts freely on Lg∗, it acts freely on M as well

by the equivariance of µ. We thus obtain a commuting square

where the quotientM = M/ΩG is a finite-dimensional compact smooth manifold provided that µ is proper.
Alekseev–Malkin–Meinrenken [1] give a set of conditions a G-spaceM must satisfy in order to arise from a Hamiltonian

LG-space by such a construction.
Choose an invariant inner product ⟨·, ·⟩g on g and denote by θ L, θR

∈ Ω1(G, g) the left and right invariant Maurer–Cartan
forms on G and the Cartan 3-form

χ =
1
12

⟨θ L, [θ L, θ L
]⟩g =

1
12

⟨θR, [θR, θR
]⟩g ∈ Ω3(G).

Definition 4.2 ([1]). A q-Hamiltonian G-space is a compact G-manifold M , together with an equivariant 2-form ω, and an
equivariant map φ : M → G satisfying the following properties:

1. dω = φ∗χ;

2. ιξMω =
1
2 ⟨φ

∗(θ L
+ θR), ξ⟩g for all ξ ∈ g;

3. ker(ω) ∩ ker(dφ) = 0.

We call φ the group-valued moment map.

According to [1, Theorem 8.3], there is a 1–1 correspondence between Hamiltonian LG-spaces with proper moment
map and q-Hamiltonian G-spaces. One can always choose to work with infinite-dimensional Hamiltonian LG-spaces with
more conventional definitions or to use finite dimensional q-Hamiltonian G-spaces. The counterparts of coadjoint orbits for
q-Hamiltonian G-spaces are conjugacy classes C in G with group-valued moment map the embedding C ↩→ G.

4.2. Cross-section theorems

The Hamiltonian LG-spaces and their equivalent finite-dimensional models behave in many respects like the usual
Hamiltonian G-spaces. This is due to the existence of the cross-section theorem we shall now describe.

Let us first introduce a partial order of open faces ofA by setting τ ≼ σ if τ ⊆ σ . The isotropy group (LG)ξ of the coadjoint
LG-action on Lg∗ depends only on the open face σ of A containing ξ and will be denoted by (LG)σ (note however (LG)σ will
generally contain non-constant loops). One has that

σ ≼ τ ⇒ (LG)τ ⊆ (LG)σ .

In particular, (LG)0 = G and (LG)intA = T .
We define a (LG)σ -invariant open subset of (Lg)∗σ by

Aσ = (LG)σ ·


σ≼τ

τ .

Note that Aσ is a slice for all ξ ∈ σ for the action of LG in the sense that

LG×(LG)σ Aσ → LG · Aσ

is a diffeomorphism of Banach manifolds.

Theorem 4.3. Let (M, ω, µ) be a Hamiltonian LG-space with proper moment map. For every open face σ of A, the cross-section

Vσ = µ−1(Aσ )

is a finite-dimensional symplectic submanifold with Hamiltonian (LG)σ -action. The restriction of µ|Vσ is a moment map of the(LG)σ -action (the central circle acts trivially on Vσ ).
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Proof. [12, Theorem 4.8]. �

The symplectic cross-section theorem carries over to q-Hamiltonian G-spaces. The centralizer Gexp(ξ) with ξ ∈ A is
isomorphic to (LG)ξ and it depends only on the open face σ of A containing ξ . We denoted it by Gσ . The subset

Aσ = Ad(Gσ ) · exp


σ≼τ

τ


⊂ Gσ ⊂ G

is smooth and is a slice for the Ad(G)-action at points in σ .

Theorem 4.4. Let (M, ω, φ) be a q-Hamiltonian G-space. The cross-section

Vσ = φ−1(Aσ ) (4.1)

is a smooth Gσ -invariant submanifold and

G×Gσ Vσ
∼= G · Vσ

is a G-invariant open subset of M.Moreover, Vσ is a q-HamiltonianGσ -spacewith the restriction of φ as the group-valuedmoment
map.

Proof. [1, Proposition 7.1]. �

Remark 4.5. It is important to point out that if we identify Gσ
∼= (LG)σ , the two cross-sections

Vσ ⊂ M, Vσ ⊂ M

are equivariantly diffeomorphic. In particular, every Vσ is also a Hamiltonian Gσ -space.

5. Twisted spinor bundle and twisted pre-quantum bundle

In this section, we construct twisted spinor bundle and twisted pre-quantum bundles on q-Hamiltonian G-spaces.

5.1. Construction of the twisted spinor bundle

Let G be a compact, simple, and simply connected Lie group. Let (M, ω) be a q-Hamiltonian G-space and M its
corresponding Hamiltonian LG-space.

We first replace the cross-sections Vσ in (4.1) with smaller open subsets. To be more precise, for every vertex σ of A, let
Yσ be a Gσ -invariant, open subset of Vσ so that Yσ ⊂ Vσ , and

M/G ⊆


σ ,dimσ=0

Yσ .

Then we form an open cover ofM by

{Uσ = G×Gσ Yσ }σ ,dimσ=0.

For all open faces τ of A with dimτ > 0, we define

Yτ =


σ≼τ ,dimσ=0

Yσ , Uτ = G×Gτ Yτ .

Remark at this point that each Yτ is a Hamiltonian Gτ -space and admits Gτ -invariant almost complex structures.

Lemma 5.1. There exists a collection of Gσ -invariant almost complex structures on the collection of Yσ such that the embedding

Yτ ↩→ Yσ , σ ≺ τ

is almost complex. In addition, any two collections of almost complex structures with the required properties are homotopic. We
denote by SYσ the spinor bundle on Yσ associated to the almost complex structures.

Proof. [13, Lemma 3.2]. �

Let π : Uσ → G/Gσ be the projection. The tangent bundle decomposes G-equivariantly

TUσ
∼= π∗T (G/Gσ ) ⊕ G×Gσ TYσ .

The base manifold G/Gσ is a conjugacy class and might not have a G-equivariant Spinc-structure in general. Thus the total
space Uσ does not have to be Spinc either.
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On the other hand, the coadjoint LG-orbit O = LG/(LG)σ is a complex manifold. By the discussion in [13], the weight

2 · (ρG − ρσ , h∨)

is fixed by (LG)σ and the tensor product

S∗

Lg/(Lg)σ ⊗ C(ρG−ρσ ,h∨)

is a (LG)σ -space. The associated spinor bundle and canonical line bundle on O are given by

SO = LG×(LG)σ
(S∗

Lg/(Lg)σ ⊗ C(ρG−ρσ ,h∨))

and

KO = LG×(LG)σ
(C2·(ρG−ρσ ,h∨)).

One can compare them with (3.2) and (3.3).
Motivated by the above, we define a bundle of Hilbert space on Uσ by

SspinUσ
= G×Gσ


S∗

Lg/(Lg)σ ⊗ C(ρG−ρσ ,h∨) ⊗ SYσ


, (5.1)

where Gσ acts on

S∗

Lg/(Lg)σ ⊗ C(ρG−ρσ ,h∨)

factoring through the identification Gσ
∼= (LG)σ . In addition, we equip SspinUσ

with a Z2-grading induced by that on S∗

Lg/(Lg)σ

and SYσ . To sum up, we obtain a collection of G-equivariant bundles of Z2-graded Hilbert space {SspinUσ
}. We next show that

such a collection of bundles can be glued together.

Lemma 5.2. For any σ ≺ τ , the normal bundle νσ
τ of Yτ ↩→ Yσ has a Gτ -equivariant almost complex structure with spinor

bundle isomorphic to

S∗

(Lg)σ /(Lg)τ ⊗ C(ρσ −ρτ ), (5.2)

where ρτ , ρσ are the half-sums of positive roots for Gτ ,Gσ respectively.

Proof. By the cross-section theorem, the normal bundle νσ
τ is isomorphic to the trivial bundle

gσ /gτ
∼= (Lg)σ /(Lg)τ

with equivariant almost complex structure. In fact, let Rσ , Rτ be compatible sets of positive roots for Gσ and Gτ . Then

gσ /gτ =


α∈Rσ \Rτ

Cα

and

detC(νσ
τ ) =


α∈Rσ \Rτ

Cα = C2(ρσ −ρτ ). �

Lemma 5.3. There are canonical isomorphisms

Ψτ ,σ : SspinUτ
∼= SspinUσ

|Uτ , σ ≺ τ

and they automatically satisfy the cocycle condition.

Proof. By the above lemma, we have that

SYσ |Yτ
∼= S∗

(Lg)σ /(Lg)τ ⊗ C(ρσ −ρτ ) ⊗ SYτ .

The claim follows from the construction. �

Definition 5.4. We define the twisted spinor bundle Sspin to be the G-equivariant bundle of Z2-graded Hilbert space over M
with the property that

Sspin|Uσ
∼= SspinUσ

,

for all vertexes σ of A.

The twisted spinor bundle is determined by the choice of almost complex structures on subsets {Yσ }. By Lemma 5.1, all
the choices are homotopic. Hence, the twisted spinor bundle Sspin is unique up to homotopy.
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5.2. Construction of the twisted pre-quantum bundle

Let us recall that the pre-quantum line bundle of a symplectic manifold is traditionally defined to be a line bundle whose
first Chern class is an integral lift of the symplectic 2-form.

Definition 5.5. We say that a Hamiltonian LG-space M is pre-quantizable at level k (k > 0) if there exists a LG-equivariant
line bundle

L → M

such that the central circle acts with weight k and the first Chern class c1(L) equals the symplectic 2-form on M.

Because the pre-quantum line bundle L is LG-equivariant instead of LG-equivariant, it might not descend to an actual
line bundle on its corresponding q-Hamiltonian G-space M .

Remark 5.6. The 2-form ω for a q-Hamiltonian G-space M is not closed in general. Instead the condition dω = φ∗χ
and the fact that χ is a closed 3-form imply that the pair (ω, χ) defines a cocycle for the relative de Rham theory
(see [14, Appendix B] for a reference). We denote by [(ω, χ)] ∈ H3(φ, R) its cohomology class. We say that a q-Hamiltonian
G-space (M, ω, φ) is pre-quantizable at level k if k · [(ω, χ)] is integral. By the 1–1 correspondence between q-Hamiltonian
G-spaces and Hamiltonian LG-spaces, their pre-quantum conditions are equivalent.

Let Yσ be the cross-section defined before. We identify it as a subset in M. If M has a pre-quantum line bundle L at level
k, then there exists a (LG)σ -equivariant line bundle obtained by restriction

LYσ = L|Yσ → Yσ ,

on which the central circle acts with weight k. The collection of line bundles {LYσ } satisfy a compatibility condition in the
sense that

(LG)σ ×(LG)τ LYτ
∼= LYσ |Yσ

τ
, σ ≺ τ (5.3)

where

Y σ
τ = (LG)σ ×(LG)τ Yτ

is a (LG)σ -invariant open subset of Yσ .
For any irreducible positive energy representation Vλ at level k, we denote V ∗

λ its dual. Comparing to (5.1), we define a
bundle of Hilbert space on

Uσ = G×Gσ Yσ

by

Spreλ,Uσ
= G×Gσ (V ∗

λ ⊗ LYσ ). (5.4)

Here V ∗

λ is the dual of Vλ. The central circle of (LG)σ acts trivially on the tensor product V ∗

λ ⊗ LYσ , and Gσ acts factoring
through Gσ

∼= (LG)σ .
By the compatibility condition (5.3), there are canonical isomorphisms

Ψτ ,σ : Spreλ,Uτ
∼= Spreλ,Uσ

|Uτ , σ ≺ τ ,

satisfying the cocycle condition. Thus, they can be glued together. We define Spreλ the unique G-equivariant bundle of Hilbert
space overM with the property that

Spreλ |Uσ = Spreλ,Uσ
.

Definition 5.7. We define the twisted pre-quantum bundle by

Spre :=


λ∈Pk,+

Vλ ⊗ Spreλ . (5.5)

It is a LG × G-equivariant bundle of Hilbert space over the q-Hamiltonian G-space M .

Remark 5.8. There is a global construction of the twisted pre-quantum bundle. Let us introduce a LG × LG-space:
Hwzw,k =


λ∈Pk,+

Vλ ⊗ V ∗

λ .

This is the so-called Hilbert space of theWess–Zumino–Witten model (see [15] for a reference). The aim of this paper is not
to justify this choice of the Hilbert space, but morally one can consider it as the analog of L2(G) for loop groups, in the spirit
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of the Peter–Weyl decomposition of L2(G). The tensor product

(M × Hwzw,k) ⊗ L =


λ∈Pk,+

Vλ ⊗ (V ∗

λ ⊗ L) → M

is a LG × LG equivariant bundle. We obtain a LG × G-equivariant bundle of Hilbert space by taking its ΩG-invariant part

Spre = Vλ ⊗ [V ∗

λ ⊗ L]
ΩG

→ M = M/ΩG.

6. Dirac operators on q-Hamiltonian G-spaces

With the twisted spinor bundle and twisted pre-quantum bundle defined in last section, we now proceed to construct
Hilbert spaces and Dirac operators. We keep the same notations as in the last section. Let G be a compact, simple and simply
connected Lie group, andM a pre-quantizable q-Hamiltonian G-space at level k.

6.1. Dirac operators on cross-sections

The idea of constructing Dirac operators is that we first define Dirac operators on local cross-sections, and then patch
them together using partition of unity.

Let {Yτ } be the collection of cross-sections defined in last section and open subsets Uτ = G×Gτ Yτ . Fixing an irreducible
positive energy LG-representation Vλ, we define

Γ ∞

c (Uτ , Sspin ⊗ Spreλ )
G

the space of G-invariant, smooth sections of Sspin ⊗ Spreλ with compact support in Uτ , with norm given by

∥s∥2
:=


Uτ

⟨s(m), s(m)⟩dm.

Lemma 6.1. We have that
Γ ∞

c (Uτ , Sspin ⊗ Spreλ )
G ∼=


V ∗

λ ⊗ S∗

Lg/(Lg)τ ⊗ C(ρG−ρτ ,h∨) ⊗ Γ ∞

c (Yτ , SYτ ⊗ LYτ )
Gτ

. (6.1)

Proof. The assertion follows immediately from the isomorphisms (5.1) and (5.4). �

Let

Dalg ∈ U(Lg) ⊗ Cliff(Lg/(Lg)τ )

be the cubic Dirac operator acting on V ∗

λ ⊗S∗

Lg/(Lg)τ andDgeo the equivariant geometric Spinc-Dirac operator onΓ ∞
c (Yτ , SYτ ⊗

LYτ ). Here we choose Dgeo so that it is symmetric. Since the sum

Dalg ⊗ 1 + 1 ⊗ Dgeo

is equivariant, it descends to the Gτ -invariant part. That is, we obtain a collection of operators
Dalg ⊗ 1 + 1 ⊗ Dgeo

Gτ

on 
V ∗

λ ⊗ S∗

p ⊗ C(ρG−ρτ ,h∨) ⊗ Γ ∞

c (Yτ , SYτ ⊗ LYτ )
Gτ

,

and thus an operator on
Γ ∞

c (Uτ , Sspin ⊗ Spreλ )
G

.

We denote it by DUτ . By definition, every DUτ is an unbounded operator. Since Dalg is defined only on vectors with finite
energy, the domain of DUτ is given by

(V ∗

λ ⊗ S∗

Lg/(Lg)τ )
fin

⊗ C(ρG−ρτ ,h∨) ⊗ Γ ∞

c (Yτ , SYτ ⊗ LYτ )
Gτ

,

which is a dense subspace.
Suppose that σ1, σ2 are two vertexes of A and τ an open face of A so that σ1 ≼ τ and σ2 ≼ τ . In particular, one has that

Uτ ⊆ Uσ1 , Uτ ⊆ Uσ2 .

Proposition 6.2. If we restrict to
Γ ∞

c (Uτ , Sspin ⊗ Spreλ )
G

,

the difference between DUσ1
and DUσ2

is a bounded operator.
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Proof. Since Uτ = G×Gτ Yτ , Lemma 6.1 gives us an isomorphism:
Γ ∞

c (Uτ , Sspin ⊗ Spreλ )
G ∼=


V ∗

λ ⊗ S∗

Lg/(Lg)τ ⊗ C(ρG−ρτ ,h∨) ⊗ Γ ∞

c (Yτ , SYτ ⊗ LYτ )
Gτ

. (6.2)

The Dirac operator DUτ is defined as the combination of a cubic Dirac operator on

V ∗

λ ⊗ S∗

Lg/(Lg)τ
∼= V ∗

λ ⊗ S∗

Lg/(Lg)σ1
⊗ S∗

gσ1 /gτ

and a Spinc-Dirac operator on

Γ ∞

c (Yτ , SYτ ⊗ LYτ ).

On the other hand, we have that

Uτ
∼= G×Gσ1

Y σ1
τ , Y σ1

τ = Gσ1 ×Gτ Yτ .

Applying Lemma 6.1 again,
Γ ∞

c (Uτ , Sspin ⊗ Spreλ )
G ∼=


V ∗

λ ⊗ S∗

Lg/(Lg)σ1
⊗ C(ρ−ρσ1 ,h∨) ⊗ Γ ∞

c (Y σ1
τ , SYσ1

⊗ LYσ1
)
Gσ1 . (6.3)

Under the isomorphism (6.3), the operator DUσ1
decomposes into the sum of a cubic Dirac operator on

V ∗

λ ⊗ S∗

Lg/(Lg)σ1

and a Spinc-Dirac operator on

Γ ∞

c (Y σ1
τ , SYσ1

⊗ LYσ1
).

It follows immediately that the two operators DUτ and DUσ1
are identical on

V ∗

λ ⊗ S∗

Lg/(Lg)σ1
.

Note that the spinor bundle

SYσ1
|Y

σ1
τ

∼= Gσ1 ×Gτ (SYτ ⊗ S∗

gσ1 /gτ
⊗ Cρσ1−ρτ ),

and the pre-quantum line bundle

LYσ1
|Y

σ1
τ

∼= Gσ1 ×Gτ Lτ .

Therefore, the space

Γ ∞

c (Y σ1
τ , SYσ1

⊗ LYσ1
)

decomposes into:
C∞(Gσ1) ⊗ S∗

gσ1 /gτ


⊗ Cρσ1−ρτ ⊗ Γ ∞

c (Yτ , SYτ ⊗ LYτ )
Gτ

.

By definition, both DUτ and DUσ1
act as Spinc-Dirac operators on

Γ ∞

c (Yτ , SYτ ⊗ LYτ );

while on the factor

C∞(Gσ1) ⊗ S∗

gσ1 /gτ
,

DUτ acts as the cubic Dirac operator, and DUσ1
acts as the Spinc-Dirac operator. By Lemma 3.4, their difference is bounded.

We just show that the difference between DUσ1
and DUτ is a bounded operator on the overlap Uτ . Similarly one can show

that the difference between DUσ2
and DUτ is bounded as well. This completes the proof. �

6.2. Construction of the dirac operator and main theorem

For a fixed irreducible positive energy representation Vλ at level k, we define

Hλ =

L2(M, Sspin ⊗ Spreλ )

G
.

The Z2-grading on the twisted spinor bundle Sspin equips Hλ with a Z2-grading. That is

Hλ = H+

λ ⊕ H−

λ .
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Select a G-invariant, smooth partition of unity {f 2σ } which is subordinate to the cover

{Uσ = G×Gσ Yσ }σ ,dimσ=0.

We define a Dirac operator D on H by the formula:

D =


σ ,dimσ=0

fσ · DUσ · fσ .

Proposition 6.3. The Dirac operator D does not depend on the choice of {f 2σ } up to homotopy.

Proof. Let {f ′
σ
2
} be another partition of unity. We define a Dirac operator D ′ on Hλ by

D ′
=


σ ,dimσ=0

f ′

σ · DUσ · f ′

σ .

It suffices to show that

D ′
− D ∈ B(Hλ).

We compute that

D =


σ

fσ · DUσ · fσ =


σ ,τ

fσ · DUσ · f ′2
τ · fσ

=


σ ,τ


f ′

τ · fσ · DUσ · fσ · f ′

τ + fσ · [DUσ , f ′

τ ] · f ′

τ · fσ


=


σ ,τ


f ′

τ · DUσ · f 2σ · f ′

τ + fσ · [DUσ , f ′

τ ] · f ′

τ · fσ + f ′

τ · [DUσ , fσ ] · f ′

τ · fσ

. (6.4)

Since the functions fσ areG-invariant, they commutewith the cubic Dirac operatorDalg. Their commutatorswith Spinc-Dirac
operators:

c(dfσ ) = [fσ ,Dgeo]

are all bounded. It shows that

[DUσ , f ′

τ ], [DUσ , fσ ] ∈ B(Hλ). (6.5)

In addition, by Proposition 6.2,

f ′

τ · (DUσ − DUτ ) · f 2σ · f ′

τ

are bounded for all σ , τ . Therefore,
σ ,τ

f ′

τ · DUσ · f 2σ · f ′

τ =


τ ,σ

f ′

τ · DUτ · f 2σ · f ′

τ +


τ ,σ

f ′

τ · (DUσ − DUτ ) · f 2σ · f ′

τ

= D ′
+


τ ,σ

f ′

τ · (DUσ − DUτ ) · f 2σ · f ′

τ . (6.6)

The proposition follows from (6.4)–(6.6). �

Proposition 6.4. The Dirac operator D is essentially self-adjoint.

Proof. It is enough to show that each fσ · DUσ · fσ is essentially self-adjoint. Let us write

DUσ =

Dalg ⊗ 1 + 1 ⊗ Dgeo

Gσ
.

The algebraic partDalg is certainly self-adjoint, and the geometric part,Dgeo is a symmetric Spinc-Dirac operator on Yσ . Recall
that every symmetric Dirac operator on a complete manifold is essentially self-adjoint. But it does not apply directly to our
case since Yσ is not complete. Nevertheless, we can get around this by the following trick.

Since the function fσ has compact support in Yσ , we can find a smaller subsetYσ so that

Suppfσ ⊂ Yσ ⊂ Yσ

and the closure ofYσ is contained in Yσ . We denote by g the metric on Yσ and χ a positive function on Yσ so that χ |Yσ
≡ 1

and χ(m) tends to infinity as m tends to the boundary of Yσ . Under the rescaled metric

gχ (·, ·) = χ2
· g(·, ·),

the manifold Yσ becomes complete.
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LetDgeo be an essentially self-adjoint Spinc-Dirac operator on the complete manifold Yσ . Consider a new Dirac operatorDUσ := [Dalg ⊗ 1 + 1 ⊗Dgeo]
Gσ ,

which is essentially self-adjoint. Since the metric remains the same withinYσ , we have thatDUσ s = DUσ s

for all swith Supps ⊆ Yσ . Thus,

fσ ·DUσ · fσ

can be viewed as an operator on Hλ, and

fσ · DUσ · fσ = fσ ·DUσ · fσ

is essentially self-adjoint. �

We define an operator by functional calculus,

F =
D

√
1 + D2

.

Because D has a dense domain in Hλ, F extends to a self-adjoint bounded operator on Hλ, which anti-commutes with the
Z2-grading on Hλ.

Theorem 6.5. The bounded operator F is Fredholm on Hλ. We define its Fredholm index by

Ind(D)λ := ker(F ) ∩ H+

λ − ker(F ) ∩ H−

λ ∈ Z.

By Proposition 6.3, the index is independent of the choice of partition of unity. Let us define a Hilbert space

H =

L2(M, Sspin ⊗ Spre)

G ∼=


λ∈Pk,+

Vλ ⊗ Hλ,

and a Dirac operator

DM =


λ∈Pk,+

1 ⊗ D|Hλ
.

Definition 6.6. Let (M, ω) be a q-Hamiltonian G-space. If it is pre-quantizable at level k, we define its quantization

Q (M) = Ind(DM) =


λ∈Pk,+

Ind(D)λ · Vλ ∈ Rk(LG).

This generalizes Bott’s Spinc-quantization for Hamiltonian G-spaces to q-Hamiltonian G-spaces.

Remark 6.7. In [14] Meinrenken develops a quantization from pre-quantized q-Hamiltonian G-spaces to the equivariant
twisted K -homology of G using push-forward maps. By the work of Freed–Hopkins–Teleman [7] the equivariant twisted
K -homology of G at level k is isomorphic to fusion ring of loop group Rk(LG).

Example 6.8. Let

C = G · exp(ξ) ∼= G/H, ξ ∈ A

be a conjugacy class. We assume that it is pre-quantizable at level k. By Remark 5.6,

(η, k) = (k · ξ, k) ∈t∗
+

is an integral weight. By definition, the twisted spinor bundle and twisted pre-quantum bundle are given by

Sspin = G×H(S∗

Lg,h ⊗ C(ρG−ρH ,h∨)), Spre = G×H(Hwzw,k ⊗ C(η,k)).

The Hilbert space
L2(C, Sspin ⊗ Spre)

G ∼=


λ∈Pk,+

Vλ ⊗

V ∗

λ ⊗ S∗

Lg/h ⊗ C(ρG−ρH+η,k+h∨)

H
.

By Theorem 3.8, one can calculate that

Q (C) = ind(DM) = Vη ∈ Rk(LG).

This is an algebraic version of the Borel–Weil construction for loop groups [2].
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6.3. Proof of Theorem 6.5

We will prove the main theorem in this subsection. Let us begin with a lemma.

Lemma 6.9. Let D, D ′ be two self-adjoint unbounded operators on a Hilbert space H such that D − D ′
∈ B(H). For

α = 0, 1, if

Dα
· (1 + D2)−1

∈ K(H),

then

D ′α
· (1 + D ′2)−1

∈ K(H).

Proof. Suppose that D ′
= D + Bwith B ∈ B(H). By straightforward calculation,

(1 + D2)−1
− (1 + D ′2)−1

= (1 + D2)−1
· (D ′2

− D2) · (1 + D ′2)−1

= (1 + D2)−1
· (D · B + B · D ′) · (1 + D ′2)−1. (6.7)

Note that the product of a bounded operator and a compact operator is again a compact operator. By the assumption, we
deduce that

(1 + D ′2)−1
∈ K(H).

We next consider

D · (1 + D2)−1
− D · (1 + D ′2)−1

= D · (1 + D2)−1
· (D ′2

− D2) · (1 + D ′2)−1

= D · (1 + D2)−1
· (D · B + B · D ′) · (1 + D ′2)−1. (6.8)

For the same reason as above, it follows that

D · (1 + D ′2)−1
∈ K(H).

Because D ′
− D is bounded, we conclude that

D ′
· (1 + D ′2)−1

∈ K(H). �

Fix a vertex σ of A. Let us write

DUσ =

Dalg ⊗ 1 + 1 ⊗ Dgeo

Gσ
,

acting on
V ∗

λ ⊗ S∗

Lg/(Lg)σ ⊗ C(ρG−ρσ ,h∨) ⊗ Γ ∞

c (Yσ , SYσ ⊗ LYσ )
Gσ

.

By the trick used in Proposition 6.4, we can assume that Yσ is complete and Dgeo is an essentially self-adjoint Spinc-Dirac
operator on Yσ .

Lemma 6.10. For α = 0, 1, one has that

fσ · Dα
Uσ

· (1 + D2
Uσ

)−1
· fσ ∈ K(Hλ).

Proof. We decompose

L2(Yσ , SYσ ⊗ LYσ )

with respect to the S1rot ×Gσ -action and denote byM(ν) the isotypic component labeled by

ν = (n, ν, k) ∈ Z × Λ∗
× Z.

Since fσ has compact support, it follows from Rellich’s lemma that

fσ · Dα
geo · (1 + D2

geo)
−1

· fσ

is a compact operator on

L2(Yσ , SYσ ⊗ LYσ ).

It implies that the norm of the restriction of

fσ · Dα
Uσ

· (1 + D2
Uσ

)−1
· fσ
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to 
V ∗

λ ⊗ S∗

Lg/(Lg)σ ⊗ C(ρG−ρσ ,h∨) ⊗ M(ν)
Gσ

tends to 0 as ∥ν∥ tends to infinity. Thus, it suffices to show that the operator

fσ · Dα
Uσ

· (1 + D2
Uσ

)−1
· fσ

is compact after restricted to a fixed component
V ∗

λ ⊗ S∗

Lg/(Lg)σ ⊗ C(ρG−ρσ ,h∨) ⊗ M(ν)
Gσ

.

By Theorem 3.8, the operator D2
alg = D2

Lg,(Lg)σ acts on the above space by

∥λ + ρG∥
2
− ∥ν + ρG∥

2.

By the formula in (2.2),

∥λ + ρG∥
2
− ∥ν + ρG∥

2
= ∥λ + ρG∥

2
+ 2 · n · (k + h∨) − ∥ν + ρG∥

2.

Since ∥λ + ρG∥
2 and ∥ν + ρg∥

2 are fixed constants, the operator D2
alg tends to infinity as the energy level n goes to infinity.

This proves the assertion. �

Lemma 6.11. One has that

fσ · (1 + D2)−1
· fσ , [fσ , (1 + D2)−1

] · fσ ∈ K(Hλ).

Proof. As shown in Proposition 6.3, there exists a bounded operator B so that

D · s = DUσ · s + B · s

for any s ∈ Hλ with Supps ⊂ Uσ . By the choice of function fσ , the support of fσ · s is automatically contained in Uσ for all
s ∈ Hλ. One can verify that

fσ · Dα
· (1 + D2)−1

· fσ = fσ · (DUσ + B)α ·

1 + (DUσ + B)2

−1
· fσ .

By Lemmas 6.9 and 6.10, we conclude that for α = 0, 1,

fσ · Dα
· (1 + D2)−1

· fσ ∈ K(Hλ).

For the second half, we calculate that
fσ , (1 + D2)−1

· fσ = (1 + D2)−1
· [fσ , D2

] · (1 + D2)−1
· fσ

= (1 + D2)−1
· c(dfσ ) · D · (1 + D2)−1

· fσ + (1 + D2)−1
· D · c(dfσ ) · (1 + D2)−1

· fσ . (6.9)

We point out here that c(dfσ ) is a bounded operator with support in Uσ . As in Lemma 6.10, one can similarly prove that

c(dfσ ) · Dα
· (1 + D2)−1

· fσ ∈ K(Hλ).

This completes the proof. �

Because the operator

F =
D

√
1 + D2

∈ B(Hλ),

we have that

1 − F 2
= (1 + D2)−1

=


dimσ=0

(1 + D2)−1
· f 2σ

=


dimσ=0


fσ · (1 + D2)−1

· fσ + [fσ , (1 + D2)−1
] · fσ


. (6.10)

By Lemma 6.11,

1 − F 2
∈ K(Hλ),

which implies that F is a Fredholm operator on Hλ.
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