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Abstract

This paper introduces the notion of “relative gerbes” for smooth maps of manifolds, and discusses
their differential geometry. The equivalence classes of relative gerbes are further classified by the
relative integral cohomology in degree 3.
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1. Introduction

Giraud[9] firstintroduced the concept of gerbes in the early 1970s to study non-Abelian
second cohomology. Later, BrylingKi] defined gerbes as sheaves of groupoids with certain
axioms, and discussed their differential geometry. He proved that the group of equivalence
classes of gerbes gives a geometric realization of integral 3 cohomology classes on man-
ifolds. Through a more elementary approach, Chatterjee and Hifbtii6] introduced
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gerbes in terms of transition line bundles for a given cover of the manifold. From this
point of view, a gerbe is a one-degree-up generalization of a line bundle, where the line
bundle is presented by transition maps. A notable example of a gerbe arises as the ob-
struction for the existence of a lift of a princip&tbundle to a central extension of the

Lie group. Another example is the associated grebe of an oriented codimension 3 subman-
ifold of an oriented manifold. The third example is what is called “basic gerbe”, which
corresponds to the generator of the degree 3 integral cohomology of a compact, simple and
simply connected Lie group. The basic gerbe aves closely related to the basic central
extension of the loop group, and it was constructed, from this point of view, by Brylin-
ski [4]. Later, Gawedski—Reif8], for G= SU(), and Meinrenkerj21], in the general

case, gave a finite-dimensional construction along with an explicit description of the grebe
connection.

This paper introduces the notion @fative gerbes for smooth maps of manifolds, and
discusses their differential geometry. The equivalence classes of relative gerbes are classified
by the relative integral cohomology in degree 3.

The organization of this paper is as follows. In Sec@pthe relative (co)homology of a
smooth map between two manifolds is discussed. When the map is inclusion, the singular
relative (co)homology of the map coincides with the singular relative (co)homology of
the pair. Also, for a continuous map of topological spaces, the relative (co)homology of
the map is isomorphic to the (co)homology of the mapping cone. In Segtifmllowing
the Chatterjee—Hitchin perspective on gerbes, the notionlafive gerbe is defined for a
smooth mapd € C®(M, N) between two manifold8/ andN as a gerbe over the target
space together with a quasi-line bundle for the pull-back gerbe. It is also proven that the
group of equivalence classes of relative gerbes can be characterized by the integral degree
3 relative cohomology of the same map.

Another objective of this paper is to develop the differential geometry of relative gerbes.
More specifically, in Sectiod, the concepts of relative connection, relative connection
curvature, relative Cheeger—Simons differential character, and relative holonomy are intro-
duced. As well, it is proven that a given closed relative three-form arises as a curvature
of some relative grebe with connection if and only if the relative three-form is integral.
Further, it is shown that a relative gerbe with connection for a smoothénapf — N
generates &lative line bundle with connection for the corresponding map of loop paces,
L®: LM — LN.

2. Relative homology/cohomology

2.1. Algebraic mapping cone for chain complexes

Definition 2.1. Let f, : X, — Y, be a chain map between chain complexes &ehere
R is a commutative ring. The algebraic mapping cong[@f is defined as a chain complex

Cong(f) where

Cong(f)=X,-1@Y,
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with the differential

3(6, n) = (30, f(0) — om).

Sinced? = 0, we can consider the homology of this chain complex. Define relative homol-
ogy of f, as

H,(f) := H,(Cong(f)).

The short exact sequence of chain complexes

0—Y, —’> Coneg,(f) —k> X,-1— 0,
wherej(B8) = (0, B) andk(«, B) = a gives a long exact sequence in homology

j k 5
o> Hy(Y) 5 Hy(f) = Hy1(X) > Hy_q(Y) —> -+, (2.1)
wheres is the connecting homomorphism.
Lemma 2.2. The connecting homomorphism § is given by §[y] = [f(y)] for y € X,—1.

Proof. Fory € X,_1, we havek(y, 0) = y. The short exact sequence of chain complexes
gives an element’ € Y,_1 such thatj(y’) = a(y, 0) = (3y, f(y)). d is defined bys[y] =

[y']. But, by definition ofj, j(3) = (O, y'). Thereforef (y) = y/'. This shows[y] = [ f(¥)].

O

Definition 2.3. We call a chain may, : X, — Y, a quasi-isomorphism if it induces iso-
morphism in cohomology, i.eH.(X) = H,(Y).

Corollary 24. f, : X, — Y, is a quasi-isomorphism if and only if Ho(f) = 0.

Proof. fis a quasi-isomorphism, if and only if the connecting homomorphism in the long
exact sequeno@.1)is an isomorphism. O

Definition 2.5. A homotopy operator between two chain complexes: X, — Y, is a
linear maph : X, — Y.11 such that

hd+oh=f—g (x

In that casef andg are called chain homotopic and we denote ity g.

Two chain mapy : X, — Y, andg : Y, — X, are called homotopy inversegfo f ~
idxy andf o g ~ idy are both homotopic to the identity. ff: X, — Y, admits a homotopy
inverse, itis called a homotopy equivalence. In particular, every homotopy equivalence is a
guasi-isomorphism.



Z. Shahbazi / Journal of Geometry and Physics 56 (2006) 1326—1356 1329

Proposition 2.6. Any homotopy between chain maps f, g : X¢ — Yo induces an isomor-
phism of chain complexes Cone(f), and Coneg),.

Proof. Given a homotopy operatodi satisfying &), define a mapF : Cong(f) —
Cone(g) by

F(a, B) = (a, —h(a) + B).
Since
aF (a, B) = (e, g(@) + 9h(e) + 9B) = (0, f(a) — hd(a) + 3B) = Fo(w, B),

Fis a chain map and its inverse mapfisi(«, B) = (o, h(a) + B). O

Lemma 2.7. Let

0 X. Y, Zo 0
Lol
0 X Y. Ze 0

be a commutative diagram of chain maps with exact rows. If two of vertical maps are
quasi-isomorphisms, then so is the third.

Proof. The statement follows from the five-lemma applied to the corresponding diagram
in homology, O

Ho(X) Ho(Y) —— Ho(Z) —— Hooi(X) —— -+
| | | |
Ho(X) Hy(Y) —— Ho(Z) —— Hoy(X) —— -

Proposition 2.8. Suppose that we have the following commutative diagram of chain maps,

X.LY,

X v,
such that @ and ¥ are quasi-isomorphisms. Then the induced map

F:Cong(f) = Cona(f), (. B) — (#(a), ¥(B))

is a quasi-isomorphism.

Proof. The mapF is a chain map since,
OF (o, B) = (@(), ¥(B)) = (3(e), F(@()) — () = (@(3), ¥(f () — )
= F(da, f(a) — 98) = Fi(a, B).
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The chain magF fits into a commutative diagram,

0 —— Y, —— Conel(f) Xeo1 0
| L
0 —— Y, —— Cone,(f) Xe—1 0

Since® and¥ are quasi-isomorphisms, sofidy Lemma 2.7 [

Proposition 2.9. For any chain map fo . Xe — Y., there is a long exact sequence

<o o Hy_a(kerf) % H,(f) > Hy(cokerf) > H,_a(kerf) = Hy_a(f) — -

where j, k and the connecting homomorphism § are defined by

JiIel =1(6.0), (6, n)] = [nmod f(X)],
8[(nmod f(X))] = [36] € H,—a(kerf).

Here, n € Y, and 9n = f(0) for some 6 € X,,_1. In particular, if f is an injection then
H,(f) = H,(cokerf), and if it is onto then H,(f) = H,_1(kerf).

Proof. Let f, : X, — im(f,) C Y. be the chain may,, viewed as a map into the sub-
complexf,(X,) < Y,. We have the following short exact sequence

0 — Cone (f) > Cone,(f) 2 coker(f,) — O,

wherek is as above ands the inclusion map. Therefore, there exists a long exact sequence

oo o Hy(F) > Hy(f) > Hy(cokerf) — H,_1(f) — ---. (2.2)

Let f/, : Xo/kerfy — im(f,) be the map induced by Notice that sincgp is an isomor-
phism, thereforeH.(f/) = 0. By using the long exact sequence corresponding to the short
exact sequence

0 — kerfo_1 J, Cong(f) > Cong(f") — 0.

wherej(6) = (0, 0), and= (¢, n) = (¢ mod kerf, n), we see thaj is a quasi-isomorphism.
Sincej =i o j, we obtain the long exact sequence

coi = Hy_q(kerf) > Hy(f) % H,(cokerf) — Hy_o(kerf) — - --.

To find connecting homomorphism, assumenod f(X)] € H, (cokerf) for n € Y,,. Then
on € f(X),i.e.,on = f(0) for somed € X,,_1. Since

f(06) = 0f (6) = don =0



Z. Shahbazi / Journal of Geometry and Physics 56 (2006) 1326—1356 1331

thendo e ker(f). Also k(6, n) = n mod f(X) and j(6) = i o j(86) = i(36, 0) = (36, 0) =
a(6, n). Thus, we have

8[(nmod f(X))] = [06] € Hy—2(kerf). [
2.2. Algebraic mapping cone for co-chain complexes

If f*:X* — Y*isaco-chain map between co-chain complexes, the algebraic mapping
cone offis defined as a co-chain complex Co(€ where

Cond(f)=Y""1a X"
with the differential

d(a, ) = (f(B) — d. dp).

Since & = 0, we can consider the cohomology of this co-chain complex. Define relative
cohomology off* as

H"(f) := H"(Coné(f)).

Remark 2.10. Any cochain complexX®, d) may be viewed as a chain compleX,( 9),
where X, = X™" andd, = d"(n € Z). This correspondence takes cochain mgps
X*® — Y* into chain mapsf, : X. — Y,, wheref, = =", and identifies Congf{) and

CErTé?f) up to a degree shift:

Cone(f), = Cone(f)™" = Yy "1g x",
conef)y = Xp1® Y, = X"y
Thus,Cone(f), = Cone(f), 1.

Using this correspondence, the results for the mapping cone of chain maps are directly
carried over to cochain maps.

2.3. Kronecker pairing

For a chain complexX,, the dual co-chain complexx()® is defined by K')" =
Hom(X,,, R) with the dual differential.

Proposition 2.11. Ler f, : X, — Y, be a map between chain complexes, and (f')* :
(Y)* — (X)® be its dual cochain map. Then the bilinear pairing

Coné(f’) x Cong,(f) — R
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given by the formula
((a1 13)7 (97 77)) = <Ol, 0) - (:37 77)
Jor (o, B) € Coné (f') and (6, n) € Coneg,(f) induces a pairing in cohomology/homology

H"(f") x Hu(f) > R.

Proof. Itis enough to show that a cocycle paired with a boundary is zero and a coboundary
paired with a cycle is zero. Let( 8) = d(c’, B') anda(d, n) = 0. Therefore, by definition

C(:f/ﬂ/_da/, ,Bzdﬁ/,
and

m=f@), =0

(o, ), (0, 1)) = (e, 0) — (B,m) = (f'B, 0) — (do’, 0) — (dB', )
=(f'B.0)— (', 00)— (B, 0n) = (f'B.0) — (B, f(6)) =0. (2.3)
Similarly we can prove that a co-boundary paired with a cycle is zeid.

Lemma?2.12. If f, : X4 — Y,isachainmap,and (f')* : (Y')* — (X')® be its dual cochain
map, then Cone(f’) = (Cong(f))'.

Proof. Notice that Con®(f’) = (Cone,(f)) = (X"~ @ (Y")'. It follows from defini-
tions that

(d(e, B). (6, n)) = (e, B), 3(6, n)).
Therefore differential of Corfé /) is dual of differential of Cong f). O
2.4. Singular, de Rham, Cech theory

In this section, two manifold& andN and a mapp € C*(M, N) are fixed.

Singular relative homology. Consider the push-forward mag, : S,(M, R) —
S4(N, R), whereR is a commutative ring and, (M, R), S,(N, R) are the singular chain
complexes of\f andN, respectively. Singular relative homology is the homology of the
chain complex Cond®,), and is denoted/,(®, R).

Singular relative cohomology: Consider the pull-back map* : S4(N, R) — S9(M, R),
whereR isacommutative ring, ang¥ (M, R) andS?(N, R) are the singular co-chain complex
of M andN, respectively. Singular relative cohomology is the cohomology of the co-chain
complex Con®& @*), and is denoted/*(®, R).

de Rham relative cohomology: For @ € C*°(M, N), consider the pull back-map

% 24(N) — 24(M)
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between differential co-chain complexes. In this paper, the cohomology of*@hds
denoted ag/jz(®) and called it “de Rham relative cohomology.”

Cech relative cohomology: Let A be aR-module, and{ = {U,} be a good cover of a
manifold M, i.e., all the finite intersections are contractible. For any collection of indices
g, - -+, ap such thatiyy N --- N Uy, # 0, let

Usgap = Uag N -+ N Uy,
A éechp-cochainf e CP(U, A) is a function

f=11 faoap: ] Vs, = A

ag--op Qo

where fy,...«, Is locally constant and anti-symmetric in indices. The differential is defined
by
p+1

(df)otomoszrl = Z(_l)ifao---&,w--aﬁl»

i=0

where the “hat” sign means that the index has been omitted. 8inde= 0, one can define
Cech cohomology groups with coefficientsdras

HP(M, A) := HP(C(U, A)).

LetU = {Ui}ier, V = {V;} jes be good covers dif andN, respectively, such that there exists
amapr: I — J with &(U;) C V(). Let C*(M, A) andC*(N, A) be theCech complexes
for given covers, wherd is an R-module. Using the pull-back mag* : C*(N, A) —
C"(M, A), the relativeCech cohomology is defined as the cohomology of CGh¥).
Denote this cohomology b§f*(®, A).

Suppose thati is one of the sheaved1,4] Z, R,U(1), £2¢. Denote the space df
cochains of the sheaf on M andN, respectively, a€*(M, A) and C¥(N, A). Here, the
differential is defined as above. Again, we have an induced map

@* : CK(N, A) - C*(M, A).
Denote the cohomology of Coh@*) asH*(®, A).
Theorem 2.13. There is a canonical isomorphism Hfp(®) = H" (&, R).

Proof. Let Sg,(M, R) and Sg(N, R) be the smooth singular cochain complexéfand
N, respectivelyf1]. Consider the following diagram:

o N) —2 . onm)

| i

Sn (N,R) —2— S (M,R)

sm
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wheref" is defined byf" () : o — fA o*w,forw € 2"(M)ando € ST™(M)is asmooth
singularn-simplex.g® is defined in a similar fashion. From these definitions, it is clear that
the diagram commuteg?® andg® are quasi-isomorphisms by de Rham TheofgmDefine

k® 0 2°(P, R) — S, R) by k*(a, B) = (f*~ (@), g°(B)). One can us@roposition 2.8
and deduce that® is a quasi-isomorphism. There is a co-chain map

I*: S*(M,R) — S3(M,R)

given by the dual of the inclusion map in chain level[2d, p. 196]it is shown that® is a
quasi-isomorphism. Therefore, by usiRgoposition 2.&gain,

H"(®,R) = H! (&, R).
Together, one can havé*(®, R) = Hig(?, R). O
Theorem 2.14. For @ € C*°(M, N), there is an isomorphism HgR(é) >~ H9(P, R).

Proof. Letlf = {U;}ic; andV = {V}} ;c; be good covers a¥f andN together with a map
r: 1 — J, such thato(U;) € V(). Define the double complek?”4(M) = CP(M £29),
whereCP(u £29) is the set ofg-forms wey...a,, € 29(Ugy.-.,) anti-symmetric in indices
with the differential ‘d’ defined as before. LE’(’(M) ® p+q=n EP1(M) be the associated
total complex. The ma : M — N induces chain map®* : E"(N) — E"(M). Let us
denote the corresponding algebraic mapping cong”4®). The inclusionC"(M, U) —
E"(M) is a quasi-isomorphisrfi, p. 97] There exists a similar quasi-isomorphism for
N, and since inclusion maps commute with pull-backigfone gets a quasi-isomorphism
C"(®) — E"(®). Thus, the following isomorphism is obtained.

H"(®,R) = H"(E(P)). (2.4)

The map2"(M) — E®"(M) c E™(M), given by restrictions of formg — «|y;, is a quasi-
isomorphism[1, p. 96] Again, these maps commute with pull back, and hence define a
guasi-isomorphisn®2" (&) — E"(®) that means

Hir(®) = H"(E(P)). (2.5)
By combining Eqs(2.4) and (2.5)one obtaing?*(®, R) = Hig(®). O

Remark 2.15. A modification of this argument, working instead with the double complex
CP(M, $9) given by collection ofS?(Ua,.-.«, ), gives isomorphism betweedech relative
cohomology and singular relative cohomology with integer coefficients, hence

HY(®,Z) = HY(®, 7).
2.5. Topological definition of relative homology

Let : M — N be an inclusion map, then the push-forward mah. :
S+(M, R) — S.(N, R)isinjection.Proposition 2.8hows that,(®) = H,(S(N)/S(M)) =
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H.(N, M; R). H,(N, M; R) is known as relative homology. Obviously, this is a special case
of what the author defined as a relative singular homology of an arbitrargmayg — N.
Given a continuous map : X — Y of topological spaces, define mapping cylinder

(XxI)uy

= ey~

and mapping confl4]

Cyl,

Coner = Xx (0

Let Conef) := X x I/ X x {0}. There are natural maps
i:Y— Cone, j:Cone)k)— Coner.

Note thayj is an inclusion only if is an inclusion. There is a canonical map,
h: Sp-1(X) > Sy(Cone))

with the propertyr o 3 + 9 o h = k, whereh is defined by replacing a singularsimplex
with its cone, and : X — Cone(X) is the inclusion map. Define the map

I, : Cong(fy) — Sn(Conef)» (x, ) = Ju(h(x)) — i(y).
Theorem 2.16. [, is a chain map and a quasi-isomorphism. Thus,
H,(f) = H,(Coney).

Proof. Recall thato(x, y) = (dx, fi(x) — dy). Since
1(0(0, y)) + 9l(0, y) = 1((0, —dy)) — dixy = ix(dy) — dixy =0, (2.6)
and
1(9(x, 0)) + 9l(x, 0) = I((dx, f(x))) + djuh(x) = jxh(0x) — ix f(x) + 0jxh(x)
= Juky(x) — i f(x) =0 (2.7)
thereforedl + 10 = 0. Consider diagram

0 —— Su(Cyly) ——— Sp(Coney) ——— Sp(Coney,Cyly) ——— 0

T d I

0 —— Su(Y) —— Cone,(f,) —— Sp—1(X) — 0
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where the first row corresponds to the pair (Cpryl ;) and the right vertical arrow comes
from

Sn—1(X) — Sa(Conel), X) = S§,(Coney, Cyly).
(S on X

XISI

The diagram commutes, and the rows are exact. Since the right and left vertical maps are
guasi-isomorphisms, hence so is the middle mdg.

2.6. An integrality criterion

If A andB areR-modules, then any homomorphigm A — B induces homomorphisms
k: H" (D, A) > H"(®, B) andk : H,(®, A) — H,(®, B). In particular, the injection :
Z — R induces a homomorphism
t: HY(®,Z) - H"(®, R).

A class |y] € H"(®, R) is called integral in case/] lies in the image of the map

Proposition 2.17. A class [(«, )] € H"(®, R) is integral if and only if [, — fn BeZ
for all cycles (6, n) € Cong,(®, Z).

Proof. Consider the following commutative diagram

0 —— 0 ——— H"(®,R) —— Hom(H,(®,R),R) —— 0

I 1 1

0 —— Ext(H,(®,Z)) —— HY(®,Z) —— Hom(H,(®,2),Z) —— 0

where H"(®, R) - Hom(H, (®, R), R) andt are pairing given by integral. The méjis
inclusion map, considering the fact that

Hom(H, (2, R), R) = Hom(H,,(®, Z), R).

Thus, [, B)] € H"(®, R) is integral if [, o — fn B € Zforallcycles 0, n) € Cong, (@, Z).
U

2.7. Bohr-Sommerfeld condition

Let (N, w) be a symplectic manifold. Recall that an immersibn M — N is isotropic
if @*» =0. It is called Lagrangian if furthermore diM = %dimN. Suppose that
Hi(N, Z) = 0 andw is integral. A Lagrangian immersiog : M — N is said to satisfy
the Bohr—Sommerfeld conditida2,18]if for all one-cyclesy € S1(M)

1
— | weZ, whereaD = &(y).
2 D
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Note that since is integral, the above condition does not depend on the choibeAlso,

if = d is exact (for example for the cotangent bundles), the condition means that

1
—/qﬁ*ee Z for all one-cycles.
2 J,

In terms of relative cohomology, the above condition means that)(@ £2%(®) defines an
integral class ierZR(qb). The interesting feature of this situation is that the formafnv
are fixed, and it defines a condition on the naap
Example 2.18. Let N = R?, M = S, w = dx A dy, @ = inclusion map. Then, the im-
mersiond : §1 < R? satisfies the Bohr—Sommerfeld condition.
3. Geometric interpretation of integral relative cohomology groups

Let ® € C*°(M, N), whereM andN are manifolds. LeU = {U;}ics, V = {V} ey be
good covers oM andN, respectively, such that there exists a mag — J with &(U;) C
Vi)
Proposition 3.1. HY(®, Z) = HI Y, U(1)) for g > 1.
Proof. Consider the following long exact sequence,

<> HT"Y(M,R) > HY(®,R) > HI(N,R) > HI(M,R) — - --.

Since H*(M,R) = 0 and H*(N, R) = 0, one can see thai?(®,R) = 0 for ¢ > 0. By
using the long exact sequence associated to exponential sequence

0-2-RZPuA) >0 &)
one can deduce th&t/(&, Z) = HI~ Y, U(1)) forg > 1. O

3.1. Geometric interpretation of H(®, Z)

Let X be a manifold. Functiorf € C*°(X, U(1)) has global logarithm if there exists a
functionk € C*°(X, R) such thatf = exp((2r+/ —1)k).

Definition 3.2. The two maps; g : X — U(1) are equivalent iff/ g has a global logarithm.

The short exact sequence of sheawggives an exact sequence of Abelian groups

0 HYX,Z) — c®(X, R) X c>(x, U)) - HY(X,Z) - 0.
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This shows that there is a one-to-one correspondence between equivalence classes and
elements ofH1(X, Z). One should look for a geometric realization Bf-(®, Z) for a
smooth mapb : M — N. Let
L= {(k, N)IP* f = exp((2rv/=1)k)} C CX(M, R) x C*(N, U(1)).
L has a natural group structure. There is a natural group homomorphism,
7:C®(N,R) > L,
wherer is defined forl € C*°(N, R) by
(1) = (*1, exp((2r/—1)0)).

Definition 3.3. (k, 1), (k', f) € £ are equivalentiff/f’ = exp((2r+/—1)k) for some func-
tion h € C*°(N, R) such that

*h=k—k.
The set of equivalence classes is a grayp(C°(N, R)).
Theorem 3.4. There exists an exact sequence of groups
C®(N,R) > £ — HY(&,Z) — 0.
Thus, HY(®, Z) parameterizes equivalence classes of pairs (k, f).
Proof. The first step is to construct a group homomorphism
x: L — HY®, 7).
Given &, f), let Ij € C*(V;,R) be local logarithms for f|y;, that is flv, =
%Xp((ZT\/—_l)lj). On overlaps,a;y =1y —1;:V;y — Z defines aCech cocycle in
CY(N, 7). Let
bi :== ®*l,j) — kly, : Ui — Z.

Sinceb; — b; = ®*a,(;),(), SO that b, a) defines &ech cocycle ilC(®, Z). Given another
choice of local logarithms;, the Cech cocycle changes to

bi = bi+ P e, Ay =ay ey —c;

wherec; =1;—1;: V; — Z. Thus, 6,a) = (b, a) +d(0,c), and x(k, f) :=[(b, a)] €
HY(®, Z) is well-defined. Similarly, if b, a) = d(0, ¢) then the new local logarithms
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1 =1; — c;satisfyd;; = 0, which means tha patches to aglobal logarithirb; = &*c,(;)
implies thatk|y, = @*I,(;), which mean& = &*I. This shows that the kernel gfconsists
of (k, f) such that there exisfse C*°(N, R) with f = exp((2rv/—1)) andk = &*1, i.e.,
ker(x) = im(z).

Finally, itis shown below thag is surjective. Suppose thédt (@) Cl(qz Z)isacocycle.
Then

ajj —ajr+aj =0, (3.1)
CD*ar(i)r(i/) = by — b;. (3-2)

Choose a portion of unity ;. , #; = 1 subordinate to the open covér= {V;} ;. Define
fj € €*(v;, UQ2)) by

fi=exp (2;#—7 > a j,,h,,) .

peJ

By applying(3.1)onV; N V; one has

fift=exp <2n«/—_12ajphp) exp (—ZnJ—_lz:aj/php)

peJ peJ

= exp (271«/—1261,:,//1,,) =1

pel
Hencef; defines a may € C*(N, U(1)) such thatfy;, = f;. Definek; € C*°(U;, R) by

ki =Y (®*arp, + bi)D*h. (3.3)
pelJ

Sinceb; € Z, exp((2ra/—1)k;) = @* f|y,. One can check that on overlapsn Uy, k; —
ky = 0, so thatk;} defines a global functioh € C*(M, R) with @* f = exp((2r+/—21)k).
Indeed, by applying (3.1) and (3.2) &) N Uy one can obtain

Z@*ar(i)p + @*ay, iy + bi — by )P h), = Z(¢*dr(i)r(i’) + b — by )®*h) = 0.
pel peJ

By constructiony(k, ) = [(b, )], which showsy is surjective. [

Remark 3.5. Any (%, f) € £ defines &/(1)-valued function on the mapping cone, Cgre
N Ug Cone(), given byfon N and by exp((Z+/—1)tk) on Cone!). Here,t € I is the
cone parameter. Hence, one obtains a map

£ — HY(Conep, Z) = HY(®, Z).

This gives an alternative way of provifidheorem 3.4
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3.2. Geometric interpretation of H¥(®, 7.)

Denote the group of Hermitian line bundles owéwith Pic(M) and the subgroup of
Hermitian line bundles ovel/ which admits a unitary section with Bi@/). Recall that
there is an exact sequence of Abelian groups

0 — Picy(M) < Pic(M) > H2(M, Z) — 0

defined as follows. For the line bundleover M with transition maps;;; € C*°(U;, U(1))
over good cove{U;};c; for M, 5(L) is the cohomology class of the two-cocyelg;~ :
Uii’i” — 7 given as

1
aipir = (m(|09 criv —10g ¢ + log Cii/)) € L.

Thus, one can say two Hermitian line bundlgsandL; overM are equivalent if and only
if Lngl admits a unitary section. The exact sequence showsftl, Z) parameterizes
the equivalence classes of line bund[&8]. The class3(L) := c1(L) is called the first
Chern class of.. Similarly, for a smooth mag : M — N one should look for a geometric
realization of H2(®, Z).

Definition 3.6. Suppose tha® € C*°(M, N) and L1, L, are two Hermitian line bundles
over N, ando1, o2 are unitary sections ob*L1, @*Lj. Then, L1, 01) is equivalent to
(L2, 09) if L1L2_1 admits a unitary section, and there is a map € C*(M, R) such that

(@*7)/o105 " = exp((2r/=1) ).

This defines an equivalence relation amosd.), whereL is a Hermitian line bundle over
N ando is a unitary section op* L.

Definition 3.7. A relative line bundle for® € C*°(M, N) is a pair 6, L), whereL is a
Hermitian line bundle oveN ando is an unitary section fo*L. Define the group of
relative line bundles

Pic(®) = {(o, L)|L € Pic(N), o a unitary section op*L},

and a subgroup of it
Pico(®) = {(o, L) € Pic(®)|3 a unitary section of L andk € C*°(M, R) with @*1/o
= exp((Zrv —1)k)}.

Example 3.8. Let (N, ) be a compact symplectic manifold of dimensiom 2nd let
L — N be aline bundle with connectidvi whose curvature i&, i.e.,L is a pre-quantum
line bundle with connection. A Lagrangian submanifddcatisfies the Bohr—Sommerfeld
condition if there exists a global non-vanishing covariant constant(=flat) segtjoof
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®*L, where® : M — N is inclusion map (1.618]). For any Lagrangian submanifoMd,
(om, L) € Pic(®).

Theorem 3.9. There is a short exact sequence of Abelian groups
0 — Picy(®) — Pic(@) — H*(®,Z) — 0.
Thus, H3(®, Z) parameterizes the set of equivalence classes of pairs (o, L).
Proof. One can identifyH2(®, Z) with H(®, U(1)) by Proposition 3.1Let (o, L) €
Pic(®). Let {V;};c; be a good cover oV and {U;};c; be a good cover o# such that

there exists a map: I — J with ®(U;) € V,(;). Choose unitary sectiors of L|y,. The
corresponding transition functions fbrare

8jj € COO(ij/, U(l)), Js j/ e J, 8jjoj=0j on ij/
Define f; = ®*(o,(;))/o onU;. Then

[ifi = (@5 (0r)/0) - (8*(0:1))/0) T = D" &) (3.4)
Since

(38)r(iyryrary = 1,

then (i, &) is a cocycle inél(qb, Z). If one changes local sections, j € J, then
(fi, &r@ry) Will shift by a co-boundary. Define

X Pic@) — HY(®,UQ)., (o L) = [(f &)l
To find the kernel of x, suppose that f{g) =6(r,c). Thus, g=6c and f =

¢*(c) exp(2rih) 1, whereh is the global logarithm of. Define local section; :=o;/c;
onV;. Since onV;;

oj/cj=o0j/cy,
then we obtain a global sectian On the other hand,
D*0,()/0 = fi = ¢*cry eXp((2e/—1)h) L.
Thereforeg*t/o = exp((2r~/—1)h)~L. This exactly shows that the kernel pfs Pig(®).
Next, it will be shown thaty is onto. Let (f;, g;;/) € Cl(®, U(1)) be a cocycle. Pick a

line bundleL over N with g; corresponding to local sections. @*o,(;/f; defines local
sections ford* L overU;. OnU; N Uy

D*o,)/ fi = P oriny/ fis
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which defines a global sectienfor @*L. By constructiony(s, L) = [(f, £)]. This shows
thatyisonto. O

Remark 3.10. A relative line bundle L, o) for the map® : M — N defines a line bundle
over the mapping cone, Cope= N Ug Cone(M). This line bundle is given by on N C
Conep and by the trivial line bundle on Con#(). The sectiory is used to glue these two
bundles. Hence, one obtains a map

Pic(@) — H?(Conep, Z) = H*(®, 7).

3.3. Gerbes

The main references for this section §t6,5,15]

LetU = {U;};c; be an open cover for a manifoM. It will be convenient to introduce
the following notations. Suppose that there is a collection of line bunties ;) on
U0, - Consider the inclusion maps,

8 Uy, oy = Uy w0, oty (k=0,---,n+1),

.....

and define Hermitian line bundlesl();o) _;x+1) overUyo), _w+1 by
k=0 .
5L = Q) L) Y.
n+1

Notice thats(§L) is canonically trivial. If one has a unitary sectidfo) ;) of Lo w
for eachUyo) . ;m # 9, then one can defin®. in a similar fashion. Note tha(s1) = 1 as
a section of trivial line bundle.

Definition 3.11. A gerbe on a manifold/ on an open cova = {U,};c; of M is defined
by Hermitian line bundleg;; on eachU;; such that.;; = Ll.Tl.l, and a unitary sectiofy;/;»
of L on U;;;» such thatd = 1 onU;;;»;». Denote this data &= (U, L, 0).
Denote the set of all gerbes dfion the open coval = {U;};c; as GerM, U). Recall that
an open covel = {V;}c; is a refinement of open covéf = {U;};¢, if there is a map
r:J — I'with V; C U;. In this case, one gets a map

Ger(M, U) — Ger(M, V).

Define the group of gerbes aii as

GerM) = IiLn Ger(M, U).
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Define the product of two gerbésandg’ to be the gerb&§ ® G’ consisting of an open cover
of M,V = {V;};e; (common refinement of open covershandd’), line bundled;; ® L},
onV; and unitary sectiong;;» ® 0..,., of (L ® L") on V.

i

G~1, the dual of a gerbég, is defined by dual bundles;;! on U and sectiong—?! of

il
8(L~1) over U;y;». Therefore, one get a group structure on Gex(If & : M — N be a
smooth map between two manifolds agithe a gerbe oV with open covel = {V;} ey,
the pull-back greb@*G is simply defined o/ = {U;};c;, where®(U;) C V,(; for a map
r . I — J, line bundlesp*L,;.n onU;y, and unitary section of §(®*L) on U

Definition 3.12 (Quasi-line bundle). A quasi-line bundle for the getben a manifold\/
on the open coved = {U,};c; is defined as:

(1) a Hermitian line bundlé; over eachl;.
(2) Unitary sectiong);; of

GENir ® Liy
such thayr = 6.
Denote this quasi-line bundle &s= (E, v).
Proposition 3.13. Any two quasi-line bundles over a given gerbe differ by a line bundle.

Proof. Consider two quasi-line bundles= (£, v) andZ = (E, ) for the gerbeg =
U, L,0). yi» ® ¥;;" is a unitary section for

Ei/®E;1®L;/l®E;1®Ei®Li,’/ = Ei/®E;l®E;1®Ei
~E @ E'®E ' ®E;.
Therefore E @ E~1 defines a line bundle ovéy. [

Denote the group of all gerbes anrelated to the open covér = {U;};c; that admits a
quasi-line bundle as Gg{iM, U). Define

Gen(M) = lim Gep(M, U).
Proposition 3.14. There exists a short exact sequence of groups
0 — Gen(M) — Ger(M) % H3(M, Z) — 0.

Proof. Identify H3(M, Z) with H?(M, U(1)). Consider the gerb@onM. Refine the cover
such that any_;; admits unitary sections;;;. Define

1= (80)0~ L.
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Thus,sr = 1, which meansis a cocycle. Define
x(9) = [1].

Different sections shift the cocycle BZ1(M, U(1)), which shows thaj is well-defined.

Also, x(G ® G) =[] = x(G)x(F), which proves thay is a group homomorphism. Next,

itwill be shown thatthe kernel gfis Gep(M). ForG € Gelp(M), choose a quasi-line bundle
= (E, ¥). Thus,r = 8(oy~1). Hence x(G) = [1] = 1. Conversely, if{] = 1, then

t =6t

and by defining the new sections= 'o one infers thafo’ = 80 = 6, which shows that
G admits a quasi-line bundle.

Finally, it will be shown thaty is onto. Ifif{ = {U;}ics is an open cover o¥f ands;;;» is
a cocycleC2(M, U(1)), then define a gerb@ on M by trivial line bundleL;; on U;; and
unitary sectiong;; on U;. Defined = téo. Sincedr = 1, thendd = 1. By construction,
x@) =[] O

Definition 3.15. Let G € Ger(M). x(G) € H3(M, U(1)) = H3(M, Z) is called Dixmier—
Douady class of the gerlig which is denoted as D@

A gerbe admits a quasi-line bundle if and only if its Dixmier—Douady class is zero by
Proposition 3.14

Example 3.16. LetG be a Lie group, and + U(1) —» G —* G — 1 be a central exten-
sion. Suppose that : P — M is a principalG-bundle. A liftof = : P — M is a principal
G-bundler : P — M togetherwithamap : P — Psuchthafi = 7 o g and the following
diagram commutes:

GuP—— P

(NaQ)J/ ‘Il
P

In the above diagram the horizontal maps are respective group actions. Supp¢sg that
is an open cover a#f such thatP|y, := P; has a lift ;. DefineG- -equivariant Hermitian
line bundles as

E,' = i"j Xu(l)(c — P|U,~-

SinceU(1) acts by weight 1 oif;, it acts by weight 0 oiE; ® E;l ‘= E;y onU;y. There-
fore, G acts onE;;, andE;;/ G is a well-defined Hermitian line bundle, namdly;. By
constructiongL is trivial on U;;;», therefore one can pick trivial sectienthat obviously
satisfies the relatios9 = 1. This shows the obstruction to liftingjto P P defines a grebé

If E; — U; defines a quasi-line bundtzfor G, then the line bundles; = E; ® n*L
patch together to a globai-equivariant line bundléZ — P, and the unit circle bundle
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defines a global liftP — P. Conversely, ifP admits a global liftP and P; =: P|y,, then
L is trivial, which shows that the resulting gerbe is a trivial one.

Example 3.17. Let N € M be an oriented codimension 3 submanifold ofraoriented
manifoldM. The tubular neighborhoddp of N has the formP xso(g)R3, whereP — N is
the frame bundle. Lét; = M — N.ThenUp N U1 = P xso()(R® — 0). Over R3 — 0) =
52 x (0, o0), one has degree 2 line bundighat isSO(3) equivariant. Thus,

Lo1:= P xso@)E
is a line bundle ovet/y N Uy, which defines the only transition line bundle. Since there is
no triple intersection, this data defines a gerbe ayer
3.4. Geometric interpretation of H(®, 7.)
Definition 3.18. A relative gerbe ford € C*°(M, N) is a pair , G), whereG is a gerbe
overN and/ is a quasi-line bundle fop*g.
Notation: Let @ € C*°(M, N). Then

Ger@) = {(L, 9)|(L, G)is a relative gerbe fob € C*°(M, N)},

Genp(®) = {(£, §) € Ger@)|G admits a quasi-line bund& sth the line bundl€

®®* £/~ admits a unitary sectign

Example 3.19. Consider a smooth map : M — N withdimM < 2. LetG be a grebe on
N. Since®*G admits a quasi-line bundle sdy (£, G) is a relative gerbe.

Theorem 3.20. There exists a short exact sequence of Abelian groups
0 — Gep(®) — Ger@) > H3(®,Z) —> 0.

Proof. One can identify3(®, Z) = H(®, U(1)). Let{V;} e, be a good cover of N and
{Ui}ic1 be agood cover a¥f such that there exists amap I — J with @(U;) C V. Let
(£, 9) € Ger(@). Refine the gerbé = (U, L, 0) sufficiently such that alL ;; admit unitary
sectionss ;. Then, define;; j» € C3(N, U(1)) by

1= (50)(0) 2.

Sincesd = 1andi(6o) = 1,thenst = 1. LetL = (E, ¥) be aquasi-line bundle fa* g with
unitary sectiong);; for line bundles §E);)~* ® ®*L, (). Defines;» eC1(M, U(1)) by

si = (i) "HEW 7 ® ¥ o),
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wherej; is a unitary section foE;. Now
(@*1 1)8(P*0) = @0 = 5y = (85) (86071 ® D% 6) = (8s5) L8D* o (3.5)
This proves thags = @*¢. Define the map

K : Ger@) — H?(®, U(1)), «(L, Q) = [(s, 1]

It is straightforward to check that this map is well-defined, i.e., it is independent of the
choice ofo;; and ;. Conversely, given | 7)] € H?(®, U(1)), one can pickg such that
6 = t~1(s0) and define

Vir = s (A Diir ® P*0r(ie()-

Sinceds = @*t, then L = (E, ) defines a quasi-line bundle far*G. The construction
showsk(L, G) = [(s, 1)]. Thereforex is onto.
Itis now shown that kek) = Gelp(P). Assumec(L, G) = [(s, t)]is atrivial class. There-

fore, there existsq, 7) € él(qﬁ, U(1)) such thatg, 1) = 8(p, 1) = (@*1(8p) L, 7). t = 8t
shows thatj admits a quasi-line bundl€’. Thus,£ ® @*£'~1 defines a line bundle over
M. The first Chern class of this line bundle is given by the cocy@&r)~1. The condition
s = (®*1)8p~ ! shows that this cocycle is exact, i.e., the line buntite &'~ admits a
unitary section. Thus, ket] C Ger(®P). Conversely, if £, G) € Gep(P) then the above
argument, read in reverse, shows that)(is exact. Hence, Gg{®) C ker(c). O

Remark 3.21. A relative (topological) gerbeq, G) € Ger(@®) defines a (topological) gerbe
over the mapping cone by “gluing” the trivial gerbe over Cadgvith the gerbes over
N c Coneyp. Here, the line bundleB; that defineC play the role of transition line bundles.
For gluing the gerbes s¢22].

Example 3.22. Let1— U(1) — G — G — 1 be a central extension of a Lie groap
Supposep € C*(M, N) andQ — N is a principalG-bundle. If P = &*Q — M admit a
lift P, then one obtains an elementiBf(®, Z).

Example 3.23. Suppose thaG is a compact Lie group. Recall that the universal bun-
dle EG — BG is a (topological) principaG-bundle with the property that any principal
G-bundle P — B is obtained as the pull-back by some classifying ndapB — BG.
While the classifying bundle is infinite-dimensional, it can be written as a limit of finite-
dimensional bundleg, G — B, G.Forinstance, iG = U(k), one cantaké&, G the Stiefel
manifold of unitaryk-frames over the Grassmani@irc (k, n). Furthermore, iB is given,
any G-bundleP — B is given by a classifying mag : B — B, G for some fixed, suffi-
ciently largen depending only on din® [17].

It can be shown tha‘rI3(BG 7) classifies central extension2 U(1) > G — G — 1
[3]. Forn sufficiently large,H3(B, G, Z) = H3(BG, 7). Hence, H3(®, 7) classifies pairs
(G, P), whereG is a central extension @ by U(1) andP is a lift of ®*EG to G.
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4. Differential geometry of relative gerbes
4.1. Connections on line bundles

Let L be a Hermitian line bundle with Hermitian connecti@nover a manifoldM. In
terms of local unitary sectiong of L|y, and the corresponding transition maps

gii - Uip — U(1),
connection one-formd; on U; are defined bWo; = (2r+v/—1)A;0;. OnU;yr,
@V -1)(Ar — A)) = g;" dgiir-

Hence, the differentials 4, agree on overlaps. The curvature two-fofms defined by
F|y, =: dA;. The cohomology class df is independent of the chosen connection. The
cohomology class of is the image of the Chern class(L) € H3(M, Z) in H*(M, R).
A given closed two-formF e £2%(M, R) arises as a curvature of some line bundle with
connection if and only i is integral[4].

The line bundle with connectiorLL( V) is called flat if ¥ = 0. In this case, define the
holonomy of (., V) as follows. Assume that the open covél};<; is a good cover oM.
ThereforeA; = df; onU;, wheref; : U; — R is a smooth map oty;. Then,

d(2rv/=1(fy — fi) —log gir) = O.
Thus,
cii = (2nv/=1(fr — fi) — 109 gii)

are constants. Since Iggis only defined modulo 2¢/—17, so there exists a collection
of constants; := ¢;» modZ. Different choices off;, shift this cocyle with a coboundary.
The one-cocycle;; represents &ech class i/ (M, U(1)), which is called théolonomy
of the flat line bundld. with connectionv.

Let L — M be a line bundle with connectiow, andy : S* — M a smooth curve.
The holonomy ofV aroundy is defined as the holonomy of the line bunghel. with flat
connectiony*V.

4.2. Connections on gerbes

Definition 4.1. Let G = (U, L, 6) be a gerbe on a manifolf. A gerbe connection og
consists of connectiorg;; on line bundled.;; such that{V);;»0;i» == (Virir ® Vij./,l ®
V)0 = 0, together with two-formss; e £22(U;) such that orU;;,

(6w);» = F;y = the curvature oV,;.

This connection gerbe is denoted as a pEir4).
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SinceF;; is a closed two-form, the de Rham differenti@;, := dw; defines a global three-
form «, which is called theurvature of the gerbe connection. [c] € H3(M, R) is the image
of the Dixmier—Douady class of the gerbe under the induced map by inclusion

( H3(M, Z) - H3(M, R).

Agiven closed three-form € £2%(M, R) arises as a curvature of some gerbe with connection
if and only if ix is integral[16].

Example 4.2. Suppose that : P — B s a principalG-bundle, and
1-U1)—-G—->G—-1

a central extension. IBxample 3.16a gerbegj is described whose Dixmier-Douady class
is the obstruction to the existence of a lift: P — B. Following Brylinski[4] (also see
[10]) one can define a connection on this gerbe. Two ingredients are required:

(i) a principal connection € (P, g),
(i) asplittingt: P xg § — B x R of the sequence of vector bundles

0> BxR—-Pxgg—> Pxgg—0

associated to the sequence of Lie algebras ® — g — g — 0. For a given lift7 :

P — B, with corresponding projection : P — P, one say that a principal connection
6 € QY(P, g) lifts 6 if its image under2X(P, §) — (P, g) coincides withg*6. Given
such a lift with curvature

1. .
= di + 5[0.0] € Q2(P, §)basic= (B, P x¢ g),

let K7 := 7(F’) € 22(B, R) be its “scalar part.” Any pair of lifts of @, 0) differs by a line
bundle with connectioni(, V£) on B. Twisting a given lift (°, ) by such a line bundle, the
scalar part changes by the curvature of the line bufle

K? +

1 L
P | curv (V*©). (4.1)
In particular, the exact three-fornkd e $2°(B) only depends on the choice of splitting and
the connectiom. (It does not depend on choice of lift.) In general, a global#tiftf P does
not exist. However, let us choose local lift; (6;) of (Ply;, 0). Denote the scalar part of
F? with w; € £22(U;), and letL;; — U;y be the line bundle with connectiorti’ defined
by two lifts (P;|u,,, 6;) and @ |u,, . 6). By Eq.(4.1),

()i = curv (VEir).

1
2/ —1
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Onthe other hand, the connect®w" on (SL);;;» = L,-i/L;,,lL,-i/ isjustthe trivial connection
on the trivial line bundle. Hence, a gerbe connection is defined.

A quasi-line bundle £, v) with connectiorv £ for this gerbe with connection gives rise
to a global lift (P, §) of (P, 6), whereP|y. is obtained by twisting?; by the line bundle with
connection £;, VEi). The error two-form is the scalar part 8f (seeDefinition 4.3.

Definition 4.3. Let G be a gerbe with connection with a quasi-line bundle- (E, ).
A connection on a quasi-line bundle consists of connectiohon line bundlest; with
curvatureF £ such that

@V =vE o (vE) = v,
Also, the two-curvatures obe§K £),; = F;;. Denote this quasi-line bundle with connection
by (£, VE). Locally defined two-forms|y, = w; — FE patch together to define a global
two-form w, which is called the error two-forii5].

Remark 4.4. The difference between two quasi-line bundles with connections is a line
bundle with connection, with the curvature equal to the difference of the error two-forms.

LetG = (U, L, 0) be a gerbe with connection ar. Again, assume tha! is a good cover.
Letr € C3(M, U(1)) be a representative for the Dixmier—Douady clas§.dfhen, one can
have a collection of one-forms;; € 21(U;) and two-formsm; € £22(U;) such that

kly, =dw;,  Sw=dA,  (2nv/—1)8A =r"1dr.

If « = 0, the gerbe is called flat. In this case by using Poiatemmaz; = du; onU; and
onUy,

(bm)iir = dd(w)iir = dA;y.
Thus, again by Poincadlemma
Ajir — ()i = dhyyr.

By using (2r+/—1)5A = ¢ 1dt,
d((27v/—1)sh — log?) = 0.

Therefore, there exists a collection of constants: € C2(M, R). Since log is defined
modulo 2r/—17Z, we define

Ciitin = Cijriv modZ.
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The two-cocycle;;;» represents @echclass itH2(M, U(1)), which is called théolonomy

of the flat gerbe with connection. Leto : ¥ — M be a smooth map, whetE is a closed
surface. The holonomy @ aroundX is defined as the holonomy of the pullback gerbe
o*G with the flat connection™(V, @) [16,20]

4.3. Connections on relative gerbes

Let®d € C*°(M, N)andU = {U;}ic1, V = {V,};es are good covers dif andN, respec-
tively, such that there exists a map 7 — J with ®(U;) € V,».

Definition 4.5 (A). relative connection on a relative gerbg, G) consists of gerbe con-
nection ¥, o) on G and a connectio’V® on the quasi-line bundl€ = (E, v) for the
d*q.

Consider a relative connection on a relative gembgd). Define the two-fornr on M by
|y, i= P* ) — FE.

Thus, ¢, «) € 23(®) is a relative closed three-form which is called here dheature of
the relative connection.

Theorem 4.6. A given closed relative three-form (t, k) € $23(®) arises as a curvature of
some relative gerbe with connection if and only if (z, k) is integral.

Proof. Let (7, k) € £23(®) be an integral relative three-form. Broposition 2.17

/alc—/ﬂteZ, 4.2)

wherex C N is a smooth three-chain ade8) = 9, i.e., (8, ) € Cong(®, Z) is a cycle.
If « is a cycle then (Ox) € Cone(®, Z) is a cycle. In this case, E@.2) shows that for all
cyclesa € S3(N, Z),

/KEZ.
o

Therefore, one can pick agere= (V, L, 9) with connectionV, @) overN with curvature
three-formk. Denoter; := 7|y,. DefineFiE € Q%(U;) by

Fl-E = q§*wr(,-) — 1.

Let (o, Bi) € Cong(@|y,, Z) be a cycle. Then,

/E.Ez/(q)*wr(i)—ti)z w— r:/ dw—/ rz/x—/ TeZ.
Bi Bi @(B:) Bi o ; @ i

Therefore, one can find a line bundigwith connection ovet/; whose curvature is equal to
Fl.E. OverU;;, the curvature of two line bundles*L; andE; ® El._1 agrees. Assume that



Z. Shahbazi / Journal of Geometry and Physics 56 (2006) 1326—1356 1351

the open covell = {U;};<; is a good cover off. Thus, there is a unitary sectigh; for the
line bundleE; ® E;l ® @*L;y such thatsyy = @*6. Therefore, one obtains a quasi-line
bundleL = (E, ) with connection ford*G. By construction the curvature of the relative
gerbe , G) is (7, k). Conversely, for a given relative gerbe with connecti6ng) one can
havefﬁi FE € 7, whereB; C U; is a two-cycle which give$4.2). O

Suppose thag is a gerbe with a flat connectio (@) on N and £ a quasi-line bundle
with connection fo@*G. Sincex = 0, as explained in the previous section, there exist two-
cocyclesy;» that represent a cohomology clas$R(M, U(1)). Sinced*G s trivializable,
there is a collection of mapg; on U, such thadf = @*r, wherej = r(i) and;’ = r(i’).
Definek;y € R as

kii’ = (ZJTV _1)¢*hii’ — |Og fil-/,

and

I;ii’ =k modZ.

Define therelative holonomy of the pair (G, £) by the relative classf( ¢)] € HX(®, U(1)).

Definition 4.7. Let the following diagram be commutative:

LR, 5

whereX is a closed surfacejs inclusion map and all other maps are smooth. Suppose that
G is a gerbe with connection avi and®*G admits a quasi-line bundié with connection.
Clearly, ¥*G is a flat gerbe and sinc&y*G = ¥*®*G theni*y*G admits a quasi line
bundle with connection that is equal ¥ £ . Define the holonomy of the relative gerbe
around the commutative diagram as holonomy of the paii’( 7*G).

4.4. Cheeger—Simons differential characters

In this section, a relative version of Cheeger—Simons differential characters is developed
[23,2,13,25] Denote the smooth singular chain complex on a manifslals SS™(M). Let
Z3™(M) € S3™(M) be the sub-complex of smooth cycles. Recall that a differential character
of degreek on a manifoldM is a homomorphism

JZm (M) — U(2),

such that there is a closed foume £2%(M) with



1352 Z. Shahbazi / Journal of Geometry and Physics 56 (2006) 1326—1356

j(0x) = exp <2n\/—_1/a>

for anyx e S;M(M) [6].

A connection on a line bundle defines a differential character of degree 2, jbehe
holonomy map. Similarly, a connection on a gerbe defines a differential character of degree
3. Specifically, any smootkrchainx € S7™(M) is realized as a piecewise smooth map

Oox - Ky > M,

whereK, is ak-dimensional simplicial complepd4]. Then, by definition

/xaz/xa, o € Q2KM).

Suppose that = Ye;o; € Z3™(M), wheree; = £1. Assume thag is a gerbe with con-
nection ovei\. SinceH3(Ky, Z) = 0, ¢;G admits a piecewise smooth quasi-line bundle
with connection. That is, a quasi-line bundlgfor all *G | Ak such that allC; agree on

the matching boundary faces. Lete .(22(1(),) be the error two-form and define

j() == exp (271\/—_1/1( a)) .

Any two quasi-line bundles differ by a line bundle, and hence different choiceg;for
changew by an integral two-form. Thereforgjs well-defined. Assume that= dx. Since

the components ok, with empty boundary do not contribute, one can assume that each
component ofK, has non-empty boundary. Siné#*(K,, Z) = 0, choose a quasi-line
bundle with connection fap}G with error two-formw. Letk be the curvature of. Since

¢tk = dw, by stokes’ theorem

/k:/ dw:/ w:/a).
Ky Ky K Ky

This shows that is a differential character of degree 3.

Definition 4.8. Let @ € C°°(M, N) be a smooth map between manifolds. A relative dif-
ferential character of degrédor the map® is a homomorphism

J 1 Z0y(@) - U(),

such that there is a closed relative forfa¢) € 2¢(®) with

J(0, 1) = exp (ZW—_l ( / p- | a))

for any (y, x) € S™(®).
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Theorem 4.9. A relative connection on a relative gerbe defines a relative differential char-
acter of degree 3.

Proof. Let® € C*°(M, N) be a smooth map between manifolds, and consider a relative
grebe £, G) with connection. Lety, x) € S3™(®) be a smooth relative singular cycle, i.e.,

ay =0,

and
PD.(y) = ox.

Suppose thak'y, and K, are the corresponding simplicial complex, and
?:K,— K,

is the induced map. Given a relative connection, choose a quasi-line blhfiie ¢*G,
and a unitary sectionr of the line bundlef/ := ¢{L ® (@*L) 1. Let® € £22(N) be the

error two-form for£’, andA e $21(M) be the connection one-form féfwith respect ta.
Define a map by

) = exp (2’”‘_1 (/K ” /K A)) |

Choose another quasi-line bundle fgfG. Then, the difference of error two-forms is an
integral two-form. Changing the sectienwill shift connection one-formd to A + A/,
whereA’ is an integral one-form. Thus,

J1Z3@) —> U()

is well-defined. Lek be the curvature three-form fgt andw be the error two-form foL.
Then @, k) € 23(®), and

J@(, x)) = j(@y, P«(y) — x) = exp (2’”‘_1 </K@*(w ©- /K A))
cen(evi(f o[ 5[ 4))

[ @ /K x d@))

= exp<2m/—_1 (/Kvw—/xk» :

Thus,j is a relative differential character in degree 3

exp (271«/—_1 <
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4.5. Transgression

For a manifoldM, denote its loop space dsM. In this section, a line bundle with
connection overl. M is first constructed by transgressing a gerbe with connection over
M. Amap® € C*°(M, N) induces a maf.® € C°(LM, LN). Next, it is proven that a
relative gerbe with connection @hproduces a relative line bundle with connection/ch
by transgression.

Proposition 4.10 (Parallel transportationyuppose that G is a gerbe with connection on
M x [0, 1] and Go = Gl(mx0y)- There is a natural quasi-line bundle with connection for
the grebe w*Go @ G~1, where 71 is the projection map

7. M x[0,1] - M x {0}.

Proof. Itis obvious that one can obtain a quasi-line bundle with connection for the gerbe
7*Go ® G1. Specify a quasi-line bundlég for the greber*Go ® G~ by the following
requirements:

1. The pull-back*Lg is trivial, while ¢ is inclusion map
t: M x {0} — M x [0, 1].

2. Lety € 23(M x [0, 1]) be the curvature three-form fa*Go ® G~1. Note that*s = 0.
Let x € £22(M x [0, 1]) be the canonical primitive of given by transgression. Then,
choose a connection ofy such that its error two-form ig. Any two such quasi-line
bundles differ by a flat line bundle ovéf x [0, 1]. This line bundle is a trivial line
bundle overM x {0}. O

Theorem 4.11. A grebe G with connection on M X S induces a line bundle Eg with
connection on M. Also, a quasi-line bundle with connection for G induces a unitary section

of Eg.

Proof. M x St = M x [0, 1]/ ~, where the equivalence relation is defined by Q) ~
(m, 1) form € M. Thereforer*Go ® G| mx 1)/~ is a trivial gerbe, andg|yx 1)/~ is a
quasi-line bundle with connection for this trivial gerbe, i.e., aline bundle with conneEgon
for M. If one change& g to another natural quasi-line bundle with connection, the difference
between two quasi-line bundles ovér x St is a trivial line bundle. Thus, the assignment
G — Egis well-defined.

Suppose that the gertgeadmits a quasi-line bundlé. Then, f*£o) ® (£71) andLg
are two quasi-line bundles for the gerb&gy ® G~ 1, wherefg = Llmxqop. Thus,m* Lo @
L1 ® (£g)~! defines a line bundle oved x ST = M x [0, 1]/ ~. This line bundle over
Mdefinesamap: M — U(1). (7*Lo) ® (£‘1)|MX{O}/N is the trivial line bundl€E. Since
Eg ® E~1 =5, Eg admits a unitary section. (]
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Remark 4.12. Let G be a gerbe with connection @d. Consider the evaluation map
e: LM x St — M.
Thus,e*G induces a line bundle with connection an/.

Theorem 4.13. For a given map @ € C*°(M, N), a relative gerbe with connection Gg
induces a relative line bundle with connection Ep .

Proof. The relative greb&s is a gerbeg on N together with a quasi-line bundle with
connectiorc for the pull-back gerbé*G. The greb& induces a line bundle with connection
Eg. Further, the quasi-line bundle with connectidfor @*G induces a unitary sectiorfor
the line bundle with connectiorL@)* Eg by Theorem 4.11Thus, the pairs Eg) defines
a relative line bundle with connectidiy, . O
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