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a b s t r a c t

The equation determining whether a projective structure admits a connection in its given
projective class that has skew-symmetric Ricci tensor is an overdetermined system of
semi-linear partial differential equationswhichwe call the projective Einstein–Weyl (pEW)
equation. In 2-dimensions, we give local obstructions for projective surfaces to admit such
a connection in its projective class. The obstructions are the resultants of polynomial equa-
tions that have to be satisfied for there to admit any pEW solution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A projective structure on a smooth oriented manifold is an equivalence class of torsion-free affine connections that have
the same unparameterised curves as geodesics. For projective manifolds (M, [∇]), a natural geometric problem is to find
an affine connection in the projective class with Ricci tensor identically zero. This can be seen as a projective analogue of
Einstein’s equation and can be reformulated as solving an overdetermined system of linear partial differential equations,
known as the projective Ricci-flat equation in [1]. A generalisation of the Ricci-flat condition is to find an affine connection
in the projective class with the symmetric part of the Ricci tensor identically zero, i.e. the Ricci tensor is skew-symmetric.
The overdetermined system of partial differential equations associated to this condition, which we call the projective Ein-
stein–Weyl (pEW) equation, now becomes semi-linear. In this paper we derive local obstructions to the existence of solu-
tions to the pEW equation on 2-dimensional projective manifolds. The obstructions are the resultants of polynomials with
coefficients given by invariants of the projective structure. Computing these obstructions and checking that they do not
vanish tell us that the projective surface does not admit any skew-symmetric Ricci tensor. In dimension 2, affine structures
with skew-symmetric Ricci-tensor are of interest, as investigated in [2,3]. We first set up the closed system for the pEW
equation in 2-dimensions, then derive the algebraic constraints that give rise to the obstructions. We conclude with two
examples for which the obstructions do not vanish. Abstract index notation as explained in [4] is used throughout the paper
to describe tensors on the manifold.

2. Projective differential geometry and the pEW equation

In this section we review the projective differential geometry needed for the results. More details can be found in [5].
Let (Mn, [∇]) be a smooth oriented n-dimensional manifold with a smooth projective structure [∇] with n ≥ 2. Two
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torsion-free affine connections ∇ and∇ are projectively equivalent (and in [∇]) if and only if they have the same geodesics
up to reparameterisation. Equivalently,∇aωb = ∇aωb − Υaωb − Υbωa (1)
for some 1-form Υa. The curvature of any affine connection ∇ ∈ [∇] decomposes as follows:

Rab
c
d = Wab

c
d + δa

cPbd − δb
cPad − 2P[ab]δd

c (2)

where Rab = Rca
c
b is the Ricci curvature and Pab =

n
n2−1

Rab +
1

n2−1
Rba is the projective rho tensor. The Ricci tensor (and

the projective rho tensor Pab) is not necessarily symmetric. The totally trace-free part of Rab
c
d denoted by Wab

c
d is called

the projective Weyl tensor and is a projective invariant, that is to say it is a universal polynomial in the jets of the pro-
jective structure that is invariantly defined as a weighted tensor (the notion of projective weights is discussed later on). A
projectively invariant quantity does not change under a projective change of connection. In dimension 2, the Weyl tensor
Wab

c
d vanishes by symmetry considerations. The skew-symmetric part of the projective rho tensor P[ab] is called the Fara-

day 2-form Fab. It is always closed as a consequence of the Bianchi identity. The condition of a projective structure admitting
skew-symmetric Ricci tensor is equivalent to finding a torsion-free affine connection D ∈ [∇] such that the symmetric part
of its projective rho tensor can be made to vanish, i.e. P(ab) = 0. By definition, this condition depends only on the projective
class and is therefore projectively invariant. In this case Pab = P[ab] = Fab and formula (2) reduces to

Rab
c
d = Wab

c
d + δa

cFbd − δb
cFad − 2Fabδdc .

Choosing any ∇ from [∇], we have
Daωb = ∇aωb + αaωb + αbωa (3)

for some 1-form αa by the projective transformation formula (1). We can use the background connection ∇a and its asso-
ciated curvature to write down conditions on αa to admit skew-symmetric Ricci tensor. This gives the pEW equation. We
shall work with a preferred background connection ∇a called special that will be explained in the next section.

2.1. Projective densities and special connections

The projective transformation formula (1) extends to connections acting on n-forms by the Leibniz rule; in particular,
any volume form ωbc...d ∈ Γ (Λn) is an n-form and we have∇aωbc...d = ∇aωbc...d − (n + 1)Υaωbc...d. (4)
In the case that Mn is oriented, we define the density line bundle E(w) to be the −

w
n+1 -th root of Λn (see [5] for more

details). Sections of E(w) are projective densities of weightw. Given σ a section of E(w), we have under a projective change
of connection that∇aσ = ∇aσ + wΥaσ .

By definition, E(−(n + 1)) = Λn
= E[bc...d] and the line bundle E[bc...d](n + 1) is trivial. Let ϵbc...d be the tautological section

of this bundle, which satisfies ∇aϵbc...d = 0. The inverse of the tautological form ϵbc...d identifies the bundle of n-forms Λn

with the density line bundle E(−(n + 1)). For projective structures there is always a connection in [∇] that we can choose
to preserve any given volume formωbc...d locally (this connection is necessarily flat on the bundle Λn). To see this, given any
connection ∇ ∈ [∇], we have ∇aωbc...d = µaωbc...d for some 1-form µa, since the bundle of volume forms is 1-dimensional.
Now take the projective transformation to be given byΥa =

1
n+1µa, and by (4)we have∇aωbc...d = 0,where∇ is projectively

related to the ∇ we started with. Then relabel ∇ as ∇ to get a parallel volume form. For a chosen volume form ωbc...d the
associated connection will be called special. A special connection has the property that its Ricci tensor is symmetric. Given
any projective structure, we can always locally restrict to this class of special connections and the projective changes will be
restricted to locally exact 1-forms Υa. Note however that the connection Da we are looking for with skew-symmetric Ricci
tensor does not lie in the special class of connections. A choice of volume form ωbc...d is often referred to as a choice of scale.
Any other volume form consistent with the orientation is of the form Ωn+1ωbc...d for some positive smooth function Ω and
then by (4) the transformation rule (1) holds with Υa = ∇a logΩ .

2.2. The pEW equation in 2 dimensions

In the 2-dimensional setting, we shall take the tautological section (weighted volume form) ϵab of weight 3 to satisfy
ϵacϵbc = δb

a so that ϵabϵab = 2! = 2. We shall restrict to the class of special connections so that the projective rho tensor
Pab = P(ab) is now symmetric. The condition of a projective surface admitting a torsion-free affine connection with skew-
symmetric Ricci tensor in the projective class is equivalent to solving for the pEW equation

∇(aαb) + αaαb + Pab = 0 (5)
for ∇a the special connection in the projective class and αa the 1-form given in (3). Under projective transformations, αa
changes by a gaugeαa = αa + Υa where now Υa is locally exact. The pEW equation is an overdetermined system of semi-
linear PDEs, and specialises to the projective Ricci-flat (or projective to Einstein) equation when ∇[aαb] = 0 (i.e. αa is locally
exact). We note that in dimension 2, the projective Cotton–York tensor defined by Yabc := ∇aPbc − ∇bPac is projectively
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invariant. Using the inverseweighted volume form to dualise, we canwrite Yabc =
1
2ϵabYc , where Ya = ϵbcYbca is projectively

invariant of weight−3. The vanishing of Ya characterises projectively flat surfaces. Using the weighted volume form to raise
and lower indices, we have Y a

= ϵabYb, Yb = Y aϵab. Let
φ = 2∇aY a.

The scalar quantity φ has projective weight −6 and transforms projectively as φ = φ − 6ΥaY a. Introduce the vector
W a

= Y b
∇bY a

−
2φ
3 Y a. This is projectively invariant of weight −12. To see this, we have

W b
= Y a∇aY b −

2
3
φY b

= Y a
∇aY b

− 4(ΥaY a)Y b
−

2
3
(φ − 6ΥaY a)Y b

= Y a
∇aY b

−
2
3
φY b

= W b.

The density ρ := YaW a is projectively invariant of weight −15.

2.3. Deriving the closed system for pEW on projective surfaces

A common procedure to treat equations such as (5) is through prolongation [6]. This involves expressing first derivatives
of the dependent variables in terms of the variables themselves. Introduce Fab = ∇[aαb] as the extra dependent variable.
Using the weighted volume form to dualise, we can write Fab =

1
2ϵabF where F = ϵabFab is a projective scalar density of

projective weight −3. We can rewrite (5) as

∇aαb + αaαb + Pab =
1
2
ϵabF . (6)

Differentiating (6) and using (6) to eliminate derivatives of αa gives
1
2
ϵab∇cF = ∇c∇aαb +

1
2
ϵcaFαb − Pcaαb +

1
2
ϵcbFαa − αaPcb − 2αaαbαc + ∇cPab.

Skewing with the weighted volume form ϵac , we find that
∇aF = −3Fαa − Ya (7)

is a consequence of the original equation. Eqs. (6) and (7) form the first order closed system for the pEW equation, and from
this we can derive algebraic constraints for (5) to hold by further differentiating the system.

3. Statement of results

In the flat case when Ya = 0, we necessarily have F = 0 by further differentiating (7) and skewing (see Eq. (11)). The
1-form αa is therefore exact, and Eq. (5) specialises to the projective Ricci-flat equation. We shall now restrict our attention
to non-flat projective surfaces, that is one with Ya non-zero. This ensures that F ≠ 0. It turns out in deriving the constraint
equations for (5) to hold we have to distinguish between the cases where ρ vanishes or not. Let Res(P(t),Q (t)) be the
resultant of polynomials P(t) and Q (t) in the single variable t . Res(P(t),Q (t)) = 0 is a necessary and sufficient condition
for P(t) and Q (t) to share a common root. We have the following.

Theorem 3.1. Let (M2, [∇]) be a projective surfacewithρ ≠ 0. SupposeM2 admits a solution to (5). Then there exist polynomials
P1(t), P2(t), P3(t) in the single variable t with coefficients given by invariants of the projective structure such that when t = F ,

P1(F) = P2(F) = P3(F) = 0

must hold.

The polynomial constraints P1(F) = P2(F) = P3(F) = 0 are explicitly computed in Section 4. As a corollary, we obtain local
obstructions for there to be solutions for (5).

Corollary 3.2. Let (M2, [∇]) be a projective surface with ρ ≠ 0. Suppose M2 admits a solution to (5). Then

Res(P1(t), P2(t)) = Res(P2(t), P3(t)) = Res(P1(t), P3(t)) = 0

must hold.

The case where ρ = 0 is discussed in Section 5. We have the following.

Theorem 3.3. Let (M2, [∇]) be a projective structure with ρ = 0. Suppose M2 admits a solution to (5). Then

15m2
+ 3fmk − hk2 = 0, (8)

kY a
∇am − m(Y a

∇ak + kφ − 6m) = 0 (9)

must hold, where f , h, k,m are further quantities obtained from the projective structure on M2 to be defined later in Section 5.
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4. Proof of Theorem 3.1

We shall now derive the polynomial equations P1(F) = 0, P2(F) = 0, P3(F) = 0 that arise for (5) to hold. Differentiating
(7) and using the closed system for the pEW equation gives

∇a∇bF = 9Fαaαb + 3Yaαb −
3
2
ϵabF 2

+ 3αaαbF + 3PabF − ∇aYb (10)

and skewing with the weighted volume form ϵab gives

3αaY a
+ 3F 2

+ ∇aY a
= 0 (11)

as the first constraint of the system and we can rewrite Eq. (11) as

αaY a
= −F 2

−
φ

6
. (12)

Differentiating (12) and using (6), (7) and (12), we find that

αaW a
= −5F 4

+
5
36

φ2
+ PabY aY b

−
Y a

∇aφ

6
.

Let

ℓ =
5φ2

12
+ 3PacY aY c

−
Y a

∇aφ

2
.

We thus have

αaW a
= −5F 4

+
ℓ

3
(13)

as our second constraint. We can now solve for αa assuming that ρ is non-zero. It is given by

αa =
1
3ρ


φ

2
+ 3F 2


Wa −

1
3ρ


15F 4

− ℓ

Ya. (14)

Substituting (14) back into Eq. (5) yields further constraints on F . They are polynomial equations P1(F) = 0, P2(F) = 0,
P3(F) = 0 that arise for (5) to hold. The first polynomial constraint P1(F) = 0 comes from computing F = ∇aα

a using (14).
It is given by

P1(F) = −90F 6
+ 15


Y a

∇aρ

ρ
−

5φ
2


F 4

−


3W a

∇aρ

ρ
+ 6ℓ − 3∇aW a


F 2

− 9ρF +


W a

∇aφ

2
+

φ

2
∇aW a

+ Y a
∇aℓ +

φℓ

2
−

φW a
∇aρ

2ρ
− ℓ

Y a
∇aρ

ρ


= 0.

It can be verified that the coefficients appearing in the polynomial P1(t) are all projectively invariant. For example, under
projective rescalings, the coefficient of the degree 4 term in P1(t) transforms as follows:

15


Y a∇aρ

ρ
−

5φ
2


= 15


Y a∇aρ

ρ
−

5φ
2


= 15


Y a

∇aρ − 15ΥaY aρ

ρ
−

5(φ − 6ΥaY a)

2


= 15


Y a

∇aρ

ρ
− 15ΥaY a

−
5φ
2

+ 15ΥaY a


= 15

Y a

∇aρ

ρ
−

5φ
2


.

It is therefore projectively invariant. The second and third polynomial constraints come from substituting (14) back into
(5) and contracting with W aW b and W aY b respectively. Another possible contraction with Y aY b yields an equation that is
identically zero. EvaluatingW aW b

∇aαb + αaαbW aW b
+ PabW aW b

= 0 for αa in (14) gives

P2(F) = −275F 8
+


−5W eY d

∇eWd

ρ
+

50ℓ
3


F 4

+ 20ρF 3
+


W eW a

∇eWa

ρ


F 2

+
φW eW a

∇eWa

6ρ
+ PeaW eW a

+
ℓ2

9
+

ℓW eY d
∇eWd

3ρ
+

W e
∇eℓ

3
= 0,
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while evaluatingW aY b
∇(aαb) + αaαbW aY b

+ PabW aY b
= 0 gives

P3(F) = −40F 6
+


−5Y a(W e

∇eYa + Y e
∇aWe)

2ρ
−

25φ
6


F 4

+


2ℓ
3

+
W e(W d

∇eYd + Y d
∇dWe)

2ρ


F 2

+ ρF −
W e

∇eφ

12
+

φW bW e
∇eYb

12ρ

+
ℓW eY a

∇eYa

6ρ
+ PaeW eY a

+
Y e

∇eℓ

6
+

φW eY a
∇aWe

12ρ
−

ℓφ

18
+

ℓY bY a
∇aWb

6ρ
= 0.

Replacing F with the indeterminate t , we obtain polynomials P1(t), P2(t), P3(t) with coefficients given by projectively
invariant densities. This proves Theorem 3.1. We shall now explain a more concise way of extracting the obstructions.

4.1. Concise way of extracting obstructions

We can eliminate the single odd degree term so that even degree terms remain in P1(t), P2(t), P3(t). Namely, define

Q1(t2) = −20t2P3(t) + P2(t), Q2(t2) = −9P3(t) − P1(t),

Q3(t2) = −
20
9

t2P1(t) − P2(t).

Then the three polynomials Q1(t2), Q2(t2), Q3(t2) will be quartic, cubic and quartic polynomials of t2 respectively since
only even powers of t remain. This allows the obstructions to be extracted easily since now the resultant of any of these 2
polynomials will at most be the determinant of a 8 by 8 matrix. Let

P1(t) = −90t6 + a1t4 + a2t2 − 9ρt + a3,
P2(t) = −275t8 + b1t4 + 20ρt3 + b2t2 + b3,
P3(t) = −40t6 + c1t4 + c2t2 + ρt + c3,

where

a1 = 15

Y a

∇aρ

ρ
−

5φ
2


a2 = −


3W a

∇aρ

ρ
+ 6ℓ − 3∇aW a


a3 =


W a

∇aφ

2
+

φ

2
∇aW a

+ Y a
∇aℓ +

φℓ

2


−

φW a
∇aρ

2ρ
− ℓ

Y a
∇aρ

ρ

b1 =
−5W eY d

∇eWd

ρ
+

50ℓ
3

b2 =
W eW a

∇eWa

ρ

b3 =
φW eW a

∇eWa

6ρ
+ PeaW eW a

+
ℓ2

9
+

ℓW eY d
∇eWd

3ρ
+

W e
∇eℓ

3

c1 =
−5Y a(W e

∇eYa + Y e
∇aWe)

2ρ
−

25φ
6

c2 =
2ℓ
3

+
W e(W d

∇eYd + Y d
∇dWe)

2ρ

c3 = −
W e

∇eφ

12
+

φW bW e
∇eYb

12ρ
+

ℓW eY a
∇eYa

6ρ
+ PaeW eY a

+
Y e

∇eℓ

6
+

φW eY a
∇aWe

12ρ
−

ℓφ

18
+

ℓY bY a
∇aWb

6ρ
,

then a computation gives

Q1(X) = 525X4
− 20c1X3

+ (b1 − 20c2)X2
+ (b2 − 20c3)X + b3,

Q2(X) = 450X3
− (9c1 + a1)X2

− (9c2 + a2)X − (9c3 + a3),

Q3(X) = 475X4
−

20
9

a1X3
−


20
9

a2 + b1


X2

−


20
9

a3 + b2


X − b3,



M. Randall / Journal of Geometry and Physics 76 (2014) 192–199 197

where X = t2. The local obstructions are therefore

Q12 = Res(Q1(X),Q2(X))

=



525 −20c1 (b1 − 20c2) (b2 − 20c3) b3 0 0
0 525 −20c1 (b1 − 20c2) (b2 − 20c3) b3 0
0 0 525 −20c1 (b1 − 20c2) (b2 − 20c3) b3

450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3) 0 0 0
0 450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3) 0 0
0 0 450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3) 0
0 0 0 450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3)


,

Q23 = Res(Q2(X),Q3(X))

=



450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3) 0 0 0
0 450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3) 0 0
0 0 450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3) 0
0 0 0 450 −(9c1 + a1) −(9c2 + a2) −(9c3 + a3)

475 −
20
9

a1 −


20
9

a2 + b1


−


20
9

a3 + b2


−b3 0 0

0 475 −
20
9

a1 −


20
9

a2 + b1


−


20
9

a3 + b2


−b3 0

0 0 475 −
20
9

a1 −


20
9

a2 + b1


−


20
9

a3 + b2


−b3


,

and

Q13 = Res(Q1(X),Q3(X))

=



525 −20c1 (b1 − 20c2) (b2 − 20c3) b3 0 0 0
0 525 −20c1 (b1 − 20c2) (b2 − 20c3) b3 0 0
0 0 525 −20c1 (b1 − 20c2) (b2 − 20c3) b3 0
0 0 0 525 −20c1 (b1 − 20c2) (b2 − 20c3) b3

475 −
20
9

a1 −


20
9

a2 + b1


−


20
9

a3 + b2


−b3 0 0 0

0 475 −
20
9

a1 −


20
9

a2 + b1


−


20
9

a3 + b2


−b3 0 0

0 0 475 −
20
9

a1 −


20
9

a2 + b1


−


20
9

a3 + b2


−b3 0

0 0 0 475 −
20
9

a1 −


20
9

a2 + b1


−


20
9

a3 + b2


−b3



,

and the knowledge of the values of a1, a2, a3, b1, b2, b3, c1, c2, c3 at a pointwill let us determine the values of the obstruction
at that point.

5. Proof of Theorem 3.3

In the case where ρ = 0, the vectorsW a and Y a are linearly dependent everywhere onM2 and we can expressW a
= fY a

for some density f of weight −6. Under the conditions that both Y a
≠ 0 and ρ = 0 hold on the projective structure, the

quantity f is projectively invariant but not in the classical sense since it is rational in the jets of the projective structure.
Constraint (13) becomes

f αaY a
= −5F 4

+
ℓ

3
,

upon which multiplying (12) by f and eliminating αaY a gives the quartic equation

15F 4
− 3fF 2

−


ℓ +

f φ
2


= 0. (15)

Let h = ℓ +
f φ
2 . Differentiating (15) gives

60F 3(∇aF) − 6fF(∇aF) − 3(∇af )F 2
− ∇ah = 0,

which we contract with Y a and use (7) and (12) to get

180F 6
+ (30φ − 18f )F 4

− 3(φf + Y a
∇af )F 2

− Y a
∇ah = 0. (16)
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Multiplying (15) by 12F 2 gives
180F 6

− 36fF 4
− 12hF 2

= 0,
which can be used to eliminate the term of degree 6 in (16) to obtain

(30φ + 18f )F 4
− 3(φf + Y a

∇af − 4h)F 2
− Y a

∇ah = 0. (17)
Using (15) once more, we can further eliminate the term of degree 4 in (17) to obtain the quadratic equation

3φf − 3Y a
∇af + 12h +

18
5

f 2

F 2

+
6hf
5

− Y a
∇ah + 2φh = 0. (18)

Let us call

k = 3φf − 3Y a
∇af + 12h +

18
5

f 2,

m =
6hf
5

− Y a
∇ah + 2φh,

so that (18) becomes

kF 2
+ m = 0. (19)

Substituting F 2
= −

m
k given by (19) into (15) gives

15
m
k

2
+ 3f

m
k


− h = 0,

andwe clear the denominator k2 to obtain the vanishing of the first obstruction (8) in Theorem 3.3. Differentiating (19) gives
(∇ak)F 2

+ 2Fk∇aF + ∇am = 0,
which contracted into Y a and again using (7) and (12) gives

6kF 4
+ (kφ + Y a

∇ak)F 2
+ Y a

∇am = 0.
Again substituting (19) and clearing denominator k yields

6m2
− m(kφ + Y a

∇ak) + kY a
∇am = kY a

∇am − m(Y a
∇ak + kφ − 6m) = 0,

which is the desired second obstruction (9) in Theorem 3.3.

6. Examples

In this section we give 2 different projective structures on R2 that yield non-vanishing obstructions, one with the
projective invariant ρ ≠ 0 and the other with ρ = 0.

6.1. Example with ρ ≠ 0 and non-vanishing obstruction

This projective structure on R2 has the connection coefficients given by
Π1

22 = xy, Π2
11 = −y, Π1

11 = Π1
21 = Π2

12 = Π2
22 = 0.

We compute the polynomials P1(t), P2(t) and P3(t) at an arbitrary point p ∈ R2 where ρ(p) ≠ 0. Taking p to be given in
local coordinates by (x, y) = (1, 1), we find ρ(p) = 328, and the polynomials at the point p are given by

P1(t) = −90t6 +
185760
328

t4 −
528608
328

t2 − 2952t −
134912
328

,

P2(t) = −275t8 +
13774080

2952
t4 + 6560t3 −

601856
8856

t2 +
523957248

26568
,

P3(t) = −40t6 +
30960
328

t4 +
125360
984

t2 + 328t +
31603200
26568

.

Using the software MAPLE, we find that

Q12(p) = −
1457890459574161592339200000

1681
,

Q13(p) = −
188610437798501965389961756672000000000

452190681
,

Q23(p) =
1457890459574161592339200000

1681
.

At the point p and hence near it the quantities ρ(p), Q12(p), Q13(p) and Q23(p) are non-zero, and so there are no solutions
to pEW near p. Moreover, since Q12(p), Q13(p) and Q23(p) are polynomials in p we can conclude that there is no solution to
pEW anywhere on R2, as the set where these polynomials are non-zero is Zariski open and hence dense in R2.
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6.2. Example with ρ = 0 and non-vanishing obstruction

This projective structure on R2 has the connection coefficients given by

Π1
11 = −

x2

6
, Π1

22 = −
x2

2
, Π2

21 =
x2

6
, Π2

11 = Π1
21 = Π2

22 = 0.

A computation shows that ρ = 0. With the help of MATLAB, we find that the obstructions are

15m2
+ 3fmk − hk2 =

208
5

x30 +
4248
5

x27 − 768x24 −
349776

5
x21 + 61008x18 + 1468824x15

− 1651200x12 − 1164000x9 + 1543200x6 − 212000x3 + 24000

and

k(Y a
∇am) − m(Y a

∇ak + kφ − 6m) =
32
75

x30 +
144
25

x27 − 208x24 −
117408

25
x21 +

311104
5

x18 + 136208x15

+ 71536x12 − 996160x9 + 978560x6 −
824000

3
x3 + 27200.

We conclude that this projective structure does not admit any solution to pEW locally.
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