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a b s t r a c t

Wepresent a unified approach to constrained implicit Lagrangian andHamiltonian systems
based on the introduced concept of Dirac algebroid. The latter is a certain almost Dirac
structure associated with the Courant algebroid TE∗

⊕M T∗E∗ on the dual E∗ to a vector
bundle τ : E → M . If this almost Dirac structure is integrable (Dirac), we speak about a
Dirac–Lie algebroid. The bundle E plays the role of the bundle of kinematic configurations
(quasi-velocities), while the bundle E∗ – the role of the phase space. This setting is
totally intrinsic and does not distinguish between regular and singular Lagrangians. The
constraints are part of the framework, so the general approach does not change when
nonholonomic constraints are imposed, and produces the (implicit) Euler–Lagrange and
Hamilton equations in an elegant geometric way. The scheme includes all important cases
of Lagrangian and Hamiltonian systems, no matter if they are with or without constraints,
autonomous or non-autonomous etc., as well as their reductions; in particular, constrained
systems on Lie algebroids. we prove also some basic facts about the geometry of Dirac and
Dirac–Lie algebroids.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The concept of Dirac structure, proposed by Dorfman [1] in the Hamiltonian framework of integrable evolution equations
and defined in [2] as a subbundle of the Whitney sum TN ⊕N T∗N of the tangent and the cotangent bundle (the extended
tangent or the Pontryagin bundle) satisfying certain conditions, was thought-out as a common generalization of Poisson and
presymplectic structures. Itwas designed also to dealwith constrained systems, including constraints inducedbydegenerate
Lagrangians, as was investigated by Dirac [3], which is the reason for the name.

The need of extending the geometrical tools of the Lagrangian formalism from tangent bundles to Lie algebroids was
caused by the fact that reductions usuallymove us out of the environment of the tangent bundles [4] (think on the reduction
to so(3,R) for the rigid body). It is similar to the better-known situation of passing from the symplectic to the Poisson
structures by a reduction in the Hamiltonian formalism.

Note that the use of Lie algebroids and Lie groupoids for describing some systems of Analytical Mechanics was proposed
by Libermann [5] andWeinstein [6], and then developed by many authors, for instance [7–10], making use of Lie algebroids
in various aspects of Analytical Mechanics and Classical Field Theory.

✩ Research supported by the Polish Ministry of Science and Higher Education under the grant N N201 365636.
∗ Corresponding author. Fax: +48 22 6293997.

E-mail addresses: konieczn@fuw.edu.pl (K. Grabowska), jagrab@impan.gov.pl, jagrab@impan.pl (J. Grabowski).

0393-0440/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2011.06.018

http://dx.doi.org/10.1016/j.geomphys.2011.06.018
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
mailto:konieczn@fuw.edu.pl
mailto:jagrab@impan.gov.pl
mailto:jagrab@impan.pl
http://dx.doi.org/10.1016/j.geomphys.2011.06.018


2234 K. Grabowska, J. Grabowski / Journal of Geometry and Physics 61 (2011) 2233–2253

Since a Lie algebroid structure on a vector bundle τ : E → M can be viewed as a linear Poisson structureΠ on the dual
bundle π : E∗

→ M , a properly defined ‘linear’ Dirac structure should be viewed as a generalization of the concept of Lie
algebroid. Linear structures of different kinds on a vector bundle can be viewed, in turn, as associated with certain double
vector bundles. The double vector bundles, introduced in [11,12] (see also [13,14]) as manifolds with two ‘compatible’ vector
bundle structures, have been successfully applied in [15,16] to geometric formalisms of Analytical Mechanics, including
nonholonomic constraints [17,18]. To be more precise, note first that canonical examples of double vector bundles are: the
tangent bundle TE, and the cotangent bundle T∗E of the vector bundle E. The double vector bundles

T∗E∗
T∗π //

πE∗

��

E

τ

��
E∗

π // M

, T∗E
T∗τ //

τE∗

��

E∗

π

��
E

τ // M

are canonically isomorphic (cf. [13,19]). In particular, all arrows correspond to vector bundle structures and all pairs of
vertical and horizontal arrows are vector bundle morphisms. Double vector bundles have been recently characterized [14]
in a simple way as two vector bundle structures whose Euler vector fields commute.

In [16,15], a Lie algebroid (and its generalizations) on E has been viewed as a double vector bundle morphism

ε : T∗E → TE∗ (1.1)

covering the identity on E∗. This is because the linearity of a bivector field (e.g. a Poisson tensor)Πε on the dual bundle E∗

can be geometrically expressed as respecting the double vector bundle structures by the induced vector bundle morphismΠε : T∗E∗
→ TE∗. (1.2)

We obtain ε as the composition of the canonical isomorphism of double vector bundles Rτ : T∗E → T∗E∗ with Πε, ε =Πε ◦ Rτ .
An application of this approach to Analytical Mechanics, in which τ : E → M plays the role of kinematic configurations,

is based on some ideas of Tulczyjew and Urbański [20–22].
Note that we can represent the morphism (1.2) of double vector bundles by its graph Dε in the Whitney sum bundle

T E∗
= TE∗

⊕E∗ T∗E∗. (1.3)

The Pontryagin bundleT E∗ is canonically a double vector bundle: over E∗ and overTM ⊕M E, and the fact that ε is amorphism
means that Dε is a double vector subbundle. Moreover, since Dε is the graph of a Poisson tensor (in the case when E is
a standard Lie algebroid), the subbundle Dε is a Dirac structure on E∗. This immediately leads to a generalization of the
concept of Lie algebroid: we replace the graph Dε with any Dirac structure D on E∗ which is linear, i.e., which is a double
vector subbundle of T E∗. We will call such an object a Dirac–Lie algebroid.

As was observed already in [23], the construction of phase dynamics associated with a given Lagrangian does not use
the fact that the bivector fieldΠε is Poisson (which, on the other hand, induces nice properties of the dynamics), so we will
use also almost Dirac structures, imposing no integrability assumptions. Thus, a Dirac algebroid on E will be a linear almost
Dirac structure on E∗. We introduce also affine analogs of Dirac and Dirac–Lie algebroids.

The main applications we propose go back again to Analytical Mechanics. To some extent, our concepts are similar to
that of [24,25], where (almost) Dirac structures have been used in the description of ‘implicit’ Lagrangian systems. However,
we find our approach much more general (we work with arbitrary vector bundles) and much simpler. This is because we
obtain ‘implicit Lagrangian systems’ (in fact both: implicit phase dynamics and implicit Euler–Lagrange equations), as well
as implicit Hamilton equations, just composing relations, instead of working with the somehow artificial concept of partial
vector fields. This generality allows us to cover a large variety of Lagrangian and Hamiltonian systems, including reduced
systems, nonholonomic or vakonomic constraints, and time-dependent systems, with no regularity assumptions on the
Lagrangian or Hamiltonian.

The paper is organized as follows. In Section 2 we recall basic facts concerning the double vector bundle approach to Lie
algebroids and their generalizations. Dirac algebroids, Dirac–Lie algebroids, and their affine counterparts are introduced in
Section 3, together with the main examples. In Section 4 we investigate closer the structure of Dirac algebroids, finding a
short exact sequence of Lie algebroids associated with a Dirac–Lie algebroid and providing a local form of Dirac algebroids.
Section 5 is devoted to inducing new Dirac algebroids by means of nonholonomic constraints. In Section 6 we present
the general schemes, based on Dirac algebroids, for Lagrangian and Hamiltonian formalisms. We end up with a number
of examples in Section 7 and concluding remarks in Section 8.

2. Lie algebroids as double vector bundle morphisms

We start with recalling basic facts and introducing some notation.
Let M be a smooth manifold and let (xa), a = 1, . . . , n, be a coordinate system in M . We denote with τM : TM → M

the tangent vector bundle and by πM : T∗M → M the cotangent vector bundle. We have the induced (adapted) coordinate
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systems, (xa, ẋb) in TM and (xa, pb) in T∗M . More generally, let τ : E → M be a vector bundle and let π : E∗
→ M be the

dual bundle. Let (e1, . . . , em) be a basis of local sections of τ : E → M and let (e1
∗
, . . . , em

∗
) be the dual basis of local sections

of π : E∗
→ M . We have the induced coordinate systems: (xa, yi), yi = ι(ei

∗
), in E, and (xa, ξi), ξi = ι(ei), in E∗, where the

linear functions ι(e) are given by the canonical pairing ι(e)(vx) = ⟨e(x), vx⟩. In this way we get local coordinates

(xa, yi, ẋb, ẏj) in TE, (xa, ξi, ẋb, ξ̇j) in TE∗,

(xa, yi, pb, πj) in T∗E, (xa, ξi, pb, ϕj) in T∗E∗.

The cotangent bundles T∗E and T∗E∗ are examples of so-called double vector bundles. They are fibred over E and E∗

and canonically isomorphic, with the isomorphism Rτ : T∗E −→ T∗E∗, being simultaneously an anti-symplectomorphism
(cf. [13,16]). In local coordinates, Rτ is given by

Rτ (xa, yi, pb, πj) = (xa, πi,−pb, yj). (2.1)

This means that we can identify coordinates πj with ξj, coordinates ϕj with yj, and use the coordinates (xa, yi, pb, ξj) in T∗E
and the coordinates (xa, ξi, pb, yj) in T∗E∗ in full agreement with (2.1). According to [14], the double vector bundle structure
is completely characterized by a pair of commuting Euler vector fields defining the two vector bundle structures (or by the
pair of the corresponding families of homotheties). In local coordinates the Euler vector fields on T∗E∗ read

∇
E
T∗E = pb∂pb + ξi∂ξi , ∇

E∗

T∗E = pb∂pb + yi∂yi . (2.2)

Double vector (and vector-affine) bundles will play an important role in our concepts and we refer to [26,14,27,13,19] for
the general theory.

It is well known that Lie algebroid structures on a vector bundle E correspond to linear Poisson tensors on E∗. A
2-contravariant tensor Π on E∗ is called linear if the corresponding mapping Π : T∗E∗

→ TE∗ induced by the contraction,Π(ν) = iνΠ , is a morphism of double vector bundles. One can equivalently say that the corresponding bracket of functions
is closed on (fiber-wise) linear functions. The commutative diagram

T∗E∗
Π // TE∗

T∗E

Rτ

OO
ε

<<yyyyyyyy

,

describes a one-to-one correspondence between linear 2-contravariant tensors Πε on E∗ and morphisms ε (covering the
identity on E∗) of the following double vector bundles (cf. [13,16]):

T∗E
ε //

πE

  AA
AA

AA
AA

T∗τ

��





















TE∗

Tπ

""DD
DD

DD
DD

τE∗

��





















E
ρ //

τ

����
��
��
��
��
��
��

TM

τM

����
��
��
��
��
��
��
�

E∗
id //

π

!!CC
CC

CC
CC

E∗

π

!!CC
CC

CC
CC

M
id // M

(2.3)

In local coordinates, every such ε is of the form

ε(xa, yi, pb, ξj) = (xa, ξi, ρb
k (x)y

k, ckij(x)y
iξk + σ a

j (x)pa) (2.4)

(summation convention assumed) and it corresponds to the linear tensor

Πε = ckij(x)ξk∂ξi ⊗ ∂ξj + ρb
i (x)∂ξi ⊗ ∂xb − σ a

j (x)∂xa ⊗ ∂ξj .

Themorphism (2.3) of double vector bundles covering the identity on E∗ has been called an algebroid in [16].Wewill consider
only skew algebroids, i.e., algebroids ε for which the tensor Πε is skew-symmetric, i.e., is a bivector field. If Πε is a Poisson
tensor, we deal with a Lie algebroid. The relation to the canonical definition of Lie algebroid is given by the following theorem
(cf. [15,16]).

Theorem 2.1. A skew algebroid structure (E, ε) can be equivalently defined as a skew-symmetric bilinear bracket [·, ·]ε on the
space Sec(E) of sections of τ : E → M, together with a vector bundle morphism ρ: E → TM (called the anchor), such that

[X, fY ]ε = ρ(X)(f )Y + f [X, Y ]ε
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for f ∈ C∞(M), X, Y ∈ Sec(E). The bracket and the anchor are related to the bracket {ϕ,ψ}Πε = ⟨Πε, dϕ⊗dψ⟩ in the algebra
of functions on E∗, associated with the bivector fieldΠε , by the formulae

ι([X, Y ]ε) = {ι(X), ι(Y )}Πε ,
π∗(ρ(X)(f )) = {ι(X), π∗f }Πε ,

where ι(X) is the linear function on E∗ associated with the section X of E.

3. Dirac algebroids and affine Dirac algebroids

Let N be a smooth manifold. There is a natural symmetric pairing (·|·) on the vector bundle T N = TN ⊕N T∗N (called
sometimes the Pontryagin bundle) given by

(X1 + α1|X2 + α2) =
1
2
(α1(X2)+ α2(X1)),

for all sections Xi+αi, i = 1, 2, of T N = TN ⊕N T∗N . Furthermore, the space Sec(T N) of smooth sections of T N is endowed
with the Courant–Dorfman bracket,

[[X1 + α1, X2 + α2]] = [X1, X2] + LX1α2 − iX2dα1, (3.1)
where [·, ·] is the Lie bracket of vector fields, LX is the Lie derivative along the vector field X , and iX is the contraction
(inner product) with X . An almost Dirac structure (or bundle) on the smooth manifold N is a subbundle D of T N which is
maximally isotropic with respect to the symmetric pairing (·|·). If additionally the space of sections of D is closed under the
Courant–Dorfman bracket, we speak about a Dirac structure (or bundle) [2,1].

Standard examples of almost Dirac structures are the graphs
graph(Π) = {Xp + αp ∈ TpN : p ∈ N, Xp = Π(αp)},

graph(ω) = {Xp + αp ∈ TpN : p ∈ N, αp = ω(Xp)},

of bivector fieldsΠ or 2-forms ω viewed as vector bundle morphisms,Π : T∗N → TN, Π(αp) = iαpΠ(p),ω : TN → T∗N, ω(Xp) = −iXpω(p).
These graphs are actually Dirac structures if and only ifΠ is a Poisson tensor and ω is a closed 2-form, respectively.

Remark 3.1. A vector subbundle of a vector bundle over N is often understood as a vector bundle over the whole base
manifold N . It is however clear by many reasons (see e.g. [14, Theorem 2.3]) that we must consider also vector subbundles
supported on submanifolds of N . Throughout this paper the term vector subbundle always means a subbundle of the original
vector bundle supported on a submanifold N0 ⊂ N . In this sense, our definitions of almost Dirac and Dirac structure are
slightly more general than those usually available in the literature. By ‘being closed’ with respect to the bracket we clearly
mean that the bracket of any two sections of T N , extending sections of D, does not depend over N0 on the extensions
chosen and gives a section extending a section of D. This uniquely defines a bracket on sections of Dwhich is known to be a
Lie algebroid bracket.

Since the projection prTN : T N → TN is the left anchor for the Courant–Dorfman bracket, i.e.,

[[X1 + α1, f (X2 + α2)]] = f [[X1 + α1, X2 + α2]] + X1(f )(X2 + α2), (3.2)
it is a straightforward observation that the bracket of extensions of sections of a subbundle D, supported on a submanifold
N0 of N , does not depend on the extensions if and only if

prTN(D) ⊂ TN0. (3.3)
Indeed, if f is 0 on N0, by (3.2) X1(f )must be 0 on N0 for any section X1 +α1 which belongs to D along N0. The condition (3.3)
we will call the first integrability condition for the Dirac–Lie algebroid. Under this condition the Courant–Dorfman bracket
restricts to

[[·, · ]]D : Sec(D)× Sec(D) → Sec(T N). (3.4)
Then, the second integrability condition says that [[·, · ]]D takes values in Sec(D):

[[·, · ]]D : Sec(D)× Sec(D) → Sec(D) ⊂ Sec((T N)|N0), (3.5)
which, according to (3.2) and (3.3), is sufficient to be checked on a generating set of sections of D:

[[σk, σl ]]D ∈ Sec(D) for {σi} ⊂ Sec(D) generating D. (3.6)
By definition, an almost Dirac structure is a Dirac structure if and only if it satisfies both the integrability conditions, (3.3)
and (3.6).

Remark 3.2. Suppose that an almost Dirac structure D satisfies the first integrability condition, i.e., the Courant–Dorfman
bracket [[·, · ]]D of sections of D supported on N0 is well defined. If we have chosen a subbundle K of T N complementary to
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D over N0, we can define the bracket

[[·, · ]]KD : Sec(D)× Sec(D) → Sec(D) (3.7)

by projecting the value of [[·, · ]]D onto Sec(D) along K . Of course, if D is a Dirac structure, [[·, · ]]KD does not depend on the
choice of K and is just the Lie algebroid bracket on sections of D.

In Geometric Mechanics there is often a need to use affine bundles and affine versions of algebroids [28–34] (affgebroids
in the terminology introduced in [29,30]). We will use the following concept.

Definition 3.1. Let A be an affine subbundle of a Lie algebroid E → M with the bracket [·, ·] and the anchor ρ : E → TM ,
supported on a submanifold S ⊂ M . Let V = v(A) be its model vector bundle viewed as a vector subbundle of E. We call A
an affine Lie subalgebroid in E, if the brackets of sections of A lie in Sec(v(A)), i.e., ρ(A) ⊂ TS (thus the bracket of sections of
A is well defined over S) and [σ , σ ′

] ∈ Sec(V ) for all σ , σ ′
∈ Sec(A).

For a more extensive treatment of brackets on affine bundles we refer to [29,30] (see also [28,33,34]).
To consider also affine versions of (almost) Dirac structures, we propose the following (compare [29,30]).

Definition 3.2. An affine almost Dirac structure on amanifold N is an affine subbundle D of T N , supported on a submanifold
N0 ofN , whosemodel vector bundle v(D) ⊂ T N (canonically represented by a subbundle of T N) is an almost Dirac structure
onN . An affine almostDirac structure is called an affineDirac structure, if the Courant–Dorfmanbracket of sections ofDmakes
sense (like the analogous concept for Dirac–Lie algebroids) and takes values in the set of sections of v(D), i.e., (3.3) is satisfied,
so that (3.4) is well defined and

[[·, · ]]D : Sec(D)× Sec(D) → Sec(v(D)) ⊂ Sec(T N). (3.8)

The following is straightforward.

Proposition 3.1. If D is an affine Dirac structure, then v(D) is a Dirac structure.

Now let F be a vector bundle over a manifold M . Since both, TF and T∗F , are canonically double vector bundles, their
Whitney sum carries a structure of a canonical double vector bundle as well. From the general theory we easily derive the
following (cf. [13,14]).

Theorem 3.1. If F is a vector bundle over M, its Pontryagin bundle T F = TF ⊕F T∗F , canonically isomorphic to TF ⊕F T∗F∗,
is also canonically a double vector bundle structure with two compatible vector bundle structures: τ1 : T F → F and τ2 : T F
→ TM ⊕M F∗.

The core bundle of T F , i.e., a vector bundle over M being the intersection of the kernels of the both projections, is in this case
canonically isomorphic to T∗M ⊕M F . Moreover, the fibration

(τ1, τ2) : T F → F ⊕M TM ⊕M F∗

is an affine bundle modeled on the pull-back core bundle, i.e., the core bundle T∗M ⊕M F over M pulled-back to F ⊕M TM ⊕M F∗

via the canonical projection F ⊕M TM ⊕M F∗
→ M.

Definition 3.3. We call a submanifold D of a double vector bundle its double vector subbundle, if D is a subbundle for each
of the two vector bundle structures.

Following the ideas of [14], one can easily prove that this means that the two Euler vector fields defining the double vector
bundle structure are tangent to D. One can also equivalently say that D is invariant with respect to both commuting families
of homotheties defined by the two vector bundle structures (cf. [14]).

Proposition 3.2. Let D be a double vector subbundle of a double vector bundle

K
τ2 //

τ1

��

K2

τ ′
1

��
K1

τ ′
2 // M

(3.9)

Then, D inherits a double vector bundle structure with projections onto vector bundles Si = τi(D), i = 1, 2, where Si is a vector
subbundle of Ki.

Proof. It is easy to see that the homothety h1
t , being the multiplication of vectors of the bundle τ1 : K → K1 by t ∈ R,

coincides on K2 with the homothety of the vector bundle K2 → M . The submanifold D, being h1
t -invariant, has the base

S2 ⊂ K2 which is h1
t -invariant, thus is a vector subbundle of K2 → M [14, Theorem 2.3]. �
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Definition 3.4. A Dirac algebroid (resp., Dirac–Lie algebroid) structure on a vector bundle E is an almost Dirac (resp., Dirac)
subbundle D of T E∗ being a double vector subbundle, i.e., D is not only a subbundle of τ1 : T E∗

→ E∗ but also a vector
subbundle of the vector bundle τ2 : T E∗

→ TM ⊕M E.

Remark 3.3. The above definition gives an analog of linearity of a Poisson or a presymplectic structure.

We will consider also affine Dirac algebroids (Dirac affgebroids in short).

Definition 3.5. An affine Dirac algebroid on a vector bundle E is an affine subbundle D of T E∗ whose model vector bundle
v(D) ⊂ T E∗ (represented by vertical vectors tangent to the fibers of D) is a Dirac algebroid. An affine Dirac algebroid is
called an affine Dirac–Lie algebroid, if D is an affine Dirac structure, i.e., if the Courant–Dorfman bracket of sections of D is a
section of v(D).

According to Proposition 3.1, if D is an affine Dirac–Lie algebroid, then v(D) is a Dirac–Lie algebroid.

Remark 3.4. We can consider other affine types of Dirac structures as well, defined on affine or special affine bundles, by
considering vector-affine bundles of different types (see e.g. [27]), but we skip these considerations here in order not to
multiply technical difficulties.

In view of Proposition 3.2, a Dirac algebroid D ⊂ T E∗ projects onto two vector subbundles: PhD = τ1(D) ⊂ E∗ and
VelD = τ2(D) ⊂ TM ⊕M E, both based on a submanifoldMD ofM , giving rise to a single projection,

τD = (τD1 , τ
D
2 ) : D → PhD ⊕MD VelD ⊂ E∗

⊕M(TM ⊕M E), (3.10)

which, according to Theorem 3.1, is an affine bundle modeled on the core CD of D pulled-back to PhD ⊕MD VelD, i.e., on
(PhD ⊕MD VelD)×MD CD. Note that the core CD is a subbundle (supported on MD) of T∗M ⊕M E∗—the core of the double
vector bundle T E.

We will call the first component in PhD ⊕MD VelD the phase bundle and the second—the anchor relation (or the velocity
bundle) of the Dirac algebroid D. The anchor relation is just a linear relation between vectors of E (‘quasi-velocities’) and
vectors tangent toM (‘actual velocities’) and gives rise to the anchor map

ρD : TM ⊕M E ⊃ VelD → TMD (3.11)

being the projection onto the first summand.
To express linearity of an almost Dirac (or Dirac) subbundle of T E∗ in a more explicit way, consider adapted coordinates

(xa, ξi, ẋb, ξ̇j, pc, yk) on T E∗. The two commuting Euler vector fields are:

∇1 = pa∂pb + ξ̇j∂ξ̇j + yi∂yi + ẋb∂ẋb ,

corresponding to the vector bundle structure over E∗ with coordinates (x, ξ), and

∇2 = pa∂pb + ξi∂ξi + ξ̇j∂ξ̇j ,

corresponding to vector bundle structure over TM ⊕M E with coordinates (x, ẋ, y). The corresponding homotheties read

h1
t (x

a, ξi, ẋb, ξ̇j, pc, yk) = (xa, ξi, tẋb, t ξ̇j, tpc, tyk), (3.12)

h2
s (x

a, ξi, ẋb, ξ̇j, pc, yk) = (xa, sξi, ẋb, sξ̇j, spc, yk), (3.13)

and a linear almost Dirac subbundle in T E∗ (Dirac algebroid) should be invariant with respect to both sets of homotheties.
Note that the canonical symmetric pairing is represented by the quadratic function Q (xa, ξi, ẋb, ξ̇j, pc, yk) = paẋa + yiξ̇i
which vanishes on Dirac algebroids.

Example 3.1. The graph of any linear bivector field

Π =
1
2
ckij(x)ξk∂ξi ∧ ∂ξj + ρb

i (x)∂ξi ∧ ∂xb ,

where ckij = −ckji , is a Dirac algebroid:

graph(Π) = {(xa, ξi, ẋb, ξ̇j, pc, yk) : ẋb = ρb
k (x)y

k, ξ̇j = ckij(x)y
iξk − ρa

j (x)pa}.

It is clear that Q vanishes on graph(Π). This graph is a double vector subbundle, since the constraint functions

ẋb − ρb
k (x)y

k, ξ̇j − ckij(x)y
iξk + ρa

j (x)pa (3.14)

are homogeneous with respect to the Euler vector fields ∇1,∇2. The phase bundle here is E∗ and the anchor relation
is actually the graph of the vector bundle morphism ρ : E → TM (the anchor map) given in local coordinates by
ρ(xa, yi) = (xa, ρb

i (x)y
i). This means that skew-algebroids are particular examples of Dirac algebroids. We will call the

Dirac algebroids of this form, associated with a bivector field Π , Π-graph Dirac algebroids on E and denote it by DΠ . The
Dirac algebroid DΠ is a Dirac–Lie algebroid if and only ifΠ is a Poisson tensor, i.e., if and only if we deal with a Lie algebroid.
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Example 3.2. The graph of any linear 2-form

ω =
1
2
ckab(x)ξkdx

a
∧ dxb + ρ i

b(x)dξi ∧ dxb,

where ckab = −ckba, is a Dirac algebroid:

graph(ω) = {(xa, ξi, ẋb, ξ̇j, pc, yk) : yi = ρ i
a(x)ẋ

a, pa = ckab(x)ξkẋ
b
− ρ i

a(x)ξ̇i}.

It is clear that Q vanishes on graph(ω). This graph is a double vector subbundle, since the constraint functions

yi − ρ i
a(x)ẋ

a, pa − ckab(x)ξkẋ
b
+ ρ i

a(x)ξ̇i (3.15)

are homogeneous with respect to the Euler vector fields ∇1,∇2. The phase bundle here is E∗ and the anchor relation is in
fact the graph of the vector bundle morphism ρ : TM → E given in local coordinates by ρ(xa, ẋb) = (xa, ρ i

b(x)ẋ
b). We will

call the Dirac algebroids of this form, associated with a 2-form ω, ω-graph Dirac algebroids and denote it by Dω . The Dirac
algebroid Dω is a Dirac–Lie algebroid (presymplectic Dirac–Lie algebroid) if and only if ω is closed.

Example 3.3. The canonical Dirac–Lie algebroid DM = DΠM = DωM , corresponding to the canonical Lie algebroid E = TM ,
belongs to the both above types. It is associated with the canonical symplectic form ωM on E∗

= T∗M and, simultaneously,
to the canonical Poisson tensorΠM = ω−1

M on T∗M . In our local coordinates, the equations defining DM are

ẋa = ya, ξ̇b = −pb.

Example 3.4. Suppose we have a Dirac (Dirac–Lie) algebroid D on E → M . Let us consider the extension E0 = E × R as a
vector bundle over M0 = M × R in the obvious way. Then, E∗

0 = E∗
× R, TE∗

0 = TE∗
× TR, and T∗E∗

0 = T∗E∗
× T∗R. The

subbundle D0 = D × A0 in T E∗

0 = T E∗
× T R, where A0 is the affine subbundle in T R defined by the constraint ẋ0 = 1 in

the natural coordinates (x0, ẋ0, p0) on T R, is an affine Dirac (Dirac–Lie) algebroid on E0.

4. The structure of a Dirac algebroid

Let us start this paragraph recalling that any section σ : N → F of a vector bundle F → N (actually, of any fibration) is
uniquely determined by its image σ(N)—a submanifold of F . We will denote this submanifold by [σ ].

Definition 4.1. Let K be a double vector bundle (3.9). We say that a sectionσ : K1 → K projects on the section σ : M → K2,
if τ2 projects [σ ] onto [σ ]. We will writeσ τ2 = σ and call suchσ projectable.

We say that a sectionσ : K1 → K is suitable, if [σ ] is a vector subbundle of the vector bundle τ2 : K → K2.

It is easy to see the following

Theorem 4.1. Any suitable sectionσ is projectable and [σ τ2 ] is the image under τ2 of the zero-section 0K1 of τ1. Moreover, the
set of suitable sections, Suit(K), is canonically a C∞(M)-module and the module morphism [τ2] : σ → σ τ2 is an epimorphism
onto Sec(K2).

Suitable sections which project on the zero-section of the bundle K2 we will call 0-suitable. So the set Suit0(K) of 0-suitable
sections is the kernel of the map [τ2] : Suit(K) → Sec(K2). A standard argument shows that that the C∞(M)-modules
Suit(K) and Suit0(K) are the modules of sections of certain vector bundles over M,Suit(K) and Suit0(K), respectively, but
we will not go into details here.

All this can be applied to the situation of the Pontryagin bundle over the vector bundle E∗,

T E∗
τ2 //

τ1

��

TM ⊕M E

τM×τ

��
E∗

π // M

(4.1)

and easily explained in our standard local coordinates (xa, ξi, ẋb, ξ̇j, pc, yk). The image of a sectionσ of τ1 consists of points

(xa, ξi, ẋb(x, ξ), ξ̇j(x, ξ), pc(x, ξ), yk(x, ξ)) ∈ T E∗.

This section is projectable if and only if the coefficients ẋb and yk depend on x only,

ẋb = ẋb(x), yk = yk(x),

thusσ projects onto the section

σ(x) = (x, ẋb(x), yk(x))
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of TM ⊕M E. Since being a vector subbundle means exactly being a submanifold invariant with respect to homotheties [14],σ is suitable if the submanifold

[σ ] = {(x, ξi, ẋb(x, ξ), ξ̇j(x, ξ), pc(x, ξ), yk(x, ξ)) ∈ T E∗
}

is invariant with respect to homotheties (3.13), i.e.,

ẋb(x, sξ) = ẋb(x, ξ), yk(x, sξ) = yk(x, ξ),
ξ̇j(x, sξ) = sξ̇j(x, ξ), pc(x, sξ) = spc(x, ξ).

As smooth homogeneous functions are linear, we get finally that ẋb and yk do not depend on ξ (σ is projectable) and that ξ̇j
and pc linearly depend on ξ ,

ξ̇j(x, ξ) = ξ̇ ij (x)ξi, pc(x, ξ) = pic(x)ξi. (4.2)

Recall that the sectionσ is X + α, where the vector field on E∗ reads

X = ẋb(x, ξ)∂ẋb + ξ̇j(x, ξ)∂ξ̇j
and the 1-form α is

α = pc(x, ξ)dxc + yk(x, ξ)dξk.

Since linearity is measured by homogeneity with respect to the Euler vector field in the bundle, this implies immediately
the following.

Theorem 4.2. Let ∇ be the Euler vector field in the vector bundle E∗. A section X + α of τ1 : T E∗
→ E∗ is suitable if and only if

L∇X = 0 and L∇α = α.

Such vector fields and 1-forms are sometimes called, with some abuse of terminology, linear. Hence, X + α is suitable if
and only if X and α are linear. This allows one to identify the bundle Suit(T E∗)with Der(E)⊕M(Der(E)∗ ⊗M E)with Der(E)
being the bundle of quasi-derivations (or derivative endomorphisms or quasi-derivations) in E (see [35]). We will not go into
details here.

A fundamental observation is now the following.

Theorem 4.3. If σi, i = 1, 2, are suitable sections of T E∗, then [[σ1,σ2]] and d (σ1|σ2) are suitable. Moreover, if σ2 is
additionally 0-suitable, then [[σ1,σ2]] and

[[σ2,σ1]] − 2d(σ1|σ2)
are 0-suitable.

In particular, suitable sections of T E∗ are closed with respect to the Courant–Dorfman bracket and 0-suitable sections form a
left-ideal inside.

Proof. If Xi and αi are linear, i = 1, 2, then of course [X1, X2] and LX1α2 − iX2α1, as well as d

iX1α2 + iX2α1


, are linear. To

find the projection [[σ1,σ2 ]]
τ2 in coordinates, let us write

σ1(x, ξ) = ẋb(x)∂xb + f ji (x)ξj∂ξi + yi(x)dξi + g j
a(x)ξjdx,σ2(x, ξ) = ˙̄x

b
(x)∂xb + f̄ ji (x)ξj∂ξi + ȳi(x)dξi + ḡ j

a(x)ξjdx.

Then, direct calculations of the Courant–Dorfman bracket show that [[σ1,σ2 ]]
τ2 is represented by the tensor

ẋc
∂ ˙̄x

b

∂xc
− ˙̄x

c ∂ ẋb

∂xc


(x)∂xb +


ẋb
∂ ȳi

∂xb
− ˙̄x

b ∂yi

∂xb
+ ȳjf ij + ˙̄x

b
g i
b


(x)dξi. (4.3)

If ˙̄x and ȳ are 0, we get 0. If ẋ and y are 0, we get

(ȳjf ij + ˙̄x
b
g i
b)(x)dξi = 2(d(σ1|σ2))τ2 . �

It is clear that having a double vector subbundleD, e.g. Dirac algebroid, we can consider suitable sections ofD in the same
manner. As the scalar products (σ1|σ2) vanish for sections of a Dirac algebroid, out of Theorem 4.3 we can easily derive the
following. Let us fix a Dirac algebroid with an anchor relation VelD inducing an anchor map ρD : VelD → TMD.

Theorem 4.4. If D is a Dirac algebroid satisfying the first-integrability condition, then the Courant–Dorfman bracket induces on
the module of suitable sections of D a skew-symmetric bracket

[[·, · ]]D : Suit(D)× Suit(D) → Suit((T E∗)|PhD)
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such that

[[σ1, fσ2 ]]D = f [[σ1,σ2 ]]D +ρD(σ τ21 )(f )σ2
for all f ∈ C∞(MD). Moreover, if one of the sections is 0-suitable, the resulted bracket is 0-suitable.

In the case when D is a Dirac–Lie algebroid, the Courant–Dorfman bracket is a Lie algebra bracket on Suit(T E∗) for
which Suit0(T E∗) is a Lie ideal and turns the bundles Suit(D) and Suit0(D) into Lie algebroids. Moreover, in this situation, as
Suit(D)/ Suit0(D) ≃ Sec(VelD), we get a Lie algebroid bracket on the anchor bundle VelD that gives rise to a canonical short exact
sequence of Lie algebroids associated with the Dirac–Lie algebroid D.

0 −→ Suit0(D) −→ Suit(D) −→ VelD −→ 0.

In the case of a Lie algebroid E associated with a linear Poisson structureΠ on E∗ the Lie bracket of sections of E can be
recognized inside the Lie algebroid on sections of DΠ as the bracket of sections Π(α) + α, associated with ‘linear 1-forms’
α, in coordinates α = yi(x)dξi. The above theorem provides a generalization of this fact and, for each Dirac–Lie algebroid,
describes the induced Lie algebroid structure on its velocity bundle.

The next theorem characterizes the core bundle of a Dirac algebroid in terms of its anchor relation.

Theorem 4.5. The core bundleCD ⊂ T∗M ⊕M E∗ of a Dirac algebroid D ⊂ T E∗ is the annihilator subbundle Vel0D ⊂ T∗M ⊕M E∗

of the anchor relation VelD ⊂ TM ⊕M E.

Proof. To an element d ∈ D that projects onto (τ1, τ2)(d) = (µx, vx) we can add any element ux of the x-fiber of the core
not changing the projections, so, due to isotropy, ⟨vx, ux⟩ = 0 for all vx ∈ (VelD)x and CD ⊂ Vel0D. The equality follows from
the conditions on the rank. In coordinates, d is represented by

d = ẋa∂xa + fi∂ξi + yidξi + gadxa

and

ux = ξ̇i∂ξi + padxa.

Since (d|d) = 0 and (d + ux|d) = 0, we have ⟨τ2(d), ux⟩ = 0, i.e.

ẋapa + yiξ̇i = 0. �

In order to describe the local form of a Dirac algebroid D, note first that, since an arbitrary Dirac algebroid D ⊂ T E∗ is
the restriction to the phase bundle PhD ⊂ E∗ of a Dirac algebroid supported on the whole bundle E∗, we can assume at the
beginning for simplicity that PhD = E∗. As the Pontryagin bundle T E∗ is, as the bundle over the projection

(τ1, τ2) : T E∗
→ (TM ⊕M E)⊕M E∗

an affine bundle modeled on the pull-back bundle of the core bundle T∗M ⊕M E∗ (Theorem 3.1), we can write

T E∗
≃ (E∗

⊕M TM ⊕M E)×M(T
∗M ⊕M E∗). (4.4)

Note that the product ×M in the above expression is not canonical, but it can be used to express the fact that we can add
elements of T∗

xM⊕E∗
x to elements of E∗

x ⊕TxM⊕Ex and to serve for introducing local coordinates. Instead of the coordinates
we have already used, it will be more convenient to introduce affine coordinates (xa, ηi,ηj) in TxM ⊕ Ex and dual affine
coordinates (xa, ζi,ζj) in T∗

xM ⊕ E∗
x , so that (ηi,ηj) represent linear coordinates in fibers of the anchor relation VelD and its

(non-canonical) complementary subbundle V , TxM ⊕ Ex = VelD ⊕M V , respectively, and the coordinates (ζi,ζj) are linear
coordinates in the annihilators T∗

xM ⊕ E∗
x = V 0

⊕M Vel0D, respectively. Note that V 0 represents the dual bundle Vel∗D.
The points of D then satisfyηj = 0. Since we can add elements of the core CD = Vel0D, coordinatesζj are arbitrary.

Therefore, there are sectionsσi of D associated with the canonical local basis σi of sections of VelD, ηi
′

(σi(x)) = δi
′

i , which
read

σi(xa, ξj) = (xa, ξj, ηi
′

= δi
′

i , 0, ζi′ = c jii′(x)ξj, 0).

Due to isotropy, we have skew-symmetry c jii′(x) = −c ji′i(x). Now, we can add linear constraint PhD in E∗ by introducing
affine coordinates, say (x,x, ξ ,ξ), such that PhD is expressed byx = 0,ξ = 0. In this way we get the following

Theorem 4.6 (Local form of a Dirac Algebroid). In the introduced local affine coordinates the Dirac algebroid D consists of points
(x,x, ξ ,ξ, η,η, ζ ,ζ ) for which

x = 0, ξ = 0, η = 0, ζk = c jik(x)η
iξj. (4.5)

Moreover, c jik(x) = −c jki(x).
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Let us note that the above constraints can be viewed as a common generalization of (3.14) and (3.15). The functions c jik
play the role of structure functions andη = 0 defines the anchor relation.We canwrite (η,η) as linear functions of variables
(ẋ, y) and (ζ ,ζ ) as linear functions of (p, ξ̇ ) (with coefficients being functions of x) to derive constraints

η(x, ẋ, y) = 0, ζi(x, p, ξ̇ )+ c jik(x)η
k(x, ẋ, y)ξj = 0. (4.6)

Example 4.1. For theΠ-graph Dirac algebroid as described in Example 3.1 we have

η = y, ηb = ẋb − ρb
k (x)y

k, ζj = ξ̇j + ρa
j (x)pa, ζb = pb

and the Eq. (4.6) read

ẋb − ρb
k (x)y

k
= 0, ξ̇j + ρa

j (x)pa + ckji(x)y
iξk = 0,

exactly as in (3.14).

5. Induced Dirac algebroids

In this sectionwewill showhowappropriate linear (or affine) ‘nonholonomic constraints’ in the velocity bundleVelD give
rise to new (induced) Dirac algebroids. These constructions may be viewed as a generalization of the similar construction
for the canonical Lie algebroid E = TM in [24].

Consider a Dirac algebroid D ⊂ T E∗ and let V be a vector subbundle of the velocity bundle VelD ⊂ TM ⊕M E supported
on S ⊂ MD ⊂ M . LetV = (τD2 )

−1(V ) be the restriction of the vector bundle τD2 : D → VelD to the submanifold V in the base,
and let V 0

⊂ T∗M ⊕ E∗ be the annihilator of V . Of course, V 0 is supported on S as well and V 0
⊃ Vel0D = CD. Since T∗M ⊕ E∗

is the core of T E∗, we may add vectors from V 0 to vectors of the vector bundle τ1 : T E∗
→ E∗ not changing any of two

projections. In this sense, DV
= V + V 0 is again a double vector subbundle of T E∗ which is no longer D, but still projects on

V via τ2, and on PhD via τ1.

Theorem 5.1. The double vector subbundle DV in T E∗ is a Dirac algebroid on E.

Proof. The subbundleDV is isotropic by definition, sinceV is isotropic as a subbundle ofD, and V 0 is isotropic and orthogonal
to V . The rank of this bundle is maximal, since first we lose rank by dim(VelD/V ) and then we gain dim(V 0/Vel0D) =

dim(VelD/V ). �

Definition 5.1. We will call the Dirac algebroid DV the Dirac algebroid induced from D by the subbundle V ⊂ VelD.

Quite similarly, we can induce affine Dirac algebroids using an affine subbundle A of VelD based on a submanifold
S ⊂ M . Let V = v(A) be its model vector bundle viewed as a vector subbundle of VelD. Let us putA = (τD2 )

−1(A), and
let V 0

⊂ T∗M ⊕ E∗ be the annihilator of V . The vector subbundleA of τD2 : D → VelD is simultaneously an affine subbundle
of τD1 : D → PhD, thus vector-affine subbundle. Similarly as above, DA

= A + V 0 is again a vector-affine subbundle of T E∗

which still projects on A via τ2, and on PhD via τ1. Analogously to Theorem 5.1 one can prove the following.

Theorem 5.2. The vector-affine subbundle DA in T E∗ is an affine Dirac algebroid on E.

Definition 5.2. We will call the affine Dirac algebroid DA the affine Dirac algebroid induced from D by the affine subbundle
A ⊂ VelD.

Example 5.1. Consider a Dirac algebroid DΠ on a vector bundle τ : E → M , associated with a linear bivector field Π on
E∗. Since the anchor relation VelDΠ is in this case the graph of the anchor map ρ : E → TM , subbundles V of VelDΠ may be
identified with subbundles V0 of E, V = {ρ(v)+ v; v ∈ V0}.

It is convenient to see all this in local coordinates (xa, ξi, ẋb, ξ̇j, pc, yk) in T E∗. We may choose local coordinates in
(xa) = (xα, xA) in M , so that S is given locally by xA = 0. Let us also use linear coordinates (yi) in the fibers of E,
so that y = (yi) = (yι, yI) and the subbundle V0 is defined by the constraint yI = 0. On T E∗ we have then local
coordinates (xa, ẋb, ξ̇l, pc, yι, yI) where we have also decompositions (ξk) = (ξκ , ξK ) and (ξ̇l) = (ξ̇λ, ξ̇L) associated with
the decomposition (yi) = (yι, yI). The double subbundleV is defined by the constraints (cf. Example 3.1)V = {(xa, ξi, ẋb, ξ̇j, pc, yk) : xA = 0, yI = 0, ẋb = ρb

ι (x)y
ι, ξ̇k = c jιk(x)y

ιξj − ρa
k (x)pa}.

The points (xa, pb, ξ̇i) of T∗M ⊕M E∗ belong to V 0 if and only if xA = 0 and pbρb
ι (x)y

ι
+ξ̇ιyι = 0 for all (yι), thus ξ̇ι = −ρb

ι (x)pb
and ξ̇I are arbitrary. As the first condition agrees with the original constraints, we get the final constraints defining DV

Π :

xA = 0, ẋb = ρb
ι (x)y

ι, ξ̇κ = c jικ(x)y
ιξj − ρa

κ(x)pa, yI = 0, (5.1)

as adding V 0 makes ξ̇K arbitrary.
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Let us assume now thatΠ is a Poisson tensor, i.e., DΠ is a Dirac–Lie algebroid. The first integrability condition for DV
Π is

now prTE∗ ⊂ TE∗

|S , i.e., ẋ
B

= ρB
ι (x

α, 0)yι = 0 for all yι, thus

ρB
ι (x

α, 0) = 0. (5.2)

To check the second integrability condition, let us note first that DV
Π is locally generated by the sections ∂ξI and Rξι =Π(dξι)+ dξι. Since, by the assumption thatΠ is Poisson,

[[Rξι , Rξι′ ]] = RΠ(dξι,dξι′ ),

Ith components of d(Π(dξι, dξ ′
ι ))must vanish along E∗

|S , i.e.,

c Iιι′(x
α, 0) = 0. (5.3)

The vector fields ∂ξI commute, so it remains to check whether [[∂ξI , Rξι ]] are sections of DV
Π over E∗

|S . But

[[∂ξI , Rξι ]] = [∂ξI ,
Π(dξι)] (5.4)

and, according to (5.2),Π(dξι)(xα, 0, ξi) = cι
′′

ιι′ (x
α, 0)ξι′′∂ξ ′

ι
+ f I

′

(xα, 0, ξi)∂ξI′

for some functions f I
′

. Hence

[[∂ξI , Rξι ]](x
α, 0, ξi) = ∂ξI (f

I ′)(xα, 0, ξi)∂ξI′ ,

so that the expression in (5.4) is spanned over E∗

|S by ∂ξI . Thus we get that DV
Π is a Dirac–Lie algebroid if and only if (5.2) and

(5.3) are satisfied. This, in turn, means that V0 is a Lie subalgebroid in the Lie algebroid on E associated withΠ , so V is a Lie
subalgebroid of the Lie algebroid VelD—the graph of the anchor map.

Theorem 5.3. If DΠ is aΠ-graph Dirac–Lie algebroid, then DV
Π is a Dirac–Lie algebroid if and only if V is a Lie subalgebroid of

VelD.

Example 5.2. A particular case of the above example is the canonical Dirac–Lie algebroid DM . In this case we recover the
induced Dirac structure considered in [24], i.e., the set

DV = {(X + α) ∈ TT∗M ⊕T∗M T∗T∗M; X ∈ (TπM)
−1(V0), ∀W ∈ (TπM)

−1(V0) : ⟨α, X⟩ = ωM(X,W )},

where ωM is the canonical symplectic form on T∗M . Let us show that this indeed is the case.
According to our definition the canonical Dirac–Lie algebroid DM on the cotangent bundle is given by the canonical

Poisson structureΠM or the canonical symplectic structure ωM on T∗M , i.e.,

DM = graph(ΠM) = graph(ωM).

The velocity bundle VelDM ⊂ TM ⊕M TM is in this case the graph of the identity map on TM , the phase bundle PhDM is the
whole cotangent bundle T∗M and the core CDM ⊂ T∗M ⊕M T∗M is the graph of the minus identity map on T∗M .

Any subbundle V of the velocity bundle is given by a subbundle V0 of the tangent bundle TM and is of the form
V = {v + v; v ∈ V0}. Then we getV = (τ

DM
2 )−1(V ) = {X + ω̃M(X) ∈ T T∗M : TπM(X) ∈ V0}.

The annihilator V 0 consists of all pairs of covectors (ϕ, ψ) at the same point in M such that ϕ + ψ ∈ (V0)
0. Since the

induced Dirac structure is DV
M = Ṽ + V 0, we have that

DV
M = {(X + ϕ)+ (ω̃M(X)+ ψ); TπM(X) ∈ V0, ϕ + ψ ∈ (V0)

0
}.

The ‘‘+’’ sign in brackets in the above formula stands for adding an element of a core to an element of the double vector
bundle. To compare DV

M with the Dirac structure considered in [24] let us observe, that the projection of DV
M on TT∗M gives

thewhole (TπM)
−1(V0). Adding elements of a core of a double vector bundle does not change projections, therefore addingϕ

to X produces another element Y of (TπM)
−1(V0). Since ω̃M is a double vector bundle isomorphism, it respects the structure

of the double vector bundle. In particular, it maps the core of TT∗M to the core of T∗T∗M . Both cores are isomorphic to T∗M ,
and ω̃M restricted to the core is the identity map. We have

ω̃M(Y )+ ψ = ω̃M(X + ϕ)+ ψ = ω̃M(X)+ (ϕ + ψ),

so

DV
M = {X + (ω̃M(X)+ ψ); TπM(X) ∈ V0, ψ ∈ (V0)

0
}.
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Evaluating ω̃M(X)+ ψ on anyW ∈ (TπM)
−1(V0), we get that

⟨ω̃M(X)+ ψ,W ⟩ = ⟨ω̃M(X),W ⟩ + ⟨ψ, TπM(W )⟩ = ⟨ω̃M(X),W ⟩ = ωM(X,W ),

thus DV
M ⊂ DV . For dimensional reasons the inclusion is in fact equality.

6. Lagrangian and Hamiltonian formalisms based on Dirac algebroids

6.1. Implicit differential equations

Let us start with an explanation what we will understand as implicit dynamics on a manifold N .

Definition 6.1. An ordinary first-order (implicit) differential equation (implicit dynamics) on a manifold N will be understood
as a subset D of the tangent bundle TN . We say that a smooth curve γ : R → N (or a smooth path γ : [t0, t1] → N) satisfies
the equation D (or is a solution of D), if its tangent prolongation γ̇ : R → TN (resp., γ̇ : [t0, t1] → TN) takes values in D .
We call a curve (or a path)γ in TN admissible, if it is the tangent prolongation of its projectionγN on N .

According to the above definition, solutions of an implicit dynamics D on a manifold N are projectionsγN of admissible
curvesγ lying in D. Note, however, that different implicit differential equations may have the same set of solutions. First of
all, if D is supported on a subset N0, τN(D) = N0, only vectors from D ∩ TN0 do matter, if solutions are concerned. Hence,
D ′

= D ∩ TN0 has the same solution as D , and D ⊂ TN0 is the first integrability condition. Of course, replacing D with D ′

may turn out to be an infinite procedure, but we will not discuss the integrability problems in this paper.
All this can be generalized to ordinary implicit differential equations of arbitrary order. In this case we consider D as

a subset of higher jet bundles, the n-th tangent bundle TnN in case of an equation of order n, and consider γ as a solution
when its n-th jet prolongation takes values in D . If we call the n-th jet prolongations admissible in TnN , then solutions of D
are exactly projectionsγN to N of admissible curves (or paths)γ in TnN lying in D .

Remark 6.1. The implicit differential equations described above are called by some authors differential relations. Let us
explain that we use the most general definition, not requiring from D any differentiability properties, since in real life
the dynamics D we encounter are often not submanifolds. This generality is also very convenient, as it allows us to skip
technical difficulties in the corresponding Lagrangian and Hamiltonian formalisms. Of course, what is an encumbrance in
defining implicit dynamics can be very useful in solving the equations, but in our opinion, solving could be considered case
by case, while geometric formalisms of generating dynamics should be as general as possible. Note also that for any subset
N0 of amanifoldN the tangent prolongations TN0, T2N0, etc., make precisely sense as subsets of TN, T2N , etc. They are simply
understood as families of the corresponding jets of appropriately smooth curves in N which take values in N0.

Admissibility of a path in TN has a natural generalization for paths γ in an algebroid E. This concept plays a fundamental
role in the ‘integration’ of Lie algebroids to Lie groupoids [36] and appears as natural consequence of the algebroid version
of the Euler–Lagrange equations [23,17]. We propose the following extension of this concept to Dirac algebroids, which
reduces to the standard definition forΠ-graph Dirac algebroids and Lie algebroids.

Note first that given a smooth curve or path γ with values in E we have a unique ‘tangent prolongation’ of γ to a curve
(or path)γ : R → TM ⊕M E (resp.,γ : [t0, t1] → TM ⊕M E), defined in an obvious way byγ(t) = γ̇M(t)⊕ γ (t), (6.1)

where γM is the projection of γ to M, γM = τ ◦ γ .

Definition 6.2. Let D be a Dirac algebroid on τ : E → M and let VelD ⊂ TM ⊕M E be its anchor relation. We say that a curve
γ : R → E (or a path γ : [t0, t1] → E) is D-admissible, if its tangent prolongationγ takes values in VelD,

∀ t ∈ R [γ(t) = γ̇M(t)+ γ (t) ∈ VelD ⊂ TM ⊕M E].

Remark 6.2. It is easy to see that in the case of a Π-graph Dirac algebroid, when VelD is the graph of the anchor map
ρ : E → TM , a curve γ in E is D-admissible if and only if ρ(γ (t)) = γ̇M(t) that coincides with the concept of admissibility
for Lie algebroids. In particular, for the canonical Lie algebroid E = TM and the corresponding canonical Dirac algebroid
DM , a curve γ in TM is DM-admissible if and only if it is admissible, i.e., it is the tangent prolongation of its projection γM on
M, γ (t) = γ̇M(t).

6.2. Phase dynamics, Hamilton, and Euler–Lagrange equations

Our experience in working with (constrained) systems on skew-algebroids [23,17] suggests the following approach. Let
us fix a Dirac algebroid D on a vector bundle E,

D ⊂ T∗E∗
⊕E∗ TE∗

≃ T∗E ⊕E∗ TE∗.
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In generalized Lagrangian and Hamiltonian formalisms we will view D as a differential relation

εD : T∗E −−◃ TE∗

or

βD : T∗E∗
−−◃ TE∗,

respectively. We use the symbol ‘−−◃’ to stress that we deal with relations having domains in T∗E or T∗E∗ (not necessarily
the whole T∗E or T∗E∗) and with ranges being subsets of TE∗. Note that εD = βD ◦ Rτ and βD is a relation over the identity
on the support of D in E∗—the phase bundle PhD. The bundle E plays the role of the bundle of generalized velocities (quasi-
velocities), and its dual, E∗, the role of the phase space.

A Lagrangian function L : E → R and a Hamiltonian H : E∗
→ R give rise to maps associated with their derivatives,

dL : E → T∗E and dH : E∗
→ T∗E∗, respectively. The Lagrangian produces the phase dynamics εD[dL] as the image of E

under the composition of relationsΛL
D = εD ◦ dL:

εD[dL] = ΛL
D(E) ⊂ TE∗. (6.2)

The relation ΛL
D we call the Tulczyjew differential of L. Similarly, when using the composition of relations ΦH

D = βD ◦ dH ,
that projects onto the relation χH

D = τE∗ ◦ ΦH
D being the identity on a subset of E∗, the Hamiltonian dynamics generated by

the Hamiltonian H is defined by

βD[dH] = ΦH
D (E

∗) ⊂ TE∗. (6.3)

The phase dynamics εD[dL] associated with the Lagrangian L has a Hamiltonian description, if there is a Hamiltonian H with
the same dynamics, εD[dL] = βD[dH].

Of course, the actual phase spaces associatedwith L andH are projections of the phase dynamics on E∗, PhL
D = τE∗(εD[dL])

and PhH
D = τE∗(βD[dH]).

Since, as easily seen, the projection of the relationΛL
D = εD ◦ dL to E ⊕M E∗ is actually a function,

λLD = τE∗ ◦ΛL
D = T∗τ ◦ dL

|VelLD
,

called the Legendre map associated with the Lagrangian L. The domain of the Legendre map will be denoted VelLD and called
the Euler–Lagrange domain. It is easy to see that PhL

D is the image of the Legendre map

λLD = τE∗ ◦ΛL
D : E ⊃ VelLD → PhL

D ⊂ E∗,

and the Legendre map is the restriction of the vertical derivative dvL : E → E∗ to

VelLD = {v ∈ prE(VelD) : dvL(v) ∈ PhD}. (6.4)

In local coordinates,

dvL(x, y) =


x,
∂L
∂yi
(x, y)


.

If D is aΠ-graph Dirac algebroid, then VelLD = E.
The diagram for the corresponding Tulczyjew triple containing: T∗E (the Lagrangian side), the canonically isomorphic (via

Rτ ) double vector bundle T∗E∗ (the Hamiltonian side), and TE∗ (the phase dynamics side) is the following (here, the arrows
denote relations):

T∗E

πE

��

εD //

Rτ

**
TE∗

τE∗

��

T∗E∗
βDoo

πE∗

��
E

λLD //

dL

OO
ΛL

D

77

E∗ E∗
χH
Doo

dH

OO
ΦH
D

gg . (6.5)

The Euler–Lagrange equation associated with Lwill be viewed as an implicit dynamics on E. It will make sense for curves
in E taking values in the Euler–Lagrange domain VelLD ⊂ E.

Definition 6.3. We say that a curve γ : R → VelLD satisfies (or is a solution of ) the Euler–Lagrange equation, if γ isΛL
D-related

to an admissible curveγ in TE∗ (i.e.,γ is the tangent prolongation of its projectionγE∗ onto E∗). In particular, γ is λLD-related
to the curveγE∗ which satisfies the phase equation.
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To describe the Euler–Lagrange equation explicitly, consider the tangent prolongation of the relationΛL
D,

TΛL
D = TεD ◦ TdL : TE −−◃ TTE∗.

In TTE∗ we can distinguish holonomic vectors, i.e., vectors Xv ∈ TvTE∗ such that v equals the tangent projection of Xv onto
TE∗, i.e., v = TτE∗(Xv). The set of holonomic vectors can be seen as the second tangent bundle T2E∗. We define the (implicit)
Euler–Lagrange dynamics as the subset of TE defined by the inverse image

E L
D = (TΛL

D)
−1(T2E∗) ⊂ TE.

Theorem 6.1. If a curve γ : R → E satisfies the Euler–Lagrange equation, then its tangent prolongation takes values in E L
D. In

particular, γ is D-admissible.

Proof. Letγ be an admissible curve,γ = ̇γ E∗ , contained in εD[dL] andΛL
D-related to γ . Then, its tangent prolongation ̇γ is

TΛL
D-related to the tangent prolongation γ̇ of γ . But ̇γ is the 2-tangent prolongation ofγE∗ , thus lies in T2E∗. �

Note that the converse is ‘almost true’. Indeed, if γ̇ lies in T(ΛL
D)

−1(T2E∗), we only need to know that we can pick up a
curve in T2E∗ being TΛL

D-related to γ̇ . This can be assured, for instance, by some smooth transversality assumptions. As we
do not want to consider these questions here, let us only mention that the converse of Theorem 6.2 is always true in the
case whenΛL

D is a map, for instance forΠ-graph Dirac algebroids.

Remark 6.3. Let us observe that in our setting the Euler–Lagrange equation is a first-order equation on E, in full agreement
with the fact that the Hamilton equation is first-order as well. In the standard setting, the Euler–Lagrange equation is
viewed as second-order, but for curves in the baseM . This can be explained as follows. The solutions of the Euler–Lagrange
equations are alwaysD-admissible. In the case of the canonical algebroid E = TM the admissible curves in TM are exactly the
tangent prolongations of curves in the baseM , thus wemay view the corresponding Euler–Lagrange equations as first-order
equations on tangent prolongations, so second-order equations for curves on the base.

6.3. Hyperregular Lagrangians

Let us assume that we have a hyperregular Lagrangian L : E → R, i.e., such a Lagrangian that its vertical derivative
L = dvL : E → E∗ is a diffeomorphism. For instance, L can be of mechanical type, being the sum of a ‘kinetic energy’
(associated with a ‘metric’ on the vector bundle E) and a potential (a basic function). It is well known [23] that in this case
the Hamiltonian H : E∗

→ R defined by

H = (∇E(L)− L) ◦ L−1, (6.6)

where∇E is the Euler vector field on the vector bundle E, defines the same Lagrangian submanifold in T∗E∗ as L in T∗E, when
we identify canonically both bundles:

dH(E∗) = Rτ (dL(E)).

In local coordinates, ξi =
∂L
∂yi
(x, y) and

H(x, ξ) = ξi · yi(x, ξ)− L(x, y(x, ξ)).

It is then easy to see that the Legendre map λLD is a diffeomorphism of VelLD on PhL
D, and that the phase dynamics associated

with L and H coincide.

Theorem 6.2. If L is a hyperregular Lagrangian, then, for any Dirac algebroid D, the phase dynamics εD[dL] coincides with the
phase dynamics βD[dH] for the Hamiltonian H defined by (6.6). In this sense, for hyperregular Lagrangians, the Lagrangian and
Hamiltonian formalisms are equivalent.

6.4. Constraints

Nonholonomic linear (or affine) constraints in our Dirac algebroid setting are understood as represented by vector (affine)
subbundles V of the velocity bundle VelD. This could look strange at the first sight, but it becomes quite natural, if we recall
that the solution of the Euler–Lagrange equations are admissible curves γ in the bundle E of quasi-velocities. Since there
is a canonical tangent prolongationγ of γ , withγ lying in VelD, the constraint V gives us equations for γ withγ in V . The
general principle is the following.

Definition 6.4 (Nonholonomic Constraints). The phase dynamics and the Euler–Lagrange equations for a constrained
Lagrangian system on a Dirac algebroid D over a vector bundle τ : E → M , and associated with the Lagrangian L : E → R
and the linear (affine) constraint bundle V ⊂ VelD, is the dynamics associated with the same Lagrangian but on the induced
Dirac algebroid DV over E.
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Another type of constraint we can consider in our setting are vakonomic constraints represented by a submanifold (not
necessary an affine subbundle) C of E (cf. [37]). Let us recall that with any submanifold C of E and any function L : C → R
we can associate a Lagrangian submanifold [dLC ] of T∗E defined by

[dLC ] = {η ∈ T∗

yE : y ∈ C and ∀v ∈ TyC ⟨η, v⟩ = ⟨dL(y), v⟩}. (6.7)

We can view [dLC ] as a relation [dLC ] : E −−◃ T∗E. Now we can define the constrained phase dynamics and the Euler–
Lagrange equations completely analogously to unconstrained ones, but replacing the relation dL(E)with [dLC ].

Definition 6.5 (Vakonomic Constraints). The phase dynamics for a constrained Lagrangian system on a Dirac algebroid D
over a vector bundle τ : E → M , associated with the Lagrangian L : E → R and a vakonomic constraints represented by a
submanifold C of E, is the dynamics represented by the subset εD([dLC ]) of TE∗. We say that a curve γ : R → [dLC ] satisfies
the vakonomically constrained Euler–Lagrange equation, if γ is εD-related to an admissible curve in TE∗.

Remark 6.4. Note first that, by definition, the phase dynamics for vakonomic constraints depends on the restriction of the
Lagrangian L to C only. Second, we recover the old dynamics in the unconstrained case, as dL(E) = [dLE]. This can look
strange at first sight that we define a solution of the Euler–Lagrange equations as curves in [dLC ] and not in VelD ⊂ E, but
when the constraints are absent there is no real difference between VelD and [dLVelD ], since the projection πE establishes
a diffeomorphism. In the presence of a constraint we no longer have this diffeomorphism. Of course, we could say that a
curve in VelD satisfies the constrained Euler–Lagrange equation, if it is a projection of an appropriate curve in [dLC ], but our
approach seems to be more natural. It could happen that one curve is the projection of different curves in [dLC ] that is a
geometric interpretation of the presence of ‘Lagrange multipliers’.

7. Examples

Example 7.1 (Mechanics on a General Dirac Algebroid). The very general scheme of the phase or the Euler–Lagrange dynamics
on a Dirac algebroid D ⊂ T E∗ can be described in local coordinates as follows. Let us choose the standard adapted
coordinates (slightly reordered) (x, ξ , ẋ, y, p, ξ̇ ) in T E∗. Starting with a Lagrangian L : E → R we can define the associated
subset [dL] in T E∗ as consisting of points with coordinates for which ξ =

∂L
∂y (x, y) and p = −

∂L
∂x (x, y). Next, we intersect

[dL] with D getting the (implicit) Euler–Lagrange equations defined by the following relations (in coordinates of (4.6)):
x,
∂L
∂y
(x, y)


∈ PhD, η(x, ẋ, y) = 0, (7.1)

ζi


x,−

∂L
∂x
(x, y),

d
dt


∂L
∂y
(x, y)


+ c jik(x)η

k(x, ẋ, y)
∂L
∂yj
(x, y) = 0. (7.2)

Similarly, starting with a Hamiltonian H : E∗
→ R and defining the subset [dH] by putting the constraints y =

∂H
∂ξ
(x, ξ) and

p =
∂H
∂x (x, ξ), we get after intersecting with D the following (implicit) phase dynamics

(x, ξ) ∈ PhD, ηx, ẋ, ∂H
∂ξ
(x, ξ)


= 0, (7.3)

ζi


x,
∂H
∂x
(x, ξ), ξ̇


+ c jik(x)η

k

x, ẋ,

∂H
∂ξ
(x, ξ)


ξj = 0. (7.4)

For the canonical Dirac algebroid DM we have in adapted coordinatesηa = ẋa − ya, ζa = ξ̇a + pa, and ckij = 0, so we get the
standard Euler–Lagrange

dxa

dt
= ya,

d
dt


∂L
∂ya


(x, y) =

∂L
∂xa

(x, y)

and Hamilton

dξa
dt

= −
∂H
∂xa

(x, ξ),
dxb

dt
=
∂H
∂ξb

(x, ξ)

equations. Changing the symbols y, ξ for velocities andmomenta into the standard ones, ẋ, p, we end upwith the traditional
Euler–Lagrange and Hamilton equations.

Example 7.2 (Pontryagin Maximum Principle for General Dirac Algebroids). Starting with a general Dirac algebroid as above,
let us impose a vakonomic constraintC ⊂ E parametrized by f : M×U → C , withU being amanifold of ‘control parameters’.
In local coordinates (x, y) in E and u inU , the parametrization yields y = f (x, u). Note that, classically, for E = TM and y = ẋ,
the constraint C represents the differential equation ẋ = f (x, u).
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A Lagrangian L : C → R may be seen now as a function L : M × U → R, and [dLC ] consists of points (x, y, p, ξ) ∈ T∗E
(we skip the indices) such that

y = f (x, u), p =
∂L
∂x

− ξ
∂ f
∂x
, ξ

∂ f
∂u

=
∂L
∂u
. (7.5)

The above identities define a subset [dLC ] in T E∗ which, similarly as above, leads to implicit Euler–Lagrange equations

(x, ξ) ∈ PhD, η(x, ẋ, f (x, u)) = 0, (7.6)

ζi


x, ξ

∂ f
∂x

−
∂L
∂x
(x, y), ξ̇


+ c jik(x)η

k(x, ẋ, f (x, u))ξ = 0, (7.7)

constrained additionally by

ξ
∂ f
∂u

−
∂L
∂u

= 0. (7.8)

Let us note that Eqs. (7.6) and (7.7) are the same as the Hamilton Eqs. (7.3) and (7.4) with the Hamiltonian

H(x, u, ξ) = ξ · f (x, u)− L(x, u) (7.9)

depending on the parameter u. Moreover, the Eq. (7.8) reads ∂H
∂u (x, u, ξ) = 0 that is an infinitesimal form of the Pontryagin

Maximum Principle (PMP): our solutions choose control parameters which are critical for the Hamiltonian. The whole
picture is an obvious generalization of (PMP), this time for Dirac algebroids, of course in its smooth and infinitesimal version.

Example 7.3 (Mechanics on SkewAlgebroids).Consider theDirac algebroidDΠ associatedwith a linear bivector fieldΠ on E∗,
as described in Example 3.1. Since in this caseDΠ is the graph of themap Π , the relation εDΠ is amap. Hence,ΛL

DΠ = εDΠ ◦dL
is also a mapΛL

DΠ : E → TE∗ which in local coordinates reads

ΛL
DΠ (x

a, yi) =


xa,

∂L
∂yi
(x, y), ρb

k (x)y
k, ckij(x)y

i ∂L
∂yk

(x, y)+ ρa
j (x)

∂L
∂xa

(x, y)

. (7.10)

The Legendre relation λLDΠ is also a map which reads

λLDΠ (x
a, yi) =


xa,

∂L
∂yi
(x, y)


. (7.11)

Let γ (t) = (x(t), y(t)) be a smooth curve in E. Sinceγ = ΛL
DΠ ◦ γ is the only curve in TE∗ which is ΛL

DΠ -related to γ , the
latter satisfies the Euler–Lagrange equation if and only ifγ is admissible, i.e.,γ = ̇γ . In local coordinates,

dxa

dt
(x) = ρa

k (x)y
k,

d
dt


∂L
∂yj


(x, y) = ckij(x)y

i ∂L
∂yk

(x, y)+ ρa
j (x)

∂L
∂xa

(x, y), (7.12)

in full agreement with the Euler–Lagrange equation for Lie (and general skew) algebroids as described in [23,17,8,9,6]. Note
that we do not assume any regularity of the Lagrangian.

As for the Hamilton equations, let us note that also in this case the relation βDΠ is a map, βDΠ = Π ,

Π(xa, ξj, pb, yi) = (xa, ξj, ρb
k (x)y

k, ckij(x)y
jξk − ρa

j (x)pa). (7.13)

The corresponding phase dynamics are explicit and associated with the Hamiltonian vector field

XH(x, ξ) =


ckij(x)ξk

∂H
∂ξi
(x, ξ)− ρa

j (x)
∂H
∂xa

(x, ξ)

∂ξj + ρb

i (x)
∂H
∂ξi
(x, ξ)∂xb , (7.14)

i.e.,

ξ̇j =


ckij(x)ξk

∂H
∂ξi
(x, ξ)− ρa

j (x)
∂H
∂xa

(x, ξ)


ẋb = ρb
i (x)

∂H
∂ξi
(x, ξ).

In the particular case of the canonical Lie algebroid E = TM , we can take for coordinates y in the fiber the coordinates
ẋa induced from the base. As now cabc = 0 (coordinate vector fields commute) and ρa

b = δab (the anchor map is the identity),
we get the traditional Euler–Lagrange equations

dxa

dt
= ẋa,

d
dt


∂L
∂ ẋa


(x, ẋ) =

∂L
∂xa

(x, ẋ),
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as a particular case. Also the Hamilton equations become completely traditional in coordinates ξ replaced by the
corresponding momenta:

ṗa = −
∂H
∂xa

(x, p), ẋb =
∂H
∂pb

(x, p).

Example 7.4 (Mechanics on Presymplectic Manifolds). Consider the Dirac algebroid Dω associated with a linear 2-form ω on
E∗, as described in Example 3.2. Since in this case Dω is the graph of the mapω : TE∗

→ T∗E∗
≃ T∗E, the implicit phase

dynamics associated with a Lagrangian and a Hamiltonian are inverse images of the images of dL and dH , respectively. In
coordinates,

βD[dH] =


(xa, ξi, ẋb, ξ̇j) : ρ i

a(x)ẋ
a
=
∂H
∂ξi
(x, ξ), ckab(x)ξkẋ

b
− ρ i

a(x)ξ̇i =
∂H
∂xa

(x, ξ)


and

εD[dL] =


(xa, ξi, ẋb, ξ̇j) : ∃y

[
ξi =

∂L
∂yi
(x, y), ρ i

a(x)ẋ
a
= yi, ckab(x)ξkẋ

b
− ρ i

a(x)ξ̇i =
∂L
∂xa

(x, y)
]
.

The implicit Euler–Lagrange equations (Euler–Lagrange relations) take the form

ρ i
a(x)

dxa

dt
(x) = yi, ρ i

a(x)
d
dt


∂L
∂yi


(x, y) = ckab(x)

dxb

dt
(x)

∂L
∂yk

(x, y)−
∂L
∂xa

(x, y). (7.15)

Of course, for the canonical symplectic structure ωM = dpa ∧ dxa on E∗
= T∗M we get the classical dynamics as above.

But also in the case of a regular presymplectic form of rank r ,

ω =

−
a≤r

dpa ∧ dxa,

we get the equations for the presymplectic reduction by the characteristic distribution to the reduced symplectic form: the
coordinates xa and ẋa with a > r are simply forgotten,

d
dt


∂L
∂ ẋa


(x, ẋ) = −

∂L
∂xa

(x, ẋ), a ≤ r.

Example 7.5 (Non-Autonomous Systems). Consider the affine Dirac algebroid D0 on E0 = E × R described in Example 3.4,
for theΠ-graph Dirac algebroid D = DΠ on E, as in Example 7.3. In coordinates,

D0 = {(x0, xa, ξi, ẋ0, ẋb, ξ̇j, p0, pc, yk) : ẋ0 = 1, ẋb = ρb
k (x)y

k, ξ̇j = ckij(x)y
iξk − ρa

j (x)pa}.

For a Lagrangian L : E × R → R we get the Tulczyjew differential ΛL
D0

: E0 −−◃ TE∗

0 of L which is the map which in
coordinates reads

ΛL
D0
(x0, xa, yi) = (x0, xa, ξi, ẋ0, ẋb, ξ̇j)

such that

ξi =
∂L
∂yi
(x0, xa, yi), ẋ0 = 1, ẋb = ρb

k (x)y
k, ξ̇j = cklj(x)y

l ∂L
∂yk

(x0, xa, yi)+ ρb
j (x)

∂L
∂xb

(x0, xa, yi).

Identifying x0 with the time parameter t , we get the corresponding Euler–Lagrange equations in the form

dxb

dt
= ρb

k (x)y
k,

d
dt


∂L
∂yj
(t, xa, yi)


= cklj(x)y

l ∂L
∂yk

(t, xa, yi)+ ρb
j (x)

∂L
∂xb

(t, xa, yi).

This is exactly the Euler–Lagrange equation on a skew algebroid for time-dependent Lagrangians. Such equations have been
obtained also as the Euler–Lagrange equations for affgebroids [30,31,33,34,28]. For the canonical Lie algebroid E = TM , we
get

dxa

dt
= ẋa,

d
dt


∂L
∂ ẋa

(t, x, ẋ)


=
∂L
∂xa

(t, x, ẋ).

Example 7.6 (Nonholonomic Constraints). Consider once more the Dirac algebroid DΠ associated with a linear bivector field
Π on E∗, as described in Example 3.1. Consider also a nonholonomic constraint defined by a vector subbundleV of E supported
on a submanifold S ⊂ M . Using coordinates (xa) = (xα, xA) inM , so that S is given locally by xA = 0, and linear coordinates
(yi) in the fibers of E, so that y = (yi) = (yι, yI) and the subbundle V is defined by the constraint yI = 0, on T E∗ we have
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then local coordinates (xa, ẋb, ξ̇l, pc, yι, yI), with decompositions (ξk) = (ξκ , ξK ) and (ξ̇l) = (ξ̇λ, ξ̇L) associated with the
decomposition (yi) = (yι, yI). The Dirac algebroid induced from DΠ by the nonholonomic constraint V in local coordinates
reads

DV
Π = {(xa, ξi, ẋb, ξ̇j, pc, yk) : xA = 0, ẋb = ρb

ι (x)y
ι, ξ̇κ = c jικ(x)y

ιξj − ρa
κ(x)pa, y

I
= 0}.

The Tulczyjew differential ΛL
DV
Π

associated with a Lagrangian L : E → R is defined on V and associates with every

(xα, 0, yι, 0) ∈ V the set

ΛL
DV
Π

(xα, 0, yι, 0) =


(xα, 0, ξi, ẋb, ξ̇j) ∈ TE∗

: ẋb = ρb
ι (x)y

ι, ξi =
∂L
∂yi
(xα, 0, yι, 0),

ξ̇κ = c jικ(x)y
ι ∂L
∂yj
(xα, 0, yι, 0)+ ρa

κ(x)
∂L
∂xa

(xα, 0, yι, 0)

. (7.16)

Note that the coordinates ξ̇A of points from ΛL
DV
Π

(xα, 0, yι, 0) are arbitrary. Curves ΛL
DV
Π

-related to a curve γ (t) =

(xα(t), 0, yι(t), 0) in V have thus arbitrary coordinates ξ̇I , but the remaining coordinates, if the curve is admissible, satisfy
the nonholonomically constrained Euler–Lagrange equations (cf. [17,18,38]):

xA = 0, yI = 0,
dxa

dt
= ρa

ι (x
α, 0)yι, (7.17)

d
dt


∂L
∂yκ

(xα, 0, yι, 0)


= c jικ(x
α, 0)yι

∂L
∂yj
(xα, 0, yι, 0)+ ρa

κ(x
α, 0)

∂L
∂xa

(xα, 0, yι, 0).

Note that a minimal integrability requirement is the first integrability condition for DV
Π , saying that ρA

ι (x
α, 0) = 0.

The constraint V is generalized holonomic if, independently on the Lagrangian, the above equations depend on the
restriction of L to V only. Hence, c Iικ(x

α, 0) = 0 and ρA
κ (x

α, 0) = 0, so that V is generalized holonomic if and only if V
is a subalgebroid of E. In the classical situation of a canonical Lie algebroid TM , the constraint V is generalized holonomic if
and only if V is involutive, for instance V = TM0 for a submanifold M0 in M . This is the traditional understanding of being
holonomic.

Example 7.7 (Affine Constraints). We can perform a similar procedure with an affine nonholonomic constraint instead of
the linear one. Let us distinguish one variable y0 from yI = (y0, yĪ) such that the affine constraint A ⊂ E is defined
by xA = 0, y0 = 1, yĪ = 0. The model vector bundle V = v(A) is as above and, as easily checked, the constrained
Euler–Lagrange equations are

xA = 0, y0 = 1, yI = 0,
dxa

dt
= ρa

0(x
α, 0)+ ρa

ι (x
α, 0)yι,

d
dt


∂L
∂yκ

(xα, 0, yι, 0)


= (c j0κ(x)+ c jικ(x
α, 0)yι)

∂L
∂yj
(xα, 0, yι, 0)+ ρa

κ(x
α, 0)

∂L
∂xa

(xα, 0, yι, 0), (7.18)

exactly as in [17].

Example 7.8 (Rolling Disc). To show how our method of Dirac algebroid works for an explicit constrained system, let us
reconsider the case of a vertical rolling disc on a plane studied in [24]. The position configuration space is the Lie group
N = R2

×S1 ×S1 with coordinates (x1, x2, θ, ϕ). The Lagrangian on TN in the adapted coordinates (x1, x2, θ, ϕ, ẋ1, ẋ2, ϕ̇, θ̇ )
reads

L(x1, x2, ϕ, θ, ẋ1, ẋ2, ϕ̇, θ̇ ) =
1
2
m((ẋ1)2 + (ẋ2)2)+

1
2
J1ϕ̇2

+
1
2
J2θ̇2. (7.19)

The kinematic constraint due to the rolling contact without slipping on the plane is

ẋ1 = Rθ̇ cosϕ, ẋ2 = Rθ̇ sinϕ.

Since the Lagrangian and the constraints are invariant with respect to translation with respect to x1, x2, θ , we have an
obvious Lie algebroid reduction to E = TN/(R2

×S1) = TR×R3 which is a vector bundle of rank 4 over S1 with coordinates

(ϕ, ϕ̇, ẋ1, ẋ2, θ̇ ),

associated with the basis of (global) sections (f1 = ∂ϕ, f2, f3, f4), where f2, f3, f4 come from the reductions of ∂θ , ∂x1 , ∂x2 ,
respectively. The anchor ρ : E → TS1 is the projection onto TS1, and all the basic sections commute. We will also denote
the reduced Lagrangian L, as it takes values exactly like in (7.19).

The constraint subbundle V of E is spanned by the sections e1 = f1 and e2 = f2 + R cosϕ · f3 + R sinϕ · f4, so we can use
the basis e1 = f1, e2, e3 = f3, e4 = f4, and the corresponding coordinates (ϕ, y) on E. The basis (e1, e2, e3, e4) induces the
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coordinate system (ϕ, ξ) in E∗ and adapted coordinates (ϕ, ξ, ϕ̇, ξ̇ ) in TE∗ and (ϕ, ξ, p, y) in T∗E∗. The constraint is now
described by the equations y3 = y4 = 0, but we get non-trivial commutation relations

[e1, e2] = R cosϕ · e4 − R sinϕ · e3.

In other words, the corresponding Poisson tensorΠ on E∗ in the adapted coordinates reads

Π = R(cosϕ · ξ4 − sinϕ · ξ3)∂ξ1 ∧ ∂ξ2 + ∂ξ1 ∧ ∂ϕ ,

and the Dirac structure induced by the constraints is

DV
Π = {(ϕ, ξ, ϕ̇, ξ̇ , p, y) : y3 = y4 = 0, ϕ̇ = y1,

ξ̇1 = Ry2ξ3 sinϕ − Ry2ξ4 cosϕ − p, ξ̇2 = −Ry1ξ3 sinϕ + Ry1ξ4 cosϕ}. (7.20)

Hence, the nonholonomically constrained Euler–Lagrange Eq. (7.17) takes the form

y3 = y4 = 0,
dϕ
dt

= y1, (7.21)

d
dt


∂L
∂y1

(ϕ, y1, y2, 0, 0)


= R sinϕ · y2
∂L
∂y3

(ϕ, y1, y2, 0, 0)− R cosϕ · y2
∂L
∂y4

(ϕ, y1, y2, 0, 0)

+
∂L
∂ϕ
(ϕ, y1, y2, 0, 0),

d
dt


∂L
∂y2

(ϕ, y1, y2, 0, 0)


= −R sinϕ · y1
∂L
∂y3

(ϕ, y1, y2, 0, 0)+ R cosϕ · y1
∂L
∂y4

(ϕ, y1, y2, 0, 0).

Since

ẋ1 = y3 + Ry2 cosϕ, ẋ2 = y4 + Ry2 sinϕ, ϕ̇ = y1, θ̇ = y2,

the Lagrangian in coordinates (ϕ, y) reads

L(ϕ, y1, y2, y3, y4) =
1
2
m((y3)2 + (y4)2)+

1
2
J1(y1)2 +

1
2
(mR2

+ J2)(y2)2 + mRy2(y3 cosϕ + y4 sinϕ)

and, as shown in the straightforward calculations, the Euler–Lagrange Eq. (7.21) takes the form

y3 = y4 = 0,
dϕ
dt

= y1, (mR2
+ J2)

dy2

dt
= 0, J1

dy1

dt
= 0. (7.22)

Going back to the original coordinates, we finally get

ẋ1 = Rθ̇ cosϕ, ẋ2 = Rθ̇ sinϕ, ϕ̈ = 0, θ̈ = 0, (7.23)

with obvious explicit solutions.
If the phase dynamics is concerned, in view of (7.16), we get that εDV

Π
[dL] = ΛL

DV
Π

(V ) is parametrized by (φ, y1, y2) as

follows:

εDV
Π
[dL] = {(ϕ, ξ1, ξ2, ξ3, ξ4, ϕ̇, ξ̇1, ξ̇2, ξ̇3, ξ̇4) : ξ1 = J1y1, ξ2 = (mR2

+ J2)y2,

ξ3 = mRy2 cosϕ, ξ4 = mRy2 sinϕ, ϕ̇ = y1, ξ̇1 = 0, ξ̇2 = 0}.

Here ξ̇3 and ξ̇4 are arbitrary, but the integrability condition allows us to describe them as well. Let us note that the phase
space PhL

D ⊂ E∗ is defined by the equations

ξ3 = µ cosϕ · ξ2, ξ4 = µ sinϕ · ξ2, (7.24)

where µ =
mR

mR2+J2
. Hence, the first integrability condition gives

ξ̇3 = −µξ2 sinϕ · ϕ̇ = −
µ

J1
ξ1ξ2 sinϕ, ξ̇4 = µξ2 cosϕ · ϕ̇ =

µ

J1
ξ1ξ2 cosϕ.

The dynamics are Hamiltonian, since the Hamiltonian

H(ϕ, ξ) =
1
2J1
(ξ1)

2
+

1
2J2
(ξ2 − Rξ3 cosϕ − Rξ4 sinϕ)2 +

1
2m
((ξ3)

2
+ (ξ4)

2)
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defined on E∗ induces the dynamics βDV
Π
[dH] = εDV

Π
[dL]. The equality can be checked by straightforward calculations. Let

us only note that, since

y3 =
∂H
∂ξ3

= −
R
J2
ξ2 sinϕ +


R2

J2
cos2 ϕ +

1
m


ξ3 +

R2

J2
ξ4 sinϕ cosϕ,

y4 =
∂H
∂ξ4

= −
R
J2
ξ2 sinϕ +

R2

J2
ξ3 cosϕ sinϕ +


R2

J2
sin2 ϕ +

1
m


ξ4,

imposing the conditions y3 = 0, y4 = 0 of the Dirac structure, we recover the Hamiltonian constraints (7.24).

8. Concluding remarks

We have introduced the concepts of Dirac and Dirac–Lie algebroid as a natural common generalization of a skew (resp.,
Lie) algebroid and a linear presymplectic structure. Aside from its interesting geometrical structure, Dirac algebroids, as
well as their affine counterparts–affine Dirac algebroids, provide a powerful geometrical tool for description of mechanical
systems by means of generalized Lagrangian and Hamiltonian formalisms.

The kinematic configurations (quasi-velocities) form in this framework a subset of a vector bundle τ : E → M and are
related to the actual velocities from TM by the so-called anchor relation, while the phase space is a subset of the dual bundle,
E∗. The phase dynamics induced by a Lagrangian or a Hamiltonian is an implicit dynamics in the phase space described by
a subset of the tangent bundle TE∗, and the associated Euler–Lagrange equations are defined by an implicit dynamics in E.

We proposed a well-described procedure of inducing a new Dirac algebroid out of a given one by imposing certain
linear constraints in the anchor relation (velocity bundle), that on the Lagrangian formalism level corresponds to imposing
nonholonomic constraints. Since imposing constraints we end up in a Dirac algebroid again, our approach does not really
distinguish between constrained and unconstrained systems, as well as between regular and singular Lagrangians. Since the
use of algebroids already includes reductions to the picture, our approach covers all main examples of mechanical systems:
regular or singular, constrained or not, autonomous or non-autonomous etc.

The Dirac algebroid, especially the Dirac–Lie algebroids, possess a rich and intriguing geometrical structure whose
investigations have been started in the present paper. We are strongly convinced that these objects, as well as their possible
generalization, will allow us to find a proper intrinsic framework also for field theories and other areas of mathematical
physics.
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