
Journal of Geometry and Physics 170 (2021) 104349
Contents lists available at ScienceDirect

Journal of Geometry and Physics

www.elsevier.com/locate/geomphys

Super-exceptional embedding construction of the heterotic 

M5: Emergence of SU(2)-flavor sector

Domenico Fiorenza a, Hisham Sati b, Urs Schreiber b,∗,1

a Dipartimento di Matematica, La Sapienza Universita di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
b Mathematics, Division of Science, New York University Abu Dhabi, United Arab Emirates

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 March 2021
Accepted 8 August 2021
Available online 13 August 2021

Keywords:
String theory
Supergravity
Super Lie algebras
FDA/dg-algebra
Branes
Hadrodynamics

A new super-exceptional embedding construction of the heterotic M5-brane’s sigma-
model was recently shown to produce, at leading order in the super-exceptional vielbein 
components, the super-Nambu-Goto (Green-Schwarz-type) Lagrangian for the embedding 
fields plus the Perry-Schwarz Lagrangian for the free abelian self-dual higher gauge field. 
Beyond that, further fields and interactions emerge in the model, arising from probe M2-
and probe M5-brane wrapping modes. Here we classify the full super-exceptional field 
content and work out some of its characteristic interactions from the rich super-exceptional 
Lagrangian of the model. We show that SU(2) ×U(1)-valued scalar and vector fields emerge 
from probe M2- and M5-branes wrapping the vanishing cycle in the A1-type singularity; 
together with a pair of spinor fields of U (1)-hypercharge ±1 and each transforming as 
SU(2) iso-doublets. Then we highlight the appearance of a WZW-type term in the super-
exceptional PS-Lagrangian and find that on the electromagnetic field it gives the first-order 
non-linear DBI-correction, while on the iso-vector scalar field it has the form characteristic 
of the coupling of vector mesons to pions via the Skyrme baryon current. We discuss how 
this is suggestive of a form of SU(2)-flavor chiral hadrodynamics emerging on the single 
(N = 1) M5 brane, different from, but akin to, holographic large-N QCD.

© 2021 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. The super-exceptional M5-brane model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Classification of the field content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. Background in representation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. Octonionic 2-component spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3. The A1-type singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4. 11d spinors at the A1-singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Analysis of the WZW-type terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1. Vector meson coupling to Skyrme baryon current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2. Non-linear electromagnetic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

* Corresponding author.
E-mail address: us13@nyu.edu (U. Schreiber).

1 On leave from Czech Academy of Science, Prague.
https://doi.org/10.1016/j.geomphys.2021.104349
0393-0440/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.geomphys.2021.104349
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geomphys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2021.104349&domain=pdf
mailto:us13@nyu.edu
https://doi.org/10.1016/j.geomphys.2021.104349


D. Fiorenza, H. Sati and U. Schreiber Journal of Geometry and Physics 170 (2021) 104349
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1. Introduction

The general open problem of coincident M5-branes. It is widely appreciated that the problem of identifying/formulating 
the expected non-abelian higher gauge theory (“non-abelian gerbe theory” [142, p. 6, 15]) on coincident M5-branes remains 
open (e.g., [97, p. 77][84, p. 49][85, 6.3]). This is a key aspect of the wider open problem (e.g., [39, 6][72, p. 2][40, p. 6][100, 
p. 2][41, p. 330][98, 12][32, p. 2][143][42]) of formulating M-theory [40][41] itself, the non-perturbative completion of the 
perturbation theory formerly known as string theory [39].

M5-branes compactified to four dimensions, with probe flavor D8-branes, plausibly yield, once made rigorous, an an-
alytic first-principles working theory of hadrons (e.g., [94][91]): the Witten-Sakai-Sugimoto model of holographic QCD 
[141][80][115][115] (reviewed in [109]) or its variant with flavor D4-branes [107][128]. Hence the solution of non-abelian 
M5-branes in M-theory could solve the Confinement Problem (see [61][112][111]) of quantum chromodynamics (QCD), one 
of the Millennium Problems [33][78].

The case of single but heterotic M5-branes. Remarkably, even the case of a single M5-brane, while commonly thought 
to have been understood long ago [106][126][105][19], is riddled with subtleties, indicating foundational issues not fully 
understood yet. One of these puzzlements is (or was) that the modern “super-embedding construction” of κ-symmetric 
Lagrangians defining single super p-branes [20][21][131][132] fails for M5-branes (works only for EOMs). This is noteworthy 
because there is a boundary case of non-abelian gauge theories on M5-branes which nominally has to do with single branes: 
the single heterotic M5-brane. This is the lift to heterotic M-theory (Hořava-Witten theory, see [70][140][71][103][104]) of 
the NS5-brane of heterotic string theory [87], and dually of the D4-brane of Type I’ string theory. These branes are expected 
[139][58][10][11] to carry a non-abelian gauge field, specifically with gauge group Sp(1) � SU(2), understood as being the 
special case of N coincident M5-branes for N = 2, but with the two branes identified as mirror pairs of an orientifold 
Z2-action. The orbi-orientifold singularity of this action, regarded as the far-horizon geometry of a solitonic brane [3, 3], 
is known as the 1

2 NS5 in string theory [60, 6][35, 6][9, p. 18], or dually as the 1
2 M5 in M-theory [73, Ex. 2.2.7][50, 4][120, 

4.1]:

(1)
2
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Expected SU(2 f ) flavor theory on heterotic M5. In fact, this SU(2) gauge symmetry expected on single heterotic M5-branes 
came to be understood as being a flavor symmetry (e.g. [55, 4.2][101, 2.3.1]) just like the “hidden local symmetry” [117][16]
(reviewed in [90, 6]) of chiral perturbation theory for confined hadrodynamics (reviewed in [94][124][23][91]), instead of a 
color symmetry as in the quark model of quantum chromodynamics. This is informally argued in the literature by

(i) invoking (see [29, 2.3]) M/IIA duality along the S1 ⊂ Sp(1)L -action in (1) for identifying the 1
2 M5-brane configuration 

with a NS5 ‖ D6 ⊥ O8-brane configuration in Type I’ string theory, and then
(ii) appealing ([64][28], reviewed in [9, 2.1]) to open string theory for identifying the D6-branes emanating from the NS5, 

corresponding to the MK6-brane in (1), with flavor branes, due to their semi-infinite transverse extension.

This suggests that single but heterotic M5-branes are not just a toy example for the more general open problem of non-
abelian gauge enhancement in M-theory, but, when viewed through the lens of holographic hadrodynamics, possibly the 
core example for making contact with phenomenology. Hence the first open problem to address is:

The specific open problem. A derivation/formulation of the (higher) SU(2)-flavor gauge theory emerging on single heterotic M5-
branes.

In [51] we had discussed this problem in the “topological sector”, i.e., focusing on gauge- and gravitational instanton sec-
tors and their topological global anomaly cancellation conditions, while temporarily putting to the side local field/differential 
form data. There we had proven that, under the hypothesis that the M-theory C-field is charge-quantized in J-twisted Co-
homotopy cohomology theory (“Hypothesis H” [118][48][49] [120][121][122], review in [125]), a topological Sp(1) � SU(2)

gauge field sector indeed emerges in the sigma-model for single M5-branes.
Here we set out to discover the local differential form data to complete this topological picture of the non-abelian 

heterotic M5-brane theory, by identifying its local field content and its couplings.

Solution via super-exceptional geometry. In [50] we had demonstrated that the failure of the super-embedding approach 
to produce the M5-brane Lagrangian is resolved, for heterotic M5-branes, by enhancing to super-exceptional embeddings. 
This means enhancing the N = 1, D = 11-dimensional target super-spacetime R10,1|32 to the super-exceptional spacetime
R10,1|32

exs [17][46][119][50, 3] or rather to its heterotic/type-I’ version R9,1|16
exs [50, 4] (recalled as Definition 3 below). This 

has the virtue of unifying graviton and gravitino modes with M2- and M5-brane wrapping modes and with a pre-gaugino 
field [50, Rem. 5.4]:

(2)

The dual M9-brane wrapping modes in the second line, anticipated in [75, p. 8-9], follow by rigorous analysis [46, 4.26]
(see Proposition 4 and Remark 5 below) and lead to D4/D8-brane modes in 10d, as shown in the last line. The underlying 
super-symmetry algebra of this super-exceptional spacetime R10,1|32

exs is the “hidden supergroup of D = 11 supergravity” 
[34][18][8], whose role or purpose had previously remained elusive. We may understand it [50, Rem. 3.9][46, 4.6][119] as 
that supermanifold whose real cohomology accommodates that of the classifying 2-stack of the M5-brane sigma-model [45]
under Hypothesis H [49].

Result – Emergent chiral SU(2 f )-theory on the heterotic M5. As a consequence of the super-exceptional enhancement (2)
of target spacetime, additional worldvolume fields emerge also on the single heterotic M5-brane locus (1), originating in 
M2- and M5-brane wrapping modes. Here we classify this emergent super-exceptional field content by computing the 
representations of the residual group actions (see §3.1) on the super-exceptional vielbein fields after passage to the super-
exceptional MK6-locus (Definition 6 below), reduced to 4d:
3
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(3)

The result is shown in the following diagram, discussed in detail in §3 below:

(4)

Here the outer �-tensor products (35) indicate the transformation properties under the three residual groups.

This is the kind of field content encountered in quantum hadrodynamics (e.g. [43][91]) where the iso-vector scalar field 
would be the pion field �π , the iso-scalar vector field would be the omega-meson ω, its iso-vector partner the rho-meson 
ρ , and the two hypercharged fermion iso-doublets would be baryon fields (e.g. [129]).

Indeed, we show in §4.1 that the form of the WZW-term in the super-exceptional PS-Lagrangian is that characteristic of 
the coupling of neutral vector mesons to triples of pions via the Skyrme baryon current [109], see §5 for further discussion.
4
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2. The super-exceptional M5-brane model

Here we recall the relevant aspects of the super-exceptional embedding construction of the M5-brane [48] to introduce 
the precise setup that is analyzed in the following sections.

Remark 1 (Super-Lie algebras). Throughout, we use the following basic fact, see [47, 3] for review:

(i) Finite-dimensional Lie superalgebras2 are equivalently encoded in terms of their differential graded-commutative (dgc) 
Chevalley-Eilenberg super-algebras, known as “FDA”s in the supergravity literature:

. (5)

(ii) Here super-Grassman algebra means that elements v ∈ g of super-grading σv ∈ Z2 are dual to dgc-algebra elements 
v∗ ∈ ∧1g∗ of bidegree (1, σ) ∈N ×Z2. We write “∧” for the product in these super-Grassman algebras. The sign rule 
is such that for elements α, β ∈ ∧•g∗ of homogeneous bi-degrees (nα, σα), (nβ, σβ) ∈N ×Z2 we have

α ∧ β = (−1)nαnβ+σασβ β ∧ α .

(iii) Generally, the Chevalley-Eilenberg algebra of a Lie superalgebra g may be identified with the de Rham algebra of left-
invariant differential forms on the corresponding Lie supergroup G:

(6)

Example 2 (Ordinary super-Minkowski spacetime). For d ∈N and N ∈ RepR(Spin(d, 1)) a real Spin(d, 1) representation of real 
dimension N , the corresponding super-Poincaré super Lie algebra Iso(Rd,1|N) (“supersymmetry algebra”) is the algebra whose 
CE-algebra (5) is

CE
(

Iso(Rd,1|N)
)

...generated by ...with differential on generators given by

{ degree=(1,even)︷ ︸︸ ︷
ea,ωa1a2 ,

ψα︸︷︷︸
degree=(1,odd)

}
ai∈{0,1,··· ,d}
α∈{1,2,··· ,N}

d ea = 〈
ψ ∧ �a · ψ 〉

d ψα = 1
4ωa1a2�a1a2 · ψ

d ωa1 a2 = ωa1 a3 ∧ ωa3 a2 ,

(7)

with the ωa1a2 skew-symmetric in their indices. On the right we have the Clifford action and spinor pairing 〈−, −〉 that 
comes with the real Spin representation (the dot denotes matrix multiplication, hence contraction of spinor indices).

The underlying translational super Lie algebra Rd,1|N is obtained from this by discarding the Lorentz generators 
ωa1 a2 . The resulting CE-algebra may be identified with the de Rham algebra of the canonical super-vielbein on the 
D = d +1, N = dim(N) super-Minkowski spacetime, which is the Cartesian super-manifold with canonical super-coordinates 
{ xa︸︷︷︸

deg=(0,even)

, θα︸︷︷︸
deg=(0,odd)

}:

(8)

We consider this here specifically for d = 3, 6, 10, with the real Spin(d, 1) representation N = 4, 16, 32 given by Dirac 
matrices with coefficients in K =C, H, O, respectively; this is reviewed in §3.2 below.

The following is the “hidden supergroup of 11d supergravity” due to [34, 6][18], interpreted as the translational super-
symmetry algebra of super-exceptional M-theory spacetime according to [17][46][119] [50, 3]:

2 Our ground field is the real numbers.
5
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Definition 3 (Super-exceptional M-spacetime). Regarded as a super-Lie algebra of super-translations along itself, in generaliza-
tion of Example 2, the super-exceptional Minkowski spacetime R10,1|32

exs (2) (for a parameter s ∈R \{0}) has Chevalley-Eilenberg 
algebra (5):

CE
(
R10,1|32 )

... generated from ... with differential on generators given by

{ degree=(1,even)︷ ︸︸ ︷
ea1 , ea1,a2 , ea1,···a5 ,

ψα ,ηα︸ ︷︷ ︸
deg=(1,odd)

} d ea = 〈
ψ ∧ �a · ψ 〉

d ea1a2 = 1
2

〈
ψ ∧ �a1a2 · ψ 〉

d ea1···a5 = 1
5!
〈
ψ ∧ �a1···a5 · ψ 〉

d ψ = 0
d η = (

(s + 1)ea�a + ea1b1�
a1a2 + (1 + s

6 )ea1···a5�
a1···a5

) · ψ
(9)

for ai ∈ {0,1,2,3,4,5,5′,6,7,8,9}, α ∈ {1,2, · · · ,32}, with the generators ea1a2 and ea1a2a3a4a5 all skew-symmetric in their 
indices. Here on the right we have the O-Dirac matrix multiplication and spinor pairing of the 4-component octonionic 
realization of the 32 of Spin(10, 1), reviewed in §3.2 below, and �a1 ···ap denotes the skew-symmetrization of the Clifford 
algebra products �a1 · · ·�ap , as usual.

In generalization of (8), we may identify the super-exceptional vielbein (9) as left-invariant differential forms on the un-
derlying Cartesian super-manifold of R10,1|32

exs , now given by exceptional coordinate functions (as envisioned, in the bosonic 
sector, in [76, 4.3])

as follows:

.

(10)

Here the first four lines follow just as in (8). The point to notice is the last line, which follows with the same Fierz identity 
[34, (6.3)-(6.4)][18, (20)-(23)] that gives ddθ ′ = 0 in (9). .

Proposition 4 (Spin representations on super-exceptional spacetime). Regard the linear span of the generators in the list (9), as acted 
on by Spin(10, 1) in the evident way, as3

R10,1|32 �R 11

�

⊕ ∧211

�

⊕ ∧511

�

⊕ 32

�

⊕ 32

�

∈ RepR
(
Spin(10,1)

)
.

〈
ea
〉 〈

ea1a2

〉 〈
ea1···a5

〉 〈
ψα

〉 〈
ηα

〉
(11)

(i) This gives a Spin(10, 1)-action on CE
(
R10,1|32

exs

)
by dgc-superalgebra automorphisms, hence a Spin(10, 1)-action on R10,1|32

exs itself 
by Lie superalgebra automorphisms.
(ii) Moreover, this extends to a Pin+(10, 1)-action by automorphisms, if one lifts the ∧211 �Spin(10,1) ∧911 of Spin(10, 1) specifically 
to the ∧911 of Pin+(10, 1), hence as:

3 We recall representation-theoretic notation below in §3.1.
6



D. Fiorenza, H. Sati and U. Schreiber Journal of Geometry and Physics 170 (2021) 104349
R10,1|32 �R 11

�

⊕ ∧911

�

⊕ ∧511

�

⊕ 32

�

⊕ 32

�

∈ RepR
(
Pin+(10,1)

)
.

〈
ea
〉 〈

εa1a2···e11 ea1a2

〉 〈
ea1···a5

〉 〈
ψα

〉 〈
ηα

〉
(12)

Proof. The first statement follows immediately from the second. The second statement follows immediately from [46, 4.26]
(reproduced as [50, Lemma 3.10]) where the action of single reflection operators is given, which generate the action of 
Pin+(10, 1). �
Remark 5 (Probe M9-branes). The result (12) rigorously supports the proposal [75, p. 8-9] (where Hull speaks of the “most 
natural interpretation”) that the summand ∧2(R10,1)∗ in the M-theory extended super Lie algebra should, at least in part, 
be interpreted as the Hodge-dual incarnation of 9-brane charge.

Thus we have the following super-exceptional enhancement of the super MK6-locus [73, Thm. 4.3]:

Definition 6 ([50, 4]). The super-exceptional MK6-locus is the sub-Lie superalgebra inside the super-exceptional M-spacetime 
of Definition 3 which is fixed by the action via Proposition 4 of the subgroup ZA

2 ⊂ SU(2)L ⊂ Spin(10, 1) in (3)

(13)

The super-exceptional 1
2 M5-locus is the further sub superalgebra with fermions fixed by ZHW

2 ⊂ Pin+(10, 1).

Super-exceptional 3-form flux. The raison d’être of the super-exceptional M-spacetime (3) is that it carries a map

R10,1|32
exs

i R10,1|32

to ordinary D = 11 N − 1 super-spacetime (7) and a universal 3-flux form

Hexs ∈ CE
(
R10,1|32

exs

)
(14)

that solves the twisted super-form Bianchi identity

dHexs = i∗G4 , (15)

in the base case the M-theory C-field 4-flux G4 has vanishing bosonic component

G4 = G(0)
4 := 1

2

〈
ψ ∧ �a1a2 · ψ 〉∧ ea1 ∧ ea2 , (16)

hence in the case that it only has its bifermionic component, fixed by the torsion constraint of 11d supergravity, as shown 
on the right of (16). Explicitly, Hexs is a polynomial in wedge products of the super-exceptional vielbein (9) of the following 
form [34, 6][18, 3][50, 3.5], where the ⊕-notation indicates that we are showing only the monomials that appear, but (for 
readability, and since this is all we need here) not the real coefficients (which are functions of the parameter s) that multiply 
them:

. (17)
7
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Super-exceptional PS-Lagrangian. From this, we found in [50, Prop. 5.9] the super-exceptional solution to the next twisted 
Bianchi identity

dLexs = 2
( 1

2 Hexs ∧ i∗G4 + i∗G7
)vert

(18)

characterizing the gauge sector of the heterotic M5-brane Lagrangian. Still in the base case that the dual 7-flux has vanishing 
bosonic component

G7 = 1
5!
〈
ψ ∧ �a1···a5 · ψ 〉∧ ea1 ∧ · · · ∧ ea5 , (19)

hence in the case that it only has its bifermionic component fixed by the torsion constraint of 11d supergravity, as shown 
on the right of (19), this is given by the following super-exceptional PS-Lagrangian [50, (72)]:

(20)

This expression is the definition [50, (72)] spelled out, using [50, (44)] and discarding some vielbein generators with an odd 
number of indices a ∈ {6, 7, 8, 9} in the fourth summand of the first wedge factor, since these vanish on the MK6-locus, 
according to Theorem 7 below.

Super-exceptional sigma-model fields. A field configuration of the super-exceptional sigma-model is a dgc-superalgebra ho-
momorphism dual to a map from the super-worldvolume of a heterotic M5-brane to the super-exceptional 1

2 M5-locus

.

(21)

Here the field components

σ ∗(eα
) := dxα + fermions, α ∈ {0,1,2,3,4,5′} (22)

are fixed by the super-embedding condition and the value of the super-exceptional PS-Lagrangian on such a field configu-
ration is the pullback of (20) to the M5-brane worldvolume along this super-exceptional sigma-model field:
8



D. Fiorenza, H. Sati and U. Schreiber Journal of Geometry and Physics 170 (2021) 104349
LPS
exs

(σ ) := σ ∗(LPS
exs

)
. (23)

Recovering the free PS-Lagrangian and 4d electromagnetism. The further super-exceptional vielbein field components

σ ∗(eμ5′
) = d(Aμ) + fermions, μ ∈ {0,1,2,3}, (24)

are interpreted as those of an electromagnetic vector potential A with field strength F := dA in 4-dimensional spacetime. 
The condition of Hodge self-duality


6 H3 = H3 (25)

of the ordinary flux 3-form

H3(σ ) := σ ∗(eα1α2 ∧ eα1 ∧ eα2
)

(26)

then enforces

σ ∗(eμ1μ2

) = 1
2

(

4 F

)
μ1μ2

dx4 (27)

which is the corresponding Hodge dual field strength times dx4. With this, the first summand in the second line of 
(20), which gives [50, Prop. 5.1] the Henneaux-Teitelboim-Perry-Schwarz Lagrangian for a free self-dual 3-form field [106, 
(17)][67]

LPSfree
exs = eα5′ ∧ eα ∧ eα1α2 ∧ eα1 ∧ eα2 ∧ e5′

, (28)

evaluates to the Maxwell Lagrangian for source-free electromagnetism in 4d:

σ ∗(LPSfree
exs

) = (
dA ∧ 
4dA

)∧ dx4 ∧ dx5′ + fermions. (29)

This is, at its core, the super-exceptional incarnation from [50] of the Perry-Schwarz mechanism [106][126] in the construc-
tion of the M5-brane action functional.

Beyond the free PS-Lagrangian. But the full super-exceptional Lagrangian (20) evidently has many more terms than just 
(28), describing a rich interacting worldvolume theory on the M5-brane. In particular, next there is a term of Wess-Zumino 
form

.
(30)

We analyze the value of this term on super-exceptional sigma-model fields below in §4.
But first we turn now to the classification of the super-exceptional field content.

3. Classification of the field content

Here we prove the classification, shown in the big diagram (4), of the super-exceptional vielbein fields on super-
exceptional M-theory spacetime (Definition 3) restricted to the super-exceptional MK6-locus (Definition 6) regarded as a 
representation of the residual symmetry group Spin(3, 1) × U(1)V × SU(2)R , according to decompositions (3).

Much of the table (4) follows from straightforward branching of exterior power representations, recalled as Example 14
, and from the familiar Spin representation branching

RepR
(
Spin(10,1)

)
RepR

(
Spin(9,1)

) (−)
ZA

2
RepR

(
Spin(5,1)

)
32 16 ⊕ 16 8 ⊕ 8

recalled as: Remark 26 Lemma 38

The further statements we need needs are captured in the following result:

Theorem 7 (Fields at A1-singularity). Under passage to the fixed locus (36) of the ZA
2 ⊂ SU(2)L -action in (3) we have the following 

representations under the residual group actions:
9
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RepR
(
SU(2)L × SU(2)R

) (−)
ZA

2
RepR

(
SU(2)R

)
∧24� 3�〈

ea1a2
〉
ai∈{6,7,8,9}

〈 1
2 e6I − 1

2 ε I J K e J K
〉
I∈{7,8,9}

∧1 4, ∧34 0

discussed in §3.3;
see Prop. 36

RepR
(
Spin(5,1) × SU(2)R

)
RepR

(
Spin(3,1) × U(1)V × SU(2)R

)
8

�R

2C � 1−
C � 2C�R

H
⊕
H

C ⊕ Cj
⊕ ⊕
C ⊕ Cj

8

�R

2C � 1−
C � 2C

�R

discussed in §3.4;
see Prop. 42

Remark 8 (Real vs. complex representations). The classification in (4) is as real representations, since all supersymmetry alge-
bras (7) are based on real Spin representations (e.g. [53, 3]). Now, the two complex Weyl spinor representations 2C, 2C
(see (66) below) of Spin(3, 1), which are distinct as complex representations, actually become isomorphic when regarded 
as real representations (recalled as Lemma 22 below). But this degeneracy is lifted by the further action of U(1)V : The real 
representations underlying their outer complex tensor product (33) with the 1−

C of U(1) (41) are not isomorphic even as 
real representations (Lemma 43): 2C �

C
1−
C �

C
2C �R / 2C �

C
1−
C �

C
2C .

Remark 9 (Gauge enhancement at ADE-singularities). A famous informal argument suggests that M2-branes on around vanish-
ing 2-cycles inside an ADE-singularity appear as SU(2) gauge fields on the transversal D-branes (e.g., [2, 3.1.2][73, Ex. 2.2.5]). 
Now, if we interpret:

(a) The exceptional vielbein components ea1a2 in (4) as being charges of M2-branes stretched along the directions va1 ∧ va2 ;
(b) elements of ∧24 = ∧2H as 2-cocycles on the transversal Euclidean conical orbifold geometry (1);

(c) elements of the fixed locus 
( ∧2 4

)ZA
2 = 〈

eI6
〉

as the restriction of these 2-cocyles to the singular point of the SU(2)L -
action, hence to their evaluation on 2-cycles that are shrunken into the singularity;

then this informal story becomes the statement of Theorem 7. Explicitly, with the identification of Lemma 33, we have:〈
eI6 + ε I J K eI J , I, J ∈ {7,8,9}〉 �� {

Charges of M2-branes wrapped on
vanishing 2-cycles in ADE-singularity

}
.

In the remainder we spell out in detail the proof of Theorem 7. This becomes nicely transparent in terms of octonionic 
2-component spinor representations. Since this is not as widely known as it deserves to be, we use the occasion to recall 
all the ingredients, such as to make the proof fully self-contained.

3.1. Background in representation theory

For reference and to fix conventions, we briefly recall some basic concepts of representation theory.

Representation ring. For G a group, we write RepR(G) for its real representation ring: elements are isomorphism classes 
of real-linear finite-dimensional G-representations, addition in the ring comes from direct sum of representations, and the 
product in the ring from the tensor product of representations.

Irreducible representation. We denote irreducible representations of G by their dimension, typeset in boldface, equipped 
with decorations in case there are inequivalent irreps of the same dimension. Then we write

k · N := N ⊕ · · · ⊕ N︸ ︷︷ ︸
k summands

∈ RepR(G) (31)

for the k-fold direct sum of an irrep with itself, of total dimension dimR(k · N) = k N .
10
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Exterior power representations. The representation ring is a “lambda-ring” in that for any representation V ∈ RepR(G) and 
p ∈N we have the k-fold exterior power representation

∧p V ∈ RepR(G) . (32)

Restricted representations. For G1
f
−� G2 a group homomorphism there is a representation-ring homomorphism given by 

regarding a G2 representation V as a G1-representation by acting via f :

RepR(G2)
f ∗

RepR(G1)[
(g2, v) �� g2 · v

] [
(g1, v) �� f (g1) · v

] (33)

Specifically when f : H
ι

↪� G is an inclusion of subgroups, then forming restricted representations f ∗ as in (33) is also called 
the “branching of representations” under “breaking of symmetry” from G to H , since irreps on the left will in general 
“branch” into direct sums of irreps on the right:

(34)

Outer tensor product. When G = H1 × H2 is a direct product group then the operation of forming the tensor product as 
G-representations of an H1- and an H2-representation, both regarded as G-representations under (33) via the projection 
homomorphisms G 

pri−� Hi , is also called the outer tensor product of Hi -representations and denoted by a square tensor 
product symbol:

� : RepR(H1) × RepR(H2)
pr∗1 ×pr∗2 RepR(H1 × H2) × RepR(H1 × H2)

⊗ RepR(H1 × H2) .

(35)

Fixed points. Moreover, in this case when G = H1 × H2 is a direct product group, passage to H2-fixed points in the repre-
sentation of an H1 × H2-representation is an additive functor (not though a monoidal one) denoted

(−)H2 : RepR(H1 × H2) RepR(H1)

V V H2 := {v ∈ V |h1 · v = v}.
(36)

Notice that the H2-fixed points of an outer tensor product (35) with an irreducible H2-representation N ∈ RepR(H2) are 
non-vanishing precisely if N is the trivial representation:

(37)

Example 10 (Pauli matrices). The fundamental complex representation of SU(2)

2C ∈ RepC
(
SU(2)

)
, 2C ∈ RepC

(
su(2)

)
(38)

regarded as the underlying Lie algebra representation, indicated by the same symbol in the right, has as representation 
matrices the Pauli matrices, which we normalize as:

τ 1 := i
2

[
1 0
0 −1

]
, τ 2 := i

2

[
0 −i
i 0

]
, τ 3 := i

2

[
0 1
1 0

]
(39)

such that

[τ i, τ j] = ε i j
kτ

k (40)

Example 11 (Outer product with representations of U (1)). We denote the irreducible complex representations of U(1), labeled 
by n ∈Z, by

1n ∈ RepC
(
U(1)

)
abbreviated for n = ±1 as : 1± ∈ RepC

(
U(1)

)
. (41)
C C

11
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Hence their outer tensor product (35) with the Pauli matrices from Example 10

1n
C �

C
2C ∈ RepC

(
U(1) × SU(2)

)
with the fundamental representation (38) of SU(2) has as Lie algebra representation matrices the Pauli matrices (39) and 
one more matrix given by

τ 0 := i

[
n 0
0 n

]
. (42)

Example 12 (Spinorial representations). For d ∈ N we write Rd,1 for the real inner product space with bilinear form η :=
diag(−1, +1, +1, · · · , +1). We take the corresponding Clifford algebra ClR(d, 1) to be the real associative algebra generated 
from {�a}d

a=0 subject to the relations

�a1�a2 + �a2�a1 = +2ηab , (43)

and we write

Clev
R (d,1) ⊂ ClR(d,1) for the subalgebra generated from the products

{
���a1�a2

}
a1,a2

. (44)

Now if {Ra1a2 }d
ai=0 denotes the standard linear generators of the Lie algebra so(d, 1), with Ra1a2 = −Ra2a1 and with Lie 

bracket given by

[Ra1a2 , Rb1b2 ] = ηa2b1 Ra1b2 − ηa1b1 Ra2b2 + ηa2b2 Rb1a1 − ηa1b2 Rb1a2 (45)

then the assignment

so(d,1) Clev
R (d,1)

Ra1a2
1
4

[
�a1 ,�a2

] =
{

1
2 �a1�a2 | a1 �= a2

0 | otherwise

(46)

constitutes a linear embedding which is a Lie algebra morphism with respect to the commutator bracket on the right (e.g. 
[86, Prop. 6.2]). As a consequence, every associative algebra representation of Clev

R(d, 1) (“Clifford module”) becomes a Lie 
algebra representation of so(d, 1), and thus a Lie group representation of the corresponding simply connected Lie group 
Spin(d, 1), via the exponential map

so(d,1) Spin(d,1) ⊂ Clev
R

(
d,1

)
.

αRa1a2 exp
(
α 1

2�a1�a2

) (47)

The representations obtained this way are the spinorial representations, in contrast to the vector representations (51) and 
their exterior powers (32).

Notice that for a1, a2 > 0, whence 
(
�a1�a2

)2 = −1, Euler’s formula (which applies in any Banach algebra) gives

exp
(
α �a1�a2

) = cos(α) + sin(α)�a1�a2 ∈ Clev
R (d,1) . (48)

Therefore the exponent in (47) with the prefactor of 1/2 from (46), is such that rotations by an angle of α = 2π are 
represented by

exp(2π 1
2 �a1�a2) = −1 (49)

and it is only rotations by α = 4π that yield the identity on spinors, reflecting the double covering

Spin(d,1) SO(d,1) . (50)

Example 13. For D ∈N the vector representation of Spin(D − 1, 1) (or of Spin(D)) is the defining representation of SO(d, 1)

(or SO(D)) via (50). This is a D-dimensional irrep, which we hence denote

D ∈ RepR
(
Spin(D − 1,1)

)
or D ∈ RepR

(
Spin(D)

)
. (51)
12
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Example 14 (Restriction of exterior power representation). For natural numbers D1 + D2 = D the restriction (34) of an exterior 
power (32) of the vector representation D of Spin(D − 1, 1) along the canonical inclusion Spin(D1 − 1, 1) × Spin(D2) 

ι
↪�

Spin(D − 1, 1) is

ι∗
(∧k D

) =
⊕

p∈{0,··· ,k}
(∧pD1) � (∧k−pD2). (52)

3.2. Octonionic 2-component spinors

We discuss here real Spin representations (see Example 12 for spinor conventions) in spacetime dimensions 11, 10, 7, 
6 and 4 in terms of matrices with coefficients in the octonions (following [83], reviewed in [13][14] [15]) which is well-
adapted to the geometry of the 1

2 M5-brane locus §3.3, following [73].
We will find useful the presentation of the octonions as generated from the quaternions and from one more imaginary 

unit �. This Dickson double construction [37, (6)] is well-known in itself, but since the explicit minimal set of relations (54)
and (55) below (highlighted in [13, 2.2]) is not as widely used (but see [73, Def. A.6][74, Def. 26]), we recall it:

Lemma 15 (Octonions by generators-and-relations). The real star-algebra O of octonions, with its star-operation (conjugation) to be 
denoted (−)∗ , is equivalently that generated from the algebra of quaternions H and from one more algebra element �, subject to these 
relations, for all q, p ∈H:

�2 = −1 , �∗ = −� (53)

q(�p) = �(q∗p) , (q�)p = (qp∗)� (54)

(�q)(p�) = −(qp)∗ . (55)

Applied to an orthonormal basis of imaginary unit quaternions, q ∈ {i, j, k}, this means that O is generated from the seven imaginary 
unit elements shown in the diagram on the right, subject to these relations: ab = c, ca = b, bc = a, and ba = −c for every pair of 
consecutive arrows a � b � c shown.

Proof. Notice that the relations (54) imply the following further relations

q� = �q∗ �q = q∗�
(�q)p = �(pq) q(p�) = (pq)�

(�q)(�p) = −pq∗ (q�)(p�) = −p∗q

hence in particular:�(�p) = −p (q�)� = −q
(�q)� = −q∗ �(p�) = −p∗.

(56)

Consequently, one finds the general formula for the product of any pair of octonions xi , parametrized as xi = qi + pi� or as 
xi = qi + �pi (with qi, pi ∈H), to be, respectively:

(q1 + p1�)(q2 + p2�) = (
q1q2 − p∗

2 p1
) + (

p2q1 + p1q∗
2

)
�,

(q1 + �p1)(q2 + �p2) = (
q1q2 − p2 p∗

1

) + �
(
q∗

1 p2 + q2 p1
)

.
(57)

This is the formula for the octonionic product according to [37, (6)] (where the version in the first line appears), reviewed 
in [13, 2.2] (where the isomorphic version in the second line is given). �
13
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Remark 16 (Division algebra inclusions and Supersymmetry breaking patterns). Any choice of octonion generators e1, · · ·e7

according to Lemma 15 induces algebra inclusions of, consecutively, the real numbers, the complex numbers and the quater-
nions into the octonions

O

�
R

H

�
R

C

�
R

�
R

R
�

R〈
1,e1,e2,e3
e4,e5,e6,e7

〉
〈1,e1,e2,e3〉 〈1,e1〉 〈1〉

(58)

Moreover, multiplication of the linear sub-spaces corresponding to these sub-algebras with the remaining generators induces 
distinguished linear isomorphisms

O �R H⊕H� �R
(
C ⊕Cj

)⊕ (
C ⊕Cj

)
� �R

(
(R⊕Ri) ⊕ (R⊕Ri)j

)⊕ (
(R⊕Ri) ⊕ (R⊕Ri) j

)
� . (59)

This extra structure on O, corresponding to the choice of an adapted linear basis according to Lemma 15, turns out to 
reflect the supersymmetry breaking sequences

R10,1|32 R6,1|16 R4,1|8

R9,1|16 R5,1|8 R3,1|4 R2,1|2
(60)

This is the statement of Proposition 20 and Proposition 25 below.

An illustrative example computation with the relations (56) is the following (used below in Proposition 38):

Lemma 17 (Reversal of sign of �-component by left action). The action of consecutive left multiplication by the generators e4, e5 , e6 , 
e7 from Lemma 15 on any octonion x = q + p� (q, p ∈H) is by reversal of the sign of the �-component:

e4

(
e5

(
e6
(
e7 (q + p�)

))) = q − p� . (61)

Proof. Using the relations (54) and (56) and the associativity of the multiplication on quaternions, we compute as follows:

e4

(
e5
(
e6(e7x)

)) = �

(
(i�)

(
(j�)

(
(k�)x

))) = �

(
(i�)

(
(j�)

(
(kx∗)�

))) = �
(
(i�)

(
(xk)j

)) = �

((
i
(
j(kx∗)

))
�

)
= (

(xk)j
)
i = (

((q + p�)k)j
)
i = qkji +

((
(p�)k

)
j
)

i = qkji − (pkji)� = q − p� . �
Notation 18 (Conjugation). In what follows, we will denote conjugation by (−)∗ in any of the real ∗-algebras R, C, H, and 
O. For a matrix A with coefficients in K ∈ {R, C, H, O} the component-wise conjugate matrix will be denoted by A∗ , 
while the Hermitian conjugate matrix will be denoted by A† := t A∗ .

We record the following immediate generalization of the standard Pauli matrix construction:

Lemma 19 (K-Pauli matrices). Let K ∈ {R, C, H, O}. There is a linear isomorphism of real vector spaces equipped with quadratic 
forms (the color code follows the configurations in (1))
14
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(62)

from (dimRK + 2)-dimensional Minkowski spacetime with quadratic form being its Minkowski metric η = diag(−1, 1, 1, · · · , 1) to 
the vector space of 2 × 2 K-Hermitian matrices with quadratic form being minus the determinant operation.

We denote the K-Pauli matrices (62) corresponding to the coordinate basis elements as follows:

σa := σ(va) and σ a := ηabσb, (63)

where va ∈RdimRK+1,1 denotes the vector with components (va)
b := δb

a .
The following observation is due to [83], with a streamlined review in [14]:

Proposition 20 (Real Spin representations in dimension 10, 6, 4, 3, via K-Pauli matrices). Let K ∈ {R, C, H, O}.
(i) The assignments

�a1�a2 �−� σ a1 · (σa2 · (−)
)

and �a1�a2 �−� σa1 · (σ a2 · (−)
)

(64)

of left multiplication actions by the K-Pauli matrices (63) for alternating index positions constitute representations of the even Clifford 
algebras (44) on the real vector space underlying K2, hence are real algebra homomorphisms

Clev
R

(
dimRK+ 1,1

)
EndR

(
K2

)
.

(ii) As a consequence (46) there are two real spinorial representations 2 dimRK and 2dimRK of Spin(dimRK + 1, 1), regarded 
as real modules of the Lie algebra so(dimRK + 1, 1), each isomorphic to the real vector space underlying K2 equipped, respectively, 
with the following action of the standard basis elements Ra1a2 (45):

so(dimRK+ 1,1) ×

=

2 dimRK

�
R

2 dimRK

�
R

so(dimRK+ 1,1) × K2 K2

(Ra1a2 , ψ) �−� 1
2σ a1 · (σa2 · ψ)

so(dimR K+ 1,1) ×

=

2 dimRK

�
R

2 dimRK

�
R

so(dimR K+ 1,1) × K2 K2

(Ra1a2 , ψ) �−� 1
2σa1 · (σ a2 · ψ)

(65)

Remark 21 (Complex Weyl representations). For K = C, the action by C-Pauli matrices in (65) is clearly C-linear, so the 
Spin(3, 1)-representations 4 and 4 are the real representations underlying a pair of complex representations. It is manifest 
from (65) for K =C that these two complex representations are the standard complex 2-dimensional Weyl Spin represen-
tations, which we denote by

. (66)

Lemma 22 (Isomorphism of real spinor irreps of Spin(3, 1)). The representations 4 and 4 of Spin(3, 1) obtained from (65) for K =C
are isomorphic as real representations (not as complex representations):

4 � 4 ∈ RepR
(
Spin(3,1)

)
.

Proof. Write ε :=
[

0 1
−1 0

]
∈ Mat(2, C) . We claim that the R-linear isomorphism of R-vector spaces

C2 �R 4 �
φ

4 �R C2

ψ ε · ψ∗
(67)

is an isomorphism of real representations of Spin(3, 1). To see this, use that ε ·
[

a b
c d

]
· ε−1 =

[
d −c

−b a

]
and observe that 

therefore, by (63), we have ε · (σμ)∗ · ε−1 = −σμ. As complex conjugation (−)∗ : C�C is an R-algebra homomorphism 
we have (A · B)∗ = A∗ · B∗ for complex matrices (following Notation 18). Therefore:
15
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ε · (σμ1 · σμ2

)∗ · ε−1 = (
ε · (σμ1

)∗ · ε−1) · (ε · (σμ2

)∗ · ε−1)
= (−σμ1) · (−σμ2) = σμ1 · σμ2 .

(68)

With this the claim follows:

φ
( 1

2σμ1 · σμ2 · ψ) = ε · ( 1
2σμ1 · σμ2 · ψ)∗ =

(
ε · ( 1

2σμ1 · σμ2

)∗ · ε−1
)

· (ε · ψ∗)
= 1

2σμ1 · σμ2 · φ(ψ) . � (69)

Remark 23 (K-Weyl spinors beyond the complex case). We highlight the following subtle points:
(i) The reason that the proof of Proposition 22 does not identify the two Weyl Spin-representations 2C, 2C (66) when 
regarded as complex representations is due to the complex conjugation on the right of (67), which makes φ a real-linear 
map, but not a complex-linear map.
(ii) The reason that the proof of Proposition 22 does not generalize to identify also the two real representations 8 and 8
of Spin(5, 1), nor the two real representations 16 and 16 of Spin(9, 1) given by (65) for K = H and K = O, respectively, 
is that in these cases, due to the non-commutativity of the quaternions and of the octonions, equations (68) and (69)
do not hold, as quaternionic and octonion conjugation is not an R-algebra homomorphism but an anti-homomorphism: 
(xy)∗ = y∗x∗ .

Next we record the following immediate generalization of the Dirac-matrix construction:

Lemma 24 (K-Dirac matrices). Let K ∈ {R, C, H, O}. There is a linear isomorphism of real vector spaces equipped with quadratic 
forms

(70)

from (dimRK + 3)-dimensional Minkowski spacetime with quadratic form being its Minkowski metric 
η = diag(−1, 1, 1, · · · , 1) to the vector space of K-matrices, as shown, where σa and σ a are the K-Pauli matrices (63) from 
Lemma 19.

The following observation is due to [83], with a streamlined review in [15]:

Proposition 25 (Real Spin representations in dimension 11, 7, 5, 4, via K-Dirac matrices). For K ∈ {R, C, H, O}, the assignment

ClR
(
dimR + 2,1

)
EndR

(
K2 ⊕K2

)
�a

⎧⎪⎨⎪⎩
[

1 0
0 −1

]
· (−) f or a = 5′

[
0 σ a

σa 0

]
· (−) otherwise

(71)

of left multiplication action by the K-Dirac matrices (70) constitutes a real representation of the full Clifford algebra (43) on the real 
vector space underlying K4 .

Remark 26 (Branching of 11d spinors in 10d). The linear representation of Spin(dimRK + 2, 1) corresponding via (46) to the 
Clifford representation (71) restricted to a representation of Spin(dimRK + 1, 1) (omitting the index 5′) is manifestly the 
direct sum of the two representations in Lemma 19:

Clev
R

(
dimRK+ 1,1

)
Clev
R

(
dimRK+ 2,1

)
EndR

(
K2 ⊕K2

)
�a1�a2

[
σ a1 · (σa2 · (−)) 0

0 σa1 · (σ a2 · (−))

] (72)

In terms of K-Dirac matrix calculus, the Spin-invariant spinor pairing is given as follows:
16
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Proposition 27 (Spinor pairing). For K ∈ {R, C, H, O}, let N :=K2 ⊕K2 be the N := 4dimRK-dimensional Spin
(
dimRK +2, 1

)
representation from Proposition 25. Then the spinor bilinear pairing is

N × N R

ψ,φ 〈ψ,φ〉:= Re
(
ψ† · �0 · φ)

(73)

where on the right ψ† := tψ∗ is the Hermitian conjugate, Notation 18, and where “·” denotes matrix multiplication over K.4 Further-
more, this is bilinear, skew-symmetric and Spin

(
dimRK + 2, 1

)
-invariant.

3.3. The A1-type singularity

Here we spell out basics of the linear representations of Sp(1)L/R � SU(2)L/R by left/right quaternion multiplication on 
the quaternion space H. The resulting orbifold quotient H�Zn+1 for Zn+1 ⊂ SU(2)L is the An-type singularity (e.g. [120]).

Since some prefactors in the following crucially matter, we begin by making fully explicit:

The exceptional isomorphism Spin(4) ∼= SU(2)L × SU(2)R . As recalled in (45), the 6-dimensional real Lie algebra so(4) has a 
distinguished basis {Ra1a2 }1≤a1<a2≤4 with commutation relations

[Rij, Rkl] = δ jk Ril + δil R jk − δ jl Rik − δik R jl . (74)

Define elements J i
L/R ∈ so(4) by

J i−1
L := − 1

2 R1i − 1
4ε1i jk R jk , J i−1

R := 1
2 R1i − 1

4ε1i jk R jk , i, j,k ∈ {2,3,4}. (75)

More explicitly:

J 1
L = − 1

2 R12 − 1
2 R34 , J 2

L = − 1
2 R13 − 1

2 R42 , J 3
L = − 1

2 R14 − 1
2 R23 ,

J 1
R = 1

2 R12 − 1
2 R34 , J 2

R = 1
2 R13 − 1

2 R42 , J 3
R = 1

2 R14 − 1
2 R23 .

(76)

It is immediate that { J i
L, J

j
R}i, j is a linear basis of so(4). Moreover, with (74), one finds the relations

[ J i
L, J j

L] = ε i j
k J k

L , [ J i
R , J j

R ] = ε i j
k J k

R , [ J i
L, J j

R ] = 0 .

Therefore, the subspaces

su(2)L := 〈
J 1

L , J 2
L , J 3

L

〉 ⊂ so(4) and su(2)R := 〈
J 1

R , J 2
R , J 3

R

〉 ⊂ so(4) (77)

are two mutually commuting Lie subalgebras of so(4), both canonically isomorphic to su(2) (40), whose joint embedding 
is a Lie algebra isomorphism. This consequently induces an isomorphism between the corresponding simply connected 
compact Lie groups:

su(2)L ⊕ su(2)R
∼=
−� so(4) , SU(2)L × SU(2)R

∼=
−� Spin(4) . (78)

Remark 28 (Clifford representation of su(2)L/R ). The images τττ i
L/R of the elements J i

L/R ∈ so(4) (75) under the embedding 
so(4) ↪� ClR(4) (46) are given by

τττ 1
L = − 1

4 �1�2 − 1
4 �3�4 , τττ 2

L = − 1
4 �1�3 − 1

4 �4�2 , τττ 3
L = − 1

4 �1�4 − 1
4 �2�3 ,

τττ 1
R = 1

4 �1�2 − 1
4 �3�4 , τττ 2

R = 1
4 �1�3 − 1

4 �4�2 , τττ 3
R = 1

4 �1�4 − 1
4 �2�3 .

(79)

Lemma 29 (Z2 inside SU(2)). The 1-parameter subgroup {exp(2πt J 1
L )}t∈R/Z ⊆ SU(2)L (78) generated by the infinitesimal rotation 

J 1
L (75) is a copy of U(1). Inside it we have a copy of Z2 ∼= {1, −1} given by {1, exp(2π J 1

L )} (49). The image (79) of the generator of 
this copy of Z2 in the Clifford algebra (46) is

exp(2πτττ 1
L) = �1�2�3�4 . (80)

Proof. Observing that (�1�2)
2 = (�3�4)

2 = −1 and that �1�2 commutes with �3�4 we have, with (79):

exp
(
2πτττ 1

L

) = exp
(− π

2 �1�2 − π
2 �3�4

) = exp
(− π

2 �1�2
)

exp
(− π

2 �3�4
) = (−�1�2)(−�3�4) = �1�2�3�4 ,

where in the third step we used Euler’s formula (48) in the Clifford algebra. �

4 The triple matrix product in (73) is associative even over O, since the components of �0 =
[

0 −12×2
]

are real.

12×2 0

17
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Example 30 (Defining representation of the symplectic group). The defining action of Sp(1) := {q ∈H|qq∗ = 1} on the space H
of quaternions is a real 4-dimensional irreducible representation, to be denoted

4 ∈ RepR(Sp(1)) . (81)

A priori there are two distinct such representations, given by left and quaternion multiplication, respectively

Sp(1) × H H

(q, v) q · v

, Sp(1) × H H .

(q, v) v · q∗
(82)

However, these are clearly isomorphic, via conjugation on all quaternions H
(−)∗
�R

H .

Example 31 (Spin(4) and two copies of Sp(1)). Under the exceptional isomorphism (78)

Sp(1)L × Sp(1)R ∼= SU(2)L × SU(2)R
� Spin(4) (83)

the vector representation 4 of Spin(4) from (81) is given by combined left and conjugate right multiplication (82)

Sp(1)L × Sp(1)R × H H

(qA, qV , v) qA · v · q̄V

(84)

All three of these actions are irreducible in themselves, so that under restriction (33) along any of the two inclusions (78)

Sp(1)L/R
ιL/R
↪−� Spin(4) there is “no branching” in that (ιA/V )∗4 = 4.

Example 32 (Reduction to Spin(3)). Under the exceptional isomorphism (78) and the further exceptional isomorphism 
Sp(1) �

� Spin(3) the canonical inclusion Spin(3) 
ι

↪� Spin(4) is identified with the diagonal map on Sp(1):

Spin(3)

�

ι Spin(4)

�

Sp(1)
diag

Sp(1)L × Sp(1)R

1 ⊕ 3
ι∗
�−� 4

and hence by restriction of the 4-dimensional vector representation in its quaternion form (84) it follows that the resulting 
3 ∈ RepR(Sp(1)) is given by the diagonal of the actions (82)

Sp(1) × Him Him

(q, v) q · v · q̄

(85)

Here Him ⊂H is the real 3-dimensional space of imaginary quaternions.

The Lie algebra sp1 via quaternions. As Sp(1) is the unit sphere of the skew-field H of quaternions, the identification 
H∼=R4 given by the standard R-basis {e0, e1, e2, e2} of H with

e0 = 1 , eiei = −1 = −e0 for i ∈ {1,2,3} , eσ (1)eσ (3) = sgn(σ )eσ (3) for σ ∈ Sym(3), (86)

identifies the Lie algebra sp1 of Sp(1) with the tangent space at S3 in R4 at the point (1, 0, 0, 0), and so it is identified 
with the space Him of imaginary quaternions. The Lie algebra structure on sp1 is easily obtained by noticing that the 1-
parameter subgroups generated by the basis elements {e1, e2, e3} of sp1 are given by ei(t) = cos(t) + ei sin(t). From this we 
get

[e1,e2] = 1

2

d2

dsdt

∣∣∣∣
(s,t)=(0,0)

e1(t)e2(s)e1(t)
−1e2(s)−1 = e3 ,

and similarly

[e2,e3] = e1 and [e3,e1] = e2 .
18
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Therefore the basis vectors {ei} are the standard Lie algebra basis for so3 ∼= sp1. Finally, by differentiating the action, one 
sees that the Lie algebra representations corresponding to the representations 4l/r

∼= H from (82), and 3 ∼= Him from (85)
are given, respectively, by

sp1 ⊗ 4−� 4 , sp1 ⊗ 4 −� 4 , sp1 ⊗ 3−� 3 . (87)

ei ⊗ v �−� ei v ei ⊗ v �−� v ei ei ⊗ v �−� [ei, v]
Here the multiplications and the commutators on the right are taken in the associative algebra H of quaternions. As Sp(1)

is a compact and simply connected Lie group, its Lie algebra sp1 knows everything about its representation theory. An 
example of application of this principle are the proofs of the following lemmas.

Lemma 33 (Decomposition of irreps of 4 ∧ 4). The second exterior power 4 ∧ 4 (see (32)) of the defining real 4-dimensional irrep 
4 ∈ RepR(Sp(1)) (see (81)) is the direct sum of the real 3-dimensional irrep 3 ∈ RepR(Sp(1)) (see (85)) with the 3-dimensional 
trivial rep:

4 ∧ 4 � 3 · 1 ⊕ 1 · 3 ∈ RepR(Sp(1)) . (88)

Proof. By (87), the sp1-action on 4 is given on the canonical linear basis (86)

4 � 〈
e0,e1,e2,e3

〉
R (89)

by ei ⊗ e j �� eie j , with i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3}. Consider then the following linear basis of 4 ∧ 4:

4 ∧ 4 �R

〈 aL
1 := e0 ∧ e1 + e2 ∧ e3,

aL
2 := e0 ∧ e2 + e3 ∧ e1,

aL
3 := e0 ∧ e3 + e1 ∧ e2,

aR
1 := e0 ∧ e1 − e2 ∧ e3,

aR
2 := e0 ∧ e2 − e3 ∧ e1,

aR
3 := e0 ∧ e3 − e1 ∧ e2

〉
. (90)

The induced sp(1) Lie algebra action is given by

ei · (e j ∧ ek) = (eie j) ∧ ek + e j ∧ (eiek) .

From this we find for e1:

e1 · aL/R
1 = e1 · (e0 ∧ e1 ± e2 ∧ e3

)
= (

e1 ∧ e1︸ ︷︷ ︸
=0

+ e0 ∧ (−e0)︸ ︷︷ ︸
=0

)± (
e3 ∧ e3︸ ︷︷ ︸

=0

+ e2 ∧ (−e2)︸ ︷︷ ︸
=0

) = 0

e1 · aL/R
2 = e1 · (e0 ∧ e2 ± e3 ∧ e1

)
= (

e1 ∧ e2︸ ︷︷ ︸
=e1∧e2

+ e0 ∧ e3︸ ︷︷ ︸
=e0∧e3

)± (
(−e2) ∧ e1︸ ︷︷ ︸

=e1∧e2

+ e3 ∧ (−e0)︸ ︷︷ ︸
=e0∧e3

) =
{

2aL
3

0

e1 · aL/R
3 = e1 · (e0 ∧ e3 ± e1 ∧ e2

)
= (

e1 ∧ e3︸ ︷︷ ︸
=−e3∧e1

+ e0 ∧ (−e2)︸ ︷︷ ︸
=−e0∧e2

)± (
(−e0) ∧ e2︸ ︷︷ ︸

=−e0∧e2

+ e1 ∧ e3︸ ︷︷ ︸
=−e3∧e1

) =
{ −2aL

2
0 .

Since everything here is invariant under cyclic permutation of the three non-zero indices, it follows generally that

( 1
2 ei) · aL

j =
∑

k

εi jkaL
k , ( 1

2 ei) · aR
j = 0 for all i, j ∈ {1,2,3}.

This identifies 
〈{aL

1, a
L
2, a

L
3}
〉

and 
〈{aR

i }〉 as 3 and 1, respectively, as representations of sp1 and hence as representations of 
Sp(1): 〈{aL

1,aL
2,aL

3}
〉 � 3 ,

〈{aR
i }〉 � 1 ∈ RepR(Sp(1)) . � (91)

Lemma 34 (Left-right exchange of 4 ∧ 4). Under the exceptional isomorphism Sp(1)R × Sp(1)L
∼=
� Spin(4) (from (83)), the second 

exterior power ∧24 of the vector representation 4 of Spin(4) splits as the direct sum of the outer tensor products (from (35)) of the 3
(from (85)) of one of the Sp(1) factors with the 1 of the other factor:

∧24 � 3 � 1 ⊕ 1 � 3 ∈ RepR(Sp(1)L × Sp(1)R) .
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Proof. We have to show that we have an R-vector space splitting

∧24 = V ⊕ W

with both V and W representations of Sp(1)A/V via the restrictions along the two inclusions Sp(1)L/R
ιL/R
↪−� Sp(1)L ×Sp(1)R

and with V ∼= 3 and W ∼= 3 ·1 in RepR(Sp(1)L), and V ∼= 3 ·1 and W ∼= 3 in RepR(Sp(1)R). Set, in the notation of Lemma 33,

V := 〈{aL
1,aL

2,aL
3}
〉; W := 〈{aR

1 ,aR
2 ,aR

3 }〉.
Then the identification

V ⊕ W = 3 ⊕ 3 · 1 ∈ RepR(Sp(1)L)

is precisely the content of Lemma 33, and the identification

V ⊕ W = 3 · 1 ⊕ 3 ∈ RepR(Sp(1)R)

is proved analogously, by considering the sp1-action on H induced by the Sp(1)-action on the right (see equation (87)). �
Lemma 35 (The third wedge power). The fourth exterior power ∧44 of 4 ∈ RepR(Sp(1)) is the trivial representation 1, and the third 
exterior power ∧34 of 4 ∈ RepR(Sp(1)) is isomorphic to 4 itself:

∧34 � 4 ∈ RepR(Sp(1)) .

Proof. For any i ∈ {0, 1, 2, 3} let bi ∈ ∧34 be the element

bi := (−1)ie0 ∧ · · · ∧ êi ∧ · · · e3,

where the factor ei is omitted. Then {b0, b1, b2, b3} is an R-basis of ∧34 and we have an isomorphism of R-vector spaces 
∧34 � 4 given by φ : bi �� ei . Direct inspection shows that φ is actually an isomorphism of sp1 representations, and so of 
Sp(1) representations. This follows by direct inspection. For instance, for the Lie action of e1 we find:

φ(e1 · b0) = φ
(
e1 · (e1 ∧ e2 ∧ e3)

)
= φ

(
(−e0) ∧ e2 ∧ e3︸ ︷︷ ︸

=b1

+ e1 ∧ e3 ∧ e3︸ ︷︷ ︸
=0

+ e1 ∧ e2 ∧ (−e2)︸ ︷︷ ︸
=0

)
= φ(b1) = e1 = e1 · e0 = e1 · φ(b0) ,

φ(e1 · b1) = φ
(
e1 · (−e0 ∧ e2 ∧ e3)

)
= φ

(
− e1 ∧ e2 ∧ e3︸ ︷︷ ︸

b0

− e0 ∧ e3 ∧ e3︸ ︷︷ ︸
=0

− e0 ∧ e2 ∧ (−e2)︸ ︷︷ ︸
=0

)
= φ(−b0) = −e0 = e1 · e1 = e1 · φ(b1) ,

and similarly for the other cases. �
In summary, we have proven the first statement of Theorem 7:

Proposition 36 (The 3 inside 4 ∧ 3). The SU(2)L -fixed locus inside the ∧24 of Spin(4) � SU(2)L × SU(2)R is the 3 of SU(2)R , while 
the SU(2)L -fixed locus in ∧34 (and in 4) is trivial.

Proof. Using the fact that fixed loci are the direct summands of the corresponding trivial representations (37), this follows 
from Lemma 34 and Lemma 35. �
3.4. 11d spinors at the A1-singularity

We now combine §3.2 with §3.3 to discuss the representation theory of 11d spinors restricted to an A1-singularity.

Definition 37 (Identifying Z2 subgroup). With respect to the inclusion Spin(5, 1) ×Spin(4) ⊂ Spin(9, 1) given by (62), consider 
now the corresponding inclusion of the subgroup from Lemma 29:

ZA
2 := {

1, exp(2π J 1
L ))

} ⊂ SU(2)L ⊂ Spin(4) ⊂ Spin(10,1) . (92)

The following lemma is essentially the content of [73, Lemma 4.13]:
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Lemma 38 (The fermionic ZA
2 -fixed locus). The fixed locus (36) of ZA

2 (92) in the real Spin(9, 1) representations 16 and 16 (65) is, 
as a residual Spin(5, 1) representation, the 8 and 8 from (65) respectively, given under Lemma 20 by the inclusion H2 ⊂O2 (59)

16Z
A
2 = 8 , 16

ZA
2 = 8 ∈ RepR

(
Spin(5,1)

)
. (93)

Proof. By Proposition 20 we need to prove that, under the identifications of the SO(9, 1) representations 16 and 16 with 
O2, the ZA

2 fixed locus in 16 and 16 is identified with the real subspace H2 of O2 (59). According to Lemma 29 and to 
Proposition 20, we are equivalently asking for the fixed locus of the consecutive left action of the octonionic Pauli matrices 
σ6, σ7, σ8, σ9 from Lemma 19 on the space O2:

exp(2πτττ 1
L)ψ = �6�7�8�9ψ = σ6(σ7(σ8(σ9ψ))) = e4(e5(e6(e7ψ)) . (94)

Now writing ψ = η1 + η2� with η1, η2 ∈H2, Lemma 17 gives

exp(2πτττ 1
L)(η1 + η2�) = η1 − η2� .

Therefore exp(2πτττ L)ψ = ψ is equivalent to ψ = η1. �
Lemma 39 (Clifford action of su(2)R is by quaternion right action). Under the identification 16Z

A
2 ∼= 8 ∼= H2 from Lemma 38, the 

action of τττ i
R ∈ su(2)R (79) is given by right multiplication with half the quaternion unit ei :

τττ i
Lψ = ψ ⇒ τττ i

Rψ = 1
2 ψei ∈H2. (95)

Proof. Using (80), (20) and (56) we compute as follows:

τττ 1
Rψ = ( 1

4 �6�7 − 1
4 �8�9

)
ψ = 1

4 �6�7ψ − 1
4 �8�9�6�7�8�9 = 1

4 �6�7 + 1
4 �6�7

= 1
2σ6(σ7ψ) = 1

2 e4(e5ψ) = 1
2 �((i�)ψ) = 1

2 �((iψ∗)�) = 1
2 ψ i = 1

2ψe1 .

A directly analogous computation shows the statement in the other cases. �
Lemma 40 (The 8 of Spin(5, 1) as representation of Spin(3, 1) × SU(2)). When regarded as a Spin(3, 1) × SU(2)R representation, 
along (3), the 8 and 8 of (93) are isomorphic, as real representations, to the outer tensor product (35) of the left and right complex 
2-dimensional Weyl representation 2C, 2C of Spin(3, 1) (66) with the fundamental complex representation 2C of SU(2) (38):

8 = 2C �
C

2C , 8 = 2C �
C

2C ∈ RepR
(
Spin(3,1) × SU(2)R

)
. (96)

Proof. From Remark 21, and in view of the chain of inclusions (59), one manifestly sees that the restricted representations 
without the SU(2)R -action considered are

Spin(5,1)
i Spin(3,1)

8

�
R

2C ⊕ 2C

�
R

H2 C2 ⊕C2j

Spin(5,1)
i Spin(3,1) .

8

�
R

2C ⊕ 2C

�
R

H2 C2 ⊕C2j

(97)

So it remains to show that, with respect to the SU(2)R -action we have 2C · 2 �R 2C �
C

2C . By Lemma 39, the action 

of SU(2)R on spinors C2 ⊕ C2 � [ψ+ ψ− ] �� ψ+ + ψ−j ∈ C2 ⊕ C2j is by right multiplication by the unit quater-
nions, under the isomorphism SU(2) � Sp(1). Therefore, using the quaternion algebra, we check explicitly that this right 
multiplication gives the fundamental complex representation 2C ∈ RepC(SU(2)) via the Pauli matrix representation (39):

2τττ 1
R [ ψ φ ] = [ ψ φ ]e1

= (
ψ + φj

)
i

= ψ i − (φi)j

= [ ψ i −φi ]
= [ ψ φ ] ·

[
i 0
0 −i

]
,

2τττ 2
R [ ψ φ ] = [ ψ φ ]e2

= (
ψ + φj

)
j

= ψ j − φ

= [ −φ ψ ]
= [ ψ φ ] ·

[
0 1

−1 0

]
,

2τττ 3
R [ ψ φ = [ ψ φ ]e3

= (
ψ + φj

)
k

= ψ k︸︷︷︸
=ij

+ φ jk︸︷︷︸
=i

= [ φi ψ i ]
= [ ψ φ ] ·

[
0 i
i 0

]
. �

(98)
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Lemma 41 (Residual U (1)V -action on spinors). When regarded as a Spin(3, 1) × U(1)V representation, along (3), the 8 and 8 of (93)
are isomorphic, as real representations, to the outer tensor product (35) of the left and right complex 2-dimensional Weyl representation 
2C, 2C of Spin(3, 1) (see (66)) with the complex irrep 1−

C of U(1) (see (41)).

Proof. We explicitly compute the action of R45, via its Clifford representation 1
2 �4�5 (46) on a spinor C2 ⊕ C2 �

[ψ φ ] �� ψ + φj ∈C2 ⊕C2j using (64):

2 1
2 �4�5[ ψ φ ] = σ4(σ5(ψ + φj)) = −e2(e3(ψ + φj)))

= −jk(ψ + φj)) = −i(ψ + φj)) = (−ψ i) + (−φi)j

= [ ψ φ ] ·
[ −i 0

0 −i

]
,

(99)

where we also used that quaternionic multiplication is associative and then that complex multiplication, furthermore, is 
commutative. �

In summary, we have proven the second statement of Theorem 7:

Proposition 42 (The reduced Spin representation). The fixed locus (36) under the action of ZA
2 ⊂ SU(2)L (92) in the Spin(10, 1)

representation 32 (from (71)), regarded with its residual action of Spin(3, 1) × U(1) × SU(2)R is:

Spin(10,1) Spin(3,1) × U(1)V × SU(2)R .

32 32Z
A
2 = (

2Z ⊕ 2Z
)
�
C

1−
C �

C
2C

(100)

Proof. This follows immediately from combining Lemma 40 and Lemma 41. �
For the record, and as this is somewhat subtle, we highlight the following equivalent and non-equivalent versions of the 

statement in (100):

Lemma 43 (Real isomorphism classes of chiral charged 4d spinor reps). Consider the real representations of Spin(3, 1) × U(1)V ×
SU(2)R .
(i) There are isomorphisms of real representations as follows:

2C �
C

1∓
C �

C
2C �R 2C �

C
1±
C �

C
2C . (101)

(ii) There are, however, no isomorphisms, not even as real representations, between 2C �
C

1−
C �

C
2C and 2C �

C
1+
C �

C
2C nor between 

2C �
C

1−
C �

C
2C and 2C �

C
1+
C �

C
2C .

Proof. Notice that under the canonical embedding of SU(2) as the spatial Spin(3)-group inside the Lorentzian Spin(3, 1), 
the two complex Weyl spinor representation (66) both restrict to the fundamental representation of SU(2) from (38):

Spin(3,1) Spin(3) � SU(2) .

2C 2C

2C 2C

Now consider the identification of complex representations

2C �
C

1C �
C

2C �C Mat(2 × 2,C) ,

where on the right the Spin(3, 1)-action is by left matrix multiplication with C-Pauli matrices (65) 1
2 σa1σa2 for ai ∈

{0, 1, 2, 3}, while the SU(2)R -action is by right matrix multiplication with transposed Pauli matrices t
( 1

2 σa1σ
a2
)

for 
ai ∈ {1, 2, 3}. Therefore, by the proof of Lemma 22, we have an isomorphism of real representations given by
22
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2C �
C

1C �
C

2C 2C �
C

1C �
C

2C .

Mat(2 × 2,C) Mat(2 × 2,C)

A ε · A∗ · tε

(102)

Since the real-linear map in the last row is complex anti-linear, this same real-linear map gives the claimed isomorphisms 
(101). Moreover, since 2C is not isomorphic to 2C as a complex representation, no real isomorphism as in the first line of 
(102) can be complex-linear, hence all such isomorphisms must be complex anti-linear. This gives the second claim. �

In closing this discussion of octonionic spinor algebra, we notice the following identifications, which will be useful in §4
below:

Notation 44 (4d chirality operator). If we introduce for the 4d sector of the octonionic Dirac matrices (70) the following 
standard notation for complex Dirac matrices

γμ := �μ μ ∈ {0,1,2,3}
γ5 := iγ0γ1γ2γ3

(103)

then the chirality operator γ5 is

γ5 = �5′

iγ5 = �4�5�5′ .

Lemma 45 (Branching of spinor pairing). The pairing in Proposition 27 applied to 6d spinors and expressed in terms of their branching, 
from Proposition 40, into iso-doublets of 4d spinors[

ψ+ ψ− ] ∈ (2C ⊕ 2C) �
C

2C ∈ RepR
(
Spin(3,1) × SU(2)R

)
ψ = ψ+ + ψ−j ∈ 8 ⊕ 8 ∈ RepR

(
Spin(5,1)

)
equals the sum over iso-doublet components of the pairing in Proposition 27 applied to 4d spinors:〈 [

ψ+ ψ− ]
,
[
φ+ φ− ] 〉 := 〈

ψ,φ
〉

= 〈
ψ+, φ+〉+ 〈

ψ−, φ−〉 .
Proof. Noticing that(

c ∈C ↪�O
) ⇒

{
(cj)∗ = −cj
−jcd∗j = c∗d

⇒
{

Re
(
cj
) = 0

Re
(− jcd∗j

) = Re
(
cd∗)

we compute as follows:〈
ψ,φ

〉 = 〈
ψ+ + φ−j,ψ+ + φ−j

〉
= Re

((
ψ+ + ψ−j

)† · �0 · (φ+ + φ−j
))

= Re
((

(ψ+)† − j((ψ−)†)
) · �0 · (φ+ + φ−j

))
= Re

(
(ψ+)† · �0 · φ+) + Re

(
(ψ−)† · �0 · φ−)

= 〈
ψ+, φ+〉+ 〈

ψ−, φ−〉 . �
4. Analysis of the WZW-type terms

With the full field content (4) in hand, via the proof in §3, here we spell out two noteworthy contributions to the super-
exceptional PS-Lagrangian (20) that both originate from the super-exceptional WZW term (30), and we comment on the 
relation of both to quantum hadrodynamics. A more comprehensive discussion of the emergent SU(2)-flavor gauge theory 
encoded by the Lagrangian (20) is beyond the scope of this article, but see §5 for some outlook.

We need the following:
23



D. Fiorenza, H. Sati and U. Schreiber Journal of Geometry and Physics 170 (2021) 104349
Notation 46 (Radial holographic Kaluza-Klein mode expansion). In the following, we consider a choice of sequence of smooth 
functions of the coordinate x4 on the M5-brane worldvolume (21),

h(n) : x4 �� h(n)(x4) ∈ R , n ∈N (104)

to be regarded as KK-modes for flat space holography. These functions (104) may, for instance, be any of the following:

• (Flat hard-wall holography): Trigonometric functions of x4 defined on a closed interval and vanishing at the boundary 
points, as considered in [130, 5.1].

• (Atiyah-Manton holography): Hermite functions defined on all x4 ∈R as considered in [134, 3][135, 3].
• (Circle-compactification of M5): Periodic functions of x4 for some given radius of periodicity, as for the KK-modes in 

the model considered in [77].

With such a choice understood, let V be a function or differential form on the M5-worldvolume (21) that is pulled back 
from R3,1. Then we have

V ({xμ}, x4) = V (n)({xμ})h(n)(x4) ∈ �•(R3,1) ↪−��•(R5,1) , (105)

where a sum over n ∈N left notationally implicit, for the corresponding mode expansion (assumed to exist), with the V (n)

being functions or differential forms just on R3,1. The details of the super-exceptional M5-brane model will depend on the 
choice of this mode expansion (105), its assumed completeness relations and boundary conditions, etc. However, for the 
present purpose of identifying just the general form of a few main terms in the super-exceptional Lagrangian (20), we only 
need to assume that any expansion as in (105) has been chosen.

The point of this, in the following, is that acting upon the expansion (105) by the de Rham differential in 5d decomposes 
the exceptional vielbein field values d(V ···)

d5 V = d5(V (n)h(n))

= h(n) d4 V (n) + h′
(n) V (n) ∧ dx4

with d4 V (n) being the de Rham differential form on R3,1, and h′
(n) denoting the derivative of the mode function h(n) (with 

respect to its only variable x4). As a result, every summand in the super-exceptional Lagrangian (23) is a wedge product of 
fields with precisely one of the factor fields not differentiated itself, but instead contributing with the differential h′

(n)dx4 of 
its mode function.

Remark 47 (Role of KK-mode expansion). We highlight the following:
(i) A mode expansion as in (105) also governs the field content in the Witten-Sakai-Sugimoto model [115, (3.20)][116, 
(2.10)], reviewed in [134][24][135].
(ii) There it is crucial, for the details of the meson mass spectrum (highlighted in [135, (53)]), that the geometry is curved 
(specifically: asymptotically AdS). Here we are concerned with flat geometry (or at least: parallelizable, see Remark 53
below), since the whole complexity of the super-exceptional M5-brane model in §2 emerges [50] from the super M-brane 
cocycle in rational Cohomotopy theory on flat D = 11 super Minkowski spacetime [47].
(iii) Heuristically, this matches the idea that our model should pertain to a single heterotic M5-brane (N = 1, deep M-theory 
regime), in contrast to a stack of a large number of coincident branes backreacting on their ambient spacetime geometry 
(N � 1, supergravity regime) as considered in the Witten-Sakai-Sugimoto model. Alternatively the flat super-exceptional 
spacetime ought to be regarded as the local tangent frame of a super-exceptional curved Cartan geometry [73, p. 7s], with 
only the lowest modes relevant locally.
(iv) In any case, mode expansions (105) in flat space holography have been considered in [130, 5.1][134, 3][135, 3] and 
suffice for the following purpose of analyzing the form of the interaction terms that appear.

4.1. Vector meson coupling to Skyrme baryon current

We show here that the contribution to the super-exceptional WZW term (30) by those bosonic fields that transforms as 
3 of SU(2)R in (4) has the form which, in quantum hadrodynamics, is characteristic of the coupling of the neutral vector 
mesons to the baryon current, with the baryons appearing as Skyrme solitons in the pion field (see [109]).

Remark 48 (Linear basis for 4 ∧ 4). By (90) and Proposition 36 we have on the ZA
2 -fixed locus the relations

eI6 = ε I J K e J K

e I6 = ε I J K e

}
∈ CE

(
R10,1|32

exs

)ZA
2 . (106)
a1a2a3 a1a2a2 J K
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Definition 49 (The π field). For σ a super-exceptional field configuration (21), write

dπ I := σ ∗(eI6) = σ ∗( 1
2

(
eI6 + ε I J K e J K

))
(107)

for its component corresponding to the M2-brane wrapping modes on the vanishing 2-cycle in the A1-singularity. On the 
right in (107) we have highlighted the equivalent expressions, using (106).

Proposition 50 (Emergence of isospin WZW term). Consider a super-exceptional sigma-model field (21) with π -field component 
according to Definition 49. Then the value of the second factor in the super-exceptional WZW-term LWZW

exs
(30), for indices ranging in 

ai ∈ {6, 7, 8, 9}, is:

. (108)

Proof. We directly compute as follows:

where in the second step we identified the π -field factors according to (107). �
Definition 51 (The A-field). Let A be a 1-form on R4,1 with mode expansion

A({xμ}, x4) = A(n)({xμ})h(n)(x4)

as in (105), and consider a super-exceptional σ -model field (21) with

σ ∗(eμ5′
) = d(Aμ) = d

(
A(n)

μ h(n)

)
. (109)

Example 52 (Photon-pion coupling term). Consider a super-exceptional sigma-model field (21) with π -field component ac-
cording to Definition 49 and with A-field component according to Definition 51. Then the super-exceptional WZW-term 
(30) has, by Proposition 50, the contribution:

.
(110)

If we interpret A(0) as the photon field (in accordance with the super-exceptional Perry-Schwarz mechanism (28)) and 
π I with the pion field, then this expression (110) is the characteristic form of the γπππ -coupling term [12, (2.2)][137, 
(22)][22, (4)].

Remark 53 (Skyrme baryon current). We may consider also a curved but parallelizable geometry, where the super-exceptional 
vielbein components eI6 become a basis of three left-invariant 1-forms on the group manifold SU(2)R � S3. Then the field 
identification (107) becomes

σ ∗(eI6) = e−�πde �π = (
e �π )∗θ (111)

for

e �π : R3,1 −� SU(2)R (112)

an SU(2)R -valued function and θ ∈ �1
LI

(
SU(2), su(2)

)
the Maurer-Cartan form on the group manifold, characterized by the 

condition dθ + [θ ∧ θ] = 0. In this situation, the proof of Proposition 50 gives

(113)
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where Tr(θ ∧ θ ∧ θ) is proportional to the canonical volume form on the group manifold SU(2)R � S3. If we still interpret π
as the pion field, as in Example 52, then this is the characteristic form of the baryon current [59, (6)][137, (29)][138, (2)][5, 
(11)] in the Skyrme model of quantum hadrodynamics (review in [109]).

Example 54 (Photon-Skyrmion coupling). Accordingly, in the global case of Remark 53 the coupling in Example 52 becomes

.
(114)

This is the form of the photon-Skyrmion coupling [137, (19)][82, (13)].

Definition 55 (Dual graviton). We shall say that a super-exceptional sigma-model field (3) satisfies higher self-duality if it 
takes the same value on the two copies of 7 � 1 in (4). By the super-exceptional embedding condition (22) this means, in 
particular, that

σ ∗(eμ
6789

) = σ ∗(eμ
) = dxμ. (115)

Definition 56 (The ω-field). Let ω be a 1-form on R4,1 with mode expansion

ω({xμ}, x4) = ω(n)({xμ})h(n)(x4)

as in (105), and consider a super-exceptional σ -model field (21) with

σ ∗(eμ1μ2μ3
45) = d

(
(
4ω)μ1μ2μ3

) = d
(
(
4ω

(n))μ1μ2μ3 h(n)

)
. (116)

Example 57 (The ω-meson couplings to pions and Skyrmions). Consider a super-exceptional sigma-model field (21) satisfying 
higher self-duality in the sense of Definition 55 and with π -field component as in Definition 49 and ω-field component as 
in Definition 56. Then the super-exceptional WZW-term (30) has the contribution

If we interpret π as the pion field, following Example 52, and in addition interpret ω(0) as the ω-meson field, then this is 
the characteristic form of the ωπππ -coupling term [113, (2)][56, (1)]. More generally, in the global situation of Remark 53
this contribution becomes

. (117)

This is the characteristic form of ω-meson coupling to the Skyrme baryon current (113) due to [4, (2)], see also [79, (12)][69, 
(2.1)][62, (2.1)].

Remark 58 (Chiral partner of the ω-meson). The difference in interpretation between the photon-pion coupling in Example 52
and the omega-pion coupling in Example 57 is that, by the classification result of (4), the vector field in the latter case is 
part of an u(2) � u(1) ⊕ su(2)-multiplet of vector fields whose su(2)R -partner comes from the super-exceptional vielbein 
component eμ1μ2μ3

6I .

Therefore, we are led to interpreting this field component as in the following definition and subsequent example.

Definition 59 (The ρ-field). Let ρ be a su(2)-valued 1-form on R4,1 with mode expansion

ρI ({xμ}, x4) = ρ
(n)
I ({xμ})h(n)(x4)

as in (105), and consider a super-exceptional σ -model field (21) with

σ ∗(eμ1μ2μ3
6I) = d

(
(
4ρ)I

μ μ μ

) = d
(
(
4(ρ

I )(n))μ1μ2μ3h(n)

)
. (118)
1 2 3
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Example 60 (The ω/ρ-meson coupling to iso-doublet fermions). Consider a super-exceptional sigma-model field (21) with ω-
field component according to Definition 49 and with ρ-field component according to Definition 59. Then the fermionic 
coupling terms of these fields appearing in (9) are of the form

(119)

where we identified the 4d spacetime Dirac matrices γμ , γ5 by (103) and the isospin Pauli matrices τττ I according to (79). 
This combination (119) of couplings to isodoublet fermions (100) is characteristic of that of the ω- and ρ-mesons in quan-
tum hadrodynamics ([129, (3.12)], see also [81, (24)]).

Finally we show one example of couplings involving fermions, to illustrate how the left-invariance of the super-
exceptional vielbein, via the last line of (10), makes the fermionic pairing terms in the super-exceptional Lagrangian (20)
expand out to the usual fermionic currents:

Definition 61 (The N-field). Let N be a smooth function on R4,1 with values in Dirac spinor iso-doublets, and with mode 
expansion

N({xμ}, x4) = N(n)({xμ})h(n)(x4)

as in (105), and consider a super-exceptional σ -model field (21) with

σ ∗(ψ) = d
(
N
) = d

(
N(n)h(n)

)
, (120)

where the first equality uses the identification of Theorem 7.

Example 62 (fermion-pion coupling). Consider a super-exceptional sigma-model field (21) with π -field component accord-
ing to Definition 49 and with N-field component according to (61). Then the super-exceptional WZW-term (30) has, by 
Proposition 50 and using the last line of (10), the contribution:

(121)

Noticing that the spinor pairing over the brace is the sum over iso-doublet components of the 4d spinor pairing (by 
Lemma 45) this is the form of spinor-pion coupling seen in [102, Table 3, item 30][54, Table 1, item 8] – except for the 
appearance of the chirality operator γ5, via (44).

Notice that in passing from the super-exceptional MK6-locus to the actual 1
2 M5-locus (Definition (13)) the right-handed 

spinors get projected out anyway, so that the value of the chirality operator becomes the identity.

4.2. Non-linear electromagnetic coupling

We show here that the contribution to the super-exceptional WZW term (30) by the purely electromagnetic terms (24)
and (27) has the form of the first DBI-correction of non-linear electromagnetism, and we discuss how this is compatible 
with the appearance of hadrodynamics as above.

Proposition 63 (First Born-Infeld correction from super-exceptional WZW term). Consider a super-exceptional sigma-model field (21)
with electromagnetic field component according to (24) and (27). Then the contribution of the super-exceptional WZW term (30) for 
indices ranging as αi ∈ {0, 1, 2, 3, 5′} is:

(122)

.

27



D. Fiorenza, H. Sati and U. Schreiber Journal of Geometry and Physics 170 (2021) 104349
Proof. We calculate as follows:

(123)

Here in the first step we used that σ ∗(eμ5′ ∧ eμ
) = d(Aμ) ∧ dxμ = F from (24) has no factor of dx4, while σ ∗(eμ1μ2

) =
1
2 (
4)μ1μ2 dx4 from (27) does have this factor, so that in the triple wedge product the latter term contributes only linearly, 
and as such once in each of the three factors. The last step is the following computation:

(124)

Here in the first step the three summands shown are the contributions from two, one or no occurrences, respectively, of 
the index “0” in the two outer factors of F . �

We close by highlighting how such non-linear corrections to electromagnetism are to be expected in a theory of hadro-
dynamics.

Born-Infeld correction. The term (122) is of the form of the first correction in Born-Infeld electromagnetism [25, p. 437]
(as reviewed in [123, (22)][99, 9.4])

LBI :=
√

−det(η + 2π�2
s F )dvol4 . (125)

(126)

which string perturbation theory suggests appears in the low-energy effective action on D-branes [52][1] [88] (reviewed in 
[123][136][127][99, 9.4]). Notice that DBI-action (125) encodes a critical value of the electric field strength

EBI := T

√
T 2 + B2

T 2 + B2‖
(127)

(as in [65, (2.6)]) since

−det
(
(ημν) + 1

T (Fμν)
) ≥ 0 ⇔ E ≤ T

√
T 2 + B2

T 2 + B2‖
(128)

where B‖ := 1√
E·E B · E for the component of the magnetic field parallel to the electric field.

We may observe that the same critical field strength is implied by electromagnetic vacuum polarization if the electro-
magnetic field is assumed to fill a leptonic/hadronic vacuum:

The Schwinger effect. Consider a constant electromagnetic field (�E, �B) on 4d Minkowski spacetime, away from the measure-
0 subset of configurations with �E · �B = 0, hence assuming that �E · �B �= 0. Then there exists a Lorentz transformation (�E, �B) ��
(�E ′, �B ′) such that �E ′ ‖ �B ′ . The Schwinger effect of vacuum polarization, in this case, predicts that in a theory with electrically 
charged particles of charge e and mass m (reviewed for electron/positron pair creation in [38, (1.28)], and for quark/anti-
quark pair creation in [66, (2)]) an electric field strength around the Schwinger limit scale
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E ′
crit := m2 c3

e h̄
(129)

(reviewed in [38, (1.3)][92, (40)]) causes a sizable density of particle/anti-particle pairs to be created out of the vacuum,5

causing non-linear corrections to the electromagnetic dynamics or even decay of the vacuum, and hence in any case a 
breakdown of ordinary electromagnetism.

Now observe that a Lorentz-invariant expression for the field strength E ′ above, as a function of the electromagnetic 
field (�E, �B) in any frame, is given by the following expression (see also [38, (1.6)]):

E ′(�E, �B) =
√√(

1
2

(�E · �E − �B · �B))2 + (�B · �E)2 + 1
2

(�E · �E − �B · �B) .

This follows immediately from the fact that this expression is a Lorentz invariant (being a function of the basic Lorentz 
invariants �E · �E − �B · �B and �E · �B , e.g. [44]) and that it evidently reduces to the absolute value E ′ =

√�E ′ · �E ′ in any Lorentz 
frame where �E ′ ‖ �B ′ . But then basic algebra reveals ([65, (2.6)]) that

E ′(�E, �B) = E ′
crit ⇔ E = E ′

crit

√√√√ E ′2
crit + B2

E ′2
crit + B2‖

.

This is exactly the formula for the critical field strength (127) in Born-Infeld -theory, if we identify the string tension with 
the Schwinger limit field strength T = E ′

crit, as befits the picture that it is the flux tube strings connecting a quark/anti-quark 
which counteracts their separation.

5. Conclusion

Irrespective of the physics interpretation of the full field content in the big table (4), found to emerge in the super-
exceptional M5-brane model [50], we have identified elusive field theoretic structure in the previously somewhat mysterious 
expression (17) for the super-exceptional 3-flux form (the “hidden superalgebra of 11d supergravity” [34][18][8]) including:

(i) a Skyrme current-type term (Lemma 50) and
(ii) the first DBI-correction term (Proposition 63).

Specifically the DBI-term (108) is the expected first-order interaction correction to the free Perry-Schwarz Lagrangian (28)
in the full interacting M5-brane model [106, (63)] as seen explicitly after double dimensional reduction to the D4-brane 
model [6, 6][7, 6].

In the same manner one may now identify further interaction terms in the full super-exceptional PS-Lagrangian (20). 
For instance, following Example 62 there are evident vector-, axial- and isospin-current terms coupling the two fermion 
iso-doublets to the various vector fields. This is to be discussed elsewhere.

Thereby one possible interpretation of the field content in §3 certainly suggests itself: We seem to be seeing the 
emergence of a variant/sector of SU(2)-flavor chiral hadrodynamics (e.g. [129][124][23]), on the single M5-brane at an 
A1-singularity, in a way that is different from but akin to (see also Remark 47) the hadrodynamics seen on flavor D-branes 
[80] in holographic QCD models such as the Witten-Sakai-Sugimoto (WSS) model [108][109].6

This seems remarkable, since the only input for the super-exceptional M5-brane model §2 is the pair of M-brane super-
cocycles (15) and (19), which jointly form a single cocycle in super rational Cohomotopy theory [118, 2.5][45][73, 3.2]
(review in [47, (57)]). Elsewhere we have shown that taking seriously this cohomotopical nature of the M-brane charges 
(“Hypothesis H”) implies a fair bit of topological/homotopical structure expected in M-theory in general [48][120] and for 
the M5-brane specifically [49][120] (reviewed in [125]). In particular, it implies [51][110] the emergence of a topological 
sector of an SU(2)R -gauge field on the heterotic M5-brane, similar to that considered in [114], whose origin matches that 
of the SU(2)R -valued local differential form data found here (see Remark 53). All taken together, we seem to be seeing a 
coherent non-abelian M5-brane model specifically for single heterotic M5-branes with SU(2)-flavor gauge fields on their 
worldvolume.

This raises the question of the extent to which the SU(2)-flavor gauge theory emerging in the super-exceptional cohomo-
topical M5-brane model might be related to actual real-world hadrodynamics, possibly as a version in the deep M-theoretic 
regime (on N = 1 brane!) of the D-brane models for holographic QCD that have to work in the (unrealistic) N � 1 super-
gravity regime.

5 Even without the detailed formula for the Schwinger mechanism decay rate, in any of its variants, one may understand the critical electric field 
strength (129) as that whose work done by its Lorentz force eE ′

crit over the Compton wavelength λm := h̄/mc equals the rest mass mc2 of the given 
particles: E ′

crit = mc2

eλm
.

6 Recently is has been pointed out [77] that the core mechanism of the hadron sector in the WSS model, namely KK-reduction of 5d Yang-Mills theory, 
also appears on the M5-brane.
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(i) On the one hand, the super-exceptional PS-Lagrangian (20) contains a wealth of interaction terms, all of which being 
Spin-, Isospin- and Hypercharge-invariant (due to Theorem 7, by Spin(10, 1)-invariance of the unreduced model), hence 
identifiable among the list [102, 5.2][54, Tab. 1][57] of possible interactions in the effective field theory of hadrons. 
Interestingly, the super-exceptional M5-brane model organizes these hadron interaction terms in a supersymmetric (9)
KK-tower (105). Notice here that while both
(a) supersymmetry and
(b) KK-modes
remain notoriously hypothetical in the unconfined color-charged sector of the standard model, both are in fact observed, 
to a reasonable degree of accuracy, in the confined flavor-sector of nature. This is, respectively, the phenomenon of
(a) hadron supersymmetry [95][96][30] [31] (reviewed in [89][36][26][27]) and
(b) the success of the dimensional deconstruction of vector meson models [130][115, 5.2][115, 3.3] in holographic QCD 

(see [133, Fig. 15.2]).
(ii) On the other hand, various standard Lagrangian terms considered in the literature on chiral perturbation theory and 

quantum hadrodynamics are clearly missing in the super-exceptional PS-Lagrangian (20); not the least the kinetic terms 
for the mesons. But since the one kinetic term that does appear, the one for the photon (29), crucially appears from 
the self-duality constraint (27) on the ordinary 3-form flux, this might just indicate that the super-exceptional version 
of the 3-flux self-duality remains to be understood and to be implemented.7

It is worth recalling that none of the existing models of hadrodynamics, be it chiral perturbation theory, quark-bag 
models, vector meson dominance, Walecka-type QHD models etc., have been derived from fundamental principles – notably 
not from QCD. This is the open “Confinement Problem” [61], one of the “Millennium Problems” [33][78], the “Holy Grail” of 
nuclear physics [68][63, 13.1.9]. Instead they are all models in effective field theory using clues from experiment. Therefore, 
even a partial hint for a possible emergence of confined hadrodynamics from first (cohomotopical) principles of M5-brane 
theory seems profound and interesting.
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