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a b s t r a c t

Let X be a toric Fano manifold and denote by Crit(fX ) ⊂ (C∗)n the solution scheme of
the corresponding Landau–Ginzburg system of equations. For toric Del-Pezzo surfaces and
various toric Fano threefolds we define a map L : Crit(fX ) → Pic(X) such that EL(X) :=

L(Crit(fX )) ⊂ Pic(X) is a full strongly exceptional collection of line bundles. We observe
the existence of a natural monodromy map

M : π1(L(X) \ RX , fX ) → Aut(Crit(fX ))

where L(X) is the space of all Laurent polynomials whose Newton polytope is equal to the
Newtonpolytope of fX , the Landau–Ginzburg potential ofX , andRX ⊂ L(X) is the space of all
elementswhose corresponding solution scheme is reduced.We show thatmonodromies of
Crit(fX ) admit non-trivial relations to quiver representations of the exceptional collection
EL(X). We refer to this property as the M-aligned property of the maps L : Crit(fX ) →

Pic(X). We discuss possible applications of the existence of such M-aligned exceptional
maps to various aspects of mirror symmetry of toric Fano manifolds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and summary of main results

Let X be a smooth algebraic manifold and let Db(X) be the bounded derived category of coherent sheaves on X , see [1,2].
Let A be a finite dimensional associative algebra over the complex numbers and let Db(A) be the derived category of right
modules over A. One of the fundamental questions in the study of Db(X) is the following: Given a manifold X, is Db(X)
equivalent to the derived category Db(A) of some finite dimensional associative algebra A?

The first example of such an equivalence is Beilinson’s famous description of Db(X) for X = Pn, see [3]. Beilinson shows
that Db(Pn) is equivalent to Db(An) where An = End(Tn) is the endomorphism ring of the vector bundle

Tn = O ⊕ O(1) ⊕ · · · ⊕ O(n)

In general, an object E ∈ Db(X) is said to be exceptional ifHom(E, E) = C and Ext i(E, E) = 0 for 0 < i. An ordered collection
{E1, . . . , EN} ⊂ Db(X) is said to be an exceptional collection if each Ej is exceptional and

Ext i(Ek, Ej) = 0 for j < k and 0 ≤ i

An exceptional collection is said to be strongly exceptional if also Ext i(Ej, Ek) = 0 for j ≤ k and 0 < i. A strongly exceptional
collection is called full if its elements generate Db(X) as a triangulated category. In particular, if E = {E1, . . . , EN} ⊂ Db(X)
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is a full strongly exceptional collection of objects, the corresponding adjoint functors

RHomX (T , −) : Db(X) → Db(AT ); − ⊗
L
AT T : Db(AT ) → Db(X)

are equivalences of categories, where T =
N

i=1 Ei. For a given algebraicmanifold X one thus asks the following two, related,
but not similar questions: (a) does X admit a full exceptional collection of objects in Db(X)? (b) does X admit a full strongly
exceptional collection of line bundles in Pic(X)?

A class of manifolds onwhich these questions have been extensively studied in recent years is the class of toric manifolds
and, specifically, the class of toric Fano manifolds, see [4–13]. Question (a) was answered affirmatively by Kawamata which
showed that any toric manifold admits a full exceptional collection of objects in Db(X), see [9]. However, the more refined
question (b) of which toric manifolds admit full strongly exceptional collections of line bundles in Pic(X) is currently
completely open.

Question (b) has been especially studied for the class of toric Fano manifolds and, indeed, many examples of toric Fano
manifolds which admit full strongly exceptional collections have been discovered by various authors. The abundance of
examples led experts to ask whether, in fact, any toric Fano manifold admits a full strongly exceptional collection of line
bundles in Pic(X), see [4,14]. However, in a recent surprising work [15] Efimov discovered examples of toric Fanomanifolds
which do not admit any full strongly exceptional collections of line bundles. In particular, the question of which toric Fano
manifolds admit full strongly exceptional collections in Pic(X) is currently still open.

On the other hand, the theory of quantum cohomology introduces a family of commutative associative operations
◦ω : H∗(X)⊗H∗(X) → H∗(X) parameterized by classesω ∈ H∗(X). This family of ‘‘quantumproducts’’ defines the structure
of a Frobenius super-manifold over H∗(X), which is known as the big quantum cohomology of X for instance see, [16]. In
particular, the big quantum cohomology is said to be semi-simple if the operation ◦ω is a semi-simple ring operation for
genericω ∈ H∗(X). One of the fundamental conjectures on the structure ofDb(X) is the Dubrovin–Bayer–Manin conjecture,
which relates the existence of full exceptional collections of objects in Db(X) to the semi-simplicity of the big quantum
cohomology of X , see [17,18].

When X is a toric manifold, the Dubrovin–Bayer–Manin conjecture is actually known to hold due to the combined results
of Kawamata (on the existence of full exceptional collections of objects inDb(X), see [9]) and Iritani (on the semi-simplicity
of the big quantum cohomology of toric manifolds, see [19]). In view of the above one is led to ask whether it is possible to
relate further, more refined, properties of quantum cohomology to the existence of full strongly exceptional collections of
line bundles in Pic(X)?

Indeed, of special importance in quantum cohomology theory is the fiber QH(X) ≃ (H∗(X), ◦0) of the big quantum
cohomology over ω = 0, which is known as the small quantum cohomology ring of X . When X is a toric Fano manifold
the small quantum cohomology is expressed as the Jacobian ring of the Landau–Ginzburg potential, which is a Laurent
polynomial fX ∈ C[z±

1 , . . . , z±
n ] associated toX , see [20–22]. Consider the systemof algebraic equations zi ∂

∂zi
fX (z1, . . . , zn) =

0 for i = 1, . . . , n, to which we refer as the Landau–Ginzburg system of equations of X and denote by Crit(fX ) ⊂ (C∗)n the
corresponding solution scheme. Our aim in this work is to present, via examples, various relations between properties of
the solution scheme Crit(fX ) ⊂ (C∗)n and properties of full strongly exceptional collections of line bundles E ⊂ Pic(X).
In particular, these relations lead us to suggest a ‘‘small variation’’ of the Dubrovin–Bayer–Manin conjecture for toric Fano
manifolds, which we formulate below. As a starting point, consider the following example:

Example (Projective Space). For X = Pn the Landau–Ginzburg potential is given by f (z1, . . . , zn) = z1 + · · · + zn +
1

z1·...·zn
and the corresponding system of equations is

zi
∂

∂zi
fX (z1, . . . , zn) = zi −

1
z1 · ... · zn

= 0 for i = 1, . . . , n.

The solution scheme Crit(fX ) ⊂ (C∗)n is given by zk = (e
2πki
n+1 , . . . , e

2πki
n+1 ) for k = 0, . . . , n.

In general, Ostrover and Tyomkin show in [22] that X has semi-simple quantum cohomology if and only if the number of
elements of Crit(fX ) is χ(X), the Euler characteristic of X . On the other hand, the expected number of elements in a full
strongly exceptional collection in Pic(X) is also χ(X), see [15]. In view of this, we refer to a map L : Crit(fX ) → Pic(X) as an
exceptional map if its image EL(X) = L(Crit(fX )) ⊂ Pic(X) is a full strongly exceptional collection. The guiding question is
thus the following:
Main Question (small toric Fano DBM-conjecture): Does any toric Fano manifold X whose small quantum cohomology
QH(X) is semi-simple admit an exceptional map L : Crit(fX ) → Pic(X) naturally generalizing the map L(zk) = O(k) in the
case of projective space?

Note that defining an exceptional map L : Crit(fX ) → Pic(X) requires the association of integral invariants to elements
of Crit(fX ). In the case of projective space, such an association is, in fact, misleadingly simple as the entries of the elements
are given as roots of unity. However, in general, this is not the case, which is one of the main difficulties in defining the
exceptional maps in full generality. Instead, in this work, we consider a few specific examples of toric Fanomanifolds, which
are known to admit full strongly exceptional collections of line bundles. Themanifolds considered are the following: (a) toric
Del-Pezzo surfaces, (b) Fano P1-bundles over P2, (c) Fano P2-bundles over P1, (d) P1-bundles over P1

× P1.
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Based on a study of the properties of Crit(fX ), we show that the manifolds (a)–(d) could be naturally introduced with
exceptional maps L : Crit(fX ) → Pic(X), generalizing the above example of projective space. Our main result, however, is
that once the mentioned exceptional maps are defined, various algebraic properties of the corresponding collection EL(X)
turn to be non-trivially related to geometric properties of the solution scheme Crit(fX ).

Indeed, one of the fundamental features of exceptional collections is their relation to quiver representations. Recall that
a quiver with relations Q = (Q , R) is a directed graph Q with a two sided ideal R in the path algebra CQ of Q , see [23]. In
particular, a quiver with relations Q determines the following associative algebra AQ = CQ/R, called the path algebra ofQ . A standard construction associates to a collection of elements C ⊂ Db(X) and a basis B ⊂ AC a quiver with relationsQ (C, B) whose vertex set is C such that AC ≃ AQ(C,B), see [10].

In our case, we observe that the algebras AEL(X) admit a natural basis BEL(X), which is uniquely determined by the toric
data. To the toric Fano manifolds (a)–(d) we thus associate the quiver with relations given byQ (EL(X)) := Q (EL(X), BEL(X)).
In the toric Del-Pezzo case, that is case (a), the quivers are similar to the ones described in [10,11]. Moreover, due to the
construction, the edge set of the quivers, Q1(EL(X)), is endowed with a map of the form D : Q1(EL(X)) → DivT (X), where
DivT (X) is the space of toric divisors of X (see Section 3). For a divisor D ∈ DivT (X) denote by Q D(EL(X)) the sub-quiver ofQ (EL(X)) whose edges satisfy D(a) = D.

On the other hand, in the quantum cohomology side, we note that there exists a natural monodromy group action on
the solution set Crit(fX ) ⊂ (C∗)n. Indeed, let L(X) ⊂ C[z±

1 , . . . , z±
n ] be the vector space of Laurent polynomials whose

Newton polytope is the same as that of fX . As for fX , one can associate a scheme Crit(f ) to any element f ∈ L(X). For a
generic f ∈ L(X) the scheme Crit(f ) is given as the solution scheme of the system of equations zi ∂

∂zi
f (z1, . . . , zn) = 0 for

i = 1, . . . , n. Consider the hypersurface RX ⊂ L(∆◦) of all f ∈ L(X) such that Crit(f ) is non-reduced. Hence, in particular,
when QH(X) is semisimple one obtains, via standard analytic continuation, a monodromy map of the following form

M : π1(L(X) \ RX , fX ) → Aut(Crit(fX )).
For anymanifold X of (a)–(d)we describe amapΓ : DivT (X) → π1(L(X)\RX , fX ), for the definition of thismap see Section 5.
Denote by Q (D) the quiver whose vertex set is Q0(D) = Crit(fX ), and which has an edge aD(z) ∈ Q1(D) beginning at z and
ending atM(Γ (D))(z), for any z ∈ Crit(fX ). Our main result is the following:

Theorem A (M-aligned Property). Let X be a toric Fano manifold of (a)–(d) and let L : Crit(fX ) → Pic(X) be the corresponding
exceptional map. ThenQ D(EL(X)) ⊂ Q (D) for any D ∈ DivT (X)

We refer to the property described in Theorem A as the M-aligned property. Let us conclude by noting that although, by
definition, any toric Fano manifold which admits a full strongly exceptional collection can be endowed with an exceptional
map, the existence of M-aligned exceptional maps is less trivial. In particular, we suggest that the existence of M-aligned
maps indicates that the relations between elements of Crit(fX ) and full strongly exceptional collections of line bundles,
described for manifolds (a)–(d), could be generalized to other examples of toric Fano manifolds with semi-simple quantum
cohomology.

The rest of the work is organized as follows: In Section 2 we recall relevant facts on toric Fano manifolds. In Section 3
we review relevant aspects of the theory of derived categories and exceptional collections, give examples of full strongly
exceptional collections of line bundles and present their corresponding quivers. In Section 4 we introduce the monodromy
operator M . In Section 5 we define the exceptional maps and compute their corresponding monodromies. Section 6 is
devoted for concluding remarks and discussion of further relations to mirror symmetry.

2. Relevant facts on toric Fano manifolds

In this section we review relevant facts on toric Fano manifolds, we refer the reader to [24,25] for a detailed overview
of the theory of toric geometry. A toric variety is an algebraic variety X containing an algebraic torus T ≃ (C∗)n as a dense
subset such that the action of T on itself extends to the whole variety. A compact toric variety X is said to be Fano if its
anticanonical class −KX is Cartier and ample. In [26] Batyrev shows that there is a one to one correspondence between toric
Fano varieties and reflexive polytopes.

Let N ≃ Zn be a lattice and let M = N∨
= Hom(N, Z) be the dual lattice. Denote by NR = N ⊗ R and MR = M ⊗ R the

corresponding vector space. Let ∆ ⊂ MR be an integral polytope and let
∆◦

= {n | (m, n) ≥ −1 for everym ∈ ∆} ⊂ NR

be the polar polytope of ∆.

Definition 2.1. The polytope ∆ ⊂ MR is said to be reflexive if 0 ∈ ∆ and ∆◦
⊂ NR is integral. A reflexive polytope ∆ is said

to be Fano if every facet of ∆◦ is the convex hall of a basis ofM .

In general, let ∆ ⊂ MR be a polytope and let

L(∆) =


m∈∆∩M

Cm
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be the space of Laurent polynomials whose Newton polytope is ∆. A polytope ∆ ⊂ MR determines an embedding
i∆ : (C∗)n → P(L(∆)∨) given by z → [zm | m ∈ ∆ ∩ M]. The toric variety X∆ ⊂ P(L(∆)∨) corresponding to the polytope
∆ ⊂ MR is defined to be the compactification of the embedded torus i∆((C∗)n) ⊂ P(L(∆)∨). It is shown by Batyrev in [26]
that X∆ is a Fano variety if∆ is reflexive and, in this case, the embedding i∆ is the anti-canonical embedding. The Fano variety
X∆ is smooth if and only if ∆◦ is a Fano polytope.

Batyrev shows in [27] that there are a finite number of reflexive polytopes of given dimension. In particular, there are
a finite number of Fano polytopes in given dimension. In dimension three there are, up to equivalence, 18 Fano polytopes,
see [28,29]. There are 124 four dimensional Fano polytopes, up to equivalence. 123 of them were classified by Batyrev
in [27] and an additional example was discovered by Sato in [30]. The five dimensional Fano polytopes (866 examples, up to
equivalence) were recently classified by Kreuzer and Nill in [31]. The two dimensional, Del-Pezzo, case is described in the
following example:

Example 2.2 (Toric Del-Pezzo Surfaces). Up to integral automorphisms of R2 there are five Fano polytopes in dimension two,
also called Del-Pezzo polytopes. Denote by N∆◦ the matrix of vertices of ∆◦.

(1) N∆◦ =


1 0 −1
0 1 −1


the corresponding manifold is X∆ = P2.

(2) N∆◦ =


1 0 −1 0
0 1 0 −1


the corresponding manifold is X∆ = P1

× P1.

(3) N∆◦ =


1 0 −1 −1
0 1 0 −1


the corresponding manifold is X∆ = Bl1(P2), the blow up of projective plane at one T -

equivariant point.
(4) N∆◦ =


1 0 −1 0 −1
0 1 0 −1 −1


the corresponding manifold is X∆ = Bl2(P2), the blow up of projective plane at two

T -equivariant points.
(5) N∆◦ =


1 0 1 −1 0 −1
0 1 1 0 −1 −1


the corresponding manifold is X∆ = Bl3(P2), the blow up of projective plane at

three T -equivariant points.
Consider the following three-fold examples:

Example 2.3 (Fano P1-bundles over P2). There are three Fano P1-bundles over P2 given by X = P(OP2 ⊕ OP2(k)) for
k = 0, 1, 2. The corresponding vertex matrix is

N∆◦ =

1 0 0 −1 0
0 1 0 −1 0
0 0 1 k −1


.

Example 2.4 (Fano P2-bundles over P1). There are two Fano P2-bundles over P1 given by X = P(O ⊕O ⊕O(k)) for k = 0, 1.
The corresponding vertex matrix is

N∆◦ =

1 0 0 −1 −k
0 1 0 −1 −k
0 0 1 0 −1


.

Example 2.5 (Fano P1-bundles over P1
× P1). There are two Fano P1-bundles over P1

× P1 given by X = P(OP1×P1 ⊕

OP1×P1(k1, k2)) for (k1, k2) = (0, 0), (1, 1), (1, −1). The vertex matrix is

N∆◦ =

1 0 0 k1 k2 −1
0 1 0 −1 0 0
0 0 1 0 −1 0


.

Denote by ∆(k) the set of k-dimensional faces of ∆. As T acts on X it induces a decomposition of X into orbits of the action.
One of the fundamental properties of toric varieties is that k-dimensional orbits of the T -action are by themselves toric and
are in one-to-one correspondence with faces in ∆(k). Let VX (F) ⊂ X be the closure of the orbit corresponding to the facet
F ∈ ∆(k) in X . In particular, consider the group of toric divisors

DivT (X) :=


F∈∆(n−1)

Z · VX (F).

When X is a smooth toric manifold the group Pic(X) admits a description in terms of the following short exact sequence

0 → M → DivT (X) → Pic(X) → 0.

The map on the left hand side is given by m →


F ⟨m, nF ⟩ · VX (F) where nF ∈ NR is the unit normal to the hyperplane
spanned by the facet F ∈ ∆(n − 1). In particular, note that

ρ(X) = rank (Pic(X)) = |∆(n − 1)| − n.
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A toric divisor D =


F aF · VX (F) ∈ DivT (X) is associated with the following (possibly empty) polytope

∆D := {u | ⟨u, nF ⟩ ≥ −aF for all F} ⊂ MR.

On the other, denote by OX (D) ∈ Pic(X) the associated line bundle of D. The space of sections of OX (D) is given in terms of
the polytope ∆D as follows

H0(X, OX (D)) ≃


m∈∆D∩M

m · C.

3. Derived categories and exceptional collections

Let X be a smooth projective variety and let Db(X) be the derived category of bounded complexes of coherent sheaves
of OX -modules. For a finite dimensional algebra A denote by Db(A) the derived category of bounded complexes of finite
dimensional rightmodules over A. Given an object T ∈ Db(X) denote by AT = Hom(T , T ) the corresponding endomorphism
algebra.

Definition 3.1. An object T ∈ Db(X) is called a tilting object if the corresponding adjoint functors

RHomX (T , −) : Db(X) → Db(AT ); − ⊗
L
AT T : Db(AT ) → Db(X)

are equivalences of categories. A locally free tilting object is called a tilting bundle.

One has the following characterization of tilting objects:

Theorem 3.2 ([10,32]). An object T ∈ Db(X) is a tilting object if and only if it satisfies the following conditions:
- The endomorphism algebra AT is finite dimensional.
- Ext i(T , T ) = 0 for 0 < i.
- The direct summands of T generate Db(X) as a triangulated category.

An object E ∈ Db(X) is said to be exceptional if Hom(E, E) = C and Ext i(E, E) = 0 for 0 < i. An ordered collection
{E1, . . . , EN} ⊂ Db(X) is said to be an exceptional collection if each Ej is exceptional and

Ext i(Ek, Ej) = 0 for j < k and 0 ≤ i.

An exceptional collection is said to be strongly exceptional if also Ext i(Ej, Ek) = 0 for j ≤ k and 0 < i. A strongly exceptional
collection is called full if its elements generate Db(X) as a triangulated category. The importance of full strongly exceptional
collections in tilting theory is due to the following properties:

Proposition 3.3 ([10,32]). Let E = {E1, . . . , EN} ⊂ Db(X) be a collection.
(a) If E is a full strongly exceptional collection then T =

N
i=1 Ei is a tilting object.

(b) If T =
N

i=1 Ei is a tilting object and E ⊂ Pic(X) then E is a full strongly exceptional collection of line bundles.

Consider the following examples:

Example 3.4 (Projective Space). For X = Pn one has Pic(X) ≃ H · Z where H is the class represented by the normal bundle
of a hyperplane in X . The collection

E = {dH | d = 0, . . . , n} ⊂ Pic(X)

is a full strongly exceptional collection, see [3].

Example 3.5 (Products). Let X1 and X2 be two projective manifolds and let E1 ⊂ Pic(X1) and E2 ⊂ Pic(X2) be full strongly
exceptional collections on X1 and X2 respectively. Then

E1 ⊗ E2 =

pr∗

1 (L1) ⊗ pr∗

2 (L2)|L1 ∈ E1 and L2 ∈ E2


⊂ Pic(X1 × X2)

is a full strongly exceptional collection on X1 × X2.

Example 3.6 (Toric Del Pezzo Surfaces). Exceptional collections for P2 and P1
× P1 are given in Examples 3.4 and 3.5. Recall

that

Pic(Blk(P2)) ≃ H · Z ⊕


k

i=1

Ei · Z


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where Ei is the class of the normal bundle of the ith exceptional divisor. It is shown in [10] that

E =


0,H,H − Ei, 2H −

k
i=1

Ei|i = 1, . . . , k


⊂ Pic(Blk(P2))

is a full strongly exceptional collection on Blk(P2) for k = 1, 2, 3.

Example 3.7 (Threefold Projective Bundles). Let π : V → B be a holomorphic vector bundle of rank n − dimC(B) + 1 and
let X = P(V ). Express Pic(X) ≃ π∗Pic(B) ⊕ ξ · Z where ξ is the tautological line bundle of X . Full strongly exceptional
collections on projective bundles were studied by Costa and Miró-Roig in [8] where they prove the following ‘‘key lemma’’:
Let EB = {E0, . . . , EN} ⊂ Pic(B) be a full strongly exceptional collection on B. Denote by SaV the ath symmetric power of V
and assume that Hom(Sa ⊗ Em, El) = 0 for any 0 ≤ a ≤ n − dimC(B) and 0 ≤ l ≤ m ≤ N . Then

E =

π∗Ei ⊗ kξ | 0 ≤ i ≤ N, 0 ≤ k ≤ rank(V )


⊂ Pic(X)

is a full strongly exceptional collection on X . In particular, for Examples 2.3–2.5, we have

E = {0,H, 2H, ξ ,H + ξ, 2H + ξ} ⊂ Pic(X)

is a full strongly exceptional collection for X = P(OP2 ⊕ OP2(k)) with k = 0, 1, 2,

E = {0,H, F ,H + ξ, 2ξ,H + 2ξ} ⊂ Pic(X)

is a full strongly exceptional collection for X = P(O ⊕ O ⊕ O(k)) with k = 0, 1, and

E = {0,H1,H2,H1 + H2, ξ ,H1 + ξ,H2 + ξ,H1 + H2 + ξ} ⊂ Pic(X)

is a full strongly exceptional collection for X = P(OP1×P1 ⊕ OP1×P1(k1, k2)) with (k1, k2) = (0, 0), (1, 1), (1, −1), see [8].

Remark 3.8. Note that X = Bl1(P2) can be expressed as X = P(OP1 ⊕ OP1(1)). In particular, one has E = {0,H,H − E,
2H − E} =


0, ξ , π∗HP1 , π∗HP1 + ξ


⊂ Pic(X).

Remark 3.9 (The Frobenius Splitting Method). A toric manifold X is associated with a collection of maps Fm : X → X for
m ∈ N, known as Frobenius morphisms. It was shown by Thomsen [33] that the push-forward (Fm)∗(OX ) is a vector bundle,
which splits as a sum of line bundles Dm ⊂ Pic(X), see also [34]. The set Dm is independent ofm form ≫ 0 big enough, and
we refer to the resulting ‘‘limit’’ collection DX ⊂ Pic(X) as the Frobenius collection of X . It is conjectured by Bondal that DX
generates Db(X) as a triangulated category, see [35].

When |DX | = ρ(X), the Frobenius collection thus becomes a candidate for a full strongly exceptional collection. For
instance, the full strongly exceptional collections E described in Examples 3.6 and 3.7 are, in fact, Frobenius collections.
Many further examples of toric manifolds whose Frobenius collections are full strongly exceptional collections were found,
see [7,12].

On the other hand, the condition |DX | = ρ(X) does not always hold. For instance, when X is a toric Fano threefold
|DX | = ρ(X) for sixteen of the eighteen Fano toric threefolds. Let us note that it is shown by Uehara in [12] that in the cases
when |DX | = ρ(X), the Frobenius collection DX ⊂ Pic(X) is a full strongly exceptional collection of line bundles. Moreover,
Uehara shows that, in the remaining two cases, there is a subset E ⊂ DX which is a full strongly exceptional collection.

A fundamental feature of tilting theory is the relation to quiver representations. Recall that a quiver Q = (Q0,Q1) is a
directed graph such that Q0 is the set of vertices of Q and Q1 is the set of directed edges of Q . Denote by s, t : Q1 → Q0 the
maps specifying the starting point s(a) ∈ Q0 and end point t(a) ∈ Q0 of an edge a ∈ Q1. Denote by Q1(z, z ′) ⊂ Q1 the set of
edges a ∈ Q1 such that s(a) = z and t(a) = z ′.

A path in a quiver Q is a sequence a = a1 · ... · an of edges such that t(ai) = s(ai+1). In particular, let CQ be the vector
space spanned by all paths of Q which admits the algebra operation given by

(a1 · ... · an) · (a′

1 · ... · a′

n′) =


a1 · ... · an · a′

1 · ... · a′

n′ t(an) = s(a′

1)
0 otherwise

we refer to the algebra CQ as the path algebra of the quiver Q . A quiver with relations is a pairQ = (Q , R)where Q is a quiver
and R ⊂ CQ is a two sided ideal. In particular, we refer to AQ = CQ/R as the path algebra of the quiver with relationsQ . A
finite dimensional right module over AQ is called a representation of the quiverQ .

Let E = {L1, . . . , LN} ⊂ Pic(X) be a collection and let AE =
N

i,j=1 Hom(Li, Lj) be the corresponding endomorphism
algebra. A choice of basis

Bi,j =

ari,j


⊂ Hom(Li, Lj) for 1 ≤ i, j ≤ N

determines a basis B =


Bi,j of AE . A pair (E, B) is associated with a quiver with relations Q (E, B) as follows: Let
Q0(E, B) = E be the set of vertices and let Q1(E, B; Li, Lj) = Bi,j be the set of edges between Li, Lj ∈ E for 1 ≤ i, j ≤ N . In
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particular, a path a = a1 · ... · an in this (free) quiver can be considered as an element of Hom(s(a1), t(an)). Thus, one has an
exact sequence

0 → R(E, B) → CQ (E, B) → AE → 0

and taking the ideal of relations to be R(E, B) gives AE = AQ (E,B).
From now on we assume that X is a toric manifold. Let L ∈ Pic(X) be a line bundle, consider the set

B(L) :=


D =


aF · VX (F) | aF ≥ 0 and OX (D) = L


⊂ DivT (X)

and denote by i : B(L) → H0(X, L) the corresponding injection map. We refer to a line bundle L ∈ Pic(X) as special if i(B(L))
is a basis for H0(X, L). We refer to a collection of line bundles E = {L1, . . . , LN} ⊂ Pic(X) as special if Li − Lj is special for any
1 ≤ i, j ≤ N . We observe the following:

Proposition 3.10. For X as in Examples 2.2–2.5 the full strongly exceptional collection E = DX ⊂ Pic(X) is special.

Assume E is a special collection and let BE :=


B(Li − Lj) be the corresponding basis of AE . We refer toQ (E) = Q (E, BE ) as
the associated quiver of the special collection E . Note that there exists a natural map D : Q1(E) → DivT (X). We refer to the
image Div(E) = D(Q1(E)) ⊂ DivT (X) as the divisor set of the collection E . For any D ∈ Div(E)we denote byQ D(E) ⊂ Q (E)
the sub-quiver whose edge set is given by Q D

1 (E) := {a|D(a) = D} ⊂ Q1(E). The following examples describe the quiverQ (E) corresponding to the full strongly exceptional collections of Examples 3.6 and 3.7:

Example 3.11 (Q (E) for toric Del-Pezzo manifolds). (1) For X = P2 the vertex set ∆◦(0) is given by

n1 = (1, 0); n2 = (0, 1); n3 = (−1, 1)

with [VX (n1)] = [VX (n2)] = [VX (n3)] = H . The quiverQ (E) for the exceptional collection E = {0,H, 2H} ⊂ Pic(X) is thus
given by

E0 E1 E2
c1

a1

b1 b2

a2

c2

with

D(a1) = D(a2) = VX (n1); D(b1) = D(b2) = VX (n2); D(c1) = D(c2) = VX (n3).

(2) For X = P1
× P1 the vertex set ∆◦(0) is given by

n1 = (1, 0); n2 = (0, 1); n3 = (−1, 0); n4 = (0, −1)

with [VX (n1)] = [VX (n3)] = H1 and [VX (n2)] = [VX (n4)] = H2. The quiver Q (E) for the exceptional collection
E = {0,H1,H2,H1 + H2} ⊂ Pic(X) is thus given by

E00

E10

E01

E11

b1 d1

c1

a1

c2

a2

b2 d2

with

D(a1) = D(a2) = VX (n1); D(b1) = D(b2) = VX (n2);

D(c1) = D(c2) = VX (n3); D(d1) = D(d2) = VX (n4);
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(3) For X = Bl1(P2): the vertex set ∆◦(0) is given by

n1 = (1, 0); n2 = (0, 1); n3 = (−1, 0); n4 = (−1, −1)

with

[VX (n1)] = H = ξ ; [VX (n2)] = [VX (n4)] = H − E = π∗HP1; [VX (n3)] = E = ξ − π∗HP1 .

The quiverQ (E) for the exceptional collection

E = {0,H − E,H, 2H − E} =

0, π∗HP1 , ξ , ξ + π∗HP1


⊂ Pic(X)

is given by

E0

F1

E1

E2

c1

a1

b1

e1d1 f

c2

a2

b2

e2d2

with

D(d1) = D(d2) = VX (n2); D(e1) = D(e2) = VX (n4); D(f ) = VX (n3);

D(a1) = D(a2) = VX (n2) + VX (n3); D(b1) = D(b2) = VX (n3) + VX (n4);

D(c1) = D(c2) = VX (n1);

(4) For X = Bl2(P2) the vertex set ∆◦(0) is given by

n1 = (1, 0); n2 = (0, 1); n3 = (−1, 0); n4 = (−1, −1); n5 = (0, −1)

with

[VX (n1)] = H − E2; [VX (n2)] = H − E1;
[VX (n3)] = E1; [VX (n4)] = H − E1 − E2; [VX (n5)] = E2.

The quiverQ (E) for the exceptional collection

E = {0,H − E1,H − E2,H, 2H − E1 − E2} ⊂ Pic(X)

is thus given by

E0 E1

F1

F2

E2
f
e

g

b1

a1

c1

d1

j

h
d2

c2

i
b2

a2
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D(e) = VX (n2) + VX (n3); D(f ) = VX (n2) + VX (n4) + VX (n5); D(g) = VX (n1) + VX (n5);

D(a1) = D(a2) = VX (n2); D(b1) = D(b2) = VX (n4) + VX (n5);

D(c1) = D(c2) = VX (n1); D(d1) = D(d2) = VX (n3) + VX (n4);

D(h) = VX (n3); D(i) = VX (n5); D(j) = VX (n4).

(5) For X = Bl3(P2) the vertex set ∆◦(0) is given by

n1 = (1, 0); n2 = (1, 1); n3 = (0, 1);
n4 = (−1, 0); n5 = (−1, −1); n6 = (0, −1);

with

[VX (n1)] = H − E2 − E3; [VX (n2)] = E3; [VX (n3)] = H − E1 − E3;
[VX (n4)] = E1; [VX (n5)] = H − E1 − E2; [VX (n6)] = E2.

The quiverQ (E) for the exceptional collection

E = {0,H − E1,H − E2,H − E3,H, 2H − E1 − E2 − E3} ⊂ Pic(X)

is given by

E0 F3

F1

F2

E1 E2
d

c

b
a

f
e

h

k

g

j

i

l

with

D(a) = VX (n2) + VX (n3); D(b) = VX (n5) + VX (n6);

D(c) = VX (n1) + VX (n6); D(d) = VX (n3) + VX (n4);

D(e) = VX (n1) + VX (n2); D(f ) = VX (n4) + VX (n5);

D(g) = VX (n4); D(h) = VX (n2); D(i) = VX (n6)

D(j) = VX (n1); D(k) = VX (n5); D(l) = VX (n3).

Example 3.12 (Q (E) for Fano P1-bundles over P2). For X = P(OP2 ⊕ OP2(k)) with k = 0, 1, 2 the vertex set ∆◦(0) is given
by

n1 = (1, 0, 0); n2 = (0, 1, 0); n3 = (0, 0, 1);
n4 = (−1, −1, k); n5 = (0, 0, −1);

with

[VX (n1)] = [VX (n2)] = [VX (n4)] = π∗H; [VX (n3)] = ξ − kπ∗H; [VX (n5)] = ξ .

Consider the exceptional collection

E =

0, ξ , π∗H, π∗H + ξ, 2π∗H, 2π∗H + ξ


⊂ Pic(X).
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(i) For k = 0 the quiverQ (E) is given by

E00

E01

E10

E11

E20

E21

b1

a1

c1

e1d1

c3

a3

b3

e2d2

c2

a2

b2

c4

a4

b4

e3d3

with

D(ai) = VX (n1); D(bi) = VX (n2); D(ci) = VX (n4)

D(dj) = VX (n3); D(ej) = VX (n5);

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3.
(ii) For k = 1 the quiver is:

E00

E01

E10

E11

E20

E21

c1

a1

b1

e1

c3

a3

b3

d1
e2

c2

a2

b2

c4

a4

b4

d2
e3

with

D(ai) = VX (n1); D(bi) = VX (n2); D(ci) = VX (n4)

D(dk) = VX (n3); D(ej) = VX (n5);

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3 and 1 ≤ k ≤ 2.
(iii) For k = 2 the quiver is:

E00

E01

E10

E11

E20

E21

c1

a1

b1

e1

c3

a3

b3

e2

c2

a2

b2

c4

a4

b4

d
e3
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with

D(ai) = VX (n1); D(bi) = VX (n2); D(ci) = VX (n4)

D(d) = VX (n3); D(ej) = VX (n5);

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3.

Example 3.13 (Q (E) for Fano P2-bundles over P1). For X = P(OP1 ⊕ OP1 ⊕ OP1(k)) with k = 0, 1 the vertex set ∆◦(0) is
given by

n1 = (1, 0, 0); n2 = (0, 1, 0); n3 = (0, 0, 1);
n4 = (−1, −1, 0); n5 = (−k, −k, −1);

with

[VX (n1)] = [VX (n2)] = ξ ; [VX (n3)] = ξ − kπ∗H; [VX (n3)] = [VX (n5)] = π∗H.

The quiverQE for the exceptional collection

E =

0, ξ , 2ξ, π∗H, π∗H + ξ, π∗H + 2ξ


⊂ Pic(X)

is given by

E00 E10

E01 E11

E02 E12

a1 b1

c1

d1

a3 b3e1

a2 b2

c2

d2

a4 b4e2

d3

c3

with

D(ai) = VX (n1); D(bi) = VX (n2); D(cj) = VX (n3);

D(dj) = VX (n5); D(ek) = VX (n4);

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3 and 1 ≤ k ≤ 2.

Example 3.14 (Q (E) for P1-bundles over P1
×P1). For X = P(OP1×P1 ⊕OP1×P1(k1, k2))with (k1, k2) = (0, 0), (1, 1), (1, −1)

the vertex set ∆◦(0) is given by

n1 = (1, 0, 0); n2 = (0, 1, 0); n3 = (0, 0, 1);
n4 = (k1, −1, 0); n5 = (k2, 0, −1); n6 = (−1, 0, 0);

with

[VX (n1)] = ξ ; [VX (n2)] = [VX (n4)] = π∗H1; [VX (n3)] = [VX (n5)] = π∗H2;

[VX (n6)] = ξ + k1π∗H1 + k2π∗H2.

Consider the exceptional collection

E =

0, ξ , π∗H1, π

∗H1 + ξ, π∗H2, π
∗H2 + ξ, π∗H1 + π∗H2, π

∗H1 + π∗H2 + ξ


⊂ Pic(X).
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For (k1, k2) = (0, 0) the quiverQ (E) is given by

E000

E010

E100

E110

E001 E101

E011 E111

d1

c1

a1

b1

e1 f1

a2

b2

f2e2

d2

c2

e3

f3

e4 f4

d3

c3

b3

a3

c4

d4

b4

a4

D(ai) = VX (n2); D(bi) = VX (n4); D(ci) = VX (n3);

D(di) = VX (n5); D(ei) = VX (n1); D(fi) = VX (n6);

where 1 ≤ i ≤ 4.
(ii) For (k1, k2) = (1, 1) the quiverQ (E) is given by

E000

E010

E100

E110

E001 E101

E011 E111

c1
d1

a1
b1

e1

f

a2
b2

e3

d2
c2

e2

e4

c3
d3

a3

b3

c4 d4

a4

b4

D(ai) = VX (n2); D(bi) = VX (n4); D(ci) = VX (n3);

D(di) = VX (n5); D(ei) = VX (n1); D(f ) = VX (n6);

where 1 ≤ i ≤ 4.
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(iii) For (k1, k2) = (1, −1) the quiverQ (E) is given by

E000

E010

E100

E110

E001 E101

E011 E111

c1
d1

a1
b1

e1 a2
b2

e3

f

d2
c2

e2

e4

c3
d3

a3

b3

c4 d4

a4

b4

D(ai) = VX (n2); D(bi) = VX (n4); D(ci) = VX (n3);

D(di) = VX (n5); D(ei) = VX (n1); D(f ) = VX (n6);

where 1 ≤ i ≤ 4.

4. The Landau–Ginzburg system and monodromy

Let X be a n-dimensional toric Fano manifold given by a Fano polytope ∆ ⊂ MR and let ∆◦
⊂ NR be the corresponding

polar polytope. Let L(∆◦) ⊂ C[N] be the space of Laurent polynomials whose Newton polytope is ∆◦ and let fX =
n∈∆◦(0) z

n
∈ L(∆◦) be the Landau–Ginzburg potential of X . We refer to

zi
∂

∂zi
fX (z1, . . . , zn) = 0 for i = 1, . . . , n

as the Landau–Ginzburg system of equations of X and denote by Crit(fX ) ⊂ (C∗)n the corresponding solution scheme.
The Landau–Ginzburg potential was first introduced by Batyrev in [20], in the context of the study of the small quantum
cohomology QH(X) of X . The main property of the Landau–Ginzburg potential is the existence of a ring isomorphism
QH(X) ≃ Jac(fX ) where

Jac(fX ) :=
C[N]

zi ∂
∂zi

fX | i = 1, . . . , n


is the Jacobian ring of fX , see [20–22]. Ostrover and Tyomkin describe the following semi-simplicity criteria: QH(X) is semi-
simple if and only if Crit(fX ) is a reduced scheme, see [22]. We refer to a toric Fano manifold as semi-simple if its solution
scheme Crit(fX ) is reduced.

We observe that the solution scheme Crit(fX ) ⊂ (C∗)n of a semi-simple toric Fano manifold X admits a natural
monodromy action. Indeed, consider an element f ∈ L(∆◦) as a linear functional on L(∆◦)∨ = Hom(L(∆◦), C). For a non-
zero element f ∈ L(∆◦) denote byH(f ) ⊂ P(L(∆◦)∨) the hyperplane given by the kernel of f . Note that, if f is non-constant,
the hyperplane sectionΣ(f ) := X◦

∩Hf is given as the closure of the hypersurface {z|f (z) = 0} ⊂ (C∗)n in X◦. The definition
of the solution scheme could hence be generalized for any non-constant f ∈ L(∆◦) by setting

Crit(f ) := Σ


z1

∂

∂z1
f


∩ · · · ∩ Σ


zn

∂

∂zn
f


⊂ X◦
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In particular, we refer to the hypersurface

RX := {f | Crit(f ) is non-reduced} ⊂ L(∆◦)

as the resultant hypersurface of X . A path of the form γ : [0, 1] → L(∆◦) \ RX gives rise to a map Cγ : Crit(γ (0)) →

Crit(γ (1)) via analytic continuation. By standard considerations, the map Cγ is an invariant of the homotopy class of γ
in π1(L(∆◦) \ RX ; γ (0), γ (1)). In particular, assuming X is a semi-simple toric Fano manifold, we obtain the following
monodromy action

M : π1(L(∆◦) \ RX ; fX ) → Aut(Crit(fX ))

given by [γ ] → C[γ ]. For an element [γ ] ∈ π1(L(∆◦) \ RX , fX ) denote by Q ([γ ]) the quiver whose vertex set is Q0([γ ]) =

Crit(fX ), and has an edge a[γ ](z) ∈ Q1([γ ]) such that s(a[γ ](z)) = z and t(a[γ ](z)) = M([γ ])(z), for any z ∈ Crit(fX ).

5. The exceptional maps L : Crit(fX ) → Pic(X) and Monodromy

Amap L : Crit(fX ) → Pic(X) is said to be exceptional if EL := L(Crit(fX )) ⊂ Pic(X) is a full strongly exceptional collection.
The map L is said to be special if EL is a special collection, in the sense of Section 3. For each of the manifolds (a)–(d) we
associate a map of the form Γ : DivT (X) → π1(L(X) \ RX , fX ).

For a toric divisor D =


aFVX (F) ∈ DivT (X) and an element f (z) =


bF znF ∈ L(∆◦) let γ(f ,D) : S1 → L(∆◦) be the
loop given by γ(f ,D)(t, z) =


bF eiaF tznF .

For the toric Del-Pezzomanifolds of type (a) we define themap Γ by Γ (D) := [γ(fX ,D)]. For the projective bundles of type
(b)–(d) express the Landau–Ginzburg potential as fX (z) = f baseX (z) + f fiberX (z). For 0 < ϵ denote by

g t(z) = (1 − t + ϵt)f baseX + f fiberX ∈ L(∆◦)

for t ∈ [0, 1]. Set

γD(t, z) =



g3t(z) t ∈


0,

1
3


γ(g1,D)(3t − 1, z) t ∈


1
3
,
2
3


g3−3t(z) t ∈


2
3
, 1


and set Γ (D) := [γ ϵ
D ] for 0 < ϵ small enough. Note thatγ 1

D = γ(fX ,D). In practice, ϵ = 1 is taken for all examples aside from
P(O ⊕ O(2)) of class (b) and P(OP1×P1 ⊕ OP1×P1(1, −1)) of class (d) for which we take ϵ =

1
2 .

For the manifolds (a)–(d) denote by Q (D) = Q (Γ (D)). We say that a special exceptional map L : Crit(fX ) → Pic(X) is
M-aligned (M stands for monodromy) if it satisfies the following conditionQ D(E) ⊂ Q ([γD]) for any D ∈ Div(E).

By definition, any toric Fano manifold X which admits a full strongly exceptional collection E ⊂ Pic(X), also admits an
exceptional map. Note, however, that the existence of a M-aligned exceptional map is a far less trivial property. Our main
result is:

Theorem 5.1. Let X be as in Examples 2.2–2.5. Then X admits a M-aligned exceptional map L : Crit(fX ) → Pic(X).

The rest of this section is devoted to the definition of the exceptionalmaps and the verification of theM-aligned property.

5.1. Definition of the exceptional maps L : Crit(fX ) → Pic(X):

This sub-section is devoted to the definition the exceptional maps L : Crit(fX ) → Pic(X) for the toric Fano manifolds of
Examples 2.2–2.5. In particular, we give a numerical description of the solution set Crit(fX ) ⊂ (C∗)n of these manifolds.

5.1.1. The Del Pezzo surface case
(i) For X = P2 the LG-potential is given by fX (z1, z2) = z1 + z2 +

1
z1z2

and the Landau–Ginzburg system is

z1
∂

∂z1
fX (z1, z2) = z1 −

1
z1z2

= 0; z2
∂

∂z2
fX (z1, z2) = z2 −

1
z1z2

= 0.

The solution set Crit(fX ) ⊂ (C∗)2 is given by

z0 = (1, 1); z1 = (e
2π i
3 , e

2π i
3 ); z2 = (e

4π i
3 , e

4π i
3 ).
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The following is a graphical description:

Im(z1)

Re(z1)
z01

z11

z21

Im(z2)

Re(z2)
z02

z12

z22

we define the exceptional map L : Crit(fX ) → Pic(X) to be L(zk) = kH for k = 0, 1, 2.
(ii) For X = P1

× P1 the LG-potential is given by fX (z1, z2) = z1 + z2 +
1
z1

+
1
z2

and the Landau–Ginzburg system is

z1
∂

∂z1
fX (z1, z2) = z1 −

1
z1

= 0; z2
∂

∂z2
fX (z1, z2) = z2 −

1
z2

= 0.

The solution set Crit(fX ) ⊂ (C∗)2 is given by

z00 = (1, 1); z01 = (1, −1); z10 = (−1, 1); z11 = (−1, 1).

The following is a graphical description:

Re(z2)

Re(z1)

z00z10

z01z11

we define the exceptional map L : Crit(fX ) → Pic(X) to be L(zk1,k2) = k1H1 + k2H2 for 0 ≤ k1, k2 ≤ 1.
(iii) X = Bl1(P2) : The LG-potential is given by fX (z1, z2) = z1 + z2 +

1
z1z2

+
1
z1

and the Landau–Ginzburg system is

z1
∂

∂z1
fX (z1, z2) = z1 −

1
z1z2

−
1
z1

= 0; z2
∂

∂z2
fX (z1, z2) = z2 −

1
z2

= 0.

The following is a numerical approximation of the elements of Crit(fX ) ⊂ (C∗)2:

z0 ≈ (1.49, 0.81); w1
≈ (0.52, −1.38);

z1 ≈ (−1 + 0.51i, −0.21 + 0.91i); z2 ≈ (−1 − 0.51i, −0.21 − 0.91i).

The following is a graphical description:

Im(z1)

Re(z1)
w1

1

z11

z21

z01

Im(z2)

Re(z2)
w1

2

z22

z12

z02
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Note that contrary to the previous examples, in this case, the definition of the exceptional map is not directly evident from
the numerical data. However, the exceptional map is ‘‘uncovered’’ by utilizing the fact that X is given geometrically as the
blow up of P2 at one point.

Indeed, consider the following one-parametric family of elements

g t(z1, z2) = z1 + z2 +
1

z1z2
+

1 − t
z1

∈ L(∆◦)

for t = [0, 1). Note that g0(z1, z2) = fX (z1, z2) and g t(z1, z2) → fP2(z1, z2) for t → 1−. By analytic continuation one can
express Crit(g t) =


z0(t), z1(t), z2(t), w1(t)


⊂ (C∗)2. Direct computation shows

z0(t) → z0P2 = (1, 1); w1(t) → w1(1) = (∞, 0);

z1(t) → z1P2 = (e
2π i
3 , e

2π i
3 ); z2(t) → z2P2 = (e

4π i
3 , e

4π i
3 );

as t → 1−. In view of this we define the exceptional map L : Crit(fX ) → Pic(X) by

L(z0) = 0; L(z1) = H; L(z2) = 2H − E; L(w1) = H − E.

Note that, viewing X as a P1-bundle over P1, one can define the one-parametric family of elements

ht(z1, z2) = z1 + (1 − t)z2 +
1 − t
z1z2

+
1
z1

∈ L(∆◦)

for t = [0, 1). Note that h0(z1, z2) = fX (z1, z2) and ht(z1, z2) → fP1(z1, z2) for t → 1−. Express Crit(ht) =
z0(t),z1(t),z2(t),w1(t)


⊂ (C∗)2. Direct computation showsz0(t),w1(t) →z0P1 = (1, 0); z1(t),z2(t) →z1P1 = (−1, 0);

when t → 1 which leads to the analogous definition of L : Crit(fX ) → Pic(X) as

L(z0) = 0; L(z1) = ξ ; L(z2) = ξ + π∗H; L(w1) = π∗H.

(iv) For X = Bl2(P2) the LG-potential is given by fX (z1, z2) = z1 + z2 +
1

z1z2
+

1
z1

+
1
z2

and the Landau–Ginzburg system is

z1
∂

∂z1
fX (z1, z2) = z1 −

1
z1z2

−
1
z1

= 0; z2
∂

∂z2
fX (z1, z2) = z2 −

1
z1z2

−
1
z2

= 0.

The following is a numerical approximation of the elements of Crit(fX ) ⊂ (C∗)2:

z0 ≈ (1.32, 1.32); w1
≈ (0.61, −1.61); w2

≈ (−1.61, 0.61);

z1 ≈ (−0.66 + 0.56i, −0.66 + 0.56i); z2 ≈ (−0.66 − 0.56i, −0.66 − 0.56i) .

The following is a graphical description:

Im(z1)

Re(z1)
w2

1 w1
1 z01

z11

z21

Im(z2)

Re(z2)
w1

2 w2
2 z02

z12

z22

Consider the one-parametric family of elements

g t(z1, z2) = z1 + z2 +
1

z1z2
+

1
z1

+
1 − t
z2

∈ L(∆◦)

for t ∈ [0, 1). Note that g0(z1, z2) = fX (z1, z2) and g t(z1, z2) → fBl1(P2)(z1, z2) for t → 1−. Express Crit(g t) =
z0(t), z1(t), z2(t), w1(t), w2(t)


⊂ (C∗)2. Direct computation gives

z0(t) → z0Bl1(P2)
; w1(t) → w1

Bl1(P2)
; w2(t) → w2(1) = (0, ∞);

z1(t) → z1Bl1(P2)
; z2(t) → z2Bl1(P2)

;
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when t → 1. In view of this define the exceptional map L : Crit(fX ) → Pic(X) to be

L(z0) = 0; L(z1) = H; L(z2) = 2H − E1 − E2;

L(w1) = H − E1; L(w2) = H − E2.

(v) For X = Bl3(P2) the LG-potential is given by fX (z1, z2) = z1 + z2 +
1

z1z2
+

1
z1

+
1
z2

+ z1z2 and the Landau–Ginzburg
system is

z1
∂

∂z1
fX (z1, z2) = z1 −

1
z1z2

−
1
z1

+ z1z2 = 0; z2
∂

∂z2
fX (z1, z2) = z2 −

1
z1z2

−
1
z2

+ z1z2 = 0.

The solution set Crit(fX ) ⊂ (C∗)2 is given by

z0 = (1, 1); w1
= (1, −1); w2

= (−1, 1); w3
= (−1, 1)

z1 = (e
2π i
3 , e

2π i
3 ); z2 = (e

4π i
3 , e

4π i
3 );

Consider the one-parametric family of elements g t(z1, z2) = z1 + z2 +
1

z1z2
+

1
z1

+
1
z2

+ (1 − t)z1z2 for t ∈ [0, 1). Note
that g0(z1, z2) = fX (z1, z2) and g t(z1, z2) → fBl2(P2)(z1, z2) for t → 1−. Express Crit(g t) =


z0(t), z1(t), z2(t), w1(t),

w2(t), w3(t)


⊂ (C∗)2. Direct computation gives

z0(t) → z0Bl2(P2)
; z1(t) → z1Bl2(P2)

; z2(t) → z2Bl2(P2)
;

w1(t) → w1
Bl2(P2)

; w2(t) → w1
Bl2(P2)

; w3(t) → w3(1) = (0, ∞);

when t → 1. In view of this define the exceptional map L : Crit(fX ) → Pic(X) to be

L(z0) = 0; L(z1) = H; L(z2) = 2H − E1 − E2;

L(w1) = H − E1; L(w2) = H − E2; L(w3) = H − E3.

5.1.2. The Fano P1-bundles over P2 case
For X = P(OP2 ⊕ OP2(k)) with k = 0, 1, 2 the LG-potential is given by

fX (z1, z2, z3) = z1 + z2 + z3 +
zk3
z1z2

+
1
z3

and the Landau–Ginzburg system is

z1
∂

∂z1
fX (z1, z2) = z1 −

zk3
z1z2

= 0; z2
∂

∂z2
fX (z1, z2) = z2 −

zk3
z1z2

= 0;

z3
∂

∂z3
fX (z1, z2) = z3 +

kzk3
z1z2

−
1
z3

= 0;

(i) For k = 0 the solution set Crit(fX ) ⊂ (C∗)3 is given by

z00 = (1, 1, 1); z01 ≈ (1, 1, −1);

z10 = (e
2π i
3 , e

2π i
3 , 1); z11 = (e

2π i
3 , e

2π i
3 , −1);

z20 = (e
4π i
3 , e

4π i
3 , 1); z21 = (e

4π i
3 , e

4π i
3 , −1);

(ii) For k = 1 the solution set Crit(fX ) ⊂ (C∗)3 is given by

z00 ≈ (0.86, 0.86, 0.65); z11 ≈ (−0.86, −0.86, −0.65);

z10 ≈ (−0.36 + i, −0.36 + i, 1.07 − 0.6i); z21 ≈ (0.36 − i, 0.36 − i, −1.07 + 0.6i);

z20 ≈ (−0.36 − i, −0.36 − i, 1.07 + 0.6i); z01 ≈ (0.36 + i, 0.36 + i, −1.07 − 0.6i).
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The following is a graphical description of the z3-plane:

Im(z3)

Re(z3)
z003z113

z203z213

z103z013

(iii) For k = 2 the solution set Crit(fX ) ⊂ (C∗)3 is given by

z00 ≈ (0.66, 0.66, 0.53); z21 ≈ (4.11, 4.11, −8.35);

z10 ≈ (0.11 − 0.85i, 0.11 − 0.85i, 0.43 + 0.67i); z11 ≈ (−0.5 − 0.4i, −0.5 − 0.4i, −0.53 + 0.24i);

z20 ≈ (0.11 + 0.85i, 0.11 + 0.85i, 0.43 − 0.67i); z01 ≈ (−0.5 + 0.4i, −0.5 + 0.4i, −0.53 − 0.24i).

The following is a graphical description of the z3-plane:

Im(z3)

Re(z3)
z003z213

z203

z113

z103
z013

In the three cases we define L : Crit(fX ) → Pic(X) by L(z lm) = lπ∗
+ mξ where 0 ≤ l ≤ 2 and 0 ≤ m ≤ 1. This is justified

as follows: consider the one-parametric family of elements

g t(z1, z2, z3) = (1 − t)z1 + (1 − t)z2 + z3 +
(1 − t)zk

z1z2
+

1
z3

∈ L(∆◦)

for t ∈ [0, 1). Note that g0(z) = fX (z) and g t(z) → fP1(z) for t → 1−. Express

Crit(g t) =

z ij(t)|0 ≤ i ≤ 2, 0 ≤ j ≤ 1


⊂ (C∗)3.

Direct computation shows

z00(t), z10(t), z20(t) →z0P1 = (0, 0, 1); z01(t), z11(t), z21(t) →z1P1 = (0, 0, −1);

when t → 1. On the other hand consider the one-parametric family of elements

ht(z1, z2, z3) = z1 + z2 + z3 +
e2π itzk

z1z2
+

1
z3

for t ∈ [0, 1). Computation shows

z00(t) → z10; z10(t) → z20; z20(t) → z00;

z01(t) → z11; z11(t) → z21; z21(t) → z01.

5.1.3. The Fano P2-bundles over P1 case
For X = P(OP1 ⊕ OP1 ⊕ OP1(k)) with k = 0, 1 the LG-potential is given by

fX (z1, z2, z3) = z1 + z2 + z3 +
1

z1z2
+

1
zk1z

k
2z3

.
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For k = 0 this is the same as Example 4.2.(i). For k = 1 the Landau–Ginzburg system is

z1
∂

∂z1
fX (z1, z2) = z1 −

1
z1z2

−
1

z1z2z3
= 0; z2

∂

∂z2
fX (z1, z2) = z2 −

1
z1z2

−
1

z1z2z3
= 0;

z3
∂

∂z3
fX (z1, z2) = z3 −

1
z1z2

−
1

zk1z
k
2z3

= 0;

and the solution set Crit(fX ) ⊂ (C∗)2 is given by

z00 ≈ (1.3, 1.3, 0.7); z10 ≈ (0.6, 0.6, −1.4);

z01 ≈ (−0.3 + 1.1i, −0.3 + 1.1i, −0.2 + 0.7i); z11 ≈ (−0.6 + 0.5i, −0.6 + 0.5i, −0.8 − 0.7i);

z02 ≈ (−0.6 − 0.5i, −0.6 − 0.5i, −0.8 − 0.7i); z12 ≈ (−0.3 − 1.1i, −0.3 − 1.1i, −0.2 − 0.7i);

Im(z1)

Re(z1)
z001

z011

z021

z101

z111

z121

By similar considerations to those of Example 4.2we define L : Crit(fX ) → Pic(X) to be L(z lm) = lπ∗H+mξ where 0 ≤ l ≤ 1
and 0 ≤ m ≤ 2.

5.1.4. The Fano P1-bundles over P1
× P1 case

For X = P(OP1×P1 ⊕ OP1×P1(k1, k2)) with (k1, k2) = (0, 0), (1, 1), (1, −1) the LG-potential is given by

fX (z1, z2, z3) = z1 + z2 + z3 +
zk11
z2

+
zk21
z3

+
1
z1

and the Landau–Ginzburg system is

z1
∂

∂z1
fX (z1, z2) = z1 + k1

zk11
z2

+ k2
zk21
z3

−
1
z1

= 0; z2
∂

∂z2
fX (z1, z2) = z2 −

zk11
z2

= 0;

z3
∂

∂z3
fX (z1, z2) = z3 −

zk21
z3

= 0;

(i) For (k1, k2) = (0, 0) the solution set Crit(fX ) ⊂ (C∗)2 is given by

z000 = (1, 1, 1); z001 = (1, 1, −1);

z010 = (1, −1, 1); z011 = (1, −1, −1);

z100 = (−1, 1, 1); z101 = (−1, 1, −1);

z110 = (−1, −1, 1); z111 = (−1, −1, −1);

(ii) For (k1, k2) = (1, 1) the solution set Crit(fX ) ⊂ (C∗)2 is given by

z000 ≈ (0.51, 0.71, 0.71); z001 ≈ (−0.47, −0.3 + 0.75i, −0.3 + 0.75i);

z010 ≈ (1, −1, 1); z011 ≈ (−1, i, −i);

z100 ≈ (1, 1, −1); z101 ≈ (−1, −i, i);

z110 ≈ (4.43, −2.1, −2.1); z111 ≈ (−0.47, −0.3 − 0.75i, −0.3 − 0.75i) ;
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Im(z2)

Re(z2)
z0003 z0103z1003z1103

z1113

z1013

z0113

z0013

(iii) For (k1, k2) = (1, −1) the solution set Crit(fX ) ⊂ (C∗)2 is given by

z000 ≈ (1, 1, 1); z101 ≈ (−1, i, i);

z010 ≈ (0.38, 0.61, −1.61); z111 ≈ (−0.5 − 0.866i, −0.5 + 0.866i, −0.5 − 0.866i);

z100 ≈ (2.61, −1.61, 0.61); z001 ≈ (−0.5 + 0.866i, −0.5 − 0.886i, −0.5 + 0.866i);

z110 ≈ (1, −1, −1); z011 ≈ (−1, −i, −i) ;

Im(z2)

Re(z2)
z0003z1003 z0103z1103

z1013

z0013

z1113

z0113

We define L : Crit(fX ) → Pic(X) by L(z lmn) = lπ∗H1 + mπ∗H2 + nξ for 0 ≤ l,m, n ≤ 1.

5.2. The M-aligned property:

In this sub-section we verify the M-aligned property for the exceptional maps defined in sub-Section 5.1. Note that, by
definition, verifying the M-aligned property requires to show that Q D(E) ⊂ Q (D) for any D ∈ Div(E). We thus computeQ (D) for any D ∈ Div(E) and compare it to the quivers described in Examples 3.11–3.14. Let us note that the graphs of the
quivers Q (D) given below do not represent the actual path curve of the monodromy, but serve as a schematic description
of the underlying automorphisms. The bold arrows represent the edges of the sub-quiverQ D(E) ⊂ Q (D).

5.2.1. The Del-Pezzo surface case
(i) For X = P2 the monodromy quivers are:

Q (VX (n1))

E0

E1

E2

Q (VX (n2))

E0

E1

E2
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Q (VX (n3))

E0

E1

E2

(ii) For X = P1
× P1 the monodromy quivers are:

Q (VX (n1))

E00E10

E01E11

Q (VX (n3))

E00E10

E01E11

Q (VX (n2))

E00E10

E01E11

Q (VX (n4))

E00E10

E01E11

(iii) For X = Bl1(P2) the monodromy quivers are:

Q (VX (n1))

F1

E1

E2

E0

Q (VX (n2) + VX (n3))

F1

E1

E2

E0
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Q (VX (n3))

F1

E1

E2

E0

Q (VX (n3) + VX (n4))

F1

E1

E2

E0

Q (VX (n2))

F1

E1

E2

E0

Q (VX (n4))

F1

E1

E2

E0

(iv) For X = Bl2(P2) the monodromy quivers are:

Q (VX (n1))

F2 F1 E0

E1

E2

Q (VX (n4) + VX (n5))

F2 F1 E0

E1

E2

Q (VX (n2))

F2 F1 E0

E1

E2

Q (VX (n3) + VX (n4))

F2 F1 E0

E1

E2

Q (VX (n3))

F2 F1 E0

E1

E2

Q (VX (n4))

F2 F1 E0

E1

E2
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Q (VX (n5))

F2 F1 E0

E1

E2

Q (VX (n3) + VX (n4) + VX (n5))

F2 F1 E0

E1

E2

Q (VX (n2) + VX (n3))

F2 F1 E0

E1

E2

Q (VX (n1) + VX (n5))

F2 F1 E0

E1

E2

(v) For X = Bl3(P2) the monodromy quivers are:

Q (VX (n1))

E0F2

F1F3 E2

E1

Q (VX (n2))

E0F2

F1F3 E2

E1

Q (VX (n3))

E0F2

F1F3 E2

E1

Q (VX (n4))

E0F2

F1F3 E2

E1
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Q (VX (n5))

E0F2

F1F3 E2

E1

Q (VX (n6))

E0F2

F1F3 E2

E1

Q (VX (n2) + VX (n3))

E0F2

F1F3 E2

E1

Q (VX (n5) + VX (n6))

E0F2

F1F3 E2

E1

Q (VX (n1) + VX (n6))

E0F2

F1F3 E2

E1

Q (VX (n3) + VX (n4))

E0F2

F1F3 E2

E1

Q (VX (n1) + VX (n2))

E0F2

F1F3
E2

E1

Q (VX (n4) + VX (n5))

E0F2

F1F3
E2

E1
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5.2.2. The Fano P1-bundles over P2 case

(i) For X = P(OP2 ⊕ OP2(1)) the monodromy quivers are:

Q (VX (n1))

E00E11

E20E21

E10E01

Q (VX (n2))

E00E11

E20E21

E10E01

Q (VX (n4))

E00E11

E20E21

E10E01

Q (VX (n3))

E00E11

E20E21

E10E01

Q (VX (n5))

E00E11

E20E21

E10E01

Q (VX (n1) + VX (n3))

E00E11

E20E21

E10E01

Q (VX (n2) + VX (n3))

E00E11

E20E21

E10E01

Q (VX (n3) + VX (n4))

E00E11

E20E21

E10E01
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(ii) For X = P(OP2 ⊕ OP2(2)) the monodromy quivers are:

Q (VX (n1))

E00E21

E20

E11

E10

E01

Q (VX (n2))

E00E21

E20

E11

E10

E01

Q (VX (n4))

E00E21

E20

E11

E10

E01

Q (VX (n3))

E00E21

E20

E11

E10

E01

Q (VX (n5))

E00E21

E20

E11

E10

E01

Q (VX (n1) + VX (n2) + VX (n3))

E00E21

E20

E11

E10

E01

Q (VX (n1) + VX (n3) + VX (n4))

E00E21

E20

E11

E10

E01

Q (VX (n2) + VX (n3) + VX (n4))

E00E21

E20

E11

E10

E01

5.2.3. The Fano P2-bundles over P1 case
(i) For X = P(OP1 ⊕ OP1 ⊕ OP1(1)) the monodromy quivers are:
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Q (VX (n1))

E00

E01

E02

E10

E11

E12

Q (VX (n2))

E00

E01

E02

E10

E11

E12

Q (VX (n3) + VX (n4))

E00

E01

E02

E10

E11

E12

Q (VX (n4) + VX (n5))

E00

E01

E02

E10

E11

E12

Q (VX (n3))

E00

E01

E02

E10

E11

E12

Q (VX (n5))

E00

E01

E02

E10

E11

E12

Q (VX (n4))

E00

E01

E02

E10
E11

E12

5.3. The Fano P1-bundles over P1
× P1 case

(i) For X = P(OP1×P1 ⊕ OP1×P1(1, 1)) the monodromy quivers are:
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Q (VX (n1))

E000 E010E100E110

E111
E101

E011
E001

Q (VX (n6))

E000 E010E100E110

E111
E101

E011
E001

Q (VX (n2))

E000 E010E100E110

E111
E101

E011
E001

Q (VX (n4))

E000 E010E100E110

E111
E101

E011
E001

Q (VX (n3))

E000 E010E100E110

E111
E101

E011
E001

Q (VX (n5))

E000 E010E100E110

E111
E101

E011
E001

(ii) For X = P(OP1×P1 ⊕ OP1×P1(1, −1)) the monodromy quivers are:

Q (VX (n1))

E000E100 E010E110

E101

E001

E111

E011

Q (VX (n6))

E000E100 E010E110

E101

E001

E111

E011
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Q (VX (n2))

E000E100
E010E110

E101

E001

E111

E011

Q (VX (n4))

E000E100
E010E110

E101

E001

E111

E011

Q (VX (n3))

E000E100 E010E110

E101

E001

E111

E011

Q (VX (n5))

E000E100 E010E110

E101

E001

E111

E011

Q (VX (n3) + VX (n6))

E000E100 E010E110

E101

E001

E111

E011

Q (VX (n5) + VX (n6))

E000E100 E010E110

E101

E001

E111

E011

;

6. Discussion and concluding remarks

In this work we showed examples of toric Fano manifolds X which exhibit non-trivial relations between their small
quantum cohomology QH(X) and properties of their derived category of coherent sheaves Db(X). Concretely, between the
Landau–Ginzburg solution scheme Crit(fX ) (and its monodromies) and full strongly exceptional collections of line bundles
E ⊂ Pic(X) (and their quivers). The question is, of course, to which extent do these relations generalize to further semi-
simple toric Fano manifolds?

Recall that the pair ((C∗)n, fX ), where fX is the Landau–Ginzburg potential of X , is typically considered as the Hori–Vafa
mirror of the toric Fano manifold X , see [36]. Kontsevich homological mirror symmetry conjecture, in this setting, suggests
that there is an equivalence of categories of the form

Db(X) ≃ Db(FS((C∗)n, fX ))

where FS((C∗)n, fX ) is the Fukaya–Seidel category of ((C∗)n, fX ), see [37].Wewould like to conclude thiswork bymentioning
a few remarks on relations to the framework of mirror symmetry:
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Remark 6.1 (Seidel’s Vanishing Cycles). In [38] Seidel associates to an exact Morse fibration f : E → C the derived category
of Lagrangian vanishing cycles Db(Lagvc(fX )). The definition of Db(Lagvc(fX )) involves the choice of a basis of vanishing
cycles {L1, . . . , LN} in a non-singular fiber, which serves as a set of generators for Db(Lagvc(f )). Seidel shows the following
equivalence of categories Db(X) ≃ Db(Lagvc(fX )), in the case X = P2, where fX is the Landau–Ginzburg potential of X . The
equivalence is obtained via a specific choice of generators

L0,L1,L2. Under the equivalence i : Db(Lagvc(fX )) → Db(X) the
collection


i(L0), i(L1), i(L2) is a full strongly exceptional collection. This method was later extended for further manifolds,

for instance by Auroux, Katzarkov and Orlov for Del-Pezzomanifolds, see [39]. However, in general, the resulting collections
are not collections of line bundles.

Remark 6.2 (The Coherent-constructible Correspondence).One of the developments inmirror symmetry for toricmanifolds in
recent years is the coherent-constructible correspondence of Fang, Liu, Treumann and Zaslow, see [40]. To a toric manifold
X the authors associate a Lagrangian submanifold ΛX ⊂ (MR/M) × NR, defined in terms of the toric data. One of the
main geometric ingredients is the establishment of a relation between coherent sheaves on X and constructible sheaves on
T ∗T∨

R := (MR/M) × NR with support in ΛX . Constructible sheaves, in turn, are related to the elements of a corresponding
Fukaya category via a process of ‘‘microlocalization’’ due to works of Nadler–Zaslow, see [41] and Nadler, see [42].

Denote by P rev(T ∗X; Λ) the category of perverse sheaves on T ∗X with support in a conical Lagrangian subvariety
Λ ⊂ T ∗X (which is, by definition, a sub-category of the corresponding category of constructible sheaves). A seminal result
on the structure of P rev(T ∗X; Λ) due to S. Gelfand, MacPherson and Vilonen shows an equivalence of categories between
P rev(T ∗X; Λ) and the category of representations of a quiver Q prev(T ∗X, Λ) which is, in turn, defined via monodromies,
see [43]. It is thus interesting to ask whether the constructible dg-category Shc(T ∗T∨

R ; ΛX ) studied by Fang, Liu, Treumann
and Zaslow admits an analog quiver description. In view of the above, we would cautiously suggest that the analog
monodromy map involved in the definition of such a quiver is the mapM : π1(L(∆◦) \ RX ; fX ) → Aut(Crit(fX )).
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