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1. Introduction

A projective structure on a smooth oriented manifold is an equivalence class of torsion-free affine connections that have
the same unparameterised curves as geodesics. For projective manifolds (M, [V]), a natural geometric problem is to find
an affine connection in the projective class with Ricci tensor identically zero. This can be seen as a projective analogue of
Einstein’s equation and can be reformulated as solving an overdetermined system of linear partial differential equations,
known as the projective Ricci-flat equation in [1]. A generalisation of the Ricci-flat condition is to find an affine connection
in the projective class with the symmetric part of the Ricci tensor identically zero, i.e. the Ricci tensor is skew-symmetric.
The overdetermined system of partial differential equations associated to this condition, which we call the projective Ein-
stein-Weyl (pEW) equation, now becomes semi-linear. In this paper we derive local obstructions to the existence of solu-
tions to the pEW equation on 2-dimensional projective manifolds. The obstructions are the resultants of polynomials with
coefficients given by invariants of the projective structure. Computing these obstructions and checking that they do not
vanish tell us that the projective surface does not admit any skew-symmetric Ricci tensor. In dimension 2, affine structures
with skew-symmetric Ricci-tensor are of interest, as investigated in [2,3]. We first set up the closed system for the pEW
equation in 2-dimensions, then derive the algebraic constraints that give rise to the obstructions. We conclude with two
examples for which the obstructions do not vanish. Abstract index notation as explained in [4] is used throughout the paper
to describe tensors on the manifold.

2. Projective differential geometry and the pEW equation

In this section we review the projective differential geometry needed for the results. More details can be found in [5].
Let (M", [V]) be a smooth oriented n-dimensional manifold with a smooth projective structure [V] with n > 2. Two
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torsion-free affine connections V and V are projectively equivalent (and in [V]) if and only if they have the same geodesics
up to reparameterisation. Equivalently,

Vawp = Voo — Tawp — Thw, (1)
for some 1-form 7. The curvature of any affine connection V € [V] decomposes as follows:
Rabcd = Wabcd + aacpbd - Sbcpad - 2P[ab]SdC (2)

where Ry, = Ry is the Ricci curvature and Py, = ﬁRab + nz%lea is the projective rho tensor. The Ricci tensor (and
the projective rho tensor Pg,) is not necessarily symmetric. The totally trace-free part of Ry, ; denoted by Wy, is called
the projective Weyl tensor and is a projective invariant, that is to say it is a universal polynomial in the jets of the pro-
jective structure that is invariantly defined as a weighted tensor (the notion of projective weights is discussed later on). A
projectively invariant quantity does not change under a projective change of connection. In dimension 2, the Weyl tensor
Wap© 4 vanishes by symmetry considerations. The skew-symmetric part of the projective rho tensor Pjg is called the Fara-
day 2-form Fgp. It is always closed as a consequence of the Bianchi identity. The condition of a projective structure admitting
skew-symmetric Ricci tensor is equivalent to finding a torsion-free affine connection D € [V] such that the symmetric part
of its projective rho tensor can be made to vanish, i.e. Py = 0. By definition, this condition depends only on the projective
class and is therefore projectively invariant. In this case Py, = Pjq5; = Fqp and formula (2) reduces to

Rap“a = Wap“ g + 84" Fog — 8 Faa — 2Fand4".
Choosing any V from [V], we have

Dowp = Vawp + ctqp + apwg (3)
for some 1-form «, by the projective transformation formula (1). We can use the background connection V, and its asso-

ciated curvature to write down conditions on o, to admit skew-symmetric Ricci tensor. This gives the pEW equation. We
shall work with a preferred background connection V, called special that will be explained in the next section.

2.1. Projective densities and special connections

The projective transformation formula (1) extends to connections acting on n-forms by the Leibniz rule; in particular,
any volume form wp._4 € I'(A") is an n-form and we have

§awbc“.d = Vowpe..q — (N + DYy, g- (4)
In the case that M" is oriented, we define the density line bundle &(w) to be the —%—th root of A" (see [5] for more

details). Sections of & (w) are projective densities of weight w. Given ¢ a section of &(w), we have under a projective change
of connection that
Vo = Vo +w7,0o.

By definition, §(—(n 4+ 1)) = A" = &g and the line bundle & q;(n + 1) is trivial. Let €4 be the tautological section
of this bundle, which satisfies Vqep.. 4 = 0. The inverse of the tautological form €4 identifies the bundle of n-forms A"
with the density line bundle &(—(n + 1)). For projective structures there is always a connection in [V] that we can choose
to preserve any given volume form w4 locally (this connection is necessarily flat on the bundle A"). To see this, given any
connection V € [V], we have Vowyc. ¢ = [LqWpc..a for some 1-form piq, since the bundle of volume forms is 1-dimensional.
Now take the projective transformation to be given by 7, = # ILq,and by (4) we have V,wpc. 4 = 0, where V is projectively

related to the V we started with. Then relabel V as V to get a parallel volume form. For a chosen volume form wy.. 4 the
associated connection will be called special. A special connection has the property that its Ricci tensor is symmetric. Given
any projective structure, we can always locally restrict to this class of special connections and the projective changes will be
restricted to locally exact 1-forms 7. Note however that the connection D, we are looking for with skew-symmetric Ricci
tensor does not lie in the special class of connections. A choice of volume form wy,._q4 is often referred to as a choice of scale.
Any other volume form consistent with the orientation is of the form £2"+!wy.._4 for some positive smooth function £2 and
then by (4) the transformation rule (1) holds with 7, = V, log £2.

2.2. The pEW equation in 2 dimensions

In the 2-dimensional setting, we shall take the tautological section (weighted volume form) €4, of weight 3 to satisfy
€%Cep. = 8% so that €®ey, = 2! = 2. We shall restrict to the class of special connections so that the projective rho tensor
Pay = P(ap) is now symmetric. The condition of a projective surface admitting a torsion-free affine connection with skew-
symmetric Ricci tensor in the projective class is equivalent to solving for the pEW equation

V@) + gty + Pgp = 0 (5)
for V, the special connection in the projective class and «, the 1-form given in (3). Under projective transformations, o,
changes by a gauge &, = o, + Y, where now 75 is locally exact. The pEW equation is an overdetermined system of semi-
linear PDEs, and specialises to the projective Ricci-flat (or projective to Einstein) equation when Vi a5 = 0 (i.e. oq is locally
exact). We note that in dimension 2, the projective Cotton-York tensor defined by Y, := V,Ppc — V,Pg is projectively
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invariant. Using the inverse weighted volume form to dualise, we can write Yy, = %eabYc, where Y, = €Y, is projectively
invariant of weight —3. The vanishing of Y, characterises projectively flat surfaces. Using the weighted volume form to raise
and lower indices, we have Y = €™V}, Y, = Y%_. Let

¢ =2V,Y".
The scalar quantity ¢ has projective weight —6 and transforms projectively as ¢ = ¢ — 67,Y“ Introduce the vector
We =YV, y® — ?Y”. This is projectively invariant of weight —12. To see this, we have

WP = yav,yb — §¢Y” = YV, Y’ — 4T, Y)Y’ — §(¢ —6Y,YHY?

2
YOV,Y? — g¢>yb
= WP,
The density p := Y,W?* is projectively invariant of weight —15.
2.3. Deriving the closed system for pEW on projective surfaces

A common procedure to treat equations such as (5) is through prolongation [6]. This involves expressing first derivatives
of the dependent variables in terms of the variables themselves. Introduce Fy, = V[q0p) as the extra dependent variable.
Using the weighted volume form to dualise, we can write Fy, = %eabF where F = €®F,, is a projective scalar density of
projective weight —3. We can rewrite (5) as

Voo + aqap + Pgp = %fabF- (6)
Differentiating (6) and using (6) to eliminate derivatives of o, gives

%Gabch = VcVoay + %EcaFab — Pegatp + %GchO‘a — oqPey — 20qapore + VcPgp.
Skewing with the weighted volume form €%, we find that

VoF = —3Fa, — Y, (7
is a consequence of the original equation. Egs. (6) and (7) form the first order closed system for the pEW equation, and from
this we can derive algebraic constraints for (5) to hold by further differentiating the system.

3. Statement of results

In the flat case when Y, = 0, we necessarily have F = 0 by further differentiating (7) and skewing (see Eq. (11)). The
1-form « is therefore exact, and Eq. (5) specialises to the projective Ricci-flat equation. We shall now restrict our attention
to non-flat projective surfaces, that is one with Y, non-zero. This ensures that F # 0. It turns out in deriving the constraint
equations for (5) to hold we have to distinguish between the cases where p vanishes or not. Let Res(P(t), Q(t)) be the
resultant of polynomials P(t) and Q (t) in the single variable t. Res(P(t), Q(t)) = 0 is a necessary and sufficient condition
for P(t) and Q (t) to share a common root. We have the following.

Theorem 3.1. Let (M?, [V]) be a projective surface with p # 0. Suppose M? admits a solution to (5). Then there exist polynomials
Pi(t), Py(t), P5(t) in the single variable t with coefficients given by invariants of the projective structure such that whent = F,

P{(F) = P,(F) = P3(F) =0
must hold.

The polynomial constraints P;(F) = P,(F) = P3(F) = 0 are explicitly computed in Section 4. As a corollary, we obtain local
obstructions for there to be solutions for (5).

Corollary 3.2. Let (M2, [V]) be a projective surface with p # 0. Suppose M? admits a solution to (5). Then
Res(P1(t), P2(t)) = Res(P2(t), P3(t)) = Res(P1(t), P3(t)) =0
must hold.

The case where p = 0 is discussed in Section 5. We have the following.

Theorem 3.3. Let (M2, [V]) be a projective structure with p = 0. Suppose M? admits a solution to (5). Then
15m? + 3fmk — hk* = 0, (8)
kY*Vom — m(Y*Vyk + k¢ — 6m) = 0 (9)

must hold, where f, h, k, m are further quantities obtained from the projective structure on M? to be defined later in Section 5.
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4. Proof of Theorem 3.1

We shall now derive the polynomial equations P;(F) = 0, P,(F) = 0, P3(F) = 0 that arise for (5) to hold. Differentiating
(7) and using the closed system for the pEW equation gives

3
VaVbF = 9Fozaab + 3YaO[b — EeabFz + 3ocaabF + 3PabF — VaYb (10)
and skewing with the weighted volume form € gives
3Y 4+ 3F2 + VY9 =0 (11)
as the first constraint of the system and we can rewrite Eq. (11) as
oY = —F* — f. (12)
6
Differentiating (12) and using (6), (7) and (12), we find that
5 YV,
agW® = —5F* + %q&z + PupY%YP — 7""5.
Let
5¢2 YV,
L= —— + 3P, YY" — .
g ot 2
We thus have
£
W = —5F* + 3 (13)
as our second constraint. We can now solve for ¢, assuming that p is non-zero. It is given by
1 (¢ 1
=— (= +3F2 )W, — — (15F* = £) Y,. 14
e 3p<2+ ) 3 )Y (1)

Substituting (14) back into Eq. (5) yields further constraints on F. They are polynomial equations P;(F) = 0, P,(F) = 0,
P3(F) = 0 that arise for (5) to hold. The first polynomial constraint P;(F) = 0 comes from computing F = V,a® using (14).

It is given by
Y'V,p 5 3wy
—90F5 + 15 (7‘”0 - —‘b) F4 — <7‘”0 60— 3vawa> F
P P

Py(F) 3

WV, + ?

—9,0F+<
=0.

J/ wev, Yev,
VaWa+YaVa€+¢——¢ ap_e a:0>
2 2p p

It can be verified that the coefficients appearing in the polynomial P;(t) are all projectively invariant. For example, under
projective rescalings, the coefficient of the degree 4 term in P;(t) transforms as follows:

" Vo 5¢ s YV 59 15 (Y°Vap — 157" 5(p — 67u¥%)
0 2 P 2 0 2

Yoy 5
15 ( @ 151,y — 7¢ 4 15TaYa>
o

YV 5
15 ( a0 _ —d’) .
0 2
It is therefore projectively invariant. The second and third polynomial constraints come from substituting (14) back into
(5) and contracting with W*W?" and W?Y? respectively. Another possible contraction with Y?Y? yields an equation that is
identically zero. Evaluating WW®V,ap + aqay WW?P + Py, WW? = 0 for o, in (14) gives
—5WeYeiV,W,;  50¢ WEWIV, W,
<7“’d + T) F* 4 20pF° + <#) F?
WeWaV, W, 02 LWeYIV W, WL
L PWWIVWa o wewe + & e :
6p0 9 3p 3

P,(F) = —275F% 4+
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while evaluating WeY?V qap) + aqay WYP + Py WAYP = 0 gives
—5YY(WEV,Y, + YV W,) 25¢ 4
2p 6
20 WEWIVLY, + YIV,W, wev Wbwev,y,
+ (= 4+ ( eYd + d e) F2+pF— e¢+¢ elp
3 2p 12 12p

LWEYV,Y, YeV, /0 weyev,w, ¢ LYbyev,w,
+7”+Paeweya+ e +¢ a e_7¢+70b
6p 6 12p 18 6p

P5(F) = —40F% + (

=0.
Replacing F with the indeterminate t, we obtain polynomials P;(t), P,(t), P3(t) with coefficients given by projectively
invariant densities. This proves Theorem 3.1. We shall now explain a more concise way of extracting the obstructions.

4.1. Concise way of extracting obstructions

We can eliminate the single odd degree term so that even degree terms remain in P;(t), P> (t), P3(t). Namely, define
Qi(t%) = =206°P3(6) + Po(t),  Qu(t?) = —9Ps(6) — Py (1),
2 20 ,
Qs(t7) = 35t P1(t) — Po(0).

Then the three polynomials Q;(t?), Q,(t?), Q5(t?) will be quartic, cubic and quartic polynomials of t? respectively since
only even powers of t remain. This allows the obstructions to be extracted easily since now the resultant of any of these 2
polynomials will at most be the determinant of a 8 by 8 matrix. Let

Pi(t) = —90t® + a;t* + ayt> — 9pt + a3,

Py(t) = —275t% + bit* 4+ 20pt> + byt? + bs,

P5(t) = —40t® + c1t* + cot? + pt +c3,

where
Yev 5
4y = 15( L —d’)
0 2
3WaY,
a = — (7(1/) =+ 6f — BVGW">
wev Y, wev Yev
a3 = :id +?VGWG+YaVaE+£ W Ve — P
2 2 2 2p )
—5Weydv,w,;  50¢
bj=——= 4+
P 3
WeWv, W,
hp=——°1¢
o
WeWav, W, 022 IWeYIV, W, WeVe
by = IWWVWa | pyeya 1 £ 4 =
6p 9 3p 3
—5YU(WeV,Y, + YV, W,) 25¢
C1 = -
2p 6
20 WEWIV,Y, + YIVW,)
G =——++
3 2p
wev WhWev,Y, £eWeYeV,y, Yev e WeYev,w, ¢ eybyev,w
€3 = — e¢+¢ eb+ ea+Paeweya+ e+¢ ae_7¢+ ab’
12 12p 6p 6 12p 18 6p

then a computation gives
0:(X) = 525X* — 20c1X3 + (b; — 20¢3)X? + (by — 20¢3)X + bs,
02(X) = 450X> — (9¢; + a1)X? — (9¢3 + a2)X — (9¢3 + a3),

_a7sxt— Dax (2 2 (20 _
Q3(X)—475X 9a1X 9(12+b1 X 9(13+b2 X b3,
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where X = t2. The local obstructions are therefore
Q12 = Res(Q1(X), Q2(X))
525 —20c¢q (by —20cy)  (by — 20c3) bs 0 0
0 525 —20C1 (b] — 20C2) (bz — 20C3) b3 0
0 0 525 —ZOC] (b] — 20C2) (bz — 20C3) b3
= |[450 —(9¢1+a;) —(9c;+a) —(9cz+asz) 0 0 0 ,
0 450 —(9C1 + a1) —(9C2 + az) —(9C3 + (13) 0 0
0 0 450 —O9c14+a;) —Oc; +a) —(9c3+ as) 0
0 0 0 450 —(QC] + (1]) —(9C2 + az) —(9C3 + (13)
Q23 = Res(Q2(X), Q3(X))
450 —(9C1 + (11) —(9C2 + (12) —(9C3 + (13) 0 0 0
0 450 —(9C] + 01) —(9C2 + (12) —(9C3 + (13) 0 0
0 0 450 —(9C] + a1) —(9C2 + (12) —(9C3 + (13) 0
0 0 0 450 —(9C1 + a1) —(9C2 + az) —(9C3 + (13)
475 20 20 +b 20 +b b 0 0
— ——a —| —a — | —a —
= g @ 9 %2 1 g a3t b2 3 ,
0 475 20 20 +b 20 +b b 0
——a — | —a — | —a -
9 1 9 2 1 9 3 2 3
0 0 475 20 20 +b 20 +b b
——a — | —a — | —a —
9 1 9 2 1 9 3 2 3
and
Q13 = Res(Q1(X), Q3(X))
525 —20c¢; (b] — 20C2) (b2 — 20C3) b3 0 0 0
0 525 —20c; (by — 20cy) (by — 20c3) bs 0 0
0 0 525 —20c¢; (b] — 20C2) (bz — 20C3) b3 0
0 0 0 525 —20c; (b] — 20C2) (bz — 20C3) b3
475 20(1 20(1 +b 20a +b b 0] 0 0
_ ) 1 ) 2 1 9 3 2 3
- 20 20 20 ’
0 475 —501 — <E(12 + b] — <?(13 + bz —b3 0 0
20 20 20
0 0 475 —301 — (Eaz +b1 — §a3+b2 —b3 0
0 0 0 475 20a 20(1 +b 20(1 +b b
9 1 9 2 1 9 3 2 3

and the knowledge of the values of a1, a, as, by, by, bs, c1, ¢2, c3 ata point will let us determine the values of the obstruction
at that point.

5. Proof of Theorem 3.3

In the case where p = 0, the vectors W9 and Y* are linearly dependent everywhere on M2 and we can express W¢ = fY¢
for some density f of weight —6. Under the conditions that both Y* # 0 and o = 0 hold on the projective structure, the
quantity f is projectively invariant but not in the classical sense since it is rational in the jets of the projective structure.
Constraint (13) becomes

faaya

¢
—5F* + —,
3

upon which multiplying (12) by f and eliminating ¢, Y gives the quartic equation

15F* — 3fF% — (z + %‘P) =0. (15)
Leth=¢+ f7¢ Differentiating (15) gives

60F>(V,F) — 6fF (VoF) — 3(Vof )F2 — V,h = 0,
which we contract with Y* and use (7) and (12) to get

180F® + (30¢ — 18f)F* — 3(¢f + YOVf)F? — Y'V,h = 0. (16)



198 M. Randall / Journal of Geometry and Physics 76 (2014) 192-199

Multiplying (15) by 12F? gives
180F% — 36fF* — 12hF? = 0,
which can be used to eliminate the term of degree 6 in (16) to obtain
(309 + 18f)F* — 3(¢f + YOV,f — 4h)F? — YOV,h = 0. (17)
Using (15) once more, we can further eliminate the term of degree 4 in (17) to obtain the quadratic equation
6hf
5

18
<3¢>f —3Y%V,f + 12h + ?fz) F? + — Y*Vyh + 2¢h = 0. (18)

Let us call
a 18 2
k=3¢f —3Y Vaf—i-lzh—i—?f ,
6hf

m= ? — Yavah + 2¢h,

so that (18) becomes
kF* +m = 0. (19)
Substituting F> = —% given by (19) into (15) gives

s (2 4 (2) n=o.

and we clear the denominator k? to obtain the vanishing of the first obstruction (8) in Theorem 3.3. Differentiating (19) gives
(Vak)F? + 2FkV,4F + Vym = 0,

which contracted into Y? and again using (7) and (12) gives
6kF* + (k¢p + YOV k)F? + YV,m = 0.

Again substituting (19) and clearing denominator k yields
6m? — m(kp + Y°Vak) 4+ kYV,m = kY'Vym — m(Y*Vok + k¢p — 6m) = 0,

which is the desired second obstruction (9) in Theorem 3.3.

6. Examples

In this section we give 2 different projective structures on R? that yield non-vanishing obstructions, one with the
projective invariant p # 0 and the other with p = 0.

6.1. Example with p # 0 and non-vanishing obstruction

This projective structure on R? has the connection coefficients given by
Ty, = xy, m, = -y, m, =1, =}, = 113, = 0.
We compute the polynomials P;(t), P,(t) and P3(t) at an arbitrary point p € R? where p(p) # 0. Taking p to be given in
local coordinates by (x, y) = (1, 1), we find p(p) = 328, and the polynomials at the point p are given by

. 185760 , 528608 , 134912
Py(t) = —90t”> + tt — t= — 2952t — s
328 328 328
g 13774080 , ; 601856 , 523957248
Py(t) = —275¢% + ———""* 4 6560t — t ,
2952 8856 26568
Py(t) = 4065 + 30960 , 125360 2 4308t + 31603200
T 328 984 26568
Using the software MAPLE, we find that
0u(p) = 1457890459574161592339200000
12(P) = 1681 ,
0is(p) = 188610437798501965389961756672000000000
13(P) = 452190681 ’
1457890459574161592339200000
Q(p) = 1631 .

At the point p and hence near it the quantities p(p), Q12(p), Q13(p) and Q,3(p) are non-zero, and so there are no solutions
to pEW near p. Moreover, since Q12(p), Q13(p) and Qy3(p) are polynomials in p we can conclude that there is no solution to
pEW anywhere on R?, as the set where these polynomials are non-zero is Zariski open and hence dense in R?.
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6.2. Example with p = 0 and non-vanishing obstruction

This projective structure on R? has the connection coefficients given by

x? x? x?
H1]1:_€a 212:_57 22123, H121:H211:H222:0-
A computation shows that p = 0. With the help of MATLAB, we find that the obstructions are
208 4248 349776
15m? + 3fmk — hk* = ?x” + ——x7 —768x** — —————x*' +61008x'® + 1468824x"

—1651200x"? — 1164000x° + 1543200x% — 212000x> + 24000

and
32 144 117408 311104
k(YOVam) — m(YOVak + k¢p — 6m) = — x>0 + —x*7 — 208x** — 1+ x'® 4+ 136208x1°
75 25 25 5
. 0 s 824000 ,
+71536x"? — 996160x° + 978560x° — ———— x> + 27200.

We conclude that this projective structure does not admit any solution to pEW locally.
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