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a b s t r a c t

In this paper, we consider a special class of solvable Lie groups such that for any x, y in
its Lie algebra, [x, y] is a linear combination of x andy. For the convenience, we call such a
Lie group a LCS Lie group. We investigate non-trivialm-quasi-Einstein metrics on pseudo-
Riemannian LCS Lie group. We proved that although there exists only trivial Ricci soliton
on pseudo-Riemannian LCS Lie group, any left invariant pseudo-Riemannian metric on LCS
Lie group is non-trivial m-quasi-Einstein metric. Moreover, non-trivial m-quasi-Einstein
metric is shrinking, expanding, or steady if LCS Lie group has positive, negative, or zero
constant sectional curvature respectively. In particular, any left invariant Riemannian or
Lorentzian metric on LCS Lie group is non-trivialm-quasi-Einstein metric.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In [12], Milnor considered a special class of solvable Lie groups such that for any x, y in its Lie algebra, [x, y] is a linear
combination of x and y. For the convenience, we call such a Lie group a LCS Lie group. It was proved that every left-invariant
Riemannian metric on such a Lie group is of constant negative sectional curvature. Then, Nomizu proved that every left-
invariant Lorentzian metric on a LCS Lie group is also of constant sectional curvature. However, relying on the choice of
left invariant Lorentz metrics, the sign of the constant sectional curvature may be positive, negative, or zero [13]. Later,
Albuquerque generalized this result to semi-Riemannian case [1]. In [8], Guediri proved that ifG is a LCS Lie group, then every
left-invariant Lorentzian metric on G is geodesically incomplete. Note also that if µ is a left invariant pseudo-Riemannian
metric on a LCS Lie group, then µ is flat if and only if the restriction of µ(e) to [g, g] is degenerate; see [10]. Recently, the
third author and S. Deng have investigated harmonicity properties of vector fields on Lorentzian LCS Lie groups [16].

On the other hand, a natural extension of the Ricci tensor is them-Bakry–Emery Ricci tensor

Ricmf = Ric + ∇
2f −

1
m

df ⊗ df , (1.1)

where 0 < m ≤ ∞, f is a smooth function on Mn, and ∇
2f stands for the Hessian form. For an arbitrary vector field X on

Mn, Barros and Ribeiro [2] and Limoncu [11] extendedm-Bakry–Emery Ricci tensor independently as follows:

RicmX = Ric +
1
2
LXg −

1
m

X∗
⊗ X∗ (1.2)
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where LXg denotes the Lie derivative on Mn and X∗ denotes the canonical 1-form associated with X . (Mn, g) is called an
m-quasi-Einstein metric if there exist a vector field X ∈ X(Mn) and constantsm and λ such that

RicmX = λg. (1.3)

Anm-quasi-Einsteinmetric is called trivialwhen X ≡ 0. The triviality definition is equivalent to say thatMn is an Einstein
manifold. Whenm = ∞, Eq. (1.3) reduces to a Ricci soliton, for more details see [4]. And anm-quasi-Einstein metric is called
expanding, steady or shrinking, respectively, if λ < 0, λ = 0, or λ > 0. If m is a positive integer and X is a gradient vector
field, the condition corresponds to a wrapped product Einstein metric, for more details see [5].

Although compact homogeneous Ricci solitons are Einstein (see [9,14,15]), compact homogeneous m-quasi-Einstein
metrics are not necessarily Einstein for m finite [3]. It was proved that every compact simple Lie group admits non-trivial
m-quasi-Einstein Lorentzian metrics and most of them admit infinitely many metrics [7]. Moreover, infinitely many non-
trivialm-quasi-Einstein metrics were constructed on solvable quadratic Lie group G(n) form finite [6].

In this paper, we investigate non-trivial m-quasi-Einstein metrics on pseudo-Riemannian LCS Lie group. This paper is
organized as the following: In Section 2, we state some basic facts on pseudo-Riemannian LCS Lie group and present some
results on the structure of the Lie algebras of n-dimensional pseudo-Riemannian LCS Lie groups. Pseudo-Riemannian LCS Lie
groups are classified into type A and type B, depending on the inducedmetric on the commutative ideal u (see Definition 2.1).
In Sections 3 and 4, we investigate non-trivialm-quasi-Einstein metrics on pseudo-Riemannian LCS Lie group of type A and
of type B respectively. We proved that although there exists only trivial Ricci soliton on pseudo-Riemannian LCS Lie group,
any left invariant pseudo-Riemannian metric on LCS Lie group is non-trivialm-quasi-Einstein metric. Moreover, non-trivial
m-quasi-Einstein metric is shrinking, expanding, or steady if LCS Lie group has positive, negative, or zero constant sectional
curvature respectively.

2. Preliminaries

A non-commutative Lie group G is said to belong to the class F if its Lie algebras g has the property that [x, y] is a linear
combination of x and y, for any x, y ∈ g.

In [12], it is shown that G ∈ F if and only if there exist a commutative ideal u of codimension 1 and an element b /∈ u such
that [b, x] = x for every x ∈ u. Furthermore, G ∈ F if and only if every left invariant Riemannian metric on G has sectional
curvature of constant sign.

In [13], K. Nomizu proved that every left-invariant Lorentz metric on such a Lie group is also of constant sectional
curvature. However, depending on the choice of left invariant Lorentz metric, the sign of the constant sectional curvature
may be positive, negative, or zero.

Let G be a n-dimensional non-commutative Lie group belonging to F (i.e. G is a LCS Lie group), endowed with a left
invariant pseudo-Riemannian metric. We take a commutative ideal u of codimension 1 and an element b /∈ u such that
[b, x] = x for every x ∈ u. Let ⟨, ⟩ be the pseudo-Riemannianmetric in Lie algebra g induced by a given left-invariant pseudo-
Riemannian metric on G. Let us denote by (p, n − p) the signature (−, . . . ,−, +, . . . ,+) of a metric with p minus signs.
Throughout this paper, we consider LCS Lie group G endowed with a left invariant pseudo-Riemannian metric of signature
(p, n − p).

Definition 2.1. A pseudo-Riemannian LCS Lie group G is said to be of type A if the induced metric is nondegenerate when it
is restricted to the commutative ideal u of codimension 1 in Lie algebra g of G. A pseudo-Riemannian LCS Lie group G is said
to be of type B if the induced metric is degenerate when it is restricted to the commutative ideal u of codimension 1 in Lie
algebra g of G.

Type A
If u is nondegenerate, then there exists a vector b′ such that ⟨b′, u⟩ = 0 and g = {b′

}+u(direct sum).Writing b′
= λb+u0,

with some λ ̸= 0 and u0 ∈ u. Then we have

[b′, v] = λv, ∀v ∈ u.

Now we may take b′/λ and rename it b. Then we can obtain the following equations:

g = Rb ⊕ u, ⟨b, u⟩ = 0, [b, x] = x, ∀x ∈ u.

In this case, a Lie group G is said to be of type A1 if b is timelike; and G is said to be of type A2 if b is spacelike.

type A1: b is timelike, i.e., ⟨b, b⟩ = −α2, where α > 0. Set b = αe1 and fix a pseudo-orthonormal basis {e2, e3, . . . , en} of
u, εi = −1, 2 ≤ i ≤ p, εj = 1, p + 1 ≤ j ≤ n. Then we have the following identities:

[e1, ei] =
1
α
ei, i = 2, 3, . . . , n, ⟨ej, ej⟩ = −1, j = 1, 2, . . . , p,

⟨ek, ek⟩ = 1, k = p + 1, . . . , n. (2.1)
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type A2: b is spacelike, i.e, ⟨b, b⟩ = α2 > 0, where α > 0. Similarly as above, fix a pseudo-orthonormal basis
{e1, e2, . . . , en−1} of u, εi = −1, 1 ≤ i ≤ p, εj = 1, p + 1 ≤ j ≤ n − 1, and set b = αen. Then we have

[en, ei] =
1
α
ei, i = 1, 2, . . . , n − 1, ⟨ej, ej⟩ = −1, j = 1, 2, . . . , p,

⟨ek, ek⟩ = 1, k = p + 1, . . . , n. (2.2)

Type B
If u is degenerate, we have the following result.

Lemma 2.2. If u is degenerate, u contains a lightlike vector c and an (n − 2)-dimensional subspace u1 on which the metric is
non-degenerate such that u = Rc + u1 (direct sum) and ⟨c, u1⟩ = 0.

Proof. Since u is degenerate, there exists a vector c such that ⟨c, x⟩ = 0, ∀x ∈ u. In particular, c is a lightlike vector. And
there is an (n − 2)-dimensional subspace u1 such that u = Rc + u1 (direct sum) and ⟨c, u1⟩ = 0. Now we assert that the
inducedmetric on u1 is non-degenerate. Otherwise,we can suppose that there are some lightlike vectors c, d, . . . , q such that
u = Rc +Rd+ · · ·+Rq+ u2 (orthogonal direct-sum), and the induced metric on u2 is non-degenerate, then the orthogonal
complement u⊥

2 is also non-degenerate. However, the subspace u⊥

2 which contains dim u⊥

2 −1 linear-independent orthogonal
lightlike vectors is degenerate. This is contradiction. So the induced metric on u1 is non-degenerate. □

By Lemma 2.2, we know u = Rc + u1 (direct sum) and ⟨c, u1⟩ = 0. In the orthogonal complement u⊥

1 of u1 in g, we can
find a vector b′ such that

⟨b′, b′
⟩ = 0, ⟨b′, c⟩ = −1.

Writing b′
= λb + u0, with some λ ̸= 0 and u0 ∈ u. Then we have

[b′, v] = λv, ∀v ∈ u.

Now if we denote b′/λ and λc by b, c , then we have the following identities:

g = Rb ⊕ Rc ⊕ u1, u = Rc ⊕ u1;

⟨b, b⟩ = ⟨c, c⟩ = 0, ⟨b, c⟩ = −1, ⟨b, u1⟩ = ⟨c, u1⟩ = 0;
[b, c] = c, [b, y] = y, ∀y ∈ u1.

Fix a pseudo-orthonormal basis {e1, e2, . . . , en−2} of u1, εi = −1, 1 ≤ i ≤ p − 1, εj = 1, p ≤ j ≤ n − 2, and set

en−1 =

√
2
2

(b − c), en =

√
2
2

(b + c).

Then we have the following identities:

[en−1, ei] = [en, ei] =

√
2
2

ei, i = 1, 2, . . . , n − 2,

[en−1, en] =

√
2
2

(en − en−1),

⟨ei, ei⟩ = −1, 1 ≤ i ≤ p − 1,
⟨ej, ej⟩ = 1, p ≤ j ≤ n − 2,

⟨en−1, en−1⟩ = 1, ⟨en, en⟩ = −1. (2.3)

3. m-quasi-Einstein metric on pseudo-Riemannian LCS Lie group: type A

Consider an n-dimensional connected simply connected pseudo-Riemannian Lie group G of type A1. Using (2.1) and the
well-known Koszul formula, one can determine the Levi-Civita connection as follows:

∇eie1 = −
1
α
ei, 2 ≤ i ≤ n, ∇ejej =

1
α
e1, 2 ≤ j ≤ p,

∇ekek = −
1
α
e1, p + 1 ≤ k ≤ n. (3.1)

with ∇eiej = 0 in other cases.
Given a left invariant vector field V =

∑n
i=1 Kiei, we have

∇e1V = 0, ∇ejV =
1
α
(Kje1 − K1ej), 2 ≤ j ≤ p,
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∇ejV = −
1
α
(Kje1 + K1ej), p + 1 ≤ j ≤ n. (3.2)

Using the identities R(ei, ej) = ∇[ei,ej] − ∇ei∇ej + ∇ej∇ei , we have

R(e1, ei)e1 = −
1
α2 ei, 2 ≤ i ≤ n, R(e1, ej)ej =

1
α2 e1, 2 ≤ j ≤ p,

R(e1, ek)ek = −
1
α2 e1, p + 1 ≤ k ≤ n,

R(ej, ek)ej = −
1
α2 ek, 2 ≤ k ≤ n, 2 ≤ j ≤ p,

R(ej, ek)ej =
1
α2 ek, 2 ≤ k ≤ n, p + 1 ≤ j ≤ n.

From the above equations and the section curvature formula

K (X, Y ) =
⟨R(X, Y )X, Y ⟩

⟨X, X⟩⟨Y , Y ⟩ − ⟨X, Y ⟩2
,

it is easy to see that in this case, it has constant section curvature 1
α2 . Then applying the Ricci tensor formula ρ(X, Y ) =∑n

i=1 εig(R(X, ei)Y , ei), we get non-vanishing equations:

ρjj = −
n − 1
α2 , 1 ≤ j ≤ p, ρkk =

n − 1
α2 , p + 1 ≤ k ≤ n. (3.3)

By the identity (LXg)(Y , Z) = g(∇YX, Z) + g(Y , ∇ZX), we have

(LXg)(ei, ei) =
2
α
K1, 2 ≤ i ≤ p, (LXg)(ej, ej) = −

2
α
K1, p + 1 ≤ j ≤ n,

(LXg)(ei, e1) = (LXg)(e1, ei) = −
1
α
Ki, 2 ≤ i ≤ p,

(LXg)(ej, e1) = (LXg)(e1, ej) =
1
α
Kj, p + 1 ≤ j ≤ n. (3.4)

with (LXg)(ei, ej) = 0 in other cases.
A vector field V is called a geodesic vector field if ∇VV = 0, and is called a Killing vector field if LV g = 0, where L denotes

the Lie derivative. Recall that X is a Killing vector field if and only if g(∇YX, Z)+ g(Y , ∇ZX) = 0 for all Y , Z ∈ X(M). A vector
field V is called a parallel vector field if ∇XV = 0 for all X ∈ X(M). It is obvious that parallel vector fields are both geodesic
vector fields and Killing vector fields.

By direct calculation, we obtain

∇VV =
1
α

p∑
j=2

Kj(Kje1 − K1ej) −
1
α

n∑
j=p+1

Kj(Kje1 + K1ej).

And we have the following.

Proposition 3.1. A left invariant vector field V =
∑n

i=1 Kiei on the n-dimensional pseudo-Riemannian LCS Lie group G of type A1

is a geodesic vector field if and only if

(i) K1 = 0 and V is lightlike vector field;
(ii) V = K1e1.

On the other hand, a left invariant vector field V ̸= 0 on G is neither parallel vector field nor Killing vector field.

Remark 3.2. When p = 1, it is a Lorentzian metric. In this case, a left invariant vector field V =
∑n

i=1 Kiei is a geodesic
vector field if and only if V = K1e1.

And notice X∗
⊗ X∗(ei, ej) = εiεjKiKj, where εi = −1, 1 ≤ i ≤ p, εj = 1, p + 1 ≤ j ≤ n. Now we can prove

Theorem 3.3. Any left-invariant pseudo-Riemannian metric on the n-dimensional LCS Lie group G of type A1 is a trivial Ricci
soliton but a shrinking non-trivial m-quasi-Einstein metric.
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Proof. By (3.3), (3.4) and (1.3), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − 1
α2 +

1
m

K 2
1 = λ,

Ki

2α
+

1
m

KiK1 = 0, i = 2, 3, . . . , n,

−
1
m

KiKj = 0, i ̸= j, i, j = 2, 3, . . . , n,

−
n − 1
α2 +

1
α
K1 −

1
m

K 2
i = −λ, 2 ≤ i ≤ p,

n − 1
α2 −

1
α
K1 −

1
m

K 2
i = λ, p + 1 ≤ i ≤ n.

If 0 < m < ∞, from the third and fourth equations, we have Ki = 0, 2 ≤ i ≤ p. From the third and fifth equations, we
have Kj = 0, p + 1 ≤ j ≤ n. Then from the first and fifth equations, we obtain K1 = −

m
α
. So we have

X = −
m
α
en, λ =

m + n − 1
α2 > 0

If m = ∞, from the second equation, we get: Ki = 0, 2 ≤ i ≤ n, then from the first and fifth equations, we have K1 = 0,
i.e. it is trivial. Hence, theorem holds. □

Next we consider n-dimensional simply connected Lie groups G of type A2. By (2.2), we have:

∇eien = −
1
α
ei, i = 1, 2, . . . , n − 1,

∇eiei = −
1
α
en, 1 ≤ i ≤ p, ∇ejej =

1
α
en, p + 1 ≤ j ≤ n − 1, (3.5)

with ∇eiej = 0 in other cases.
For a left invariant vector field V =

∑n
i=1 Kiei, we have

∇ejV = −
1
α
(Kjen + Knej), 1 ≤ j ≤ p,

∇ejV =
1
α
(Kjen − Knej), p + 1 ≤ j ≤ n − 1, ∇enV = 0. (3.6)

By some calculations, we have:

R(ei, ej)ei =
1
α2 ej, 1 ≤ i ≤ p, 1 ≤ j ≤ n − 1,

R(ej, ek)ej = −
1
α2 ek, p + 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n − 1,

R(en, ei)en = −
1
α2 ei, 1 ≤ i ≤ n − 1, R(en, ej)ej = −

1
α2 en, 1 ≤ j ≤ p,

R(en, ek)ek =
1
α2 en, p + 1 ≤ k ≤ n − 1.

From the above equations, it is easy to see that in this case, it has constant section curvature −
1
α2 . And we have

ρjj =
n − 1
α2 , 1 ≤ j ≤ p, ρkk = −

n − 1
α2 , p + 1 ≤ k ≤ n, (3.7)

with ρij = 0 in other cases.
By the identity (LXg)(Y , Z) = g(∇YX, Z) + g(Y , ∇ZX), we have

(LXg)(ei, ei) =
2
α
Kn, 1 ≤ i ≤ p, (LXg)(ej, ej) = −

2
α
Kn, p + 1 ≤ j ≤ n − 1,

(LXg)(ei, en) = (LXg)(en, ei) = −
1
α
Ki, 1 ≤ i ≤ p,

(LXg)(ej, en) = (LXg)(en, ej) =
1
α
Kj, p + 1 ≤ j ≤ n − 1. (3.8)

with (LXg)(ei, ej) = 0 in other cases.
The proof of the following result is easy and will be omitted.

Proposition 3.4. A left invariant vector field V =
∑n

i=1 Kiei on the n-dimensional pseudo-Riemannian LCS Lie group G of type A2
is a geodesic vector field if and only if one of the following conditions holds:
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(i) Kn = 0 and V is lightlike vector field;
(ii) V = Knen.

Moreover, a left invariant vector field V ̸= 0 is neither a parallel vector field nor a Killing vector field.

Remark 3.5. When p = 0, i.e., in the Riemannian case, a left invariant vector field V =
∑n

i=1 Kiei is a geodesic vector field if
and only if V = Knen.

And notice X∗
⊗ X∗(ei, ej) = εiεjKiKj, where εi = −1, 1 ≤ i ≤ p, εj = 1, p + 1 ≤ j ≤ n. Now we have the following

theorem

Theorem 3.6. Any left-invariant pseudo-Riemannian metric on the n-dimensional LCS Lie group G of type A2 is a trivial Ricci
soliton but an expanding non-trivial m-quasi-Einstein metric.

Proof. By (3.7), (3.8) and (1.3), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − 1
α2 +

1
α
Kn −

1
m

K 2
i = −λ, 1 ≤ i ≤ p,

−
n − 1
α2 −

1
α
Kn −

1
m

K 2
i = λ, p + 1 ≤ i ≤ n − 1,

−
n − 1
α2 −

1
m

K 2
n = λ,

Ki
2α −

1
mKiKn = 0, 1 ≤ i ≤ n − 1,

−
1
m

KiKj = 0, i ̸= j, 1 ≤ i, j ≤ n − 1.

If 0 < m < ∞, from the first and second equations, we have Ki = 0, 1 ≤ i ≤ n − 1. Then from the second and third
equations, we obtain Kn =

m
α
. So we have

X =
m
α
en, λ = −

m + n − 1
α2 < 0

If m = ∞, from the fourth equation, we get: Ki = 0, 1 ≤ i ≤ n − 1, then from the second and third equations, we have
Kn = 0, i.e. it is trivial. Hence, theorem holds. □

4. m-quasi-Einstein metric on pseudo-Riemannian LCS Lie group: type B

Consider an n-dimensional simply connected pseudo-Riemannian Lie group G of the type B. From 2.3, we obtain

∇eiei =

√
2
2

(en − en−1), 1 ≤ i ≤ p − 1,

∇ejej =

√
2
2

(en−1 − en), p ≤ j ≤ n − 2,

∇ejen−1 = ∇ejen = −

√
2
2

ej, 1 ≤ j ≤ n − 2,

∇en−1en−1 = ∇enen−1 = −

√
2
2

en, ∇en−1en = ∇enen = −

√
2
2

en−1, (4.1)

with ∇eiej = 0 in all other cases. For an arbitrary left invariant vector field V =
∑n

i=1 Kiei, we have

∇eiV =

√
2
2

Ki(en − en−1) −

√
2
2

(Kn−1 + Kn)ei, 1 ≤ i ≤ p − 1,

∇ejV =

√
2
2

Kj(en−1 − en) −

√
2
2

(Kn−1 + Kn)ej, p ≤ j ≤ n − 2,

∇en−1V = ∇enV = −

√
2
2

(Kn−1en + Knen−1). (4.2)

It is easy to see G is flat in this case, hence G is Ricci flat. And by the identity (LXg)(Y , Z) = g(∇YX, Z) + g(Y , ∇ZX), we have

(LXg)(ei, ei) =
√
2(Kn−1 + Kn), 1 ≤ i ≤ p − 1,

(LXg)(ej, ej) = −
√
2(Kn−1 + Kn), p ≤ j ≤ n − 2,

(LXg)(en−1, en−1) = −
√
2Kn, (LXg)(en, en) =

√
2Kn−1,
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(LXg)(en, en−1) = (LXg)(en−1, en) =

√
2
2

(Kn−1 − Kn),

(LXg)(ei, en−1) = (LXg)(en−1, ei) = −

√
2
2

Ki, 1 ≤ i ≤ p − 1,

(LXg)(ej, en−1) = (LXg)(en−1, ej) =

√
2
2

Kj, p ≤ j ≤ n − 2,

(LXg)(ei, en) = (LXg)(en, ei) = −

√
2
2

Ki, 1 ≤ i ≤ p − 1,

(LXg)(ej, en) = (LXg)(en, ej) =

√
2
2

Kj, p ≤ j ≤ n − 2. (4.3)

with (LXg)(ei, ej) = 0 in other cases. i.e. Regarding to geodesic and Killing vector fields, we have the following.

Proposition 4.1. A left invariant vector field V =
∑n

i=1 Kiei on the n-dimensional pseudo-Riemannian LCS Lie group G of type B
is a geodesic vector field if and only if Kn−1 + Kn = 0 and V is lightlike vector field. A left invariant vector field V ̸= 0 is neither a
parallel vector field nor a Killing vector field.

And notice X∗
⊗ X∗(ei, ej) = εiεjKiKj, where εi = −1, 1 ≤ i ≤ p − 1, εj = 1, p ≤ j ≤ n − 1, εn = −1. Now we can prove

Theorem4.2. Any left-invariant pseudo-Riemannianmetric on the n-dimensional LCS Lie group G of type B is a trivial Ricci soliton
but a steady non-trivial m-quasi-Einstein metric.

Proof. By (4.3) and (1.3), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
2

(Kn−1 + Kn) −
1
m

K 2
i = −λ, 1 ≤ i ≤ p − 1,

−

√
2
2

(Kn−1 + Kn) −
1
m

K 2
j = λ, p ≤ j ≤ n − 2,

−

√
2
2

Kn −
1
m

K 2
n−1 = λ,

√
2
2

Kn−1 −
1
m

K 2
n = −λ

−
1
m

KiKj = 0, i ̸= j, 1 ≤ i, j ≤ n − 2,

−

√
2
4

Ki +
1
m

KiKn−1 = 0, 1 ≤ i ≤ p − 1,

−

√
2
4

Kj −
1
m

KjKn = 0, 1 ≤ j ≤ p − 1,
√
2
4

Ki −
1
m

KiKn−1 = 0, p ≤ i ≤ n − 2,
√
2
4

Kj +
1
m

KjKn = 0, p ≤ j ≤ n − 2,
√
2
4

(Kn−1 − Kn) +
1
m

Kn−1Kn = 0.

If 0 < m < ∞, from the first and second equations, we can obtain: Ki = 0, 1 ≤ i ≤ n − 2. Then the above system of
equations can reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

√
2
2

(Kn−1 + Kn) = λ,

−

√
2
2

Kn −
1
m

K 2
n−1 = λ,

√
2
2

Kn−1 −
1
m

K 2
n = −λ

√
2
4

(Kn−1 − Kn) +
1
m

Kn−1Kn = 0.
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Then from the first and second equations, we have

1
m

K 2
n−1 =

√
2
2

Kn−1.

If Kn−1 = 0, from the last equation, we have Kn = 0. It is a trivial solution. So we have Kn−1 =

√
2
2 m. Similarly, we can obtain

Kn = −

√
2
2 m. So

X =

√
2
2

m(en−1 − en), λ = 0.

If m = ∞, it is easy to see Ki = 0, 1 ≤ i ≤ n − 2. And from the last equation, we have Kn−1 = Kn. From the third and
fourth equations, we get: λ = −

√
2
2 Kn = −

√
2
2 Kn−1. Then from the first equation, we obtain λ = −

√
2Kn. So Kn−1 = Kn = 0,

it is trivial solution. Hence, theorem holds. □

Combining Theorems 3.3, 3.6 and 4.2, we obtain the following

Proposition 4.3. Any left-invariant pseudo-Riemannian metric on the n-dimensional LCS Lie group G is a trivial Ricci soliton but
a non-trivial m-quasi-Einstein metric.
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